
Adv. Appl. Prob. 49, 61–83 (2017)
doi:10.1017.apr.2016.79

© Applied Probability Trust 2017

LARGE-SCALE HETEROGENEOUS SERVICE SYSTEMS
WITH GENERAL PACKING CONSTRAINTS
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Abstract

A service system with multiple types of customers, arriving according to Poisson
processes, is considered. The system is heterogeneous in that the servers can also be of
multiple types. Each customer has an independent, exponentially distributed service time,
with the mean determined by its type. Multiple customers (possibly of different types)
can be placed for service into one server, subject to ‘packing’ constraints, which depend
on the server type. Service times of different customers are independent, even if served
simultaneously by the same server. The large-scale asymptotic regime is considered such
that the customer arrival rates grow to ∞. We consider two variants of the model. For the
infinite-server model, we prove asymptotic optimality of the greedy random (GRAND)
algorithm in the sense of minimizing the weighted (by type) number of occupied servers
in steady state. (This version of GRAND generalizes that introduced by Stolyar and
Zhong (2015) for homogeneous systems, with all servers of the same type.) We then
introduce a natural extension of the GRAND algorithm for finite-server systems with
blocking. Assuming subcritical system load, we prove existence, uniqueness, and local
stability of the large-scale system equilibrium point such that no blocking occurs. This
result strongly suggests a conjecture that the steady-state blocking probability under the
algorithm vanishes in the large-scale limit.
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1. Introduction

We consider a heterogeneous service system where servers can be of multiple types. There
are also multiple types of customers, each arriving according to an independent Poisson process.
Each customer has an independent exponentially distributed service time, with the mean
determined by its type. Multiple customers (possibly of different types) can be placed for
service into one server, subject to ‘packing’ constraints, which depend on the server type.
Service times of different customers are independent, even if served simultaneously by the
same server. Such a system arises, for example, as a model of dynamic real-time assignment
of virtual machines (‘customers’) to physical host machines (‘servers’) in a network cloud [6],
where typical objectives may be to minimize the number of occupied (nonidle) hosts or to
minimize blocking/waiting of virtual machines. In this paper we consider two variants of the
system, and study their properties in the large-scale asymptotic regime, when the customer
arrival rates (and then the number of occupied servers) are large.
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The first variant of the system is such that there is an infinite ‘supply’ of servers of each type.
Each arriving customer is assigned to a server immediately upon arrival. The asymptotic regime
is considered such that the customer arrival rates grow in proportion to a scaling parameter
r → ∞. Each server type s is assigned a weight (‘cost’) γs , and the objective is to minimize the
weighted number (‘total cost’) of occupied servers in steady state. We prove that a generalized
version of the greedy random (GRAND) algorithm, introduced in [15] for a homogeneous
system (with one server type), is asymptotically optimal, in the sense described below in this
paragraph. The basic idea of GRAND is to assign an arriving customer of a given type i to
a server chosen randomly uniformly among servers available to it, i.e. those servers where a
type-i customer can be added without violating packing constraints. A particular GRAND
algorithm that we consider for the infinite server system, which is labeled GRAND(aZ), is
as follows. There is a parameter as > 0 for each server type s; a = (as) is the vector with
components as . An arriving customer picks uniformly at random an available server among all
currently occupied servers plus designated numbers asZ of idle servers (called ‘zero-servers’)
of each type s, where Z is the current total number of all customers. (The GRAND(aZ)

algorithm of [15] is a special case of GRAND(aZ), with single parameter a > 0, because there
is only one server type.) GRAND(aZ) achieves optimality if we first take the limit of system
stationary distributions as r → ∞, and then take the limit on as = αγs ↓ 0, with common
parameter α ↓ 0. (We believe that a stronger form of asymptotic optimality, when only the
limit r → ∞ is taken, holds for a different version of GRAND, with the number of zero-servers
of type s equal to Z(p−1)γs+1, where parameter p < 1 is close to 1. See Conjecture 2.1 at the
end of Section 2.2.)

It is important to emphasize that GRAND(aZ) achieves asymptotic optimality without
utilizing any knowledge of the system structural parameters. Namely, the algorithm need
not ‘know’ the server types or exact states of the currently occupied servers. All it needs
to know about each currently occupied server is whether or not it can ‘accept’ an additional
customer of type i, for each i. Note that the setting of the algorithm parameters as , that
achieves asymptotic optimality, depends only on the weights γs , which are the parameters of
the objective (as opposed to system parameters). One of the key qualitative insights of [15]
was the surprising fact that an algorithm as simple as GRAND can be asymptotically optimal.
The fact that an appropriately generalized, but still extremely simple, version of GRAND is
optimal in a heterogeneous system, is still more surprising.

The second variant is a system with finite size pools of servers of each type. Each arriving
customer can be either immediately assigned to a server or immediately blocked (in which case
it leaves the system without receiving service). The asymptotic regime is such that both the
arrival rates and the server pool sizes scale in proportion to parameter r → ∞. We consider
a different version of the GRAND algorithm, labeled GRAND-F, which simply assigns each
arriving customer randomly uniformly to any available server in the system, and blocks the
customer if there are no such available servers. We study the dynamics of the fluid paths
(obtained by ‘fluid’ scaling and then the r → ∞ limit). Assuming the system is subcritically
loaded, we prove existence, uniqueness and local stability of a system equilibrium point,
such that there is no blocking. These results strongly suggest a conjecture that GRAND-F
is asymptotically optimal in that, under subcritical load, the limit of the system stationary
distributions is concentrated on the equilibrium point described above, and therefore the steady-
state blocking probability vanishes in the r → ∞ limit. We note that the equilibrium point local
stability property is stronger than a typical ‘fixed point’ argument, based on the assumption
of asymptotic independence of server states (or, ‘independence ansatz,’ in the terminology
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of [2], [3]). The fixed point argument allows one to characterize (and then possibly derive) the
limit of the stationary distributions, assuming the ansatz holds. If the ansatz is proved, this of
course proves the limit of the stationary distributions. If the ansatz is not proved, the fixed point
argument is equivalent to the property that the equilibrium point is an invariant point of the fluid
paths. The local stability of the equilibrium point that we prove, is a stronger property than
just its existence and invariance, and therefore it provides a stronger support for the asymptotic
optimality conjecture. (The relation between the local stability and the fixed point argument is
discussed in detail in Section 5.1.)

We want to emphasize that the packing constraints that we consider are extremely general.
(They are of the same kind as those in [12], [14], [15]; we additionally allow them to depend on
the server type.) In particular, they are far more general than vector packing constraints. Vector
packing refers to the situation when a server has the corresponding resource-vector, giving the
amounts of resources of different types that it possesses; for each customer type there is the
requirement-vector, giving the resource requirements of one customer; the constraint is that
the sum of the requirement-vectors of the customers placed into a server cannot exceed its
resource-vector. Packing of virtual machines into physical machines in a network cloud [6] is
an example of vector packing.

Finally, we note that GRAND-F can be very efficiently implemented via a ‘pull-based’
mechanism (see [13] and the references therein), which has a very low signaling message
exchange rate between the ‘router’ and the servers. In fact, the GRAND-F algorithm can be
viewed as an extension of the PULL algorithm [13] to service systems with packing constraints.
(This is discussed in more detail in Remark 2.1 in Section 2.3.)

1.1. Related previous work

As mentioned above, the main practical motivation for our model is the problem of real-time
dynamic assignment of virtual machines (VM) to physical host machines (PM) in a network
cloud. (A general discussion of the issues that arise in this application can be found in [6].)
Since multiple VMs can simultaneously occupy (be ‘packed into’) the same PM, this naturally
leads to bin packing type models. There is an extensive literature on classical bin packing (see,
e.g. [1], [4], [8] for reviews and recent results), where each ‘item’ (customer) once placed into a
‘bin’ (server) stays in that bin forever. However, the dynamic VM-to-PM assignment problem
is such that each VM (customer) leaves its PM (server), and the system, after its service is
completed. This in turn naturally leads to the models that we consider, i.e. service systems with
packing constraints at the servers.

The infinite-server variant of our model is a generalization of the homogeneous (one server
type) model studied in [12], [14], [15], which focused on the problem of minimizing the
number of occupied servers in steady state. In particular, the GRAND algorithm was proposed
and shown to be asymptotically optimal in [15]. (The authors of [12] and [14] studied a different
algorithm, which needs to know the structure of packing constraints and to use the exact current
states of all servers.) Our model allows, in addition, multiple server types and we consider a
more general problem of minimizing the weighted number of servers; the analysis of this
variant of our model is a generalization of that in [15]. A homogeneous infinite-server model,
specialized to vector packing constraints, was also considered in [5], where a randomized
version of the Best Fit algorithm was proved asymptotically optimal.

