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Direct numerical simulations of turbulent pipe flow subjected to streamwise-varying
wall rotation are performed. This control method is able to achieve drag reduction and
even relaminarize the flow under certain control parameters at friction Reynolds number
Reτ = 180. Two control parameters, which are velocity amplitude and wavelength, are
considered. It is found that increasing the wavelength rather than increasing the amplitude
seems to be a better choice to improve the control efficiency. An annular boundary
layer, called the spatial Stokes layer (SSL), is formed by the wall rotation. Based on the
thickness of the SSL, two types of drag-reduction scenarios can be identified roughly.
When the thickness is low, the SSL acts as a spacer layer, inhibiting the formation of
streamwise vortices and thereby reducing the shear stress. The flow structures outside
the SSL are stretched in the streamwise direction due to the increased velocity gradient.
Within the SSL, the turbulence intensity diminishes dramatically. When the thickness is
large, a streamwise wavy pattern of near-wall streaks is formed. The streak orientation
is dominated by the mean shear-strain vector outside the viscous sublayer, and there is
a phase difference between the streak orientation and local mean velocity vector. The
streamwise scales of near-wall flow structures are reduced significantly, resulting in the
disruption of downstream development of flow structures and hence leading to the drag
reduction. Furthermore, it is found that it requires both large enough thickness of the SSL
and velocity amplitude to relaminarize the turbulence. The relaminarization mechanism is
that the annular SSL can absorb energy continuously from wall-normal stress due to the
rotational effect, thereby the turbulence self-sustaining process cannot be maintained. For
the relaminarization cases, the laminar state is stable to even extremely large perturbations,
which possibly makes the laminar state the only fixed point for the whole system.
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1. Introduction

In pipeline transportation, turbulence causes significantly larger skin-friction drag than
laminar flows, resulting in extra energy input in order to maintain the desired mass flow
rate. Thus for the long-term consideration, even very limited reduction in friction drag can
considerably lower the pollutant emission and bring about high economic benefits, which
prompts researchers to develop efficient flow control methodology to improve the transport
efficiency.

Currently, most of the control methods can be classified into two categories – passive
and active control – and one of the promising active control strategies is wall oscillation.
Inspired by the fact that a turbulent boundary layer can be suppressed temporarily by
the sudden spanwise pressure gradient, Jung, Mangiavacchi & Akhavan (1992) first
demonstrated, via direct numerical simulations (DNS), that temporal wall oscillation in
the spanwise direction is able to achieve as much as 40 % drag reduction in turbulent
channel flow at Reτ = 200, with the optimal non-dimensionalized oscillating period
being T+ = 100. Hereinafter, the superscript + denotes normalization with respect to the
friction velocity uτ = √

τw/ρ for velocity and ν/uτ for distance, where τw is the wall shear
stress, ρ is the density of the fluid, and ν is the kinematic viscosity. These results were
verified by numerical simulations or experiments in channel flow (Baron & Quadrio 1995;
Miyake, Tsujimoto & Takahashi 1997; Choi, Xu & Sung 2002; Quadrio & Ricco 2004),
pipe flow (Nikitin 2000; Quadrio & Sibilla 2000; Duggleby, Ball & Paul 2007; Coxe, Peet
& Adrian 2019) and turbulent boundary layer (Laadhari, Skandaji & Morel 1994; Skandaji
Rezg 1997; Trujillo, Bogard & Ball 1997; Di Cicca et al. 2002). Further, Quadrio & Ricco
(2004) showed that a maximum net energy saving of 7.3 % can be achieved in turbulent
channel flow of Reτ = 200 as extra energy is needed to actuate the wall motion. They
also successfully achieved the scaling of drag reduction in a certain period range, making
it possible to develop a model to predict the drag reduction. Later numerical (Ricco &
Quadrio 2008; Yao, Chen & Hussain 2019; Yuan et al. 2019) and experimental (Choi
& Clayton 2001; Choi 2002; Ricco & Wu 2004) studies, both in plane geometry, reported
qualitatively similar drag reduction at similar Reynolds number. Yudhistira & Skote (2011)
first investigated numerically the turbulent boundary layer with spanwise wall oscillation,
and the maximum drag reduction is generally lower than that in a channel (Skote 2012;
Skote, Mishra & Wu 2019). For a full collection of the drag-reduction data in different
geometries, the reader can refer to the review by Ricco, Skote & Leschziner (2021).

Based on the fact that near-wall (say, below y+ = 15) turbulence structures convect
at a constant speed U+

c = 10 (Kim & Hussain 1993), Viotti, Quadrio & Luchini (2009)
transformed the temporal oscillation into spatial oscillation, which is called standing wave
oscillation or spatial oscillation. The induced boundary layer is called the spatial Stokes
layer (SSL). The close relation between the optimal oscillating wavelength and optimal
oscillating period through U+

c suggests a strong analogy of these two control methods.
Nevertheless, it is found that the spatial oscillation can achieve more drag reduction than
temporal oscillation if the wavelength and period are linked by U+

c (Yakeno, Hasegawa &
Kasagi 2009). Skote (2013) showed that the streamwise gradient of mean spanwise velocity
in the spatial oscillation case lowers the production of spanwise Reynolds stress, leading
to a magnitude of this stress lower than that in the temporal oscillation case. However, an
unambiguous and complete paradigm that explains the difference is still lacking.

Quadrio, Ricco & Viotti (2009) first combined the temporal and spatial wall oscillations
to form the streamwise travelling-wave control in turbulent channel flow at Reτ = 200.
In their study, a large number of cases were performed to obtain a drag-reduction
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map by varying the oscillating frequency and spatial wavenumber. Both drag increasing
and reducing regions in the control parameter space were identified, and drag increase
occurs when the phase speed coincides roughly with the near-wall convection velocity
U+

c . Quadrio & Ricco (2011) discussed the relationship between the thickness of the
generalized Stokes layer and drag reduction. Later, it is found, in turbulent channel flow,
that the drag reduction deteriorates at high Reynolds numbers (Gatti & Quadrio 2013,
2016; Hurst, Yang & Chung 2014). In particular, in addition to the variation of oscillating
period and spatial wavenumber, Gatti & Quadrio (2016) further included the variation
of velocity amplitude, forming an extensive sweep of the control parameters. It is shown
that the effect of outer large-scale motions on drag reduction is subordinate. The latest
numerical study of turbulent boundary layer with streamwise travelling-wave control was
conducted by Skote (2022), with attention focused on the downstream development of
drag reduction. The experiments conducted by Auteri et al. (2010), which is the only
experimental work in a pipe, and by Bird, Santer & Morrison (2018) in turbulent boundary
layers both confirm the DNS results of Quadrio et al. (2009). More recently, drag-reduction
levels of 25 % at Reτ = 6000 and 13 % at Reτ = 12 800 are reported experimentally
by Marusic et al. (2021), demonstrating the potential application prospects in practical
problems.

It is certain that the success of spanwise wall oscillation in reducing skin-friction
drag is rooted in the disruption of the self-sustaining process of near-wall turbulence,
which involves the quasi-organized low/high-speed streaks and streamwise vortices. When
temporal oscillation is imposed, the wall motion drags the near-wall streaks laterally,
while the overriding streamwise vortices remain almost unaffected, causing the relative
displacement between these two structures, and hence their spatial coherence is disrupted
(Akhavan, Jung & Mangiavacchi 1993; Ricco & Wu 2004). As a consequence, the
intensity and frequency of burst-sweep activity are significantly attenuated and the friction
drag is reduced. Besides, the high-speed streak is driven by the near-wall shear layer
to intrude below the adjacent low-speed streak when the wall velocity is accelerating
(Quadrio & Sibilla 2000), and the low-speed streak is significantly suppressed when
the direction of streamwise vortex rotation counteracts the wall motion (Choi et al.
2002). Moreover, Yakeno, Hasegawa & Kasagi (2014) observed that the inclination of
quasi-streamwise vortices leads to a strong streamwise stretching, hence strengthening the
energy exchange between normal stress components, and thereby enhancing the rotational
motions. This is in accordance with Choi (2002) and Choi & Clayton (2001), who showed
that a net negative spanwise vorticity is generated by the interaction of a vortex sheet
generated by the Stokes layer with longitudinal vortices, resulting in the distortion of the
mean velocity profile. However, this scenario is doubted by Touber & Leschziner (2012),
who claimed that the visualized streak inclination follows from the direction of shear strain
rather than the wall velocity, among which the latter seems to be the basis on which the
above scenario rests. The more detailed description about the drag-reduction paradigm
is provided by Agostini, Touber & Leschziner (2015), who illustrated the interactions
during the drag-reduction and drag-rise intervals by linking the turbulent vorticity with the
Reynolds shear stress. Blesbois et al. (2013) predicted the streak pattern via the generalized
optimal perturbation method, and the predicted results are in reasonable agreement with
DNS.

Except for the studies that focus on the modification of near-wall turbulence structures,
many studies, covering many other aspects, have comprehensively investigated the effect of
temporal wall oscillation. The initial response of fluids to the wall oscillation is studied by
Quadrio & Ricco (2003) and Xu & Huang (2005) in channel flow, in which the longitudinal
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flow is found to cost a longer time to reach its statistically stable state than spanwise flow,
and the suppression of energy transfer between the components of turbulent kinetic energy
(TKE) is responsible for the drag reduction. Under the condition of constant pressure
gradient (CPG), Ricco et al. (2012) showed that the enhancement of turbulent dissipation
leads to the initial decline of wall shear stress. This paradigm is corroborated by Ge &
Jin (2017), who further linked the subsequent attenuation of dissipation to the variation
of vorticity components. However, Agostini, Touber & Leschziner (2014) concluded, by
examining the phasewise variation of turbulence quantities under the condition of constant
flow rate (CFR), that the dissipation rises and falls when the drag increases and decreases,
respectively. Similar results have also been reported by Touber & Leschziner (2012) and
Yuan et al. (2019). This contradiction stems from the fact that the drag reduction manifests
itself as the increase of mass flow rate in CPG conditions. Thus the comparison should
be made between cases of controlled and uncontrolled flow with the same mass flow rate
(Ricco et al. 2021). In this sense, such a contradiction disappears. Moreover, the effect of
streamwise locally implemented wall oscillation on the downstream development of the
flow is investigated by Skote, Mishra & Wu (2015) in a turbulent boundary layer, and a
spanwise locally implemented wall oscillation in a duct is studied by Straub et al. (2017).

Possibly due to the similarity between temporal and spatial oscillation, relatively less
attention has been devoted to the latter. Skote (2011) applied spatial wall oscillation to a
turbulent boundary layer and observed that the maximum and minimum drag reductions
correspond to the locations of maximum and minimum wall velocity, respectively. Negi,
Mishra & Skote (2015) did innovative research on the modulation of a single low-speed
streak by spatial wall oscillation in a laminar boundary layer. Lower wavenumber is
observed to possess stronger suppression on velocity fluctuations in the laminar regime.
However, when the flow undergoes transition, the mechanism is significantly different
due to the nonlinear amplification process, hence the deduction for laminar regime is
inapplicable. By comparing the temporal and spatial oscillation, Yakeno et al. (2009)
found that the phase dependency of Reynolds shear stress is more significant for the latter.
Different from the conventional sinusoidal form of oscillation, Mishra & Skote (2015)
investigated the spatial oscillation with square waves in a turbulent boundary layer, aiming
to increase the net power saving.

