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On the coupled time-harmonic motion of water
and a body freely floating in it
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We consider a spectral problem that describes the time-harmonic small-amplitude mo-
tion of the mechanical system that consists of a three-dimensional water layer of con-
stant depth and a body (either surface-piercing or totally submerged), freely floating in
it. This coupled boundary-value problem contains a spectral parameter – the frequency
of oscillations – in the boundary conditions as well as in the equations governing the
body motion. It is proved that the total energy of the water motion is finite and the
equipartition of energy of the whole system is established. Under certain restrictions
on body’s geometry the problem is proved to have only a trivial solution for sufficiently
large values of the frequency. The uniqueness frequencies are estimated from below.

Key words: surface gravity waves, waves/free-surface flows, wave–structure
interactions

1. Introduction
This paper deals with the coupled problem that describes the time-harmonic motion

of the following mechanical system. It consists of an inviscid, incompressible, heavy
fluid (water) and a bounded body (either totally submerged or surface-piercing), which
floats freely. The latter means that there are no external forces acting on the body,
for example due to constraints on the body motion. A totally submerged body is
deemed to be freely floating when it is neutrally buoyant with the centre of buoyancy
above the centre of mass. Water extends to infinity in horizontal directions, but has a
finite depth being bounded from below by a horizontal rigid bottom and from above
by a free surface. Thus, our model describes a vessel freely floating in an open sea of
constant depth. The water motion is assumed to be irrotational and the surface tension
is neglected on the free surface; moreover, the motion of the system is supposed to
be of small amplitude near equilibrium, which allows us to use a linear model.

The time-dependent model of this mechanical system was developed by John (1949)
in his pioneering work. Recently, the corresponding equations of the body motion
were represented in a convenient matrix form by Nazarov & Videman (2011) (this
notation was also used by Nazarov 2011), and this form is applied in the present
work. Assuming that the water motion is simple harmonic in time, we apply an
ansatz that introduces complex-valued unknowns and reduces the time-dependent
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Coupled time-harmonic motion of water and a freely floating body 617

problem to a coupled spectral problem. The frequency of oscillations, which plays
the role of spectral parameter, appears in the boundary conditions as well as in the
equations of the body motion. It is possible to reformulate this spectral problem as
an operator equation in a Hilbert space (cf. Nazarov & Videman 2011, where this
approach is developed for a similar problem in a channel symmetric with respect to
the centreplane), but such a formulation is superfluous for our purpose.

One has to keep in mind that in the vast majority of published papers, the
questions of uniqueness and existence of solutions and trapped modes are studied for
the scattering and radiation problems under the assumption that an immersed body or
several such bodies are fixed (see Kuznetsov, Maz’ya & Vainberg 2002 and Linton &
McIver 2007 for surveys, and Kuznetsov 2008 for the most recent uniqueness theorem).
Only John (1950) proved a uniqueness theorem for the problem of a freely floating
body (without formulating the problem explicitly), and no other rigorous result about
this problem had been obtained during the past six decades. In a number of papers
(McIver & McIver 2006, 2007; Evans & Porter 2007; Newman 2008; Porter & Evans
2008, 2009; Fitzgerald & McIver 2010), the question of trapped modes was considered
at the heuristic level; various two-dimensional and axisymmetric trapping structures
are proposed in these papers. In most of these works, the authors deal with a simplified
model of a freely floating body constrained to the heave motion only; however, the
article by Porter & Evans (2009) involves an example of trapping structure whose
motion is combined (heave and sway) and mentions the roll motion. Subsequently,
Kuznetsov (2010) constructed a non-trivial solution for the two-dimensional problem
analogous to that considered here. His solution proves the existence of time-harmonic
waves trapped by each one of a family of symmetric, surface-piercing structures that
have two immersed parts; these structures remain motionless despite the fact that
they float freely. However, none of the above papers contain any uniqueness theorem
for the problem of coupled motion.

