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Two mathematical models under so-called intensity and structure frameworks to pricing a double
defaultable interest rate swap are established. The default could happen or jump to a high probability
in both fixed and floating parties on the predetermined boundaries. The models lead to a new and
interesting mathematical problem. As the intensity approaches infinity in designated regions, the
solutions of the intensity models converge to a solution of a structure-type model which is an initial
value problem of a partial differential equation coupled with two obstacles problem in their restricted
regions. According to the value of the fixed rate, three cases are discussed. The free boundary that
determines the swap rate and the free boundaries that determine the earlier termination of the contract
(due to counterparty’s default) are analysed.
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1 Introduction

An interest rate swap (IRS) is a popular and highly liquid financial derivative instrument [9, 20].
In a swap contract, two parties agree to exchange interest rate cash flows, based on a speci-
fied notional amount of particular currency from a fixed rate to a floating rate, or vice versa. In
details, a common IRS involves two counterparts: A, called ‘payer’, and B, called ‘receiver’. In
the contract life, A pays a fixed rate (the swap rate) to B, while A receives from B a floating
rate indexed to a reference rate like London Interbank Offered Rate (LIBOR), Euro Interbank
Offered Rate (EURIBOR) or Shanghai Interbank Offered Rate (SHIBOR). At the point of ini-
tiation of the swap, the swap rate is chosen so that the swap has a net present value of zero. In
financial market, IRSs are used for both hedging and speculating, which also can be traded as
an index through the FTSE MTIRS Index. By a December 2014 statistics release, the Bank for
International Settlements reported that IRSs occupied 80% of the global Over the Counter (OTC)
derivative market, with the notional amount outstanding $630 trillion and the gross market value
$21 trillion, [1].
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A contract of IRS involves the risks from not only the uncertainty of the float rate, but also
the credit default [5]. An IRS exposes a party to credit risk when it is in the money and faces
a possible default by the counterparty. Even at the situation of out of the money, the coun-
terparty also has probability to default for some other reason, which will cause the end of the
contract. With the introduction of credit default swaps which act as insurance in practice, the
IRS is negotiated through an intermediary financial institution who usually assumes the default
risk in exchange for a fixed percentage of the transaction (the bid–ask spread); in an interme-
diated swap, the two parties are not typically even aware of the identity of the second party to
the transaction, so that if the counterparty default happened out of money, the contract can be
continued by transferring to another counterparty by the intermediary. In this case, the default
did not ‘real’ happen to the counterparty. It is equivalent to the case that the default party could
‘choose’ if the contract would be default when it met the default boundary. Thus, it is necessary
to know how credit risks affect the value of the swap.

Pricing an IRS boils down to discounting the series of future cash flows for each leg [4]. A clear
way of representing the term structure of interest rate is via a discount factor curve that reflects
the present values of future payments. It is called zero-coupon bond price (ZCBP), or discount
curve function. Under further assumption that the interest rate follows some stochastic process,
the ZCBP can be valued; see [6, 20]. There are many researches on pricing and managing on
IRS; for example, see [15, 13, 19]

To deal with the default risks, there are primarily two types of models, the structural and
intensity ones (it is also called reduced form one), respectively. A structural model came from
Merton’s work ([18], 1974), which set predetermined barriers between asset and debt to define
the time of a default. The model was developed by Black–Cox ([3], 1976) and Longstaff–
Schwartz ([17], 1995), leading to so-called first-time passage model. For an intensity model, the
default time is governed by a default hazard rate with parameters inferred from market data and
macroeconomic variables. Duffie–Singleton ([6], 1999) and Lando ([16], 1998) provide exam-
ples of research following this approach. With a structural style’s intensity rate, these two models
are linked; see ([11], 2012).

To price a defaultable IRS, an intensity model is usually applied; see [2, 12, 10]. However,
so far as we know, there is no references relative to using the structure-type model to price a
defaultable IRS. In this paper, we propose a structure model to price an IRS defaultable by both
parties. It turns to a variational inequality problem restricted in a predetermined region. This
is a new mathematical problem. We use the solution of an intensity model with a structure-type
intensity to approximate the solution and prove the existence and uniqueness of the solution. Also
by partial differential equation (PDE) techniques, the solution is analysed. Especially discussion
is on the free boundary [7], or the parity curve, from which the swap rates are determined. So far
as we know, this is the first time to deal with a defaultable IRS with default probabilities in both
legs under structure framework.