The finite-server variant of our model is related to the model in [18], which considered
blocking in a homogeneous system, specialized to one-dimensional (single resource) vector
packing constraints. (In [18] all servers are of the same type, and the term heterogeneous refers
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to multiple customer types, which our model also allows. So, in our terminology, the system
in [18] is homogeneous.) The algorithm in [18] is of the power-of-d-choices type [2], [3],
[11], [17], namely each arriving customer goes to the server which has the largest amount of
unused resource, out of the d servers chosen uniformly at random. In [18] the authors used a
fixed point argument (independence ansatz) to derive the form of the equilibrium point, which is
conjectured to be the asymptotic limit of the system steady state. (In addition, they derived some
performance bounds.) Of course, the equilibrium point under the power-of-d-choices algorithm
is different from that under our GRAND-F algorithm. It is such that the blocking probability
does not (and cannot be expected to) vanish in the limit. Therefore, the relation between
the power-of-d-choices algorithm and GRAND-F for the systems with packing constraints, is
analogous to the relation between power-of-d-choices and the PULL algorithm [13] for service
systems without packing, where the blocking (or waiting) probability vanishes under PULL,
but not under the power-of-d-choices. (GRAND-F can be viewed as an extension of the PULL
algorithm to systems with packing constraints. See Remark 2.1 in Section 2.3.)

The authors of [9] and [10] considered a homogeneous finite-server system with queues
(and no blocking), and focused on the system stability (or, throughput maximization). In [7] a
heterogeneous finite-server system was considered, with the objective of minimizing maximum
load across server pools; the algorithms proposed in [7] essentially treat the system as an infinite-
server one. The algorithms in [7], [9], [10] are completely different from the variants of the
GRAND algorithm studied in this paper.

1.2. Layout of the paper

Basic notation used throughout the paper is given in Section 1.3. The model and the main
results are stated in Section 2. The basic structure of the system, common to both variants,
is given in Section 2.1. The infinite-server system, GRAND(aZ) algorithm and the main
results for it (Theorems 2.1 and 2.2) are presented in Section 2.2. In Section 2.3 we define
the finite-server system, GRAND-F algorithm, and state the main result for it informally in
Proposition 2.1 (with formal statements given later in Lemmas 5.2 and 5.3). Sections 3 and 4
contain proofs of the infinite-server/GRAND(aZ) results, while Section 5 contain those for
finite-server/GRAND-F. Concluding remarks are given in Section 6.

1.3. Basic notation

Sets of real and real nonnegative numbers are denoted by R and R+, respectively. We use
bold and plain letters for vectors and scalars, respectively. The standard Euclidean norm of a
vector x ∈ R

n is denoted by ‖x‖. Convergence x → u ∈ R
n means ordinary convergence

in R
n, while x → U ⊆ R

n means convergence to a set, namely, infu∈U ‖x − u‖ → 0.
The ith coordinate unit vector in R

n is denoted by ei . Symbol ‘
d−→’ denotes convergence in

distribution of random variables taking values in space R
n equipped with the Borel σ -algebra.

The abbreviation w.p.1 means convergence with probability 1. We often write x(·) to mean the
function (or random process) {x(t), t ≥ 0}. Abbreviation u.o.c. means uniform on compact
sets convergence of functions. The cardinality of a finite set N is |N |. Indicator function 1{A}
for a condition A is equal to 1 if A holds and 0 otherwise. 
ξ� denotes the smallest integer
greater than or equal to ξ , and �ξ denotes the largest integer smaller than or equal to ξ . For a
finite set of scalar functions fn(t), t ≥ 0, n ∈ N , a point t is called regular if for any subset
N ′ ⊆ N the derivatives (d/dt) maxn∈N ′ fn(t) and (d/dt) minn∈N ′ fn(t) exist.
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2. Model and main results

In this section we formally define the two variants of the model with heterogeneous servers,
and state our main results for them. The first variant is a generalization of the infinite-server
model in [12], [14], [15] in that we allow different types of servers, as opposed to just one type.
The number of servers of each type is infinite and there is no blocking of arriving customers.
For this version of the model the underlying objective is to minimize the weighted number of
occupied servers in steady state. The second variant is the model with different server types,
but with finite number of servers of each type. If an arriving customer cannot be immediately
assigned to some server in the system, it is blocked. In such a system, the underlying objective
is to minimize blocking. Before defining these two variants of the model, in the next subsection
we define the basic structure of the system (most importantly the server packing constraints),
which is common for both model variants.

2.1. Heterogeneous servers. Packing constraints

We consider a service system with I types of customers, indexed by i ∈ {1, 2, . . . , I } ≡ � .
The service time of a type-i customer is an exponentially distributed random variable with mean
1/μi . All customers’ service times are mutually independent. There are S types of servers,
indexed s ∈ {1, 2, . . . , S} ≡ S, and infinite ‘supply’ of servers of each type. A server of each
type can potentially serve more than one customer simultaneously, subject to the following
very general packing constraints. We say that a vector k = (k1, . . . , kI ; s) with nonnegative
integer ki, i ∈ � , and s ∈ S is a server configuration, if a type-s server can simultaneously
serve a combination of customers of different types given by the values ki . A configuration k

with specific value of s is a type-s server configuration. For any s, there is a finite set of all
allowed type-s server configurations, denoted by K̄s . We assume that K̄s satisfies a natural
monotonicity condition: if k ∈ K̄s then all ‘smaller’ configurations k′ = (k′

1, . . . , k
′
I ; s), i.e.

such that k′
i ≤ ki for all i, belong to K̄s as well. Without loss of generality, assume that for

each i, (ei; s) ∈ K̄s for at least one s, where ei is the ith coordinate unit vector (otherwise,
type-i customers cannot be served at all). By convention, for any s, vector 0s ≡ (0; s) ∈ K̄s ,
where k = 0 is the I -dimensional component-wise zero vector – this is the configuration of an
empty type-s server. We denote by Ks = K̄s \ {0s} the set of type-s server configurations not
including the empty (or, zero) configuration. Denote by K̄ = ⋃

s K̄s and K = ⋃
s Ks the

sets of all configurations and all nonzero configurations, respectively. In what follows, we use
the following slight abuse of notation: for k ∈ K̄ , k + ei means vector k with ki replaced by
ki + 1, and similarly for k − ei .

An important feature of the model is that simultaneous service does not affect the service
time distributions of individual customers. In other words, the service time of a customer is
unaffected by whether or not there are other customers served simultaneously by the same
server. A customer can be ‘added’ to an empty or occupied server, as long as the packing
constraints are not violated. Namely, a type-i customer can be added to a server of type s

whose current configuration k ∈ K̄s is such that k + ei ∈ Ks . When the service of a type-i
customer by a server in configuration k is completed, the customer leaves the system and the
server’s configuration changes to k − ei .

2.2. Infinite-server system

In this section we define the infinite-server system, the proposed generalized GRAND(aZ)

assignment (or packing) algorithm, and state the asymptotic optimality results for this algorithm.
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We consider a system, as described in Section 2.1, in which there is an infinite ‘supply’ of
servers of each type s ∈ S. Customers of type i arrive as an independent Poisson process of
rate �i > 0; these arrival processes are independent of each other and of the customer service
times. Each arriving customer is immediately placed for service in one of the servers, as long
as packing constraints are not violated.

Denote by Xk the number of servers in configuration k ∈ Ks . The system state is then the
vector X = {Xk, k ∈ K}.

A placement algorithm (or packing rule) determines where an arriving customer is placed,
as a function of the current system state X. Under any well-defined placement algorithm, the
process {X(t), t ≥ 0} is a continuous-time Markov chain with a countable state space. It is
easily seen to be irreducible and positive recurrent: the positive recurrence follows from the fact
that the total number Yi(t) of type-i customers in the system is independent from the placement
algorithm, and its stationary distribution is Poisson with mean �i/μi ; we denote by Yi(∞)

the random value of Yi(t) in steady state – it is, therefore, a Poisson random variable with
mean �i/μi . Consequently, the process {X(t), t ≥ 0} has a unique stationary distribution; let
X(∞) = {Xk(∞), k ∈ K} be the random system state X(t) in stationary regime.

We are interested in finding a placement algorithm that minimizes the total weighted number
of occupied servers

∑
k∈K Xk(∞) in the stationary regime.

Consider the following generalization of the GRAND algorithm, introduced in [15]. More
specifically, it is a generalization of the special form of the algorithm, called GRAND(aZ)

in [15].