In the present note, we deal with the case when a body is totally submerged as
well as with the case when it is surface-piercing (unlike the most of previous works,
in which only the latter case was considered), and our aim is twofold. First, we prove
that the total energy is finite for the mechanical system in question; moreover, the
equipartition equality is obtained for the kinetic and potential energy. Second, we
prove a new uniqueness theorem for the case when a body is totally submerged. In
this theorem, frequencies of oscillations are assumed to be sufficiently large, which is
the same restriction as in the uniqueness theorem of John (1950). We prove the latter
theorem in a slightly more general form, but what is more important is that the new
proof is just a few lines instead of two pages in the original work.

2. Statement of the problem
Let us begin with geometrical assumptions. We choose a Cartesian coordinate

system (x1, x2, y) so that the y-axis is directed upwards and the free surface at rest
coincides with the horizontal (x1, x2)-plane. Let

Π = {(x, y) : x =(x1, x2) ∈ R2, −h<y < 0},

and let B̂ denote the domain whose closure is the floating body in its equilibrium

position (see figures 1 and 2). The submerged part of B̂ is denoted by B , that is

B = B̂ ∩Π; note that B = B̂ for a totally submerged body. We suppose that B ⊂ Π in

the latter case, whereas B̂ \Π is assumed to be non-empty for a surface-piercing body.
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Figure 1. Definition sketch of a surface-piercing body.
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Figure 2. Definition sketch of a totally submerged body.

Anyway, the water domain at rest is W = Π \ B and S = ∂B̂ ∩ Π is the wetted part of
body’s boundary. Let G = {x ∈ R2, y = − h} and F = ∂W \ S denote the bottom and
the free surface at rest, respectively; moreover, if the body is surface-piercing, then
we put D = {x ∈ R2, y = 0} \ F . We suppose that W is a simply connected Lipschitz
domain, and so the unit normal is defined almost everywhere on ∂W ; by n we denote

the normal pointing to the exterior of W . Since W is simply connected, B̂ =B must
be simply connected when the body is totally submerged; however, a surface-piercing

body B̂ can have holes in its part above the water level, whereas B can consist of
several connected components (D has the same number of components as B in this
case; see figure 1).

Since the water motion is supposed to be of small amplitude, linear equations of
motion are applicable. According to the standard linearisation procedure (see John
1949, § 2, and Kuznetsov et al. 2002, Introduction), all unknowns are proportional to
a small non-dimensional parameter ε (in fact, expansions of unknowns in powers of
ε are used), and the boundary conditions are imposed on the water boundary at rest
∂W . We begin with formulating (at the heuristic level) the first-order time-dependent
problem in the form proposed by Nazarov & Videman (2011), and then apply a time-
harmonic ansatz which introduces the spectral parameter instead of the dependence
on time.

The assumption that the water motion is irrotational implies that there exists a
velocity potential because W is simply connected. Let ε Φ(x, y; t) be the first-order
velocity potential, which means that the velocity field is equal to ε ∇Φ(x, y; t) at every
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Coupled time-harmonic motion of water and a freely floating body 619

instant t (∇ = (∂x1
, ∂x2

, ∂y ) is the spatial gradient), then the continuity equation yields

∇2Φ = 0 in W for all t. (2.1)

In order to specify the behaviour of Φ near ∂W , we require that this function belongs
to the Sobolev space H 1

loc(W ).
The standard linear boundary condition on the free surface has the following form:

∂
2
t Φ + g∂yΦ = 0 on F for all t. (2.2)

Here g > 0 is the acceleration due to gravity that acts in the direction opposite to
the y-axis. Equality (2.2) is a consequence of Bernoulli’s equation and the kinematic
condition both taken linearised; the first of these expresses the fact that the pressure
is constant on F , whilst the second one means that there is no transfer of matter
across F . Furthermore, we have the homogeneous Neumann condition on the bottom
(no normal flow):