When applying such wall-motion-based control to turbulent pipe flow, the crucial
difference, compared with plane geometry, is that the relaminarization is more likely
to occur at low Reynolds numbers. For temporal wall oscillation, Choi et al. (2002)
showed that relaminarization occurs in pipe flow of Reτ = 150 when oscillating at period
T+ > 150 with velocity amplitude A+ = 10, and T+ > 100 with A+ = 20, while no
relaminarization occurs in a channel even at the lower Reynolds number Reτ = 100 with
the same control parameters. Nikitin (2000) also reported relaminarization at Reτ = 133,
with (A+, T+) = (9, 105) in pipe flow. Besides, the control with a large oscillating period
does not cause a drag increase, which is opposite to the channel flow results (Jung et al.
1992). He attributed this discrepancy to the centrifugal forces in cylindrical geometry,
but no further details are provided. Biggi (2012) and Xie (2014) applied streamwise
travelling-wave control to turbulent pipe flow at Reτ = 200, and they both observed
relaminarization that does not occur in a channel at the same Reynolds number and control
parameters (Quadrio et al. 2009). Hence it is clear that the geometry is of great importance
in affecting the flow behaviour.

To date, it is known that the thickness of the Stokes layer is crucial to the drag-reduction
performance (Quadrio & Ricco 2011), and most studies focus on the quantitative
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relationship between the thickness and drag reduction. However, the detailed paradigm
that describes the modification of near-wall turbulence due to the different thickness of
the SSL is still lacking. Besides, much attention has been paid to the drag reduction in
planar flows, while the number of studies focusing on pipe flow forced by wall motion are
far fewer, and nearly all of them have been restricted to the streamwise-uniform form. More
importantly, the mechanisms that cause the aforementioned difference between pipe and
channel are still unclear (Xie 2014). Hence, in the present study, we consider turbulent pipe
flow with standing-wave control imposed to examine the drag-reduction behaviour using
DNS, in the hope of extending the wall-motion control database, providing a more detailed
drag-reduction scenario for different thicknesses of Stokes layer, and gaining further
insight into the physical mechanisms of relaminarization in a pipe. A range of control
parameter sweep is conducted, and the changes of flow field are shown by examining the
turbulence statistics and the time evolution of instantaneous flow fields.

This paper is organized as follows. The computational details and control parameters
are introduced in § 2. The drag-reduction results and comparison with previous studies
are given in § 3. The turbulence statistics and the modification of flow structures for
the non-relaminarization cases are discussed in § 4. The transient dynamics, the physical
mechanisms during the relaminarization process in a pipe, and the comparison with
channel flow are explored in § 5. Finally, § 6 summarizes the main findings of this paper.

2. Methodology

2.1. Computational details
We employ a cylindrical coordinate spectral element-Fourier DNS solver Semtex
(Blackburn et al. 2019; Blackburn & Sherwin 2004) to conduct the simulations at a friction
Reynolds number Reτ = uτ R/ν = 180, where R is the pipe radius (based on bulk velocity
Ub, it is approximately Reb = UbR/ν = 5300). This Reynolds number is consistent with
the previous pipe flow simulations (Eggels et al. 1994; Wu & Moin 2008). The physical
model and computational domain are depicted in figure 1. No-slip and no-penetration
boundary conditions are applied at the pipe wall. The azimuthal component of wall
velocity is

W = A sin(kx), (2.1)

where A and k = 2π/λ are the amplitude and streamwise wavenumber (with λ the control
wavelength), respectively. That is, the wall rotation velocity varies sinusoidally in the
streamwise direction but remains constant in the azimuthal direction, implying azimuthal
homogeneity.

The flow simulations are conducted under the condition of CPG, yielding a constant
friction velocity uτ and hence allowing unique wall-unit scaling. A single flow field in the
fully developed turbulent state of a stationary pipe is selected as the starting point for the
simulations of controlled cases with different combinations of A and λ. The drag reduction
manifests itself as the variation of mass flow rate. Turbulence statistics are collected for
more than 5500 viscous time units, which allows a fluid particle to travel more than 23
times through the pipe axial dimension at bulk velocity.

Regarding the computational domain length, Chin et al. (2010) suggested that a periodic
pipe length of 8πR seems to be sufficient to ensure that all statistics are not affected by
the finite computational domain for Reτ = 170–500. Based on the fact that the maximum
wavelength of large-scale motion in turbulent pipe flow ranges from 8R to 16R (Kim &
Adrian 1999; Morrison et al. 2004; Guala, Hommema & Adrian 2006), Wu & Moin (2008)
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x (u)
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r (v)
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Flow

Figure 1. Schematic diagram of the circular pipe with spatial wall oscillation imposed. The lengths of arrows
denote qualitatively the magnitudes of wall velocity. A pipe length L = 6πR is employed. The corresponding
velocity components are listed in parentheses.

0.5

0

0 2 4 6 8
x

r

Figure 2. Spectral element meshes for the pipe, with 500 elements in the meridional semi-plane.

employed pipe length 15R at Reb = 5300 and 44 000, and demonstrated its adequacy by
computing the two-point correlation data. The domain length used in Eggels et al. (1994)
is 10R, which is proved to be too short to let the large-scale motions decouple from the
computational domain. Hence, in consideration of computational cost, a periodic pipe
length of L = 6πR is chosen in the present study.

The two-dimensional spectral element mesh, shown in figure 2, is deployed to discretize
the meridional semi-plane, together with Fourier expansions in the azimuthal direction to
represent the three-dimensional computational domain. The mesh consists of a 50 × 10
array of elements, in which the heights of the first two elements at the pipe axis are set
equally and small enough to ensure the computational stability due to polar singularity,
while the remaining element heights follow a geometric degression to the wall. We employ
a 10th-order nodal shape function (11 points along the edge of an element, P = 11),
resulting in a minimum grid resolution �r+ = 0.53 at the wall and a maximum of �r+ =
3.6 at the pipe axis. The streamwise grid spacing is �x+ = 6.8. In the azimuthal direction,
192 planes (Nz = 192) are employed, yielding an azimuthal spacing of �(rθ)+ = 5.9.
The total computational nodes are approximately 1.2 × 107. Here, x, r, θ, t, p denote the
streamwise, radial and azimuthal directions, plus time and pressure, and the corresponding
velocity components are u, v and w, respectively. The wall-normal distance is defined as
y = R − r, and the unit length scale is pipe diameter 2R. Moreover, the abbreviation ‘SW’
used in this paper denotes ‘standing wave’. For a validation test of the computational mesh,
see Appendix B.

There are two main aspects discussed in this paper: one is the turbulence modifications
for non-relaminarization cases (NRC), and the other is the transient dynamics for
relaminarization cases (RC). Based on the forcing signal (2.1), a phase-averaged quantity
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f̃ is defined as

f̃ = 1
2πT

∫ T

0

∫ 2π

0
f dθ dt(for NRC), f̃ = 1

2π

∫ 2π

0
f dθ (for RC). (2.2a,b)

A further average in x of f̃ is denoted as f̄ . A global quantity follows from

[ f ] =
∫ R

0
f̄ r dr. (2.3)

For controlled cases, the determination of the fluctuation field is given by

{u′, v′, w′, p′} = {u, v, w, p} − {ũ, ṽ, w̃, p̃}. (2.4)

2.2. Control parameters
In the present study, one baseline case (uncontrolled pipe) and 12 additional controlled
cases, in which the wavelength λ+ varies at fixed A+ = 12 or the velocity amplitude
A+ varies at fixed wavelength λ+ = 1695, are conducted to evaluate the drag-reduction
performance of spatial wall oscillation. The whole set of simulations is documented in
table 1. Under the condition of CPG, the drag reduction is defined as the ratio of the
variation of the friction coefficient Cf = 2τw/U2

b to the uncontrolled value Cf ,0 (Kasagi,
Hasegawa & Fukagata 2009; Ricco et al. 2012), which can be written as

D = Cf ,0 − Cf

Cf ,0
= U2

b − U2
b,0

U2
b

. (2.5)

3. Control results

3.1. Drag-reduction results
The drag-reduction results for different cases are shown in table 1. Relaminarization occurs
for cases where both the wavelength (λ) and amplitude (A) are relatively large. It can
be observed preliminarily that increasing the wavelength or amplitude can both lead to
relaminarization, a trend that will not occur in channel flow (Viotti et al. 2009). Hence it
is necessary to compare the present results with the existing literature data, as shown in
figure 3. Also included are the results from temporal wall oscillation in a pipe (Quadrio
& Sibilla 2000; Choi et al. 2002), a channel (Quadrio & Ricco 2004) and a turbulent
boundary layer (Skote 2022) since the wavelength (λ) and period (T) can be linked by
(Quadrio et al. 2009; Viotti et al. 2009)

T+ = λ
+

U+
c

. (3.1)

Figure 3(a) presents the variation of drag reduction with respect to wavelength at fixed
amplitude. In channel flow, with the increasing of wavelength, the drag reduction increases
initially and then decreases, yielding an optimal wavelength λ+ = 1000–1250. For pipe
flow, the results of low-wavelength cases (cases 1, 2 and 3 in table 1) coincide with those
in a channel (Viotti et al. 2009; Hurst et al. 2014), while further increase in wavelength
leads to relaminarization. Note that the simulations in Viotti et al. (2009) are conducted
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1.0 Auteri et al. (2010) (Reτ = 175, A+ = 13.8)

Quadrio & Ricco (2004) (Reτ = 200, A+ = 12)

Viotti et al. (2009) (Reτ = 200, A+ = 12)

Quadrio & Sibilla (2000) (Reτ = 172, A+ ≈ 11.4)

Choi et al. (2002) (Reτ = 150, A+ = 10)

Hurst et al. (2014) (Reτ = 200, A+ = 12)

Skote (2022) (Reθ = 505, A+ = 12)

Present pipe DNS (Reτ = 180, A+ = 12)

Present channel DNS (Reτ = 180, A+ = 12)

0 5 10 15 20 25 30

0

0.2

0.4

1.0

A+

λ+

Choi et al. (2002) (Reτ = 150, T + = 50)

Choi et al. (2002) (Reτ = 150, T + = 100)

Quadrio & Ricco (2004) (Reτ = 200, T + = 200)

Quadrio & Sibilla (2000) (Reτ = 172, T + = 150)

Viotti et al. (2009) (Reτ = 200, λ+ = 1500)

Present DNS (Reτ = 180, λ+ = 1695)

(a)

(b)

Figure 3. (a) Variation of drag reduction with respect to wavelength at fixed amplitude. (b) Variation of drag
reduction with respect to amplitude at fixed wavelength. For temporal oscillation cases, the oscillating period
is converted to wavelength via (3.1). The dashed line represents the drag-reduction value for laminar flow. Note
that Choi et al. (2002) did not provide the specific drag-reduction values for relaminarization cases, thus here
we simply put them on the dashed line.

under the condition of CFR at Reτ = 200; the drag reduction leads to a lower Reτ which is
hence comparable to that in present study. The finite domain length restricts the maximum
wavelength to 3390. But if the wavelength increases to infinity, then it can be considered
theoretically as a purely rotating pipe with circumferential wall velocity A+ = 12 in the
finite pipe domain. Therefore, we also performed DNS of a purely rotating pipe with
A+ = 12, and the results show that the turbulence also relaminarizes, which is broadly
in line with Murakami & Kikuyama (1980), Orlandi & Fatica (1997) and White (1964).
However, it should be noted that the relaminarization mechanism is different from spatial
wall oscillation. For a purely rotating pipe, the whole bulk flow is rotating, and the strong
centripetal force prevents the outward motion of fluid particles from the fast-moving
central region towards the pipe wall (White 1964), which significantly suppresses the
turbulence; while for wall oscillation, the central region is not rotating, and the generated
spatial Stokes layer (SSL) is confined to only the very near-wall region. It will be shown
in § 5 that the SSL in pipe flow can continuously drain energy from turbulence, leading to
the gradual decay of turbulence and final relaminarization.