Definition 2.1. (The GRAND(aZ) algorithm for heterogeneous infinite-server systems.) The
algorithm is parameterized by a vector a = (as, s ∈ S) of real numbers as > 0. Let Z(t) =∑

i

∑
k kiXk(t) denote the total number of customers in the system at time t . At any given

time t , there is a designated finite set of X0s (t) = 
asZ(t)� ≥ 0 empty type-s servers, called
s-zero-servers.

A new customer, say of type i, arriving at time t is placed into a server chosen randomly
uniformly among those zero-servers (of any type s) and occupied servers, where it can still fit.
In other words, the total number of servers available to a type-i arrival at time t is

X(i)(t)
.=

∑
{k∈K̄ : k+ei∈K}

Xk(t) ≡
∑

{s : ei∈Ks }

[
X0s (t) +

∑
{k∈K : k+ei∈K}

Xk(t)

]
.

If X(i)(t) = 0, the customer is placed into an empty server of any type s such that ei ∈ Ks .

The GRAND(aZ) algorithm is easily implementable. (A detailed discussion of the imple-
mentation issues of the GRAND algorithm is given below in Remark 2.1, in the context of
finite-server systems.)

We now define the asymptotic regime. Let r → ∞ be a positive scaling parameter. More
specifically, assume that r ≥ 1, and r increases to ∞ along a discrete sequence. Customer arrival
rates scale linearly with r; namely, for each r , �i = λir , where λi are fixed positive parameters.
Let (Xr (t), t ≥ 0), be the process associated with a system with parameter r , and let Xr (∞) be
the (random) system state in the stationary regime. (Note that we do not include the zero-server
numbers Xr

0s (t) into Xr (t) = {Xr
k(t), k ∈ K}.) For each i, denote by Y r

i (t) ≡ ∑
k∈K kiX

r
k(t)

the total number of customers of type i. Since arriving customers are placed for service
immediately and their service times are independent of each other and of the rest of the system,
Y r

i (∞) is a Poisson random variable with mean rρi , where ρi ≡ λi/μi . Moreover, Y r
i (∞) are
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independent across i. Since the total number of occupied servers is no greater than the total
number of customers,

∑
k∈K Xr

k(t) ≤ Zr(t) ≡ ∑
i Y r

i (t), we have a simple upper bound on
the total number of occupied servers in steady state,

∑
k∈K Xr

k(∞) ≤ Zr(∞) ≡ ∑
i Y r

i (∞),
where Zr(∞) is a Poisson random variable with mean r

∑
i ρi . Without loss of generality,

from now on we assume
∑

i ρi = 1. This is equivalent to rechoosing the parameter r to be
r
∑

i ρi .
The fluid-scaled process is xr (t) = Xr (t)/r, t ∈ [0, ∞). We also define xr (∞) =

Xr (∞)/r . For any r , xr (t) takes values in the nonnegative orthant R
|K|
+ . Similarly, yr

i (t) =
Y r

i (t)/r , zr(t) = Zr(t)/r , xr
0s (t) = Xr

0s (t)/r , and xr
(i)(t) = Xr

(i)(t)/r , for t ≥ 0 and t = ∞.
Since

∑
k∈K xr

k(∞) ≤ zr(∞) = Zr(∞)/r , we see that the random variables (
∑

k∈K xr
k(∞))

are uniformly integrable in r . This, in particular, implies that the sequence of distributions
of xr (∞) is tight, and therefore there always exists a limit x(∞) in distribution, so that
xr (∞)

d−→ x(∞), along a subsequence of r .
The limit (random) vector x(∞) satisfies the following conservation laws:

∑
k∈K

kixk(∞) ≡ yi(∞) = ρi for all i, (2.1)

and, in particular,

zi(∞) ≡
∑

i

yi(∞) ≡
∑

i

ρi = 1. (2.2)

Therefore, the values of x(∞) are confined to the convex compact (|K| − I )-dimensional
polyhedron

X ≡
{
x ∈ R

|K|
+

∣∣∣∣
∑

s

∑
k∈Ks

kixk = ρi for all i ∈ �

}
.

We will slightly abuse notation by using symbol x for a generic element of X; while x(∞),
and later x(t), refer to random elements taking values in X.

Also note that under GRAND(aZ), for any server type s, xr
0s (∞)

d−→ x0s (∞) = asz(∞) =
as as r → ∞.

The asymptotic regime and the associated basic properties (2.1) and (2.2) hold for any
placement algorithm. Indeed, (2.1) and (2.2) only depend on the already mentioned fact that
all Y r

i (∞) are mutually independent Poisson random variables with means ρir .
Let the server weights γs > 0, s ∈ S, be fixed. (One can think of γs as the ‘cost’ rate of

using one type-s server.) Consider the following problem of minimizing the weighted number
of occupied servers, on the fluid scale: minx∈X

∑
s∈S

∑
k∈Ks γsxk . It is a linear program (LP),

i.e.
min

x∈R
|K|
+

∑
s∈S

∑
k∈Ks

γsxk, (2.3)

subject to ∑
k∈K

kixk = ρi for all i. (2.4)

Without loss of generality, assume that the weights are scaled so that γ1 = 1. Denote by
X∗ ⊆ X the set of optimal solutions of (2.3) and (2.4).

For future reference, we record the following observations and notation. Using the mono-
tonicity of K̄ , it is easy to check that if in the LP (2.3) and (2.4) we replace equality constraints
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(2.4) with the inequality constraints∑
k∈K

kixk ≥ ρi for all i, (2.5)

the new LP (2.3), (2.5) has the same optimal value, and its set of the optimal solutions
X∗∗ contains X∗, or more precisely, X∗ = X∗∗ ∩ X. From here, using the Kuhn–Tucker
theorem, x ∈ X∗ if and only if there exists a vector η = {ηi, i ∈ � } of Lagrange multipliers,
corresponding to the inequality constraints (2.5), such that the following conditions hold:

x ∈ X, (2.6)

ηi ≥ 0 for all i ∈ � , (2.7)∑
i

kiηi ≤ γs, k ∈ Ks , (2.8)

for k ∈ Ks , condition
∑

i

kiηi < γs implies xk = 0. (2.9)

Vectors η satisfying (2.6)–(2.9) for some x ∈ X are optimal solutions to the problem dual to
LP (2.3), (2.5). They form a convex set, which we denote by H∗; it is easy to check that H∗
is compact.

For each parameter-vector a (as in the definition of the GRAND(aZ) algorithm), denote

L(a)(x) =
∑

s

∑
k∈Ks

xk log

[
xkck

(eas)

]
,

where ck
.= ∏

i ki !, 0! = 1. Then, for k ∈ Ks , we have

∂L(a)(x)

∂xk

= log

[
xkck

as

]
. (2.10)

Note that if we adopt a convention that

∂L(a)(x)

∂x0s

∣∣∣∣
x0s =as

= 0, (2.11)

then (2.10) is valid for k = 0s and x0s = as , which will be useful later.
The function L(a)(x) is strictly convex in x ∈ R

|K|
+ . Consider the problem minx∈X L(a)(x).

It is the following convex optimization problem:

min
x∈R

|K|
+

L(a)(x), (2.12)

subject to ∑
k∈K

kixk = ρi for all i. (2.13)

Denote by x∗,a ∈ X its unique optimal solution. Using (2.10) it is easy to check that x
∗,a
k > 0

for all k ∈ K . There exists a vector ν∗,a = {ν∗,a
i , i ∈ � } of Lagrange multipliers for the

constraints (2.13), such that x∗,a solves problem

min
x∈R

|K|
+

L(a)(x) +
∑

i

ν
∗,a
i

(
ρi −

∑
k∈K

kixk

)
.
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We see that log[x∗,a
k ck/as] − ∑

i ν
∗,a
i ki = 0, k ∈ K . Therefore, x∗,a has the product form

x
∗,a
k = as

ck

exp

[∑
i

kiν
∗,a
i

]
, k ∈ Ks . (2.14)

This, in particular, implies that the Lagrange multipliers ν
∗,a
i are unique and are equal to

ν
∗,a
i = log(x

∗,a
ei

/as), by considering (2.14) for ei , i ∈ � ; note also that they can have any sign
(not necessarily nonnegative). Therefore, we obtain the following fact. A point x ∈ X is the
optimal solution to (2.12) and (2.13) (that is x = x∗,a) if and only if it has a product-form
representation (2.14) for some vector ν∗,a . (The ‘only if’ part we just proved, and the ‘if’
follows from the Kuhn–Tucker theorem.)

Our main results on the asymptotic optimality of the GRAND(aZ) algorithm for the system
with infinite number of servers are the following Theorems 2.1 and 2.2.