We say ‘in the money’ if the value of a contract for the underlying party is positive, otherwise
‘out of the money’. It is important to evaluate a contract when a party is at default and the
defaulted party is ‘in the money’. Thus, for proper transfer of the underlying IRS to a new party
by the intermediary, we need a reliable mechanism to evaluate defaultable IRS. For defaultable
IRS, the underlying problem is not linear – i.e. the sum of two contracts with swap rates c1 and
c2 is not the same as two contracts of mean swap rate (c1 + c2)/2. This paper proposes a model
to help to evaluate the IRS when one of the parties in contract is at default. We also consider a
game theory where the payer (who receives floating rate) can choose to terminate contract if the
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floating rate is below a predetermined floor level and the receiver (who pays floating rate) can
choose to terminate the contract if the floating rate is higher than a predetermined ceiling level.
The framework proposed here can be easily adapted to deal with a variety of situations. This is a
new way to study IRSs, and it established a bridge between intensity and structure models. It also
turns to an interesting mathematical problem. We hope that the mathematical theory developed
here can offer insight in handling the existing IRSs and designing new IRSs.

In the next section, we present an intensity model and a structure-type one, respectively, which
can be transferred to PDE problems [14]; by choosing a special family of intensities, called
‘structure type’, the intensity models approximate the structure one. In the rest sections, we
present rigorous mathematical analysis.

2 Modelling

In this section, we first present a basic IRS model, based on the celebrated Cox–Ingersoll–Ross
(CIR) term structure model for interest rate dynamics. Then for defaultable swaps, we present an
intensity model and a structure model, and make a connection between these two models.

2.1 A framework for non-defaultable swaps

Consider an IRS of exchanging a fixed rate h to a floating rate {rt}t≥0 for a time period [0, T]
without default risk. The present value of the swap for the payer (who receives floating rate and
pays the fixed rate) can be calculated by evaluating

V (r, T) =E

[∫ T

0
[rt − h]e−∫ t

0 rsdsdt
∣∣∣ r0 = r

]
,

where E is the expectation.
Note that T here stands for the remaining time to expiry; hence when T = 0 we have

V (·, 0) = 0.
For definiteness, assume that the floating rate obeys the CIR model

drt = (κ − βrt)dt + σ
√

max{rt, 0} dWt ∀ t> 0, (2.1)

where κ , β and σ are positive constants and {Wt}t�0 is the standard Brownian motion. Since risk-
neutral measures can hardly be used for defaults, here in this paper, all expectations are measured
under the natural probability.

Then V is the solution of the initial value problem{
LV (r, T) = r − h ∀ r> 0, T > 0,
V (r, 0) = 0 ∀ r> 0,

(2.2)

where L is the Black–Scholes operator

L= ∂

∂T
+ L, L = −σ

2r

2

∂2

∂r2
− (κ − βr)

∂

∂r
+ r . (2.3)

Note that here T is time to expiry. Mathematically, for uniqueness, the solution is restricted to a
certain function class. Typically, one assumes that σ 2 < 2κ , which implies that P(min0<s<t{rs}>
0) = 1 for every t> 0, where P stands for the probability; hence one can use the function class
L∞((0, , ∞)2) for uniqueness. In this paper, we drop this condition. Hence, throughout this paper,
we only assume that
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κ > 0, σ > 0, β > 0.

It is well known that when σ 2 > 2κ , P(min0<s<t{rs} = 0)> 0 for every t> 0. Note that (2.1)
corresponds to the reflection when rt = 0 so

P({rt > 0}) = 1 ∀ t> 0.

To accommodate this, we use the function space

X = {φ ∈ C(Q̄) | ∂φ/∂r ∈ L∞(Q)}; Q := (0, ∞)2. (2.4)

Although a more accurate boundary condition is

lim
r→0

r2κ/σ 2 ∂φ(r, T)

∂r
= 0 ∀ T > 0,

for the problem at hand, the condition φr ∈ L∞ will suffice our need. It is shown in [4] that
problem (2.2), supplemented by φr ∈ L∞, which we call the boundary condition at the ori-
gin, is well-posed: there exists a unique solution and the solution depends continuously on the
parameters (κ , β, σ ) ∈ (0, ∞)3.