When considering the temporal wall oscillation, the same trend can be observed for
a channel (Quadrio & Ricco 2004) and a turbulent boundary layer (Skote 2022), with
the optimal oscillating period located at around T+ = 100–125. It is already known that
spatial oscillation can achieve more drag reduction than temporal oscillation (Viotti et al.
2009; Skote 2013). However, for pipe flow, the increase of oscillating period also leads to
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relaminarization (Choi et al. 2002). (For cases in Quadrio & Sibilla (2000), the oscillating
period is not large enough to induce relaminarization.) Besides, for low oscillating periods,
the results of pipe flow agree well with those in a channel. Therefore, it can be concluded,
at relatively low Reynolds numbers, that for low wavelength or low oscillating period,
there is no remarkable difference between pipe and channel. But for large wavelength and
period, the flow relaminarizes in a pipe, while it remains turbulent in a channel and the
drag reduction deteriorates.

Some of the experimental data that pertain to standing wave control in Auteri et al.
(2010) are also included for comparison. The lower drag reduction compared to numerical
results can be attributed to the spatial transient at the upstream end of the actuated section
(the section where the wall is rotating) because the drag-reduction values are determined
by measuring the pressure drop across the actuated section. Another issue that deserves
to be noted is that no relaminarization is reported in the experiment despite the fact that
relaminarization is also achievable by the streamwise travelling-wave control (Biggi 2012;
Xie 2014). This is predictable since the perturbations from the discrete actuated section
and the roughness of the pipe surface in the real world are large enough to trigger the
transition to turbulence at the Reynolds number considered in the experiment, hence the
laminar state cannot be maintained.

Figure 3(b) shows the variation of drag reduction as a function of amplitude at fixed
wavelength. Again, the drag-reduction results of low-amplitude cases (cases 6, 7 and 8
in table 1) agree well with those in a channel (Viotti et al. 2009), indicating the strong
similarity between pipe and channel for low-amplitude cases. Similarly, relaminarization
occurs at large amplitudes in a pipe. For channel flow, the literature data for large amplitude
of standing wave control are limited, therefore it is uncertain whether it relaminarizes
at large amplitudes. Nevertheless, the temporal oscillation data from Quadrio & Ricco
(2004) clearly show that there is a saturation of drag reduction up to A+ = 27. In
addition, according to Choi et al. (2002), the drag reduction shows a trend of saturation
for T+ = 50, but relaminarization occurs at large amplitude for T+ = 100. Since the
thickness of the temporal or spatial Stokes layer is closely related to the oscillating
period or wavelength, it can be inferred that sufficiently large thickness of Stokes
layer and simultaneously large amplitude are required for the relaminarization in pipe
flow.

It is worth noting that Zhao, Huang & Xu (2019a) conducted DNS of turbulent flow
along a cylinder with circumferential oscillating Lorentz force. They showed that the
generated Stokes layer weakens the turbulence intensity and reduces the wall friction
drag. But if the thickness of the Stokes layer is large enough, then the occurrence of
centrifugal instability will generate intense circumferential vortices that are similar to the
rotation-induced vortices reported in Zhao, Huang & Xu (2019b) and lead to the sharp
increase of friction drag, indicating that the thickening of the Stokes layer makes the flow
unstable; in the present study, the thickening of Stokes layer relaminarizes the flow (i.e.
the flow becomes stable). Such opposite trends highlight the difference between external
and internal flow forced by rotational forcing. That is, for external flow, the angular
momentum decreases with the radius, and the centrifugal effect tends to throw the fluid
particles outwards, which destabilizes the flow, while for internal flow, the radial motions
are impeded since the centrifugal force acting on the fluid particle from the outer layer is
larger than that on the inner particle, hence the flow tends to be stable (White 1964).
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3.2. Energetic performance
In this subsection, a series of control performance indices (Kasagi et al. 2009; Gómez
et al. 2016) are computed to evaluate the energetic performance of standing wave control.
Multiplying the governing equation of w̃ (4.5) by w̃ and taking the average in the x
direction, all the x-derivative terms vanish due to the streamwise periodicity of the forcing
signal (2.1). After that, by integrating along the radial direction (

∫ R
0 r dr), we have the

global energy balance for circumferential mean flow in pipe:[
−ṽ′w′ ∂w̃

∂r

]
+
[
−ũ′w′ ∂w̃

∂x

]
+
[
ṽ′w′w̃

r

]
︸ ︷︷ ︸

℘

= 1
2

ν[∇2w̃2] − ν

[(
w̃
r

)2

+
(

∂w̃
∂r

)2

+
(

∂w̃
∂x

)2
]

.

(3.2)

In the derivation of (3.2), the transport term disappears since Reynolds stress and
velocity are zero at the wall. The three terms on the left-hand side represent the energy
exchange with the TKE transport equation. The rightmost term on the right-hand side is
the mean dissipation. Hence 1

2ν[∇2w̃2] is the power input. By further manipulations, the
power input for the whole system reads

Pin = 2πRLν

(
w̃

∂w̃
∂r

)∣∣∣∣∣
r=R

. (3.3)

Under the condition of CPG, the power saving rate S is defined as (Baron & Quadrio
1995)

S = (Pc − Pu)/Pu, (3.4)

in which P = fxπR2LUb is the power required to drive the flow, and the subscripts c and
u denote controlled and uncontrolled pipe, respectively. Note that the power saving rate is
equivalent to the variation of mass flow rate. A net energy saving rate N is calculated by
taking the power input into account:

N = (Pc − Pu − Pin)/Pu. (3.5)

Finally, the effectiveness is computed as the ratio of power saved to power input:

E = (Pc − Pu)/Pin. (3.6)

The computed energetic performance indices are listed in table 2. Undoubtedly,
relaminarization produces a vast increase of mass flow rate (207.7 %) for case 4, thereby
leading to a high net energy saving rate of 161.2 % since only 46.5 % of the power input
rate is required. For non-relaminarization cases of A+ = 12 (cases 1, 2 and 3), a power
saving rate of approximately 30 % can be achieved, but it is at the cost of high power input
(more than 58.2 %), which inevitably causes the high negative net energy saving rate.
As the wavelength increases, the power saving rate increases accordingly, accompanied
by the decrease of power input and the reduction of negative net energy saving rate. On
the contrary, for non-relaminarization cases of λ+ = 1695 (cases 6, 7 and 8), less power
input is required due to the low amplitude, and the power saving rate is relatively low
accordingly (less than 17.9 %). But they all achieve positive net energy saving. As the
amplitude increases, both the power input and energy saving increase, but the maximum
net energy saving is attained at a moderate amplitude A+ = 4.5 (case 7). Hence in order
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Case λ+ A+ D (%) Pin/Pu (%) (Pin/Pu)lam (%) S (%) N (%) E

1 424 12 40.4 74.4 76.3 29.6 −44.8 0.40
2 565 12 42.1 67.2 69.4 31.5 −35.7 0.47
3 848 12 43.2 58.2 60.6 32.7 −25.5 0.56
4 1695 12 RLM 46.5 48.1 207.7 161.2 4.47
6 1695 3 15.4 2.7 3.0 8.7 6.0 3.22
7 1695 4.5 22.6 6.2 6.8 13.7 7.5 2.21
8 1695 6 28.1 11.2 12.0 17.9 6.7 1.60

Table 2. Energetic performance indices for different cases. Here, RLM denotes relaminarization,
corresponding to a drag-reduction value D = 89 %, and (Pin/Pu)lam (%) is calculated using (4.4). For
relaminarization cases, only case 4 is chosen for the assessment.

to attain a positive net energy saving, one should lower the amplitude and increase the
wavelength. In terms of effectiveness, cases 6, 7 and 8 all exceed one, but cases 1, 2
and 3 are less than one. Increasing the wavelength leads to the increase of effectiveness,
while the increase of amplitude reduces the effectiveness. This implies that increasing the
wavelength rather than increasing the amplitude seems to be a better choice to improve the
control efficiency.

4. Turbulence statistics

In this section, we focus on the modification of turbulence statistics for non-relaminarization
cases. In general, it is natural to compare two cases with one control parameter fixed
and the other changed. However, as shown in § 3.1, the flow relaminarizes when both
the wavelength and amplitude are large. If we pick up two cases in turbulent regime
with one of the control parameters fixed for comparison, then it is probable that the flow
states do not differ greatly because the parameters are close. Therefore, we choose cases
2 and 8 for comparison. The former is characterized by small thickness of SSL but strong
crossflow shearing, while the latter is characterized by the large thickness of SSL but weak
shearing. It is found that such a difference leads to two distinct flow states, for which the
drag-reduction mechanisms are significantly different.

4.1. Basic flow statistics
Profiles of streamwise mean velocity, scaled with the friction velocity uτ , are presented in
figure 4(a). All profiles overlap in the viscous sublayer (0 < y+ < 5) due to the constraint
of CPG. It should be noted that the existence of a logarithmic region requires that the
outer part of the inner layer (y/R < 0.1) corresponds to large y+ (y+ > 30) such that the
viscous effect is negligible (Pope 2000). For the Reynolds number considered here, y/R =
0.1 corresponds to y+ ≈ 18, which means that the logarithmic region with ‘universal’
constants is not well-justified. Hence we determine the Kármán constant 1/κ by examining
the local minimum region of y+ dū+/dy+ (Eggels et al. 1994), as shown in figure 4(b). The
calculated value 1/κ = 2.76 for the uncontrolled case is the same as in Wu & Moin (2008).
For case 2, the local minimum of y+ dū+/dy+ is less distinct, implying the shrinkage of
the logarithmic region, but one can still identify a value 1/κ = 2.91. For case 8, the local
minimum almost disappears. This is probably due to the larger penetration depth of the
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Figure 4. (a) Mean streamwise velocity profiles for cases 2 and 8. The logarithmic slope 1/κ is determined
by computing the local minimum of y+ dū+/dy+, as shown in (b). The constant C = 5 for uncontrolled case is
obtained by substituting the mean velocity at y+ ≈ 60 into the logarithmic formula, with the given value of the
slope 1/κ .

SSL, which makes the viscous effect extend to the outer region and further drives the
reduction of the logarithmic region.

Figure 5(a) presents the wall-normal profiles of Reynolds stresses. As expected, the
larger drag reduction corresponds to the lower Reynolds shear stress u′v′ in the buffer
layer. Below y+ ≈ 20, the streamwise stress u′u′ for case 2 is significantly lower than
for case 8, but the maximum u′u′ for case 2 is higher, indicating that there is no direct
correlation between the maximum streamwise stress and the amount of drag reduction.
For circumferential normal stress w′w′, it is elevated across the buffer layer for case 8
while it is reduced for case 2 below y+ ≈ 20. Meanwhile, the variation of radial normal
stress v′v′ for case 8 is indistinguishable, while for case 2, v′v′ declines slightly across
the buffer layer. Based on these descriptions, two different drag-reduction scenarios can
be depicted roughly. For case 8, the thickness of the SSL is large enough to affect the
main part of near-wall streaks, causing the streaks to incline sinuously in the streamwise
direction. The formation of the sinuous pattern is then accompanied by the energy transfer
from u′u′ to w′w′ (Touber & Leschziner 2012), resulting in the decline of u′u′ and the
elevation of w′w′. Possibly due to the low amplitude, the streak inclination is not intense
enough to induce a remarkable change in radial stress, whose physical interpretation is the
near-wall downward or upward turbulent motions. Nevertheless, the sinuous streak pattern
indeed lowers the magnitude of shear stress and achieves the drag reduction. For case
2, the thickness of the SSL is too small such that only a small fraction of the near-wall
streaks is affected. In this way, there is no extensive streak inclination, and the SSL
can be regarded as a thin shearing layer that lies between the wall and flow structures,
affecting the near-wall splatting or anti-splatting, and leading to the decline of Reynolds
shear stress. Within the SSL, the turbulence intensity is attenuated dramatically due to the
strong crossflow shearing, and hence all Reynolds stresses decline accordingly.