∂yΦ(x, y, t) = 0 on G for all t. (2.3)

Now we turn to relations that describe the body motion coupled with the motion
of water; one of them is the kinematic boundary condition on S, whereas the others
are the equations of motion of the body whose position is characterised as follows.
Let (x(0), y(0)) be the location of body’s centre of mass in the equilibrium position; by
q(t) ∈ R6 we denote a vector column with the following components:

(i) εq1, εq2 and εq4 are the first-order displacements of the centre of mass from its
rest position in the horizontal and vertical directions, respectively;

(ii) εq3, and εq5, εq6 are the first-order angles of rotation about the axes y, and x1,
x2, respectively, through the centre of mass.

According to the linear theory (see, for example, John 1949) we have the following
kinematic condition:

∂nΦ(x, y, t) = nT(x, y) D
(

x − x(0), y − y(0)
)

q̇(t) on S for all t. (2.4)

This condition and (2.6) below are written in the form proposed by Nazarov &
Videman (2011). By superscript T we denote the operation of matrix transposition;
when this operation is applied to a vector, the latter is considered as a one-
column matrix. The vector q̇ characterises the body motion in the following manner:
ε (q̇1, q̇2, q̇4)

T is the velocity vector of the translational motion and ε (q̇3, q̇5, q̇6)
T is the

vector of angular velocities. The 3×6 matrix

D(x, y) =

⎡
⎢⎣1 0 x2 0 0 −y

0 1 −x1 0 y 0

0 0 0 1 −x2 x1

⎤
⎥⎦ (2.5)

describes the motion of a rigid body so that its elements are in conformity with the
order of components of the vector q.

The linearised system of equations of the body motion expresses the conservation
of linear and angular momentum. In the absence of external forces, this system is as
follows:

E
(

x(0), y(0)
)
q̈(t) = −

∫
S

∂tΦ(x, y, t) DT
(

x − x(0), y − y(0)
)

n(x, y) ds − g K
(

x(0), y(0)
)

q(t)

(2.6)
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620 N. Kuznetsov and O. Motygin

for all t . Here q̈(t) is the acceleration vector, and E(x(0), y(0)) is the mass matrix defined
as follows:

E
(

x(0), y(0)
)

= ρ−1
0

∫
B̂

ρ(x, y) DT
(

x − x(0), y − y(0)
)
D

(
x − x(0), y − y(0)

)
dx dy, (2.7)

where ρ(x, y) � 0 is the density distribution within the body and ρ0 > 0 is the constant
density of water. On the right-hand side of (2.6), we have forces and their moments,
namely the first term is of the hydrodynamic origin and the second term is related to
the buoyancy (see, for example, John 1949; Mei, Stiassnie & Yue 2005). The matrix
in the latter term has the following blockwise form:

K =

(
�3 �3

�3 K′

)
, whereK′ =

⎛
⎜⎝

ID ID
2 −ID

1

ID
2 ID

22 + IB
y −ID

12

−ID
1 −ID

12 ID
11 + IB

y

⎞
⎟⎠ (2.8)

and �3 is the null 3×3 matrix. The elements of K′ involve the following moments:

ID =

∫
D

dx, IB
y =

∫
B

(
y − y(0)

)
dx dy,

ID
i =

∫
D

(
xi − x

(0)
i

)
dx, ID

ij =

∫
D

(
xi − x

(0)
i

) (
xj − x

(0)
j

)
dx, i, j = 1, 2.