Theorem 2.1. Let the parameter-vector a be fixed. Consider a sequence of systems under the
GRAND(aZ) algorithm, indexed by r , and let xr (∞) denote the random state of the fluid-scaled
process in the stationary regime. Then, as r → ∞,

xr (∞)
d−→ x∗,a .

Theorem 2.2. Suppose the parameter-vector a itself depends on a single parameter α > 0 as
follows: as = αγs , s ∈ S. Then, as α ↓ 0, x∗,a → X∗ and (− log α)−1ν∗,a → H∗.

Theorems 2.1 and 2.2 show that GRAND(aZ) is asymptotically optimal in the sense that
xr (∞) converges to the optimal set X∗, if we first take the limit r → ∞, and then take the
limit α ↓ 0 with as = αγs .

It was proved in [16] (which is posterior to this paper) that a stronger form of asymptotic
optimality, when only the limit r → ∞ is taken, is achieved by the following version of
GRAND, called GRAND(Zp). This is a GRAND algorithm with the number of zero-servers
depending on Z as Zp, where p < 1 is a parameter, which is sufficiently close to 1, but depends
only on the packing constraints. GRAND(Zp) can be informally interpreted as GRAND(aZ),
with a being variable a = Zp−1 rather than constant. This suggests that for the heterogeneous
infinite-server system that we consider, the stronger form of asymptotic optimality should hold,
if we make as variable, equal to Z(p−1)γs . Specifically, we believe that the methods of [16] can
be extended to prove the following fact.

Conjecture 2.1. Consider the GRAND algorithm with the number of zero-servers of type s

equal to Z(p−1)γs+1, where parameter p < 1 is sufficiently close to 1, but depends only on the
packing constraints (i.e. sets Ks). Then, as r → ∞, d(xr (∞), X∗) d−→0, where d(x, U) is the
distance from point x to set U .

2.3. Finite-server system

We now consider a version of the system, where the number of servers of each type is finite.
Namely, there is a finite number Hs > 0 of servers of type s. Customers of type i arrive as
an independent Poisson process of rate �i > 0 (and these processes are independent from the
customer service times). Each arriving type-i customer can be either immediately placed for
service into one of the servers (subject to packing constraints) or immediately blocked, in which
case it immediately leaves the system. If there is no server where an arriving customer can be
placed, the customer is necessarily blocked.
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Let Xk denote the number of servers in configuration k ∈ Ks and the system state is the
vector X = {Xk, k ∈ K}. (Same notation as for the infinite-server system.) Note that we do
not include the numbers X0s of empty servers of each type (i.e. s-zero-servers) into the state X.
However, those number are, of course, uniquely determined by X, because at all times we have
the conservation law

X0s +
∑

k∈Ks

Xk =
∑

k∈K̄s

Xk = Hs, s ∈ S.

In such a system, a placement algorithm (or packing rule) determines, depending on the
current system state X, whether or not an arriving customer is accepted (i.e. not blocked), and
if so, into which server it is placed. (If there are no servers, where a customer can be placed, it is
necessarily blocked.) Under any well-defined placement algorithm, the process {X(t), t ≥ 0}
is a continuous-time Markov chain with finite state space; it is easily seen to be irreducible
and, therefore, ergodic, with unique stationary distribution. Let X(∞) = {Xk(∞), k ∈ K}
be the random system state X(t) in stationary regime. It is also easy to see that Yi(∞) – the
steady-state random number of all type-i customers in the system – is stochastically dominated
by that in the infinite-server system, i.e. by a Poisson random variable with mean �i/μi .

For this system, the underlying objective is to minimize blocking in steady state. We consider
the following version of the GRAND algorithm, for the finite-server systems. It will be labeled
GRAND-F.

Definition 2.2. (GRAND-F.) A new customer, say of type i, arriving at time t is placed into
a server chosen randomly uniformly among all servers in the system where it can still fit.
(The total number of servers available for a type-i customer addition at time t is X(i)(t)

.=∑
{k∈K̄ : k+ei∈K} Xk(t).) If there are no such available servers (i.e. X(i)(t) = 0), the customer

is blocked.

Remark 2.1. An implementation of the GRAND-F algorithm only requires that the ‘router’
(an entity, making an assignment decision for each arriving customer) knows which servers
are currently available for an addition of a type-i customer, for each i ∈ � . The router does
not need to know the exact configurations of the servers. Moreover, it does not even need to
know the server types! Therefore, the router needs to maintain only I bits of information for
each server. This, in turn, is easily achievable, for example, by using a pull-based mechanism,
analogous to that used by the PULL algorithm proposed in [13] (in a different context, for
systems without nontrivial packing constraints). A specific pull-based mechanism to work in
conjunction with GRAND-F can be as follows.

(i) Upon a customer, say of type i, arrival, the router follows the GRAND-F rule for choosing
a server. If there are no available servers for type i, the customer is blocked and no further
action is taken. If the customer is assigned to a server, the server availability state (I bits)
is changed to indicate the unavailability to any customer type i.

(ii) Each server, when its configuration changes, i.e. upon any customer arrival (assignment)
or departure (service completion), sends a ‘pull-message’ (I bits), containing its new
availability state, to the router.

(iii) When router receives a pull-message from a server, it updates its availability status
accordingly. (In reality, to prevent the router from using ‘obsolete’ pull-messages, after
assigning a customer to a server, the router can use some short time-out for the server,
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during which the server is considered unavailable regardless of its availability state.
Thus, when the time-out expires, the availability state of the server is that from the latest
pull-message received from it. If the time-out is longer than the ‘round-trip’ router-
server-router message delay, then the latest pull-message from the server is generated
upon the last customer assignment to it, or maybe later, upon departures that occurred
after that.)

This mechanism is such that the rate of pull-messages in the system is very small, namely
two pull-messages per each arriving customer. The low rate of communication between the
router and the servers is a very important feature of pull-based algorithms, because in modern
cloud based systems, the number of servers can be very large.

We also note that a key part of the PULL algorithm is the random uniform assignment
of customers to available servers. Therefore, the GRAND-F algorithm can be viewed as an
extension of the PULL algorithm to service systems with packing constraints.

We consider the asymptotic regime, where the arrival rates are increased linearly with a
scaling parameter r → ∞: �i = λir , where λi > 0 are fixed parameters. In addition, so do
the server pool sizes Hs , namely, Hs = hsr , where hs > 0, s ∈ S, are fixed parameters.

Let Xr (·) be the process associated with a system with parameter r , and let Xr (∞) be the
(random) system state in the stationary regime. For each i, denote by Y r

i (t) ≡ ∑
k∈K kiX

r
k(t)

the total number of customers of type i. As mentioned above, Y r
i (∞) is stochastically dominated

by a Poisson random variable with mean rρi , where ρi ≡ λi/μi . As before, without loss of
generality, we assume

∑
i ρi = 1.

The fluid-scaled process is xr (t) = Xr (t)/r , t ∈ [0, ∞). We define xr (∞) = Xr (∞)/r .
Similarly, yr

i (t) = Y r
i (t)/r , xr

0s (t) = Xr
0s (t)/r , and xr

(i)(t) = Xr
(i)(t)/r , for t ≥ 0 and t = ∞.

For any r , xr (t) takes values in the compact set

X� ≡
{
x ∈ R

|K|
+

∣∣∣∣
∑

k∈Ks

xk ≤ hs for all s ∈ S

}
.

For any x ∈ X�, we denote x0s ≡ hs − ∑
k∈Ks xk, s ∈ S, and will sometimes use notation

x̄ ≡ {xk, k ∈ K̄}.
The sequence of distributions of xr (∞) is obviously tight, and therefore there always exists

a limit x(∞) in distribution, so that xr (∞)
d−→ x(∞), along a subsequence of r . The limit

(random) vector x(∞) satisfies the following property w.p.1.:
∑
k∈K

kixk(∞) ≡ yi(∞) ≤ ρi for all i. (2.15)

The asymptotic regime and property (2.15) obviously hold for any placement algorithm, not
just GRAND-F.

Consider the following subset of X�:

X� ≡
{
X ∈ X�

∣∣∣∣
∑

s

∑
k∈Ks

kixk = ρi for all i ∈ �

}
≡ X� ∩ X.

We make the following assumption.

Assumption 2.1. The system parameters λi , μi , i ∈ � , and hs , s ∈ S, are such that the set X�
is nonempty. Moreover, there exists x ∈ X� such that x0s > 0 for all s.
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This assumption means that, when the scaling parameter r is large, and we have ρir customers
of each type i, it is possible to ‘pack’ all of them into the system servers (hsr for each type s),
so that a nonzero fraction of servers in each pool s remains idle. Recall that, when r is large,
ρir is essentially the maximum number of type-i customers the system can possibly have in
steady state, because this would be the number of customers in the infinite-server system with
no blocking. Thus, the assumption guarantees that it is feasible, at least in principle, to operate
a system in a way such that, in the r → ∞ limit, the steady-state blocking probability vanishes.