The different drag-reduction scenarios depicted above can be demonstrated
preliminarily by examining the velocity–pressure gradient term in the transport equation
of v′v′, as shown in figure 5(b). It is known that the velocity–pressure gradient term can
be split into the pressure-diffusion (∂(v′p′)/∂r) and pressure-strain (p′ ∂v′/∂r) fragments,
which have opposite signs and virtually cancel each other near the wall. Below y+ ≈ 10,
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Figure 5. (a) Wall-normal profiles of Reynolds normal stresses and shear stress. (b) Wall-normal profiles of
the pressure-diffusion and pressure-strain terms in the transport equation of v′v′. Lines with squares indicate
the pressure-diffusion term (∂(v′p′)/∂r); lines with circles indicate the pressure-strain term (p′∂v′/∂r). Black
lines indicate uncontrolled case; blue lines indicate case 8; red lines indicate case 2.

the pressure-diffusion term is positive, feeding energy into the radial normal stress and
hence corresponding to the formation of ejection events (anti-splatting). In contrast, the
pressure-strain term is negative, and its role is to drain energy from v′v′ and redistribute
it to the other two stress components through wall-normal splatting (downward sweep
events; Mansour, Kim & Moin 1988; Eggels et al. 1994). Interestingly, compared to the
uncontrolled case, the magnitudes of these two terms are significantly attenuated below
y+ = 10 for case 2, especially at around y+ = 5 where a local minimum can be observed,
reflecting the considerably weakened splatting or anti-splatting. On the contrary, case 8 is
similar to that of the uncontrolled case, and the magnitude increases within the viscous
sublayer but decreases slightly in the region 5 < y+ < 10. Such a significant difference
between cases 2 and 8 clearly indicates the different flow states. Due to the streamwise
non-homogeneity of the wall velocity, the x-derivative term in the continuity equation
should be reserved:

∂ ũ
∂x

+ ∂rṽ
r ∂r

= 0, (4.1)

which implies that ṽ is non-zero within the SSL. Such weak wall-normal mean flow is
probably the cause of the stronger splatting in the viscous sublayer for case 8.

To provide a more detailed physical interpretation of the velocity–pressure gradient
terms discussed above, we examine the ensemble conditionally averaged flow fields in
figure 6, with the samples being conditional on the detection of positive streamwise
velocity fluctuations (u′+ > 2) at y+ = 10. For a better representation of the flow pattern,
we use magenta arrows to represent the flow motions conceptually. The conditionally
sampled ensemble-averaged value of f is denoted as f̄cond., with f being p′ or dv′/dr.
The white arrows represent the in-plane velocity vectors, and the background contour
gives p′+

cond.. For the uncontrolled case, the impingement of fluids on the wall forms
a zone of high positive pressure where the pressure-strain term is negative (figure 5b),
implying that dv′/drcond. is negative in this area. This is easily understood because the
wall-normal velocity must decrease to let the fluids spread out in the wall-parallel plane.
In the outer region (y+ ≈ 20), the pressure is negative, and the pressure-strain term is
positive, indicating that dv′/drcond. is still negative. Thus the downward motion (splatting)
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Figure 6. Ensemble conditionally averaged flow fields, with the samples being conditional on the high-speed
streaks (u′+ > 2) at y+ = 10. The vectors give the in-plane stochastic velocity fields, and s = rθ is the arc
length. The contour in the background gives the wall-normalized pressure fluctuations p′+

cond.. The magenta
arrows depict qualitatively the direction of flow motion. The red curved lines mark the wall-normal location
where w̃ drops below 1 % of the amplitude A. Note the different magnitudes in the colour bar. (a) Uncontrolled
case; (b) case 2; (c) case 8.

is accompanied by the continuously decreasing velocity. For case 8, the velocity field is
quite similar to that in the uncontrolled case, but the peak negative pressure is nearly
three times larger. Given the fact that the positive peak value of the pressure-strain term
at around y+ ≈ 20 in case 8 is only slightly larger than that in the uncontrolled case
(figure 5b), it can be inferred that dv′/drcond. is also negative in this region but with a much
smaller magnitude, which means that the decreasing rate of downward velocity is smaller,
leading to a higher positive peak pressure near the wall. For case 2, the most striking
feature is that the pressure at around y+ ≈ 20 is positive, indicating that dv′/drcond. is also
positive in this region. Thus the fluids are in fact accelerating towards the wall, resulting in
the significantly high value of positive pressure near the wall. It seems that the downward
fluids do not feel the existence of the wall until they approach further. Hence only a small
amount of fluids spreads out during the downward motion, and this explains why the
pressure-strain term is markedly attenuated in case 2. The main spreading out happens
in a small region within the SSL (below y+ = 5). Moreover, as shown in figure 6(b),
the spreading out of fluids is the weakest between the upper and lower magenta arrows,
corresponding to the local minimum of the pressure-strain term in case 2.

The flow patterns described above might explain why the amount of drag reduction in
case 2 is larger than in case 8. As demonstrated in figure 6(a), the velocity of downward
moving fluids keeps decreasing in the uncontrolled case. More importantly, this process
is accompanied by the energy transfer from wall-normal velocity to the other two velocity
components, contributing to the formation of streamwise vortices that are responsible for
the skin-friction drag. The decrease of the decreasing rate of downward velocity in case 8
implies a weakening of this energy transfer process and hence a weakening of streamwise
vortices, leading to the lower degree of turbulent flow organization and the drag reduction.
In case 2, the downward velocity even increases as the fluids approach the wall, indicating
that such a weakening effect is further enhanced. Thus a larger amount of drag reduction
is foreseeable.

4.2. Spatial Stokes layer
Based on the assumption that the thickness of the SSL is significantly small compared
with the channel width, Viotti et al. (2009) derived an analytical solution of the
spanwise velocity for laminar channel flow with spatial wall oscillation, whose accuracy
is demonstrated by Skote (2013) in the flat turbulent boundary layer. For the boundary
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condition (2.1), the laminar solution reads

w̃(x, y) = A
Ai(0)

Re
[

eikx Ai
(

−i
y
δx

e−(4π/3)i
)]

, (4.2)

where Ai is the Airy function of the first kind, Re denotes the real part, and the
characteristic thickness of SSL can be written as

δx =
(
λν2

2πu2
τ

)1/3

. (4.3)

According to (3.3), one can derive the analytical form of the input power (Appendix A) as

Pin = 2πRLν w̃
∂w̃
∂y

∣∣∣∣∣
y=0

=
√

3πRLνA2 Ai′(0)

2 Ai(0) δx
. (4.4)

We computed Pin using (4.4) for different cases, and the results are listed in table 2 and
compared with those calculated from the turbulence DNS data. It is shown that Pin in the
laminar state is slightly higher, but the difference is within 3 %. This indicates that once
the control parameters (λ and A) are determined, we can estimate the input power using
(4.4) regardless of the flow state, since (4.4) depends only on λ and A (if we assume that
R, L and ν are constant).

In cylindrical geometry, the curvature effect is an important factor that might influence
the velocity profile (w̃). However, it has been shown in Quadrio & Sibilla (2000) that a
Stokes layer thickness δ+ ∼ 35 will induce negligible curvature effect, leading to excellent
agreement between the laminar solution for a flat plate and turbulence results for a
circular pipe with temporal wall oscillation. Thus it is interesting to evaluate the degree of
closeness between the present turbulence DNS results and the laminar solution of (4.2).

The governing equation of w̃ for a pipe follows from

ṽ
∂w̃
∂r

+ ṽw̃
r︸ ︷︷ ︸

1

+ ũ
∂w̃
∂x︸ ︷︷ ︸
2

+ ∂ṽ′w′

∂r
+ 2ṽ′w′

r︸ ︷︷ ︸
3

+ ∂ ũ′w′

∂x︸ ︷︷ ︸
4

= ν

(
∂2w̃
∂r2 + ∂2w̃

∂x2 + 1
r

∂w̃
∂r

− w̃
r2

)
︸ ︷︷ ︸

5

.

(4.5)

Term 1 is associated with the curvature effect since ṽ is zero in a flat plate, while term
2 denotes the mean convection in the streamwise direction. The sum of terms 3 and 4
represents the turbulence modulation, and term 5 is the viscous term. Terms 1, 2 and 5
lead to the laminar solution for a circular pipe, which will turn into (4.2) if the curvature
effect is negligible. Thus the deviation of DNS data from (4.2) results from the curvature
effect and turbulence modulation, which can be estimated qualitatively by means of the
following dimensional analysis.

According to figure 7, the thickness of the SSL δx is less than 35, hence the curvature
effect can be neglected such that term 1 is not considered. (Indeed, the magnitude of term
1 is examined to be orders of magnitude smaller than the other terms.) Therefore, the
turbulence modulation is the only factor that affects the velocity profile of the turbulent
SSL. The characteristic length in the streamwise direction can be taken as λ due to the
streamwise periodicity of (2.1), and the velocity scale of w̃ is A. As shown in Viotti
et al. (2009), the thickness equation (4.3) provides a universal representation of scaling
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Figure 7. Wall-normal profiles of w̃ at different phases: (a) case 2, (b) case 8.

–1.0

–0.5

0

0.5

1.0

1.5

2.0

y+

(×10–3)

0 10 20 30 40 50 0 10 20 30 40 50 60 70
–3

–2

–1

0

1

2

3

4
(×10–3)

y+

ϕ = 0

ϕ = λ/8

ϕ = λ/4

ϕ = 3λ/8

ϕ = 0

ϕ = λ/8

ϕ = 3λ/8

ϕ = λ/8

u′
w

′ , 
v
′ w

′

(a) (b)

Figure 8. Reynolds stresses ũ′w′ and ṽ′w′ at different phases ϕ, for (a) case 2, (b) case 8. Only half a
wavelength (λ/2) is shown for brevity. Black lines indicate ũ′w′; red lines indicate ṽ′w′.

properties for the turbulent SSL. Hence δx is applicable for the wall-normal length scale.
The mean streamwise velocity grows linearly along the wall-normal direction in the
viscous sublayer, thus ũ can be considered as the same order of magnitude within the
SSL for all cases. Here, ∂2w̃/∂x2 is negligible because λ is significantly larger than δx. As
a consequence, we obtain

2 ∼ ūA
λ

, 3 ∼ ε1

δx
, 4 ∼ ε2

λ
, 5 ∼ νA

δ2
x

, (4.6a–d)

where ε1 and ε2 characterize the magnitudes of ṽ′w′ and ũ′w′, respectively. Term 2 is
very important because it relates directly to the control parameters, and high amplitude
together with low wavelength tends to yield a large value. As expected, for term 2, DNS
data give order of magnitude 10−1 for case 2, and 10−2 for case 8, while for terms 3
and 4, the magnitudes of the Reynolds stresses in cases 2 and 8, shown in figure 8, both
result in a turbulence modulation of order of magnitude of 10−2. Hence the turbulent
velocity profile in case 2 should be closer to the laminar solution than in case 8 since the
turbulence modulation is one order of magnitude smaller than term 2 in case 2, and this
is demonstrated by figures 7(a,b), in which very good agreement between (4.2) and the
present DNS data is found for case 2, while noticeable deviations can be observed for case
8. Moreover, large wavelength tends to induce a larger magnitude of Reynolds stresses
ũ′w′ and ṽ′w′, among which ũ′w′ is significantly larger than ṽ′w′. However, the fact that
λ� δx significantly diminishes the magnitude of term 4, making it act as the same order
of magnitude as term 3 or even smaller according to (4.6a–d).

951 A35-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

85
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.855


X. Liu, H. Zhu, Y. Bao, D. Zhou and Z. Han

102 103

101

102

y+

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

102 103

101

102

0

0.02

0.04

0.06

0.08

102 103

101

102

y+

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

102 103

101

102

0

0.01

0.02

0.03

0.04

565

102 103

101

102

y+

λx
+ λx

+

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

102 103

101

102

0

0.01

0.02

0.03

0.04

1695

kxφuu/uτ
2

kxφuu/uτ
2

kxφuu/uτ
2

(b)(a)

(d)(c)

( f )(e)

Figure 9. Streamwise premultiplied spectra of streamwise velocity fluctuations. (a,c,e) The absolute value of
kxφuu non-dimensionalized by uτ . (b,d, f ) The spectra normalized by the total resolved energy at corresponding
wall-normal position. The control wavelengths are marked by the vertical black lines. (a,b) Uncontrolled case;
(c,d) case 2; (e, f ) case 8.