2.2 A framework for defaultable swaps

Suppose that both parties, the payer and the receiver, are subject to default. Assume that at
the time of default, the right of the defaulted party in the swap can be transferred, if he is ‘in
the money’. Denote by τ1 and τ2 the default times of the payer and the receiver, respectively.
Assume that at time τ1 (� τ2 ∧ T), the payer’s right and obligation in the swap is auctioned to a
new party with a certain price φ1(rτ1 , T − τ1), where T − τ1 is the remaining time to expiry; at
time τ2 (� τ1 ∧ T), the receiver’s right and obligation is auctioned to a new receiver resulting an
obligation cost of φ2(rτ2 , T − τ2) to the payer. Then, from its cash flow, a model for the value of
the swap for the payer can be expressed by

V (r, T) =E

[ ∫ τ1∧τ2∧T

0
(rt − h)e−∫ t

0 rsdsdt + φ1(rτ1 , T − τ1)e−∫ τ1
0 rsds1{τ1<τ2∧T}

− φ2(rτ2 , T − τ2)e−∫ τ2
0 rsds1{τ2<τ1∧T}

∣∣∣r0 = r, τ1 ∧ τ2 > 0

]
. (2.5)

If τ1 ∧ τ2 > t, the value of the swap at time t for the payer is V (rt, T − t).
There are variety of ways to model φ1 and φ2, for example,

φ1 = (1 − ε1)V+, φ2 = (1 − ε2)V−, (2.6)

where V+ := max{V , 0} and V− := max{−V , 0}; here 0 � ε1, ε2 < 1 are discounter proportions
when a default party sells the contract to a third party.

To complete the model, it remains to specify the default times τ1 and τ2. There are two types
of specification, an intensity one and a structure one.

2.3 An intensity model for defaultable swaps

Assume that τ1 and τ2 are first arrival times of Poisson processes with variable intensities {λ1t}
and {λ2t}, respectively. Let {Ft}t�0 be the information filtration generated by {rt, λ1t, λ2t}t�0.
Assume that the Poisson processes are conditionally independent in the sense that, for t> s � 0,
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P(τ1 ∧ τ2 > t |Ft, τ1 ∧ τ2 > s) = e−∫ t
s (λ1s+λ2s)ds,

P(τ1 ∈ (t − dt, t], τ2 > t |Ft, τ1 ∧ τ2 > s) = λ1te
−∫ t

s (λ1s+λ2s)dsdt,

P(τ2 ∈ (t − dt, t], τ1 > t |Ft, τ1 ∧ τ2 > s) = λ2te
−∫ t

s (λ1s+λ2s)dsdt.

Denote by E0,r the expectation conditioned on r0 = r and τ1 ∧ τ2 > 0. We can evaluate (2.5) by

V (r, T) = E0,r

[ ∫ ∞

0

( ∫ θ∧T

0
(rt − h)e−∫ t

0 rsdsdt
)

d
(

− e−∫ θ
0 (λ1s+λ2s)ds

)

+
∫ T

0

(
φ1(rt, T − t)λ1t − φ2(rt, T − t)λ2t

)
e−∫ t

0(λ1s+λ2s+rs)dsdt
]

= E0,r

[∫ T

0

(
rt − h + φ1(rt, T − t)λ1t − φ2(rt, T − t)λ2t

)
e−∫ t

0(λ1s+λ2s+rs)dsdt

]
,

where in the second equation, we have used integration by parts and an assumption that τ1 ∧ τ2 <

∞ almost surely.
Assume for simplicity that the intensities depend only on the variable interest rate via

λit =�i(rt), i = 1, 2, (2.7)

where�i(·) are known non-negative functions. Also assume that {rt} obeys the CIR model (2.1).
Then by the Feynman–Kac Formula, V is the solution of the initial value problem

(L+�1 +�2)V = f +�1φ1 −�2φ2 on (0, ∞)2, V (·, 0) = 0,

where f = r − h and L is as in (2.3). We solve the problem in the class V ∈ X defined in (2.4).
Finally, for definiteness, we take φ1, φ2 as in (2.6) with ε1 = 0, ε2 = 0. Then we obtain the

following mathematical formulation for an evaluation of the defaultable swap for the payer:{
LV −�1V− +�2V+ = f on Q := (0, ∞)2,

V (·, 0) = 0, V ∈ C(Q̄), Vr ∈ L∞(Q).
(2.8)

Remark 2.1 Note that when ε1 = ε2 = 0 in (2.6), one cannot really distinguish a party defaulting
or the same party simply selling his side of contract to a third party. Thus, talking positive ε1

and ε2 are more realistic. Our analysis for the intensity model works for general choices of φ1

and φ2. However, for the connection of structure and intensity models, the current analysis does
not apply to the case of positive ε1 and ε2.

We shall use the method introduced in [4] to show the well-posedness of (2.8) in Section 3.