Consider the following function L�(x̄) defined on x̄ such that x ∈ X� (and x0s ≡ hs −∑
k∈Ks hk for all s):

L�(x̄) =
∑
k∈K̄

xk log

[
xkck

e

]
, (2.16)

where ck
.= ∏

i ki !, 0! = 1. We then have

∂L�(x̄)

∂xk

= log[xkck], k ∈ K̄. (2.17)

For each k ∈ K̄ , the corresponding summand in the definition (2.16) of function L�(x̄) is

strictly convex in xk; then, L�(x̄) is strictly convex on R
|K̄|
+ .

Consider the problem minx∈X� L�(x̄). It is the following convex optimization problem:

min
x̄∈R

|K|
+

L�(x̄), (2.18)

subject to ∑
k∈K

kixk = ρi for all i, (2.19)

∑
k∈K̄s

xk = hs, s ∈ S. (2.20)

Denote by x̄∗,� its unique optimal solution; of course, the corresponding x∗,� ∈ X�. Using
(2.17) and Assumption 2.1 it is easy to see that x

∗,�
k > 0 for all k ∈ K̄ . There exist a

vector of Lagrange multipliers ν∗,� = (ν
∗,�
i , i ∈ � ) for the constraints (2.19) and Lagrange

multipliers β∗
s for the constraints (2.20), such that x̄∗,� solves problem

min
x̄∈R

|K̄|
+

L�(x̄) +
∑

i

ν
∗,�
i

(
ρi −

∑
k∈K

kixk

)
+

∑
s

β∗
s

( ∑
k∈K̄s

xk − hs

)
.

We see that log[x∗,�
k ck] − ∑

i ν
∗,�
i ki + β∗

s = 0, k ∈ K̄s . Therefore, x̄∗,� has the product-form

x
∗,�
k = 1

ck

exp

[
−β∗

s +
∑

i

kiν
∗,�
i

]
= exp[−β∗

s ]
ck

exp

[∑
i

kiν
∗,�
i

]
, k ∈ K̄s . (2.21)

This, in particular, implies that Lagrange multipliers ν
∗,�
i , β∗

s , are unique. They can have any
sign (not necessarily nonnegative).

We obtain the following fact. A point x̄, such that x ∈ X�, is the optimal solution to
(2.18)–(2.20) (that is x̄ = x̄∗,�) if and only if it has a product-form representation (2.21)
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for some Lagrange multipliers ν
∗,�
i , β∗

s . Furthermore, x∗,� and ν∗,� are equal to x∗,a and
ν∗,a , respectively, defined for the infinite-server system in Section 2.2, with parameters as =
exp[−β∗

s ].
Our main result for the finite-server system is the following Proposition 2.1. (It is stated

here informally. Formal statements are given in Lemmas 5.2 and 5.3.)

Proposition 2.1. Suppose that Assumption 2.1 holds. As r → ∞, the limits of the fluid-scaled
trajectories xr (·) will be referred to as fluid sample paths (FSP). Point x ∈ X� is an invariant
point, if x(t) ≡ x is an FSP. Then x∗,� is the unique invariant point x, such that x0s > 0
for all s (and therefore there is no blocking). Moreover, this invariant point is locally stable:
x(t) → x∗,�, uniformly for all FSPs with x(0) sufficiently close to x∗,�.

In turn, Proposition 2.1 strongly suggests that the following asymptotic optimality property
holds, which we present as follows.

Conjecture 2.2. Suppose that Assumption 2.1 holds. Consider a sequence of systems under the
GRAND-F algorithm, indexed by r , and let xr (∞) denote the random state of the fluid-scaled
process in the stationary regime. Then, as r → ∞, xr (∞)

d−→ x∗,�.

If Conjecture 2.2 is correct, the GRAND-F algorithm is asymptotically optimal in the
following sense. As long as Assumption 2.1 holds, i.e. the system has enough capacity to
process all offered load (under ideal packing), then as r → ∞, the steady-state blocking
probability under GRAND-F vanishes. As discussed in Remark 2.1, GRAND-F can be viewed
as an extension of the PULL algorithm [13]. Therefore, Conjecture 2.2, if correct, can be
viewed as an extension (to systems with packing constraints) of the asymptotic optimality of
PULL.

3. Proof of Theorem 2.2

For any k ∈ Ks , as as ↓ 0,

[− log as]−1xk log

[
xkck

eas

]
− xk = [− log as]−1xk[log xk + log ck − 1] → 0,

uniformly on any compact subset of nonnegative xk . We have

L(a)(x)

[− log a1] =
∑

s[− log as]
[− log a1]

∑
k∈Ks

[− log as]−1xk log

[
xkck

eas

]
.

Setting as = αγs (which implies [− log as]/[− log a1] = γs/γ1 = γs), we see that, as α ↓
0, |L(a)(x)/[− log α] − ∑

s

∑
k∈Ks γsxk| → 0, uniformly in x ∈ X. Therefore, x∗,a must

converge to X∗.

Consider any sequence α ↓ 0. We will denote b = − log α. We will show that from
any subsequence we can choose a further subsequence, along which we have convergence
x∗,a → x∗, ν∗,a/b → η∗, where x∗ ∈ X∗ and η∗ ∈ H∗.
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Let a subsequence of α be fixed. Since x∗,a → X∗, we can and do choose a further
subsequence along which x∗,a → x∗ for some fixed x∗ ∈ X∗. Let us show that

lim supα→0
∑

i kiν
∗,a
i

b
≤ γs for all k ∈ Ks , (3.1)

lim infα→0 ν
∗,a
i

b
≥ 0 for all i. (3.2)

From (2.14), we have

x
∗,a
k = 1

ck

exp

[
b

(∑
i kiν

∗,a
i

b − γs

)]
, k ∈ Ks . (3.3)

If (3.1) does not hold for some k ∈ Ks , then by (3.3), we have lim sup x
∗,a
k = ∞ – a

contradiction. Thus, (3.1) holds. Suppose now that (3.2) does not hold for some i, that is
lim inf ν

∗,a
i /b < 0. Pick an s and k ∈ Ks such that ki ≥ 1 and x∗

k > 0. Such s and k must
exist, because

∑
k kix

∗
k = ρi (recall that x∗ ∈ X∗). Since x

∗,a
k → x∗

k ∈ [0, ρi], we see from
(3.3) that lim

∑
j kj ν

∗,a
j /b = γ s . Therefore,

lim sup

[∑
j �=i kj ν

∗,a
j

b
+ (ki − 1)ν

∗,a
i

b

]
= γ s − lim inf ν

∗,a
i

b
> γ s;

but, this violates (3.1) for configuration k − ei . Thus, (3.2) holds.
By (3.1) and (3.2), the sequence of ν∗,a/b is bounded. Then, we choose a further subsequence

along which ν∗,a/b converges to some η∗. For the pair x∗ and η∗, condition (2.6) is automatic,
conditions (2.7) and (2.8) follow from (3.1) and (3.2), and condition (2.9) follows from (3.3).
Therefore, η∗ ∈ H∗. This completes the proof. �

4. Fluid sample paths for the infinite-server system under GRAND(aZ). Proof of
Theorem 2.1

In this section we define fluid sample paths (FSP) for the system controlled by GRAND(aZ).
FSPs arise as limits of the (fluid-scaled) trajectories (1/r)Xr (·) as r → ∞. Then we prove
Theorem 2.1. The development in this section is a generalization to the heterogeneous system
of the definitions and results given for the homogeneous system in Section 4 of [15]. The
generalization is quite straightforward. However, we provide it here for completeness and,
more importantly, as a preparation for the related argument used later in Section 5 for the
finite-server system.

Let M denote the set of pairs (k, i) such that k ∈ K and k − ei ∈ K̄ . Each pair (k, i) is
associated with the ‘edge’ (k − ei , k) connecting configurations k − ei and k; often we refer
to this edge as (k, i). By ‘arrival along the edge (k, i)’, we will mean placement of a type-i
customer into a server configuration k −ei to form configuration k. Similarly, ‘departure along
the edge (k, i)’ is a departure of a type-i customer from a server in configuration k, which
changes its configuration to k − ei .

Without loss of generality, assume that the Markov process Xr(·) for each r is driven by the
common set of primitive processes, defined as follows.

For each (k, i) ∈ M, consider an independent unit-rate Poisson process {ki (t), t ≥ 0},
which drives departures along edge (k, i). Namely, let Dr

ki
(t) denote the total number of
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departures along the edge (k, i) in [0, t]; then

Dr
ki (t) = ki

(∫ t

0
Xr

k(s)kiμi ds

)
.