4.3. One-dimensional spectra
Contours of streamwise premultiplied spectra of u′ as a function of wall-normal position
and wavelength are shown in figure 9. In consideration of the streamwise periodicity of the
forcing signal (2.1), it is interesting to examine the relationship between control wavelength
and the dominant wavelengths of flow structures. There are two kinds of contour map
for each case, with figures 9(a,c,e) giving the absolute value of the spectrum, and
figures 9(b,d, f ) the spectrum normalized by the total resolved energy at the corresponding
wall-normal position. In this way, we can identify not only the most energetic region in
the total flow field, but also the dominant wavelengths of motions at different wall-normal
positions. The respective control wavelengths are marked by black vertical lines.

For an uncontrolled pipe, the most energetic wavelength is of O(103) wall-units
below y+ ≈ 15, which coincides with the commonly accepted length scale of near-wall
flow structures. With control imposed, there is a broadening of the absolute energy peak
in wavelength for case 2, with the wall-normal location moving outwards to y+ ≈ 20,
as shown in figure 9(c). Note that y+ = 20 is outside the SSL of case 2 (see figure 7a),
hence such a broadening effect can be attributed to the increased mean velocity gradient
in this region (figure 4a), which stretches the near-wall structures in the streamwise
direction and allocates partial energy to the larger scale of motions. Interestingly, below
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Figure 10. Circumferential premultiplied spectra of streamwise velocity fluctuations at y+ = 15 for the
uncontrolled case, y+ = 22 for case 2, and y+ = 19 for case 8.

y+ ≈ 15, the dominant wavelength is very close to the control wavelength, highlighting
the close correspondence between the dominant scale of motion and control wavelength
within the SSL. For case 8, the elevation of the wall-normal position of the absolute
energy peak is attenuated compared with case 2, and the most energetic wavelength is
reduced to approximately λ+ = 400. Similarly, the relative energy also peaks at around
λ+ = 300–400 within the SSL (figure 9f ), which is far smaller than the control wavelength
λ+ = 1695. This implies that the streaks cannot maintain a full streamwise wavy pattern
of such a long wavelength as λ+ = 1695, as will be discussed later in detail. In the central
region, the energy distributions show great resemblance in the controlled and uncontrolled
cases, for which the dominant wavelength is approximately λ+ = 400–500, indicating
that the central region is unaffected by the SSL. Thus it can be summarized that for the
low wavelength control (case 2), the dominant scale of motions is closely related to the
control wavelength within the SSL, while for the large wavelength control (case 8), such
correlation is rather weak, with the dominant scale of motions being far smaller than the
control wavelength.

Figure 10 presents the circumferential premultiplied spectra of u′ at wall-normal
locations where u′u′ reaches its maximum. All curves feature only one peak, indicating that
there are no such outer very-large-scale motions that occur at sufficiently high Reynolds
numbers. The peak wavelength corresponds to the average streak spacing, which is the
well-known λ+θ ≈ 100 in the uncontrolled case. In comparison, the streak spacing changes
little in case 8, whereas in case 2, it increases to approximately λ+θ = 129, which is
comparable with that in Ricco & Wu (2004) (λ+θ = 142.2 for T+ = 67.5 and A+ = 22.3
at y+ = 5).

4.4. Flow structures
In this subsection, we present the modification of near-wall low-speed streaks by the spatial
wall oscillation. The streaks are displayed mainly in the form of contours of streamwise
velocity fluctuations, which are constructed by unfolding the x–θ plane at a specified
wall-normal location. We also include the ‘spine’ plot of the low-speed streaks. The points
along the ‘spine’ are extracted by taking the location of the local minimum of the negative
streamwise velocity fluctuations at many streamwise locations (Dennis & Nickels 2011),
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Figure 11. Instantaneous field of streamwise velocity fluctuations u′ at y+ = 10 for the uncontrolled case,
where s = rθ represents arc length. (a) Contour map of u′, in which the data range is set to u′+ ∈ [−2, 2].
White regions correspond to the velocity deficit, while blue regions denote the excess. (b) ‘Spine’ plot of the
field in (a).

900

600

300

0 1000 2000 3000

900

600

300

0 1000 2000 3000

900

600

300

0 1000 2000 3000

900

600

300

0 1000 2000 3000

x+ x+

s+

s+

(a) (b)

(c) (d)

y+ = 4 y+ = 22

y+ = 22y+ = 4

Figure 12. Instantaneous field of streamwise velocity fluctuations u′ at y+ = 4 and 22 for case 2, where s = rθ
represents arc length. (a,b) Contour maps of u′, in which the data range is set to u′+ ∈ [−2, 2]. White regions
correspond to the velocity deficit, while blue regions denote the excess. (c,d) ‘Spine’ plots of the fields in (a,b).

and consequently only the information of the streak length is preserved. Such a plotting
manner allows us to examine qualitatively the change of the streamwise scale of low-speed
streaks. The typical streak pattern and the ‘spine’ of low-speed streaks in the uncontrolled
case are shown in figure 11.

When control is imposed, the streamwise wavy pattern of low-speed streaks can be
observed for case 2 at y+ = 4 (figure 12a). But the streaks are blurred, and the ‘spines’
are also fragmentized (figure 12c), indicating the strong attenuation of turbulence intensity
within the SSL. At y+ = 22, where the streamwise stress reaches its maximum, the streak
pattern retains a straight orientation (figure 12b), which is similar to the uncontrolled case
except for the larger streak spacing. As for case 8, similar wavy pattern can also be found
at both y+ = 4 and 10 but with a larger streamwise scale (figures 13a,b). The larger control
wavelength produces a larger thickness of the SSL, hence expanding the wall-normal scope
of wavy streaks. Compared with the uncontrolled case, the flow field seems to be occupied
by shorter streaks (see figure 13c), which coincides with the spectra in figure 9( f ) where
the near-wall energy peak is located at a smaller wavelength. This suggests that the original
long streaks are cut into several pieces by the streamwise-varying crossflow shearing.
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Figure 13. Instantaneous field of streamwise velocity fluctuations u′ at y+ = 4 and 10 for case 8, where s = rθ
represents arc length. Additional vectors at four phases, which are x = 0, λ/2, λ/4, 3λ/4 from left to right, are
shown. Magenta arrows represent the local mean shear-strain vectors, and orange arrows correspond to the
local mean velocity vectors. (a,b) Contour maps of u′, in which the data range is set to u′+ ∈ [−2, 2]. White
regions correspond to the velocity deficit, while blue regions denote the excess. (c) ‘Spine’ plot of the field in
(b).

A purely visual inspection of figure 13 seems to suggest that the streamwise wavy streaks
conform to the wall velocity since the streak inclination is visually consistent with the
graph of wall velocity shown in figure 1. But in fact, the mean circumferential velocity
is a function of both the wall-normal and streamwise locations, and the generated strong
shear forces also play an important role. Hence, following Touber & Leschziner (2012),
the correspondence between the local mean shear-strain, local mean velocity and streak
orientation is explored with the aid of two snapshots at different wall-normal positions
from case 8. This choice is motivated by the fact that the distinct near-wall streaky
structures in this case allow us to make unambiguous comparison. The directions of local
mean shear-strain vectors (magenta arrows, [∂ ũ/∂r, ∂w̃/∂r + ∂w̃/∂x]) and mean velocity
vectors (orange arrows, [ũ, w̃]) at four phases, which are x = 0, λ/4, λ/2, 3λ/4 and cover a
whole wavelength, are displayed in figure 13. The small plots on the right-hand side show
the streamwise variation of angles of these two vectors over the pipe length. In particular,
the angles at the above four phases are indicated by the circular symbols. In fact, the two
components of mean shear-strain that are associated with w̃ can alternately possess the
same direction or the opposite, but ∂w̃/∂x is usually one order of magnitude lower than
∂w̃/∂r due to the large difference of scale between λ and δx. Hence these two components
are merged together.

At y+ = 4, the shear-strain and velocity vectors both point to a direction that forms
an angle to the streak orientation when the wall velocity is zero (x = 0, λ/2). On the
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contrary, when the wall velocity reaches its maximum (x = λ/4, 3λ/4), their directions
separate, among which the shear vector seems to be aligned with the streak orientation.
Note that these vectors are representing the directions at a single streamwise location,
hence it can be interpreted that the shear force twists the streak at an angle. This scenario
also suits y+ = 10, but the difference is that the shear-strain vectors change their directions
at x = 0 and λ/2, and are aligned with the streak orientation, while the mean velocity
vectors do not. Such change results from the non-monotonic wall-normal variation of w̃ at
these phases, as shown in figure 7(b). Overall, the mean shear-strain outside the viscous
sublayer dominates the streak orientation, and there is a phase difference between the
streak orientation and local mean velocity vector, which is broadly in line with Touber
& Leschziner (2012). It is tempting to speculate that the streamwise-varying crossflow
shearing disrupts the downstream development of near-wall flow structures, leading to
the shortening of the streamwise scale of motions. Furthermore, the maximum angles of
streak inclination, which are obtained from the shear-strain vector, are approximately 31◦ at
y+ = 4, and 25◦ at y+ = 10. This is comparable to the data reported in Ricco (2004) (27.1◦
for T+ = 167 and A+ = 9.4 at y+ = 5) and Touber & Leschziner (2012) (approximately
33◦ for T+ = 200 and A+ = 12 at y+ = 10).

5. Relaminarization

In this section, we focus on the relaminarization cases (cases 4 and 11) to investigate
the transient dynamics during the relaminarization process, in an effort to explore the
physical mechanism. Specifically, we aim to figure out what causes the relaminarization
in turbulent pipe flow as no relaminarization occurs in a channel with the same flow
conditions (Quadrio et al. 2009; Viotti et al. 2009). To this end, we additionally performed
DNS of turbulent channel flow at Reτ = 180 with the control parameter the same as in
case 4. Through the comparison between channel and pipe, we are able to gain some
insights into the relaminarization mechanism.

5.1. Transient dynamics in the relaminarization process of case 11
Figure 14 presents the time evolution of streamwise mean velocity profile ū(r). Control
is imposed at t+ = 0. As expected, the profile evolves from an initial flat shape (black
solid line) to the final parabolic shape (blue solid line) that matches well the analytical
laminar Hagen–Poiseuille profile in a pipe, indicating a full relaminarization. Under the
condition of CPG, the fully developed turbulent profile overlaps the laminar profile in the
vicinity of the wall (0.96 < r/R < 1) (Marusic, Joseph & Mahesh 2007). It is shown that
ū increases monotonically in the core region, while in the near-wall region (0.85 < r/R <

1), it decreases to its minimum at around t+ = 741 and then rises slowly until the final
laminar profile is reached (see the enlarged view in figure 14b). This leads to the same
trend of wall shear stress ν ∂ ū/∂r|r=R, which can be linked to the variation of mass flow
rate by the integrated streamwise momentum equation

∂

∂t

(∫ R

0
ūr dr

)
= −

∫ R

0

dp
dx

r dr + νR
∂ ū
∂r

∣∣∣∣
r=R

. (5.1)

In a statistically steady turbulent state, − ∫ R
0 (dp/dx)r dr is positive and is cancelled

out by the wall shear stress. Immediately after the control is imposed, the wall shear
stress decreases, and the time derivative of mass flow rate (

∫ R
0 ūr dr) must be positive to

951 A35-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

85
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.855


Turbulence suppression in pipe flow

0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

Fully developed turbulent velocity profile

Laminar Hagen–Poiseuille profile

t+ = 93

t+ = 370

t+ = 741

t+ = 1111

t+ = 1481

t+ = 2778

t+ = 5185

t+ = 18519

t+ = 42037

0.85 0.90 0.95 1.00
0

0.2

0.4

0.6

0.8

1.0

1.2

r/R

r/R

ū ū
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Figure 14. (a) Temporal evolution of ū(r) for case 11. (b) Enlarged view of the grey box in (a).

compensate the difference on the right-hand side of (5.1), leading to the increase of mass
flow rate. Subsequently, the increasing of mass flow rate in turn increases the wall shear
stress, and the increasing rate of mass flow rate decreases accordingly. Once the balance is
reached, the new fully developed laminar state is established. Another implication is that
the thickness of SSL increases initially and then decreases according to (4.3). Hence in
figures 16(a), 17 and 18, we mark the largest SSL thickness (y+ = 32) by a black vertical
dashed line, which is calculated by finding the wall-normal location, from the wall to the
centre, where |w̃| decreases below 1 % of the velocity amplitude at t+ = 741.