⎫⎪⎪⎬
⎪⎪⎭ (2.9)

The matrix K is symmetric; moreover, we have that K = diag
(
0, 0, 0, 0, IB

y , IB
y

)
in the

case when B = B̂ , that is, the body is totally submerged.
The elements of the mass matrix E are also composed of various moments, but of

the whole body B̂ . It is a direct calculation to obtain the explicit form of the matrix
(2.7) which is as follows:

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I B̂ 0 0 0 0 0

0 I B̂ 0 0 0 0

0 0 I B̂
x1x1

+ I B̂
x2x2

0 −I B̂
x1y

−I B̂
x2y

0 0 0 I B̂ 0 0

0 0 −I B̂
x1y

0 I B̂
x2x2

+ I B̂
yy −I B̂

x1x2

0 0 −I B̂
x2y

0 −I B̂
x1x2

I B̂
x1x1

+ I B̂
yy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.10)

Here

I B̂ = ρ−1
0

∫
B̂

ρ(x, y) dx dy, I B̂
σ = ρ−1

0

∫
B̂

ρ(x, y)
(
σ − σ (0)

)
dx dy,

I B̂
στ = ρ−1

0

∫
B̂

ρ(x, y)
(
σ − σ (0)

) (
τ − τ (0)

)
dx dy,

⎫⎪⎪⎬
⎪⎪⎭ (2.11)

where σ and τ attain their values in the set of the coordinate notation, which is
{x1, x2, y}; in the same way, we have that σ (0) and τ (0) belong to {x(0)

1 , x
(0)
2 , y(0)}.

In formula (2.10), it is also taken into account that all first-order moments vanish
by the definition of (x(0)

1 , x
(0)
2 , y(0)). The matrix E is obviously symmetric, and it is

straightforward to verify that E is always positive definite.
The relations listed above must be augmented by the following conditions

concerning the equilibrium position.
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Coupled time-harmonic motion of water and a freely floating body 621

(i) The mass of the displaced liquid is equal to that of the body (Archimedes’ law):

I B̂ =

∫
B

dx dy. (2.12)

(ii) The centre of buoyancy lies on the same vertical line as the centre of mass (see,
for example, Mei et al. 2005, § 8.2.3):∫

B

(
xi − x

(0)
i

)
dx dy = 0, i = 1, 2. (2.13)

(iii) The matrix K is positive semi-definite; moreover, K′ is positive definite for a
surface-piercing body and the inequality IB

y > 0 holds for a totally submerged body
(see John 1949).
The last requirement is the classical condition yielding the stability of the equilibrium
position of a body. This follows from the results formulated, for example, by John
(1949, § 2.4). (The stability is understood in the usual sense that an instantaneous,
infinitesimal disturbance causes changes in the position which remain infinitesimal,
except for purely horizontal, for all subsequent times.) In the case of a totally
submerged body the condition has simple meaning: the centre of buoyancy must be
above the centre of mass.

Of course, relations (2.1)–(2.6) must be complemented by proper initial conditions
in order to obtain a well-posed initial-value problem (see Beale 1977, § 3, where this
question was considered). However, our aim is to study the motion simple harmonic
in time, and so not depending on the initial conditions. An heuristic explanation as
to how the phenomenon of time-harmonic waves is to be conceived is given by John
(1950), who discussed it in detail on page 46.

Now we are in a position to formulate the problem describing the coupled time-
harmonic motion of the mechanical system under consideration. Let ω > 0 be the
radian frequency of oscillations, then we represent the velocity potential and the
displacement vector in the form

(Φ(x, y, t), q(t)) = Re{e−iωt (ϕ(x, y), χ)}, (2.14)

where ϕ is a complex-valued function and χ ∈ C6. Substituting the latter expression
into relations (2.1)–(2.6), we immediately get

∇2ϕ = 0 in W, (2.15)

∂yϕ − ω2

g
ϕ = 0 on F, (2.16)

∂yϕ = 0 on G, (2.17)

∂nϕ = −iω nTD0 χ on S, (2.18)