The functional strong law of large numbers (FSLLN) holds, i.e.

1

r
ki (rt) → t, u.o.c., w.p.1. (4.1)

For each i ∈ � , consider an independent unit-rate Poisson process i(t), t ≥ 0, which drives
exogenous arrivals of type i. Namely, let Ar

i (t) denote the total number of type-i arrivals in
[0, t], then

Ar
i (t) = i(λirt).

Analogously to (4.1),
1

r
i(rt) → t, u.o.c., w.p.1. (4.2)

The random placement of new arrivals is constructed as follows. For each i ∈ � , consider
a sequence of independent and identically distributed random variables ξi(1), ξi(2), . . . , uni-
formly distributed in [0, 1]. Denote by Ki

.= {k ∈ K̄ | k + ei ∈ K̄} the subset of those
configurations (including zero configurations) which can fit an additional type-i customer. The
configurations k ∈ Ki are indexed by 1, 2, . . . , |Ki | (in arbitrary fixed order). When the mth
(in time) customer of type i arrives in the system, it is assigned as follows. If Xr

(i) = 0, the
customer is assigned to an empty server of an arbitrarily fixed type s, such that ei ∈ Ks .
Suppose that Xr

(i) ≥ 1. Then, the customer is assigned to a server in configuration k′ indexed
by 1 if

ξi(m) ∈
[

0,
Xr

k′
Xr

(i)

]
,

it is assigned to a server in configuration k′′ indexed by 2 if

ξi(m) ∈
(

Xr
k′′

Xr
(i)

,
Xr

k′ + Xr
k′′

Xr
(i)

]
,

and so on. Denote

gr
i (σ, ζ )

.=
�rσ∑
m=1

1{ξi(m) ≤ ζ },

where σ ≥ 0, 0 ≤ ζ ≤ 1. Obviously, from the strong law of large numbers and the
monotonicity of gr

i (σ, ζ ) on both arguments, we have the FSLLN

gr
i (σ, ζ ) → σζ, u.o.c., w.p.1. (4.3)

It is easy (and standard) to see that, for any r , w.p.1, the realization of the process {Xr (t), t ≥
0} is uniquely determined by the initial state Xr (0) and the realizations of the driving processes
ki (·), i(·) and (ξi(1), ξi(2), . . . ).

If we denote by Ar
ki

(t) the total number of arrivals allocated along edge (k, i) in [0, t], we
obviously have

∑
k∈Ki

Ar
ki

(t) = Ar
i (t), t ≥ 0, for each i.
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In addition to

xr
k(t) = 1

r
Xr

k(t),

we introduce other fluid-scaled quantities

dr
ki (t) = 1

r
Dr

ki (t), ar
ki (t) = 1

r
Ar

ki (t).

A set of locally Lipschitz continuous functions

[{xk(·), k ∈ K}, {dki (·), (k, i) ∈ M}, {aki (·), (k, i) ∈ M}]
on the time interval [0, ∞) we call an FSP, if there exist realizations of the primitive driving
processes, satisfying conditions (4.1), (4.2), and (4.3) and a fixed subsequence of r , along which

[{xr
k(·), k ∈ K}, {dr

ki (·), (k, i) ∈ M}, {ar
ki (·), (k, i) ∈ M}]

→ [{xk(·), k ∈ K}, {dki (·), (k, i) ∈ M}, {aki (·), (k, i) ∈ M}], u.o.c. (4.4)

For any FSP, all points t > 0 are regular (see the definition in Section 1.3), except a subset
of zero Lebesgue measure.

Lemma 4.1. Consider a sequence of fluid-scaled processes {xr (t), t ≥ 0} with fixed initial
states xr (0) such that xr (0) → x(0). Then w.p.1, for any subsequence of r there exists a
further subsequence of r , along which the convergence (4.4) holds, with the limit being an FSP.

Proof. The proof follows that of Lemma 5 in [15]. �
For an FSP, at a regular time point t , we denote vki (t) = (d/dt)aki (t) and wki (t) =

(d/dt)dki (t). In other words, vki (t) and wki (t) are the rates of type-i ‘fluid’arrival and departure
along edge (k, i), respectively. Also denote: yi(t) = ∑

k kixk(t), z(t) = ∑
i yi(t), x0s (t) =

asz(t), and x(i)(t) = ∑
{k∈K̄ : k+ei∈K̄} xk(t).

Lemma 4.2. (i) An FSP satisfies the following properties at any regular point t:

dyi(t)

dt
= λi − μiyi(t) for all i ∈ � , (4.5)

wki (t) = kiμixk(t) for all (k, i) ∈ M, (4.6)

x(i)(t) > 0 implies vki (t) = xk−ei
(t)

x(i)(t)
λi for all (k, i) ∈ M, (4.7)

∑
{k : (k,i)∈M}

vki (t) = λi for all i ∈ � , (4.8)

dxk(t)

dt
=

[ ∑
{i : k−ei∈K̄}

vki (t) −
∑

{i : k+ei∈K̄}
vk+ei ,i (t)

]

−
[ ∑

{i : k−ei∈K̄}
wki (t) −

∑
{i : k+ei∈K̄}

wk+ei ,i (t)

]
for all k ∈ K. (4.9)

Clearly, (4.5) implies that

yi(t) = ρi + (yi(0) − ρi) exp[−μit], t ≥ 0 for all i ∈ � . (4.10)
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(ii) Moreover, an FSP with x(0) ∈ X satisfies the following stronger conditions:

yi(t) ≡ ρi for all i ∈ � , (4.11)

z(t) ≡ 1, x0s (t) ≡ as, x(i)(t) ≥
∑

{s : ei∈Ks }
as for all i ∈ � ; (4.12)

at any regular point t ,

vki (t) = xk−ei
(t)

x(i)(t)
λi for all (k, i) ∈ M, (4.13)

∑
{k : (k,i)∈M}

wki (t) = λi for all i ∈ � . (4.14)

Proof. (i) Given the convergence (4.4), which defines an FSP, all the stated properties except
(4.7) are nothing but the limit versions of the flow conservations laws. Property (4.7) follows
from the construction of the random assignment, the continuity of x(t), and (4.3). We omit
further details.

(ii) If x(0) ∈ X, which implies yi(0) = ρi for each i, property (4.11) (and then (4.12) as well)
follows from (4.10). Then, (4.7) strengthens to (4.13), and (4.14) is verified directly using (4.6).
This completes the proof. �
Lemma 4.3. For any FSP with x(0) ∈ X,

x(t) → x∗,a,

and the convergence is uniform across all such FSPs.

Proof. Given that x0s (t) ≡ as and
∑

k xk(t) ≤ 1, we have x(i)(t) ≤ 1 + ∑
s as ; hence,

vki (t) ≥ xk(t)λi/(1 + ∑
s as). From here, we obtain the following fact: for any k and any

δ > 0 there exists δ1 > 0 such that, for all t ≥ δ, xk(t) ≥ δ1. The proof is by contradiction.
Consider a k, say k ∈ K̄s , that is a minimal counterexample; necessarily, k �= 0s . Pick any
δ > 0 and then the corresponding δ1 > 0 such that the statement holds for any k′ ∈ K̄s , k′ < k.
(Here k′ < k means that k′

i ≤ ki for all i, and k′ �= k.) We observe from (4.9) that, for any
regular t ≥ δ, (d/dt)xk(t) > δ2 > 0 as long as xk(t) ≤ δ3, for some positive constants δ2, δ3.
Since this holds for an arbitrarily small δ > 0 (with δ1, δ2, δ3 depending on it), we see that the
statement holds for k.

In particular, we see that xk(t) > 0 for all t > 0 and all k. Note also that all t > 0 are
regular points (because all wki and vki are bounded continuous in x).

To prove the lemma, it will suffice to show that

• if x(t) �= x∗,a and xk(t) > 0 for all k ∈ K , then (d/dt)L(a)(x(t)) < 0; and, moreover,

• the derivative is bounded away from 0 as long as ‖x(t)− x∗,a‖ is bounded away from 0.