Figure 15 presents instantaneous snapshots at five instants during the relaminarization.
Figures 15(a,c,e,g,i) show the instantaneous u contours of the same cross-section slice,
while figures 15(b,d, f,h,j) present instantaneous streamwise velocity fluctuations at two
cylindrical surfaces, i.e. y+ = 10 and 36. These two wall-normal locations are chosen
deliberately such that the smaller one is always located within the SSL while the larger
one is outside the SSL.

Without control, several high-momentum flow structures, which extend from the core
of the pipe towards the wall, together with the near-wall low-momentum fluids jigsawed
along the azimuthal direction, can be observed clearly (figure 15a). When control is
imposed, a time interval t+ = 37 is large enough to allow the near-wall streaks to
response to the wall rotation. At this moment, streaks within the SSL incline sinuously
while the outer streaks remain nearly straight (figure 15d). No remarkable change can be
observed from the cross-sectional contour (figure 15c). At t+ = 185, an annular layer with
indistinguishable velocity fluctuations can be observed clearly near the wall (figure 15e),
suggesting that the SSL seems to smear out the turbulent motions, and the flow within it
becomes nearly laminar (figure 15f ). Meanwhile, the annular SSL blocks the protrusion
of high-momentum fluids towards the wall, and encloses the core turbulence. Also, the
outer turbulence intensity is significantly attenuated (figure 15f ). With time elapsing,
the turbulence in the core region decays gradually (figures 15g,h), and finally the flow
reaches a laminar state (figures 15i,j). Note that the formation of a laminar SSL occurs in
a short time scale, while the relaxation of core turbulence requires a large amount of time.
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Figure 15. Temporal evolution of instantaneous flow fields for case 11. Five instants are chosen for
presentation. Control is imposed at t+ = 0. (a,c,e,g,i) Contours of instantaneous streamwise velocity u at the
same cross-sectional slice. (b,d, f,h,j) Contours of streamwise velocity fluctuation u′ at two cylindrical surfaces,
i.e. y+ = 10 and 36; the contours share the same colour legend.

This is in consonance with figure 29(b), in which the global TKE falls exponentially at the
beginning and then declines very slowly.

The above qualitatively described process can be quantified by examining the time
evolution of TKE, as shown in figure 16(a). Indeed, the TKE in the near-wall region
declines sharply at the initial stage (0 < t+ < 278), followed by the decay of core
turbulence since its energy originates mainly from the diffusion process of turbulent
activities in the buffer layer. At t+ = 278, the TKE drops to nearly zero below y+ = 20,
and peaks at y+ ≈ 40. This period corresponds to the formation of a laminar SSL. After
that, the peak TKE lingers for a while (t+ = 278–556), and the TKE in the central region
is further attenuated during this time interval. After this short lingering time, the overall
TKE keeps declining, with the peak position moving towards the central region.

Obviously, two evolution stages can be identified roughly. The first is the formation of
laminar SSL, and the second is the subsequent decay of outer turbulence. For the first
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Figure 16. (a) Temporal evolution of TKE for case 11. (b) Time evolution of mean velocity gradient ∂ ū/∂r for
case 11. The black vertical dashed line denotes the thickness of the SSL at t+ = 741. The arrows represent an
increase in time.
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Figure 17. Temporal evolution of the production (dashed lines) and dissipation (solid lines) rate in TKE budget
for case 11. The arrows represent an increase in time. Black vertical dashed lines denote the thickness of the
SSL at t+ = 741. (a) The first stage; (b) the second stage.

stage, the mechanism that eliminates turbulence within the SSL can be attributed to the
enhancement of turbulent dissipation (εk). This mechanism has been explained by Ricco
et al. (2012): they concluded that the inclination of near-wall streaks enhances the turbulent
enstrophy whose volume-integrated value equals the total turbulent dissipation. This is
also valid for the present study and confirmed in figure 17(a). As seen, immediately after
the control is imposed (t+ = 7), the turbulent dissipation is enhanced at around y+ =
10 where the near-wall streaks populate. After that, it declines rapidly. Note that during
the first stage, the dissipation rate and production rate (Pk) of TKE both decline, but the
ratio of production to dissipation quickly decreases below 1 across the whole radius (see
figure 18a), suggesting the continuous decline of overall TKE.

As noted earlier, the formation of a laminar SSL is accompanied by the decline of wall
shear stress. Due to the CPG constraint, the fluids in outer region accelerate, resulting in
the substantial increase of velocity gradient in the buffer layer (figure 16b). Note that w̃ is
negligible outside the SSL, hence the only term that contributes to the TKE production is
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Figure 18. (a) Time evolution of the ratio of production to dissipation (Pk/εk) for case 11. The black horizontal
dashed line indicates Pk/εk = 1. (b) Time evolution of the pressure diffusion (solid lines) and pressure strain
term (dashed lines) in the v′v′ budget for case 11. The arrows represent an increase in time. Black vertical
dashed lines denote the thickness of the SSL at t+ = 741.

ũ′v′ ∂ ũ/∂r. However, the increase of ∂ ũ/∂r cannot lead to the increase of TKE production.
Instead, it declines continuously during the second stage (figure 17b), which implies that
the shear stress ũ′v′ declines more rapidly. The rapidly declined ũ′v′ further indicates
the sharply weakened wall-normal lift-up and splatting events, which can be assessed
by examining the velocity–pressure gradient terms in the ṽ′v′ transport equation. As
shown in figure 18(b), the splatting event weakens rapidly at the border of the SSL,
despite the considerable increase of velocity gradient in that region. Moreover, according
to figure 18(a), the ratio of production to dissipation keeps increasing and exceeds 1 in
the region 30 < y+ < 70 during the time interval t+ = 278–556, and the peak location
matches well that of TKE. Hence it can be inferred that the increasing of ∂ ũ/∂r makes the
production decline less rapidly than dissipation, leading to the lingering of peak TKE at
that time interval.

So far, we have presented the transient dynamics during the relaminarization process
in detail. However, the mechanism responsible for the continuous decay of turbulence
after the formation of a laminar SSL is still unclear. Since the velocity gradient increases
significantly, the intensity of turbulent motions is supposed to be strengthened rather than
attenuated. To answer this question, we make a comparison between channel and pipe with
the same control parameter of case 4 at Reτ = 180, and the results will be shown in the
next subsection.

5.2. Comparison with channel flow
We performed DNS of turbulent channel flow at Reτ = 180 with the control parameter the
same as in case 4, i.e. (λ+, A+) = (1695, 12). For computational details, the reader can
refer to Appendix C. Figure 19(a) compares the temporal evolution of global TKE and
mass flow rate, as well as the integrated streamwise wall shear stress between channel and
pipe. In a channel, as expected, the flow does not relaminarize in the end. Both the TKE
and wall shear stress decline initially and reach a minimum, after which they bounce back
to a level that overshoots the averaged value in the uncontrolled state, and then drop to
its statistically steady value. The initial decline is consistent with Ricco et al. (2012), in
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Figure 19. (a) Temporal evolution of the integrated wall shear stress (solid lines), global TKE (dashed lines)
and mass flow rate (dash-dotted lines). Black lines indicate channel; red lines indicate pipe. All quantities are
normalized by the average values of the uncontrolled case. (b) Time evolution of the streamwise mean velocity
profile ū(y+) in a channel.

which the channel flow with temporal wall oscillation is investigated under the condition
of CPG. Nevertheless, the subsequent overshoot is not reported in Ricco et al. (2012). This
may characterize the difference between temporal and spatial wall oscillation, which is,
however, beyond the scope of this paper. According to (5.1), the overshoot of wall shear
stress in channel flow leads to the transient decrease, albeit subtle, of mass flow rate, while
in pipe flow, the mass flow rate increases smoothly with the decrease of increasing rate.
Also, the mean velocity profile (figure 19b) exhibits a similar trend to the pipe flow, that
is, in the vicinity of the wall, it decreases initially and then increases to the final value,
leading to the continuously increasing velocity gradient in the buffer layer. Here, we focus
on the transient behaviours before the new fully developed turbulence state is established,
aiming to find why the flow does not relaminarize.

Similar to the pipe flow, first we examine the temporal evolution of flow field at a single
cross-sectional slice in channel, shown in figure 20. Snapshots at six instants are chosen
for examination. Moreover, in order to provide more detailed information, enlarged views
of black boxes in figures 20 are presented in figure 21, superimposed with the vectors
that denote the in-plane velocity. During the TKE-declined stage, the evolution of flow
field in the channel is analogous with that in the pipe, which is characterized by the
formation of a laminar SSL and the attenuation of outer turbulence activity. However,
as time elapses, the turbulence outside the SSL will not decay completely. Instead, the
downward motion of high-momentum fluids starts to penetrate into the laminar SSL (see
figures 20c and 21a), which causes the local instability of the laminar SSL. As is evident
in figures 20(d) and 21(b), in the unstable region, the vortices penetrate into the laminar
SSL, and the strong transverse convection tilts the ejection and sweep events. Note that
the velocity magnitudes (the lengths of vectors) in the unstable region are considerably
larger than that in surrounding regions. Next, the local unstable region contaminates the
surrounding laminar SSL (figure 20e), and eventually the whole SSL becomes turbulent
(figure 20f ). Hence the ascent stage of the wall shear stress in figure 19 can be considered
as the contaminating stage. When the instability occurs, the intense generation of vortices
increases the impact of fluids against the wall, resulting in the overshoot of wall shear
stress. After the transient, the wall shear stress returns to its uncontrolled value due to the
CPG.

Since the fluids convect downstream, the inspection on a fixed cross-sectional slice
cannot exhibit the evolution of the total flow field. Hence we further present the time
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Figure 20. Time evolution of instantaneous flow fields at a single cross-sectional slice in channel flow.
Control is imposed at t+ = 0. The enlarged views of black boxes in (c,d) are shown in figure 21.
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Figure 21. Enlarged views of black boxes in figures 20(c,d). The black arrows denote in-plane velocity
vectors. The lengths of arrows qualitatively represent the magnitudes of local velocity.

evolution of the instantaneous three-dimensional v contour in the x–z plane at y+ = 10, as
shown in figure 22. The transition of the v contour from a rugged surface, which represents
the random upward and downward motions, to a smooth flat surface indicates clearly
the formation of a laminar SSL. After that, local fluctuations occur, contaminating the
surrounding laminar region, and in the meantime, it convects downstream and expands.
In the local fluctuating region, the peaks of the v contour are evidently larger, and the
number of peaks also increases, corresponding to the transient overshoot of wall shear
stress. Eventually, the whole SSL becomes turbulent and the streamwise wavy pattern can
be observed clearly.