ω2Eχ = −iω

∫
S

ϕD0
Tn ds + g Kχ , (2.19)

where D0 = D(x − x(0), y − y(0)). It is clear that ω is a spectral parameter in this
boundary-value problem, and so ω is sought together with the eigenvector (ϕ, χ ).
Besides, we have to explain how the boundary condition (2.18) is understood because
we assumed that W is a Lipschitz domain and ϕ ∈ H 1

loc(W ). As usual, it is sufficient
to understand the whole set of relations (2.15)–(2.18) in the sense of the following
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622 N. Kuznetsov and O. Motygin

integral identity:∫
W

∇ϕ∇ψ dx dy =
ω2

g

∫
F

ϕ ψ dx − iω

∫
S

ψ nTD0 χ ds, (2.20)

which must hold for an arbitrary smooth ψ having a compact support in W . (For
smooth S, equality (2.20) is a consequence of relations (2.15)–(2.18) and the first
Green’s identity applied to ϕ and ψ .)

Furthermore, it is necessary to specify the behaviour of ϕ at infinity so that the
velocity potential given by formula (2.14) describes outgoing waves. Therefore, we
complement relations (2.15)–(2.19) by the following radiation condition:∫

W∩{|x|=a}
|∂|x|ϕ − iν0ϕ|2 ds = o(1) as a → ∞, (2.21)

where ν0 is the unique positive root of ν0 tanh(ν0h) = ω2/g. It is natural that (2.21) is
the same radiation condition as in the water-wave problem for a fixed obstacle (see,
for example, John 1950).

Nazarov & Videman (2011) introduced and investigated problem (2.15)–(2.19) in
the case when a body floats freely in an infinitely long channel of uniform cross-
section. They studied only solutions that have finite energy in which case no radiation
condition is required.

Problem (2.15)–(2.19), (2.21) is related to various important applications. Here we
restrict ourselves by mentioning only one of them, namely, the scattering problem
which is as follows. In the coupling conditions (2.18) and (2.19), ϕ is split into the
sum ϕsc + ϕin, where the latter term describes a given wave (say, a plane wave),
and so ϕin satisfies the Laplace equation throughout Π and the boundary conditions
(2.16) and (2.17) on the whole upper and lower parts of ∂Π , respectively, but the
radiation condition (2.21) usually does not hold for ϕin . The function ϕsc is sought
from problem (2.15)–(2.19) and (2.21) which is inhomogeneous now because of the
presence of ϕin in the coupling conditions.

In § 3, we show that all solutions of problem (2.15)–(2.19) and (2.21) have finite
energy. Some conditions, which guarantee that this problem has only a trivial solution,
are given in § 4, that is, uniqueness theorems for the scattering problem are proved
there.

3. On the energy of the coupled time-harmonic motion
It is known (see, for example, Kuznetsov et al. 2002, § 2.2.1) that a potential,

satisfying relations (2.15)–(2.17) and (2.21), has the asymptotic representation at
infinity of the same type as Green’s function, namely

ϕ(x, y) = A(θ, y)|x|−1/2 eiν0|x| + r(x, y), where |r | + |∇r | = O
(
|x|−3/2

)
as |x| → ∞,

(3.1)
and the following equality holds

ν0

∫ 2π

0

dθ

∫ 0

−h

|A(θ, y)|2 dy = − Im

∫
S

ϕ ∂nϕ ds. (3.2)

Here θ is the polar angle in the (x1, x2)-plane measured anticlockwise.
Assuming that (ϕ, χ) is a solution of problem (2.15)–(2.19) and (2.21), let

us rearrange the latter formula using the coupling conditions (2.18) and (2.19).
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Coupled time-harmonic motion of water and a freely floating body 623

Transposing the complex conjugate of (2.19), we get

ω2 χTE − gχTK = iω

∫
S

ϕ nTD0 ds. (3.3)

This relation and condition (2.18) yield that the inner product of both sides with χ

can be written in the form

ω2 χTEχ − gχTKχ = −
∫

S

ϕ ∂nϕ ds. (3.4)

Using this equality in (3.2), we obtain

ν0

∫ 2π

0

dθ

∫ 0

−h

|A(θ, y)|2 dy = Im{ω2 χTEχ − gχTKχ}. (3.5)

Now, we are in a position to prove the following assertion.