Let us denote by �(x) the derivative (d/dt)L(a)(x(t)) at a given point x(t) = x; in the rest of
the proof we study the function �(x) on X, and therefore drop the time index t . Suppose that
all components xk > 0. From (4.6), (4.8), (4.13), and (4.14), we have:

wki = kiμixk = kiμixk

∑
{k′ : (k′,i)∈M}

xk′−ei

x(i)

, (4.15)

vk′i = xk′−ei

x(i)

λi = xk′−ei

x(i)

∑
{k : (k,i)∈M}

kiμixk. (4.16)
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Expressions (4.15) and (4.16) can be interpreted as follows. For any ordered pair of edges
(k, i) and (k′, i), we can assume that the part kiμixkxk′−ei

/x(i) of the total departure rate
kiμixk along (k, i) is ‘allocated back’ as a part of the arrival rate along (k′, i). Using (2.10),
the contribution of these ‘coupled’ departure/arrival rates for the ordered pair of edges (k, i)

and (k′, i) into the derivative �(x) is

ξk,k′,i = [log(k′
ixk−ei

xk′) − log(kixkxk′−ei
)]kiμixkxk′−ei

x(i)

.

This expression is valid even when either k − ei = 0s or k′ − ei = 0s for some s. This is
because x0s (t) = as when x ∈ X, and, therefore, by convention (2.11), (2.10) is valid for all
k ∈ K̄ . We have

ξk,k′,i + ξk′,k,i = μi

x(i)

[log(k′
ixk−ei

xk′) − log(kixkxk′−ei
)][kixkxk′−ei

− k′
ixk−ei

xk′ ] ≤ 0,

and the inequality is strict unless k′
ixk−ei

xk′ = kixkxk′−ei
. We obtain

�(x) =
∑

i

∑
k,k′

[ξk,k′,i + ξk′,k,i]. (4.17)

Therefore, �(x) < 0 unless x has a product-form representation (2.14), which in turn is
equivalent to x = x∗,a .

So far the function �(x) in (4.17) was defined for x ∈ X with all xk > 0. Let us adopt a
convention that �(x) = −∞ for x ∈ X with at least one xk = 0. Then, it is easy to verify
that �(x) is continuous on the entire set X.

It remains to show that, for any δ2 > 0, there exists δ3 > 0 such that conditions x ∈ X and
L(a)(x) − L(a)(x∗,a) ≥ δ2 imply �(x) ≤ −δ3. This indeed holds, because otherwise there
would exist x ∈ X, x �= x∗,a , such that �(x) = 0, which is, again, equivalent to x = x∗,a .
The proof is complete. �

From Lemma 4.3 we easily obtain Theorem 2.1; see the proof of Theorem 3 in [15, Section 4].
As in [15], we also have the following generalization of Lemma 4.3, showing FSP uniform

convergence for arbitrary initial states, not necessarily x(0) ∈ X.

Lemma 4.4. For any compact A ∈ R
|K|
+ , the convergence

x(t) → x∗,a

holds uniformly in all FSPs with x(0) ∈ A.

Proof. The proof repeats that of Lemma 8 in [15] almost verbatim. The only adjustments
are:

• starting any fixed time τ > 0, we have 0 < a1 ≤ x0s (t), for all s, and x(i)(t) ≤ a2 < ∞,
for all i, for some constants a1, a2, uniformly on all FSPs with x(0) ∈ A;

• L(a) replaces L(a);

• f (k) = (∂/∂xk)L
(a)(x) = log[xkck/as], k ∈ Ks .

This completes the proof. �
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5. GRAND-F: local stability of FSPs

The construction of the Markov process Xr(·) under GRAND-F is the same as in Section 4
for GRAND(aZ), except now, when Xr

(i) = 0, an arriving type-i customer is blocked. Conse-
quently, we no longer have the identity

∑
k∈Ki

Ar
ki

(t) = Ar
i (t), t ≥ 0, for each i. Instead,

Ar
i (t) −

∑
k∈Ki

Ar
ki (t), t ≥ 0,

is a nonnegative, nondecreasing function, giving the number of blocked type-i customers by
time t .

The definition of an FSP and Lemma 4.1 hold as is. All points t > 0 are regular, except for
a subset of zero Lebesgue measure. The analog of Lemma 4.2 as follows.

Lemma 5.1. (i) An FSP satisfies the following properties at any regular point t:
∑

{k : (k,i)∈M}
vki (t) ≤ λi for all i ∈ � ,

dyi(t)

dt
=

∑
{k : (k,i)∈M}

vki (t) − μiyi(t) for all i ∈ � , (5.1)

wki (t) = kiμixk(t) for all (k, i) ∈ M, (5.2)

x(i)(t) > 0 implies
∑

{k : (k,i)∈M}
vki (t) = λi for all i ∈ � ,

vki (t) = xk−ei
(t)

x(i)(t)
λi for all (k, i) ∈ M,

(5.3)

dxk(t)

dt
=

[ ∑
{i : k−ei∈K̄}

vki (t) −
∑

{i : k+ei∈K̄}
vk+ei ,i (t)

]

−
[ ∑

{i : k−ei∈K̄}
wki (t) −

∑
{i : k+ei∈K̄}

wk+ei ,i (t)

]
for all k ∈ K̄.

(ii) Moreover, an FSP with x(0) ∈ X�, x(i)(0) > 0 for all i, satisfies the following stronger
conditions for all sufficiently small t > 0

yi(t) ≡ ρi for all i ∈ � , (5.4)

z(t) ≡ 1, x0s (t) ≡ as for all s, x(i)(t) ≥ min
s

as for all i ∈ � ; (5.5)

if t is regular,

vki (t) = xk−ei
(t)

x(i)(t)
λi for all (k, i) ∈ M, (5.6)

∑
{k : (k,i)∈M}

wki (t) = λi for all i ∈ � . (5.7)

Proof. (i) Given the convergence (4.4) defining an FSP, all the stated properties except (5.3),
are nothing but the limit versions of the flow conservations laws. Property (5.3) follows from
the construction of the random assignment, the continuity of x(t), and (4.3). We omit further
details.
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(ii) If x(0) ∈ X�, which implies yi(0) = ρi for each i, property (5.4) (and then (5.5) as well)
follows from (5.1) and (5.3). Then, (5.7) is verified directly using (5.2). Finally, (5.6) follows
from (5.3). �

Lemma 5.2. There exists ε > 0, such that, uniformly on FSPs with initial states x(0) ∈
X� ∩ {‖x − x∗,�‖ ≤ ε},

x(t) → x∗,�, t → ∞. (5.8)

FSP x(t) ≡ x∗,� is the unique invariant FSP, satisfying conditions x0s (0) > 0 for all s.

Proof. We can assume (without loss of generality) that ε is small enough so that xk(0) > 0
for all k ∈ K̄ . In particular, at t = 0, the condition x0s (t) > 0 for all s holds. Obviously, until
the first time τ > 0 when this condition is violated (τ = ∞ if it is never violated), we have
yi(t) = ρi for all i. It is also easy to see that all time points 0 < t < τ are regular and such
that xk(t) > 0 for all k ∈ K̄ . Denote by �(x̄) the derivative (d/dt)L�(x̄(t)) at a given point
x(t) = x. Then, (4.15) and (4.16) for wki and vk′i hold for our system, and can be interpreted
the same way. (Recall, however, that now the components x0s are not constant, and therefore
their derivatives do depend on the rates w0s+ei ,i and v0s+ei ,i .) Then the expression for �(x̄)

has exactly same form as expression (4.17) for �(x) in Section 4, i.e.

�(x̄) =
∑

i

∑
(k,i),(k′,i)

(
μi

x(i)

)
[log(k′

ixk−ei
xk′) − log(kixkxk′−ei

)][kixkxk′−ei
− k′

ixk−ei
xk′ ]

≤ 0. (5.9)

The inequality in (5.9) is strict unless k′
ixk−ei

xk′ = kixkxk′−ei
for all pairs of edges (k, i) and

(k′, i). Therefore, �(x̄) < 0 unless x̄ has a product-form representation (2.21), which in turn
is equivalent to x = x∗,�.

Function �(x̄) is continuous in a neighborhood of x∗,� (and, in fact, at any point such
that xk > 0 for all k ∈ K̄). Choose ε1 > 0 small enough so that xk > 0, k ∈ K̄ , for all
x ∈ X� ∩ {‖x − x∗,�‖ ≤ ε1}. Then choose δ > 0 such that condition L�(x̄) − L�(x̄∗,�) ≤ δ

(along with x ∈ X�) implies that ‖x − x∗,�‖ < ε1. Finally, choose ε > 0 small enough so
that the maximum of L�(x̄) − L�(x̄∗,�) over the set X� ∩ {‖x − x∗,�‖ ≤ ε} is less than δ.
We see that a trajectory with x(0) ∈ X� ∩ {‖x − x∗,�‖ ≤ ε} cannot escape from the set
X�∩{‖x−x∗,�‖ ≤ ε1}, and, therefore, xk(t) > 0, k ∈ K̄ , for all t ≥ 0. Then, the convergence
(5.8) holds, and it is uniform on x(0) ∈ X� ∩ {‖x − x∗,�‖ ≤ ε}, because, for any 0 < δ1 < δ,
�(x̄) is negative and bounded away from 0 for all x ∈ X� ∩ {δ1 ≤ L�(x̄) − L�(x̄∗,�) ≤ δ}.