Figure 23 compares the temporal evolution of TKE between the channel and pipe flow.
During the stage of the formation of a laminar SSL, the flow evolution in the channel is
consistent with the pipe. But the crucial difference is that the laminar SSL in the channel
will eventually be disturbed, while it remains stable in the pipe. This is reflected by the
fact that TKE bounces back in the channel but decays completely in the pipe. Note that the
velocity gradient also increases in the buffer layer of the channel, hence we infer that the
increased velocity gradient enhances the turbulent motions outside the SSL, strengthening
the impact of outer turbulence on the laminar SSL. Finally, the laminar SSL loses its
stability when the magnitude of such an impact is beyond some certain threshold. This
scenario can be confirmed simply by examining the temporal evolution of wall-normal
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in the channel.
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Figure 23. Time evolution of TKE, in (a) the channel, (b) the pipe (case 4). The arrows represent an increase
in time.

stress v′v′, shown in figure 24, since ṽ′v′ dictates the production of ũ′v′ and hence governs
the production of TKE outside the SSL. As expected, v′v′ is enhanced continuously after
the laminar SSL is completely formed in the channel, which is opposite to that in the pipe
where ṽ′v′ decreases rapidly. We believe that finding the origin of such a difference is
crucial to understanding the physical mechanism that leads to the relaminarization in pipe
flow.

5.3. Relaminarization mechanism
It is known, from previous sections, that the relaminarization in the pipe is closely related
to the stability of an annular SSL, hence we proceed to find the mechanism by examining
the energy flux that pertains to circumferential mean flow in the pipe. As shown in (3.2),
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Figure 24. Time evolution of wall-normal stress v′v′+, in (a) the channel, (b) the pipe (case 4). The arrows
represent an increase in time. The time interval chosen for the channel corresponds to the initial stage of the
TKE bounce-back. For the pipe, the time interval corresponds to the decay of outer turbulence.

the energy input eventually flows into two places: one is the mean dissipation that converts
energy into heat, and the other is the energy exchange with TKE. In the w′w′ transport
equation, the leftmost two terms in (3.2) appear as the production, which means that the
Reynolds stress w′w′ drains energy from the circumferential mean flow. Term ℘ is of great
interest since it appears in the transport equations of both w′w′ and v′v′, which read: for
the v′v′ budget,

1
2

∂v′v′

∂t
= Dv + Vv + εv + 2

ṽ′w′w̃
r︸ ︷︷ ︸
℘

, (5.2)

and for the w′w′ budget,

1
2

∂w′w′

∂t
= Dw + Vw + εw + Pw − ṽ′w′w̃

r︸ ︷︷ ︸
℘

, (5.3)

where the production rate Pw is

Pw = −ṽ′w′ ∂w̃
∂r

− ũ′w′ ∂w̃
∂x

. (5.4)

Equation (3.2) can be reorganized as

1
2

∂w̃w̃
∂t

= Ew + φw − Pw − ṽ′w′w̃
r︸ ︷︷ ︸
℘

. (5.5)

In the above equations, D denotes the diffusion term, V represents the velocity–pressure
gradient term, ε is the turbulent dissipation rate, E is associated with the energy input,
and φ corresponds to the mean dissipation rate. For a complete expression of the above
equations, the reader can refer to Appendix D.

We first examine the role of term ℘ in the v′v′ budget (5.2). Obviously, only when
the SSL is turbulent can the effect of term ℘ appear. Hence figure 25 presents the time
evolution of terms 2℘ and εv for case 11 at the initial stage after the control is imposed. It
can be observed that term 2℘ acts as a sink term and is comparable to εv in the near-wall
region. As time elapses, εv declines monotonically, while term 2℘ increases initially and
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Figure 25. Time evolution of ε+
v (solid lines) and term 2℘+ (dashed lines) for case 11 at the initial stage.

reaches its maximum at around t+ = 37, after which it vanishes gradually, accompanied
by the peak location moving away from the wall. Note that the signs of term ℘ in (5.3) and
(5.5) are opposite to that in (5.2), which means that the role of term ℘ is draining energy
from v′v′ and redistributing equally to the circumferential mean flow and w′w′. The latter
part of the energy pertains to the inter-component exchange of TKE, while the portion
of energy flowing into the circumferential mean flow is of great interest as it indicates a
new path of energy exchange between the mean flow and turbulence. Thus, following the
procedure introduced in Ricco et al. (2012), the global energy balance in pipe flow can be
summarized in figure 26. Note that the MKE (mean kinetic energy) that pertains to radial
direction is omitted since ṽ is examined to be negligible compared with ũ and w̃. The red
arrow highlights the energy transfer from TKE-v to MKE-w, namely the term ℘, that is
absent in channel flow. It is worth mentioning that the global energy flux associated with
term ℘ might be negligible when compared with the global TKE production or dissipation
since term ℘ is effective only in the very near-wall region. But as shown in figure 25, term
℘ dominates the v′v′ budget within the SSL, indicating that term ℘ plays a crucial role in
the attenuation of v′v′, which corresponds to the near-wall wall-normal turbulent motions
(anti-splatting or splatting) and is crucial to the turbulence self-sustaining mechanisms.

Now we proceed to discuss the physical meaning of term ℘. Here, w̃/r is the local
angular velocity, therefore the role of term ℘ can be interpreted as follows. Inside the
SSL where the circumferential velocity is large enough, the interaction between the strong
rotation and Reynolds stress ṽ′w′ continuously drains energy from wall-normal stress
v′v′ into the circumferential mean flow, leading to the continuous decline of v′v′. The
implication is that due to the term ℘, any wall-normal turbulent motions, specifically the
wall-normal splatting and lift-up events, will be absorbed by the annular SSL in the pipe,
disrupting the turbulence self-sustaining mechanisms. In other words, the annular laminar
SSL is stable because it can continuously absorb energy from outer turbulence, leading
to the decay of outer turbulence and the final relaminarization, whereas in the channel,
the turbulence self-sustaining mechanism can be maintained since the spanwise mean
flow cannot absorb energy from wall-normal stress. As the mass flow rate increases, the
impact of outer turbulent motions on the laminar SSL is enhanced due to the continuously
increasing velocity gradient. When the strength of such an impact increases beyond some
certain threshold, the transition of flat laminar SSL to a turbulent state will be triggered,
and the whole flow system becomes turbulent.
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Figure 26. Energy box for controlled pipe flow: E, φ, P and ε denote the energy input, mean dissipation,
turbulent production and turbulent dissipation, respectively. The subscripts denote the velocity components to
which the energy pertains. The red arrow highlights the energy transfer from TKE-v to MKE-w, namely the
term ℘, which is absent in the channel.

Next, we further demonstrate that the laminar SSL in the pipe is stable at Reτ = 180 if
the control wavelength and velocity amplitude are both large enough. Case 11 is selected
as the object. In the fully developed laminar state, we chose a single flow field and
replaced the data in the region 0 < r < 0.35 by the instantaneous velocity and pressure
fields extracted from a single fully developed turbulent flow field. The u contour of
a cross-sectional slice of the composite flow field is shown in figure 27(a). Note that
r = 0.35 (y+ = 54) is well beyond the SSL, and we take this composite flow field as the
starting point for the subsequent simulation. We note that this approach has been employed
in Wu et al. (2015) to study the gradual transition from laminar to fully developed
turbulence in pipe flow. The purpose of this simulation is to verify whether the laminar
SSL is stable to such intense perturbations.

The time evolutions of instantaneous streamwise velocity at different wall-normal
positions and TKE are shown in figures 27(d) and 27(e), respectively, together with
the instantaneous u contour of a single cross-sectional slice at three instants shown in
figures 27(a–c). At the beginning, the sudden variation of streamwise velocity at r = 0.35
causes the intense transient turbulence burst. The TKE increases dramatically in this
region, reaching the maximum at t+ = 7–15. After that, the laminar SSL is disturbed,
which is reflected by the rapid growth of TKE below y+ = 40 and the strong fluctuations
of streamwise velocity at y+ = 11. This is also confirmed visually by the snapshot at
t+ = 44 in figure 27(b). Besides, the disruption of laminar SSL is accompanied by the
relaxation of outer turbulence after the transient burst. At around t+ = 30, the TKE inside
the SSL reaches the maximum, suggesting the complete disruption of the laminar state.
Surprisingly, however, as time elapses, the strong velocity fluctuations decay gradually
and the velocity in the central region rises smoothly. The wall-normal profile of TKE at
t+ = 148 indicates clearly that the flow returns back to the laminar state. This result is
interesting as it demonstrates the stability of laminar SSL in the pipe at this Reynolds
number. Even such a high magnitude of perturbations can only temporarily disturb the
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Figure 27. DNS of case 11 with intense perturbations imposed at the initial fully developed laminar field.
(a) Initialcomposite flow field. (b) Instantaneous flow field at t+ = 44 when the laminar SSL becomes
turbulent. (c) Instantaneous flow field at t+ = 500 where the turbulence is decaying. (d) Temporal evolution of
instantaneous streamwise velocity at y+ = 11, 36, 180. (e) Temporal evolution of TKE.

laminar SSL, and eventually the system will return to the laminar state. The implication is
that, from the perspective of system dynamics, the laminar state is probably the only fixed
point for case 11. We also conducted the same simulation using the control parameter of
case 4. The result shows that the flow also experiences transient chaos and returns back to
the laminar state, which is hence not shown here. Again, we examined the time evolution
of 2℘, εv in the v′v′ budget and v′v′ itself at y+ = 7 during the transient burst, shown in
figure 28. As expected, term 2℘ is comparable to εv , contributing to the attenuation of
v′v′. Also, the increase in term 2℘ is accompanied by the increasing of v′v′, indicating
that the effect of term ℘ is self-adapting; that is, the larger v′v′, the more energy absorbed
by circumferential mean flow, which in turn results in the decline of v′v′.

Although we claim that the annular SSL can absorb energy from wall-normal stress, it
is hard to find distinguishable change if we examine the time evolution of global energy
that pertains to circumferential mean flow because the energy of wall-normal stress is too
small compared with the circumferential mean flow. Hence we reiterate here that term ℘

contributes dominantly to the attenuation of wall-normal stress within the SSL, leading
to the subsequent decay of turbulence. After highlighting the importance of term ℘, it is
easy to understand why it requires both large control wavelength and velocity amplitude
to relaminarize the turbulence in pipe flow. Term ℘ is the product of Reynolds stress ṽ′w′
and angular velocity. As already shown in figure 8, large control wavelength corresponds
to large thickness of the SSL, hence producing large values of Reynolds stress ṽ′w′. On the
other hand, large velocity amplitude generates large angular velocity. If any one of these
two conditions is not satisfied, then the effect of term ℘ will be negligible and the flow
cannot be relaminarized. Another issue is about the effect of the Reynolds number. The
above conclusions are drawn in the context of low Reynolds number Reτ = 180; whether
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Figure 28. Time evolution of ε+
v , 2℘+ and v′v′ at y+ = 7 during the transient in the DNS of case 11, in which

the initial flow field is imposed with intense perturbations. Note that the magnitude of v′v′+ is divided by factor
10.

they still hold at high Reynolds numbers remains unclear. At high Reynolds numbers, the
modulation of near-wall turbulence by the outer large-scale motions would undoubtedly
influence the control result. Moreover, the streaks in channel flow are stronger than in the
pipe for the same Reτ . The significant difference between channel and pipe exhibited in
the present study could vanish rapidly as the Reynolds number increases.

6. Summary

In this study, we have examined the effect of streamwise-varying wall rotation on turbulent
pipe flow by DNS at Reynolds number Reτ = 180. Two control parameters, velocity
amplitude and wavelength, are considered. When one of the control parameters is small
enough, the flow remains turbulent and drag reduction is achieved. When the two control
parameters are both large enough, the flow relaminarizes, which does not occur in channel
flow with the same flow conditions. Such a significant difference suggests the important
role of geometry when employing this wall-motion-based control strategy. In terms of
energetic performance, high amplitude tends to increase the power input and hence reduces
the net energy saving rate. Positive net energy saving is achievable when the wavelength is
large and the amplitude is small. An examination of effectiveness reveals that increasing
the wavelength is probably more effective than increasing the amplitude in achieving the
power saving.