Proposition 1. Let (ϕ, χ) be a solution of problem (2.15)–(2.19) and (2.21), then∫
W

|∇ϕ|2 dx dy < ∞ and

∫
F

|ϕ|2 dx < ∞, (3.6)

that is, the kinetic energy of the water motion is finite as well as the potential one.
Moreover, the following equality holds:∫

W

|∇ϕ|2 dx dy + ω2χTEχ =
ω2

g

∫
F

|ϕ|2 dx + g χTKχ , (3.7)

where the kinetic energy of the water/body system is on the left-hand side, whereas on
the right-hand side we have the potential energy of this coupled motion.

Proof. In view of formula (3.1), relations (3.6) are true provided the right-hand side
in (3.5) vanishes. Since the matrix ω2E − gK is real and symmetric, we have

χT(ω2E − gK)χ =
[
χT(ω2E − gK)χ

]T
= χT(ω2E − gK)χ = χT(ω2E − gK)χ , (3.8)

which is true for any χ . Taking into account that (ϕ, χ) is a solution, we can use the
latter fact in equality (3.5), thus arriving at the required result.

Let us turn to proving equality (3.7). By ζa(|x|) we denote an infinitely differentiable
cutoff function, which is equal to one when 0 � |x| � a and to zero for |x| � a+1. Let
a be so large that S lies within the cylinder {|x| <a}, then substituting ψ =ϕ ζa(|x|)
into (2.20), we see that relations (3.6) allow us to let a → ∞, which combined with
(2.19) gives equality (3.7).

Remark 1. Formula (3.7) generalises the equality of energy equipartition valid for
a fixed body. Indeed, χ = 0 for such a body, and (3.7) turns into the well-known
equality (see, for example, formula (4.99) in Kuznetsov et al. 2002, p. 208).

Corollary 1. For a solution (ϕ, χ) of problem (2.15)–(2.19) and (2.21), the first
component ϕ belongs to the space H 1(W ).

Proof. It follows from relations (3.6) that(∫
W

|∇ϕ|2 dx dy + h−1

∫
F

|ϕ|2 dx
)1/2

< ∞, (3.9)

which is a norm in H 1(W ) equivalent to the usual one.
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Proposition 1 allows us to consider separate problems for the real/imaginary
and imaginary/real parts of the complex-valued unknowns (ϕ, χ). Thus, if (φ, ξ ) =
(Reϕ, Imχ), then problem (2.15)–(2.19) and (2.21) reduces to the following one:

∇2φ = 0 in W, (3.10)

∂yφ − ω2

g
φ = 0 on F, (3.11)

∂yφ = 0 on G, (3.12)

∂nφ = ω nTD0 ξ on S, (3.13)

ω2Eξ = −ω

∫
S

φ DT
0 n ds + g Kξ , (3.14)

where (φ, ξ ) ∈ H 1(W ) ×R6.
For (Imϕ, Reχ), the same problem arises, but with ω < 0. Therefore, we consider

problem (3.10)–(3.14), in which ω ∈ R \ {0}, in what follows. The two-dimensional
problem analogous to (3.10)–(3.14) was investigated by Kuznetsov (2010).

Remark 2. In the same way as in Nazarov & Videman (2011, § 3), problem (3.10)–
(3.14) can be formulated as a variational problem for which one has to use the integral
identity (2.20), where ψ ∈ H 1(W ), combined with the variational form of relation
(3.4).

Definition 1. A non-trivial solution (φ, ξ ) of problem (3.10)–(3.14) is called a
trapped mode; the corresponding value of ω is referred to as a trapping frequency.

Conditions guaranteeing the absence of trapped modes are given in the next section.