It follows from the above argument that there cannot be an invariant FSP x(t) ≡ x(0)

with x0s (0) > 0 for all s, unless x(0) = x∗,�. (Indeed, x(0) ∈ X� necessarily, because if
yi(0) �= ρi then yi(t) cannot be constant. Then x(0) = x∗,�, because otherwise L�(x̄(t))

cannot be constant.) This proves the second statement of the lemma. �

Lemma 5.3. There exists ε > 0, such that, uniformly on FSPs with initial states x(0) ∈
X� ∩ {‖x − x∗,�‖ ≤ ε},

x(t) → x∗,�, t → ∞. (5.10)

Proof. The proof is a slightly generalized version of that of Lemma 5.2. That proof considers
FSPs that stay within X�, uses the continuity of �(x̄), and the fact that, for x ∈ X� in a small
neighborhood of x∗,�, �(x̄) < 0 unless x = x∗,�. But, �(x̄) is continuous in a neighborhood
of x∗,� (or any point such that xk > 0 for all k ∈ K̄), not necessarily restricted to X�. In
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addition, we know that, as long as x0s (t) > 0, for all s, each yi(t) satisfies the differential
equation (d/dt)[yi(t) − ρi] = −μi[yi(t) − ρi], and, therefore,

yi(t) − ρi = (yi(0) − ρi) exp[−μit]. (5.11)

Using these observations, the adjustment of the proof of Lemma 5.2 is as follows. We
choose small ε1 > 0, then δ > 0, then ε > 0, exactly as in that proof. Then, using the
continuity of �(x̄), along with (5.11), we can choose a sufficiently small ε2 > 0, so that
a trajectory with x(0) ∈ {|yi − ρi | ≤ ε2 for all i} ∩ {‖x − x∗,�‖ ≤ ε} cannot escape from
the set {|yi − ρi | ≤ ε2 for all i} ∩ {‖x − x∗,�‖ ≤ ε1}. Then, the convergence (5.10) holds,
and it is uniform on x(0) ∈ {|yi − ρi | ≤ ε2 for all i} ∩ {‖x − x∗,�‖ ≤ ε}, because, for any
0 < δ1 < δ, there exists a small ε′

2 > 0, such that �(x̄) is negative and bounded away from 0
for all x ∈ {|yi − ρi | ≤ ε′

2 for all i} ∩ {δ1 ≤ L�(x̄) − L�(x̄∗,�) ≤ δ}. (Note that the time for
FSPs starting in {|yi − ρi | ≤ ε2 for all i} ∩ {‖x − x∗,�‖ ≤ ε} to reach set {|yi − ρi | ≤
ε′

2 for all i} ∩ {‖x − x∗,�‖ ≤ ε} is uniformly bounded due to (5.11).) �
5.1. Comments on Conjecture 2.2, local stability, and fixed point argument

Lemmas 5.2 and 5.3 formally state properties described informally in Proposition 2.1. The
sequence of stationary distributions, i.e. the distributions of xr (∞), is obviously tight. It is easy
to see that any subsequential limit in distribution, x(∞), of the sequence xr (∞), is such that
yi(∞) ≤ ρi , for all i, w.p.1. This is because, by comparison with the infinite-server system,
Y r

i (∞) is stochastically dominated by a Poisson random variable with mean ρir . Furthermore,
again by comparison with the infinite-server system, any FSP with

x(0) ∈ X�,≤ ≡
{
x ∈ X�

∣∣∣∣
∑

s

∑
k∈Ks

kixk ≤ ρi for all i ∈ �

}

stays in X�,≤ at all times t .
Given these facts, if we would have the (analogous to Lemma 4.3) uniform convergence

property
x(t) → x∗,�, for all x(0) ∈ X�,≤, (5.12)

this would prove Conjecture 2.2 (by the same argument as in the proof of Theorem 2.1).
Unfortunately, the uniform convergence (5.12) does not hold for a general finite-server system.
It is very easy to construct a counterexample (e.g. for a system with one server type with the
configuration set shown in Figure 1(b) in [15]) such that there exists an invariant FSP x(t) ≡ x∗,
for a suboptimal point x∗ �= x∗,�, such that y∗

i < ρi , for all i, and, therefore, such that there is
nonzero fraction of customers of each type being blocked. (In fact, we believe that a stronger
property holds for such a counterexample: the sequence of processes xr (·), with xr (0) → x∗,
converges in distribution to the invariant FSP x(t) ≡ x∗.) This, of course, does not imply that
Conjecture 2.2 is wrong – it just shows that there is no hope of proving Conjecture 2.2 based
on fluid scale considerations alone.

Lemmas 5.2 and 5.3 show FSP local stability at the optimal point x∗,�, and the fact that
x∗,� is the only invariant point at which there is no blocking. This strongly suggests that
Conjecture 2.2 is correct, even though, as discussed above, it is insufficient for its proof. Still,
we note that the local stability is a substantially stronger property than a typical ‘fixed point’
argument which is used to ‘guess’asymptotic properties such as our Conjecture 2.2. In our case
a ‘fixed point’ argument goes as follows: as r → ∞, assume that steady-state distributions of
server states are asymptotically independent; further assume that a subsequential limit of the
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marginal distribution of a server state is such that the server is empty with nonzero probability;
under these assumptions, find the set of (limiting) marginal distributions (for each server type),
which would remain invariant (‘fixed’) over time; in our case, this argument leads to finding that
the only such possible set of marginal distributions is such that the system must be ‘sitting’ at
the point x∗,�, equal to the one defined in this paper. Note that, in essence, the above argument
is nothing else but the statement that x∗,� is the unique invariant point (at which there is no
blocking) for FSPs, while local stability properties in Lemmas 5.2 and 5.3 are much stronger.

6. Discussion

Proving Conjecture 2.2 for the finite-server system under GRAND-F is a very interesting
and challenging subject of future work. As discussed in Section 5.1, fluid-scale analysis alone
cannot be sufficient for such a proof, because there may exist suboptimal points, which are
invariant for the FSPs.

The local stability results for the finite-server system with blocking (Proposition 2.1, Lem-
mas 5.2 and 5.3) hold for other variants of the finite-server system as well. Indeed, these results
and their proofs only concern the system behavior in the vicinity of the equilibrium point, where
there are always available servers for any customer type. Suppose now that we have a system
in which customers are queued instead of blocking when there are no available servers for them
(or a system where both blocking and queueing are possible). Then the local stability results
still apply for this system, as long as the assignment rule coincides with GRAND-F when there
are servers available to arrivals. Further, this suggests that Conjecture 2.2 is also valid for
such other variants of the finite-server system, under appropriate versions of GRAND-F. In fact,
recall that GRAND-F, as defined in this paper, itself can be viewed as an extension of the PULL
algorithm [13] to systems with packing constraints. The PULL algorithm has been defined and
proved to be asymptotically optimal for very general systems with queueing and/or blocking
(but without packing constraints).

The results of this paper further highlight the universality of the GRAND algorithm. For
example, Best Fit type algorithms are applicable only to the special case of vector packing
constraints, where the underlying notion of a customer ‘fitting best into the remaining space’
at a server makes sense. When packing constraints are more general, the Best Fit algorithm
is not applicable, while GRAND is. Furthermore, inherently, the Best Fit requires precise
information about the current state of each server – this can be a substantial disadvantage in
practical large-scale systems. GRAND, on the other hand, only needs to know whether a given
customer fits into a given server or not; this allows a very efficient practical implementation
(as discussed in detail in Remark 2.1). It is possible that versions of the Best Fit may perform
better than GRAND for systems with vector packing constraints. Ghaderi et al. [5] provide
some evidence of that. (Although, the algorithm studied in [5] is not a ‘pure’Best Fit, but a Best
Fit with randomization, a mixture, in a sense, of the Best Fit and GRAND.) Studying versions
of the Best Fit algorithm is an interesting subject; it is outside the scope of this paper, which is
focused on general packing constraints. The First Fit algorithm is another approach to packing;
algorithms of this type use fixed preordering of servers and place each customer into the first
one where it can fit. Such algorithms are easily implementable and apply to general packing
constraints. Note that GRAND can be viewed as a First Fit with random uniform reordering
of servers before each customer placement. If the order of servers has to be chosen and fixed
a priori, as a ‘pure’ First Fit requires, the question arises on how to do it when the servers are
heterogeneous, as in our model. Exploring variants of the First Fit algorithm may be another
subject of future research.
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