The transverse boundary layer, called spatial Stokes layer (SSL), significantly affects
the control result. For non-relaminarization cases, two drag-reduction scenarios can be
identified based on the thickness of the SSL. In the case of low thickness, only a small
fraction of near-wall streaks are affected, hence the SSL acts as a spacer layer lying
between the wall and near-wall flow structures, inhibiting the formation of streamwise
vortices and thereby reducing the shear stress. An inspection of one-dimensional spectra
reveals that the flow structures outside the SSL are stretched due to the increased mean
velocity gradient. Within the SSL, the strong crossflow shearing significantly diminishes
the turbulence intensity, and the dominant wavelength of motions is closely related to
the control wavelength. When the thickness is large enough to cover the main part
of the flow structures, the streaks are inclined sinuously in the streamwise direction,
forming a wavy pattern and followed by a energy transfer from streamwise stress to
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circumferential stress. However, the dominant wavelength of motions is significantly
smaller than the control wavelength, and even smaller than that in uncontrolled case. Such
a shortening effect is believed to disrupt the downstream development of flow structures,
leading to a low degree of turbulence organization and low shear stress. Moreover, there
is a phase difference between the streak orientation and local mean velocity vector
as the former is determined by the local mean shear-strain vector outside the viscous
sublayer.

The discrepancy between the phase-averaged turbulent velocity profile and the laminar
analytical solution is closely related to the control parameters. With the aid of dimensional
analysis, it is shown that high amplitude together with low wavelength tends to increase
the magnitude of the mean convection term, to which the turbulence modulation can
be comparatively small, thereby leading to the small discrepancy. On the contrary, large
wavelength and low amplitude tend to generate a large discrepancy.

The relaminarization process in a pipe can be divided into two stages. The first is
the formation of a laminar SSL, which is caused by the enhancement of turbulent
dissipation as discussed in Ricco et al. (2012), accompanied by the sharp decline of wall
shear stress and turbulence intensity. Due to the constant pressure gradient (CPG), the
streamwise mean flow accelerates and the mean velocity gradient (∂ ū/∂r) increases in
the buffer layer. The second stage is the decay of turbulence outside the laminar SSL.
This stage is characterized by the continuously declined TKE production despite the
increasing of ∂ ū/∂r. However, the ratio of TKE production to dissipation temporarily
exceeds 1 in the buffer layer, leading to the temporary lingering of peak TKE. For
channel flow with the same flow conditions, the first stage is the same as pipe flow,
whereas after the complete formation of the laminar SSL, the outside TKE bounces
back rather than completely decaying. This is the crucial difference between channel
and pipe. During the TKE bounce-back stage, the laminar SSL is disrupted locally at
the beginning, and then the perturbations gradually contaminate the surrounding laminar
region. Finally, the whole laminar SSL loses its stability and the flow re-establishes itself
in a new fully developed state. It is found that due to the increased ∂ ū/∂r, the impact
of outer turbulence on the laminar SSL is gradually enhanced, which causes the local
instability.

By examining the energy flux that pertains to circumferential mean flow in a pipe, it is
found that due to the rotation effect, part of the energy that pertains to wall-normal velocity
fluctuations is continuously absorbed by circumferential mean flow, which is believed
to be the root cause of the continuous decay of outer turbulence since the wall-normal
turbulent motion plays a crucial role in the turbulence self-sustaining mechanism. This
process is self-adapting, i.e. the larger the turbulence intensity, the more energy absorbed
by the circumferential mean flow, while in the channel, such an effect is absent since
no rotation effect exists in flat plane geometry. Hence we conclude that the laminar
SSL in a pipe is stable at the Reynolds number considered in the present study as it
can continuously absorb energy from outer turbulence. This is confirmed by additional
simulations where we manually impose disturbances of great strength to the laminar SSL.
The fact that the laminar SSL undergoes transient chaos and returns to the laminar state
strongly demonstrates our conclusion.
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Figure 29. (a) Turbulence statistics in comparison with those in previous literature. The dissipation rate of
streamwise stress is scaled by u3

τ /D and further divided by a factor of 36. (b) Time evolution of global TKE
during the relaminarization process for different meshes. The values of global TKE are normalized by the
average value of the uncontrolled case. The baseline mesh is P = 11, Nz = 192. For the other four meshes, only
one parameter (either P or Nz) is varied with respect to the baseline mesh. The black dashed line represents the
TKE evolution with a different initial field. The inset displays an exponential fit to the TKE evolution data.
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Appendix A. Analytical formula of input power Pin

Using (4.2), we have

Pin = 2πRLν w̃
∂w̃
∂y

∣∣∣∣∣
y=0

= 2πRLν × A
Ai(0)

Re[eikx Ai(0)] × A
Ai(0)

Re
[
− i

δx
e(kx−(4/3)π)i Ai′(0)

]
= 2πRLν × A cos(kx) × A × Ai′(0)

Ai(0) δx
sin
(

kx − 4
3
π

)

= 2πRLνA2 Ai′(0)

Ai(0) δx

(√
3

4
+ 1

2
sin
(

2kx − 4
3
π

))

=
√

3πRLνA2 Ai′(0)

2 Ai(0) δx
. (A1)

Appendix B. Validation for pipe flow simulations

Figure 29(a) shows the Reynolds normal stresses in comparison with that from a previous
pipe flow database (Eggels et al. 1994; Wu & Moin 2008). Good agreement can be
found for all statistics, including the dissipation rate of streamwise Reynolds stress,
demonstrating the reliability of the present simulation of fully developed turbulent pipe
flow.
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Figure 30. Two-dimensional spectral element meshes for channel flow simulations, with 880 elements in the
x–y plane.

On the other hand, in order to verify that the relaminarization is a physically relevant
process rather than the consequence of insufficient mesh resolution, case 11 is chosen for
an additional check because A+ = 30 is the maximum velocity amplitude employed in the
present study. The success of mesh independence validation of this extreme case allows us
to be confident with the results for other relaminarization cases. Since the relaminarization
is a gradual process (Sreenivasan 1982) and it takes extremely long time for the flow
to transform from turbulent state to fully developed laminar state, it is reasonable that
relaminarization occurs when the global turbulent kinetic energy (TKE) decreases to zero
(Lieu, Moarref & Jovanović 2010). Figure 29(b) shows the time evolution of global TKE
for case 11. Except for the baseline simulation, results from four additional meshes, in
which either the order of the shape function (P − 1) or the number of Fourier planes
(Nz) is varied with respect to the baseline mesh, are also included. The overlap of all
TKE evolution curves indicates that the present mesh is adequate and the relaminarization
is indeed a physical process. Moreover, the complete flow excursion of relaminarization
is calculated only for the baseline mesh due to the extremely long computing time. No
instability occurs, and the flow indeed reaches the final laminar state. We also changed the
initial flow field at which control is imposed, and relaminarization also occurs with the
same trend, indicating independence from initial conditions.

Appendix C. Details for channel flow simulations

The channel flow DNS at Reτ = 180 are performed in a Cartesian coordinate
system using the spectral element-Fourier DNS solver Semtex (Blackburn &
Sherwin 2004; Blackburn et al. 2019). The simulations are conducted under the
condition of CPG, and x, y, z represent the streamwise, wall-normal and spanwise
directions, respectively. The two-dimensional spectral element meshes, shown in
figure 30, are deployed to discretize the x–y plane, with 288 (Nz) Fourier planes
in the z direction to represent the three-dimensional computational domain. The
element height follows a geometric degression from the centreline to the wall.
A 10th-order nodal shape function is employed, i.e. P = 11. The resulting grid
resolutions are (�x+, �y+

min/max, �z+) = (8.5, 0.42–3.9, 5.9), covering a channel section
6πh × 3πh × 2h, where h is the half-channel height. Such grid resolutions yield total
computational nodes of approximately 3.1 × 107, which is a little less than that in Quadrio
et al. (2009) and Viotti et al. (2009). To ensure that the differences between channel and
pipe are caused only by the geometry, the friction velocity uτ and kinematic viscosity
ν are set to be equal to the pipe flow. Similarly, a single flow field at fully developed
turbulent state is chosen as the starting point for the subsequent simulation with spatial
wall oscillation.

The calculated drag-reduction value for channel flow with the control parameters
(λ+, A+) = (1695, 12) (the same as case 4) is 38.2 %. As shown in figure 3, this result is
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Figure 31. Validation of channel flow simulations. (a) Reynolds normal stresses in comparison with that in
Kim, Moin & Moser (1987) (denoted as KMM). (b) Time evolution of integrated wall shear stress during the
transient in the channel for different meshes. The values of wall shear stress are normalized by the average
value of the uncontrolled case. The baseline mesh is P = 11, Nz = 288. For the other three meshes, only one
parameter (either P or Nz) is varied with respect to the baseline mesh.

lower than the drag-reduction curve reported by Viotti et al. (2009) in which the channel
flow DNS are conducted under the condition of constant flow rate (CFR). Such a difference
is reasonable as Quadrio & Ricco (2011) showed that the drag reduction for CPG is
lower than that for CFR with these control parameters. Besides, the very good agreement
between the present result for an uncontrolled channel and that in Kim et al. (1987)
indicates the adequacy of the present mesh to simulate the fully developed turbulence in
the channel (figure 31a). We also simulated the transient behaviour of controlled channel
flow with different mesh resolutions (i.e. changing the value of P and Nz) to ensure
the mesh independence. As shown in figure 31(b), the initial decline, the subsequent
bounce-back and the overshoot of wall shear stress occurs in all simulations, indicating
that such behaviour is authentic and physically relevant. Moreover, the discrepancy of the
bounce-back stage for different meshes suggests that the contamination of the laminar SSL
is sensitive to the grid resolution.

Appendix D. Reynolds stress transport equations in a pipe

Here we present the ṽ′v′ and w̃′w′ transport equation in full detail. The mean convection
term (M) disappears after spatial average due to the streamwise periodicity of the forcing
signal (2.1).

For the ṽ′v′ budget:

1
2

∂ṽ′v′

∂t
= −∂r ˜v′v′v′

2r ∂r
− ∂ ˜v′v′u′

2 ∂x
+

˜v′w′w′

r
+ 1

2
ν

(
∇2ṽ′v′ + 2

(
w̃′w′ − ṽ′v′)

r2

)
︸ ︷︷ ︸

Dv

− 1
2

ũ
∂ṽ′v′

∂x︸ ︷︷ ︸
Mv

−
˜

v′ ∂p′

∂r︸ ︷︷ ︸
Vv

− ν

⎡⎢⎣(̃∂v′

∂z

)2

+
(̃

∂v′

∂r

)2

+ 1
r2

(
∂v′

∂θ
− w′

)2̃
⎤⎥⎦

︸ ︷︷ ︸
εv

+2
ṽ′w′ w̃

r︸ ︷︷ ︸
℘

.

(D1)
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For the w̃′w′ budget:

1
2

∂w̃′w′

∂t
= −∂r ˜w′w′v′

2r ∂r
−

˜w′w′v′

r
− ∂ ˜w′w′u′

∂x
+ 1

2
ν

(
∇2w̃′w′ − 2

(
w̃′w′ − ṽ′v′)

r2

)
︸ ︷︷ ︸

Dw

− 1
2

ũ
∂w̃′w′

∂x︸ ︷︷ ︸
Mw

− ṽ′w′ ∂w̃
∂r

− ũ′w′ ∂w̃
∂x

− ṽ′w′ w̃
r︸ ︷︷ ︸

Pw

− ṽ′p′

r
+ 1

r
p′
(

∂w′

∂θ
+ v′

)̃
︸ ︷︷ ︸

Vw

− ν

⎡⎢⎣(̃∂w′

∂x

)2

+
(̃

∂w′
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)2

+ 1
r2

(
∂w′

∂θ
+ v′

)2̃
⎤⎥⎦

︸ ︷︷ ︸
εw

.

(D2)
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