4. Uniqueness theorems
Here we prove two uniqueness theorems for problem (3.10)–(3.14); the first theorem

concerns a surface-piercing body and the second theorem deals with a totally
submerged body.

4.1. John’s theorem

We begin with the uniqueness theorem which slightly generalises that of John (1950),
being valid for B consisting of more than one connected component (see figure 1).
The form (3.13) and (3.14) of coupling conditions allows us to give a simple proof.
We recall that this theorem was proved under the assumption that a body satisfies
the following geometric restriction (nowadays, it is referred to as John’s condition):
no point of S lies on vertical lines going through F (see figure 1). This condition is
essential for proving the following assertion (cf. Lemma II in John 1950).

Lemma 1. Let body’s submerged part B satisfy John’s condition, and let the free
surface F be connected. If relations (3.10)–(3.12) hold for φ ∈ H 1(W ), then∫

S

φ ∂nφ ds > 0 (4.1)

unless φ vanishes identically in W .

Remark 3. Implications that arise when F has a component separated by the body

B̂ from infinity are discussed by Kuznetsov et al. (2002, see in particular §§ 4.2.1, 4.2.3
and 4.2.5 therein).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

16
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.161


Coupled time-harmonic motion of water and a freely floating body 625

Theorem 1. Let the geometrical assumptions of Lemma 1 hold, then problem (3.10)–
(3.14) has only a trivial solution in H 1(W ) ×R6 provided |ω| is sufficiently large.

Proof. Let us assume that (φ, ξ ) is a non-trivial solution. It is clear that equality
(3.4) holds for this solution. Since the right-hand side in this equality is negative in
view of (4.1) and the assumption made, we get a contradiction provided the matrix
ω2E − gK is positive definite which is true for sufficiently large |ω|.

Remark 4. It is clear from the proof of Theorem 1 that its assertion is valid for
ω2 > λ∗, where λ∗ > 0 is the largest λ such that det(λE − gK) = 0.

Example 1. Let B̂ be a rectangular box with a square horizontal cross-section
(John’s condition is fulfilled for this body, and so Theorem 1 is valid for it). It is
easy to calculate λ∗ in the case when the density ρ is constant. Indeed, λ∗g

−1 is the
largest eigenvalue of E−1K, which is a diagonal matrix for such a box provided the
frame of reference is chosen so that the y-axis goes through the centre of mass and
the horizontal axes are parallel to the corresponding edges. Using formulae (2.8) and
(2.10), one easily expresses the elements of this matrix in terms of ρ/ρ0, b and �,
where the latter two values are the height of the box and the length of its horizontal
edge, respectively.

A straightforward calculation gives that

E−1K = d−1 diag(0, 0, 0, 1, 1 − ∆, 1 − ∆), ∆ =
b2 + 6d(b − d)

b2 + �2
, (4.2)

where d stands for the draft of the box; moreover, ρ/ρ0, appearing in (2.10), is
replaced by d/b by virtue of Archimedes’ law. (Note that the second additional
condition is an immediate consequence of box’s symmetry, whereas the requirement
that the matrix K′ is positive definite reduces to the inequality �2 > 6d(b − d), which
we assume to hold.) Now one immediately obtains that the largest eigenvalue of E−1K
is equal to d−1, which implies that λ∗ = g/d .

4.2. Uniqueness theorem for a totally submerged body

We state that a totally submerged body satisfies the prism condition if there exists an
appropriate Cartesian frame of reference (x ′

1, x
′
2, y

′), obtained by a rotation about a
vertical axis and a horizontal translation of the (x1, x2, y)-coordinates, and such that
this body is a subset of

P = {(r ′, θ ′, x ′
2) : x ′

2 ∈ R, θ ′ ∈ (−π + 1, −1), −h < r ′ sin θ ′ < 0}, (4.3)

where (r ′, θ ′, x ′
2) are the cylindrical coordinates such that x ′

1 = r ′ cos θ ′, y ′ = r ′ sin θ ′

and θ ′ ∈ (−π, 0) in W (see figure 2). This condition means that B is contained between
the bottom and two planes inclined at the angle (π/2) − 1 to the vertical and crossing
each other along an appropriately chosen line in the x-plane.

Theorem 2. Let the totally submerged body B satisfy the prism condition, then
problem (3.10)–(3.14) has only a trivial solution in H 1(W )×R6 provided |ω| is sufficiently
large.
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Proof. Let relations (3.10)–(3.12) hold for φ ∈ H 1(W ). Then the so-called Maz’ya’s
identity is valid (see Kuznetsov et al. 2002, § 2.2.3)∫

W

(∇φ)TQ ∇φ dx ′ dy ′ −
∫

S∪G

|∇φ|2 V · n ds +

∫
F

(
ν2Vy′ + ν[2H − ∇x′ · V ]

)
φ2 dx ′

−
∫

F

Vy′ |∇φ|2 dx ′ + 2

∫
S∪G

[
V · ∇φ + Hφ

]
∂nφ ds = 0, where ν = ω2/g. (4.4)

Here ∇x′ = (∂x′
1
, ∂x′

2
, 0)T, H is a constant, and V = (V1, V2, Vy′)T is a vector field,

whose components are real and uniformly Lipschitz functions in W . Furthermore, the
3×3 matrix Q has the following elements:

Qij = (∇ · V − 2H )δij − (∂x′
j
Vi + ∂x′

i
Vj ), i, j = 1, 2, 3, (4.5)

where V3 = Vy′ , x ′
3 = y ′ and δij is the Kronecker delta. It is worth mentioning that

n is directed out of W in (4.4), whereas the oppositely directed normal is used in
Kuznetsov et al. (2002).

Let us assume that
(
φ, ξ

)
is a non-trivial solution. Under the geometrical

assumptions made, we apply Maz’ya’s identity (4.4) for φ, choosing H = −1/2
and the vector field V = α(θ ′)(x ′

1, 0, y ′)T, where α is the following function:

α(θ ′) =

⎧⎪⎨
⎪⎩

−(1 + θ ′), for θ ′ ∈ [−1, 0],

0, for θ ′ ∈ (−π + 1, −1),

π − 1 + θ ′, for θ ′ ∈ [−π, −π + 1].

(4.6)

(It was Weck 1990 who proposed to use these H and V for proving the uniqueness
in the water-wave problem with a fixed body.) The resulting identity is as follows:∫

W

(∇φ)TQ ∇φ dx ′ dy ′ −
∫

G

|∇φ|2 V · n dx ′ =

∫
S

φ ∂nφ ds. (4.7)

Here V · n < 0 on G (see figure 2.4b in Kuznetsov et al. 2002, p. 80), and the matrix
Q is as follows. It is equal to the unit matrix in P , whereas

Q =

⎛
⎜⎝

1 ∓ sin 2θ ′ 0 ± cos 2θ ′

0 1 0

± cos 2θ ′ 0 1 ± sin 2θ ′

⎞
⎟⎠ in Π \ P, (4.8)

the upper (lower) sign must be used for θ ′ ∈ [−1, 0] (θ ′ ∈ [−π, −π + 1], respectively).
The eigenvalues of the latter matrix are equal to 0, 1 and 2 irrespective of to which
interval θ ′ belongs, and so this matrix is a non-negative definite.

Combining (4.7) and (3.4), we get∫
W

(∇φ)TQ ∇φ dx ′ dy ′ −
∫

G

|∇φ|2 V · n dx ′ = −ω2 ξTEξ + gξTKξ . (4.9)

Since the left-hand side is positive under the assumption made, we arrive at a
contradiction provided |ω| is sufficiently large (cf. the proof of Theorem 1), which
proves the assertion.

Remark 5. The same lower estimate for ω2 as in Remark 4 is valid under the
assumptions of Theorem 2.
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