2.4 A structure model for defaultable swaps

As we claim in the introduction, a defaultable swap would not be terminated when it was in
money for the payer’s at her default boundary and vice versa. It is equivalent that the both parities
could choose to default, just like a game. Based on the limit of intensity models to be presented
later, here we consider a game theory model. Assume that the payer does not really default but
instead can choose to terminate the contract at any time t ∈ [0, T], as long as rt � b1. Similarly,
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assume that the receiver can choose to terminate the contract at any time t ∈ [0, T], as long as
rt � b2. Hence, we define the admissible strategies of the payer and the receiver by

A1 = {τ | τ is a non-negative stopping time, rτ � b1},
A2 = {τ | τ is a non-negative stopping time, rτ � b2}.

Then we can evaluate the ‘defaultable’ swap for the payer by

u(r, T) = inf
τ2∈A2

sup
τ1∈A1

E

[∫ τ1∧τ2∧T

0
(rt − h)e−∫ t

0 rθ dθdt
∣∣∣ r0 = r

]
. (2.9)

We can explain our problem in terms of a game theory. For two parties A and B, if A knows
that B will take a strategy τ2, he can find and choose the best counter-strategy τ1 = F(τ2) that
maximises the expectation. Analogously, if B knows that A will take a strategy τ1, he can find
an optimal counter-strategy τ2 = G(τ1). Assume that the two curves τ1 = F(τ2) and τ2 = G(τ1)
admit a unique intersection, say (τ ∗

1 , τ ∗
2 ), then (τ ∗

1 , τ ∗
2 ) is the well-known Nash equilibrium and

the sup & inf in (2.9) are interchangeable. As an equilibrium, A takes strategy τ ∗
1 and B takes

strategy τ ∗
2 .

Assume for simplicity that b1 < b2. Using dynamical programming, one can formally derive
that

F[u] = 0 on (0, ∞)2, u(·, 0) = 0, u ∈ X, (2.10)

where

F[u] := (Lu − f )1(b1,b2)(r) + min{Lu − f , u}1(0,b1](r)

+ max{Lu − f , u}1[b2,∞)(r);

here 1� is the characteristic function of the set �: 1�(r) = 1 if r ∈� and 1�(r) = 0 if r 
∈�.
This is an initial value problem of a PDE coupled with two obstacle problems in their restricted
regions. For such a swap with expiry T , the optimal strategy is

τ ∗
1 = min{t ∈ [0, T] | t = T or rt � b1 and u(rt, T − t) = 0},
τ ∗

2 = min{t ∈ [0, T] | t = T or rt � b2 and u(rt, T − t) = 0}.
The corresponding infinite (T = ∞) horizon problem is denoted as follows:

F[v] := min{Lv − f , v}1(0,b1] + (Lv− f )1(b1,b2) + max{Lv− f , v}1[b2,∞) = 0, (2.11)

where L is defined in (2.3). The optimal strategy is

τ ∗∗
1 = inf {t ≥ 0 | rt � b1 and v(rt) = 0},
τ ∗∗

2 = inf {t ≥ 0 | rt � b2 and v(rt) = 0}.
Once we know the optimal strategy, we can use Ito Lemma to verify rigorously that u in (2.9)

is the unique solution of (2.10); we omit the details. We shall study the infinite horizon problem
(T = ∞) in Section 4 and the finite horizon problem in Section 5.

For rigorous mathematics, we solve (2.10) using viscosity solutions defined in the following.
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Definition 2.1 A viscosity solution of (2.10) is a Lipschitz continuous function u defined on
[0, ∞) that satisfies the following:

1. if r> 0 and ζ ∈ C2((0, ∞)) satisfies ζ (r) = u(r) and ζ � u in (0, ∞), then F[ζ ](r) � 0;
2. if r> 0 and ζ ∈ C2((0, ∞)) satisfies ζ (r) = u(r) and ζ � u in (0, ∞), then F[ζ ](r) � 0.

2.5 A link from the intensity model to the structure one

Among the intensity models, there are special types, called ‘structure types’, whose limits are
structure models. To demonstrate this, we consider a special family of structure-type intensity
models characterised by

�1(r) = p1[0,b1](r) = p H(b1 − r), �2(r) = q1[b2,∞](r) = q H(r − b2), (2.12)

where p, q, b1, b2 are positive constants and H is the Heaviside function: H(x) = 0 if x< 0 and
H(x) = 1 if x> 0.

Denote by τ1p and τ2q the corresponding stopping times. Since an intensity is the number of
occurrence per unit time, we find that

lim
p→∞ τ1p = τ̂1 := inf {t> 0 | rt < b1},
lim

q→∞ τ2q = τ̂2 := inf {t> 0 | rt > b2}.

Since each party has his choice of transfer (auction sale) at time of his default, direct valuation
of the structure model with the payer’s default time τ̂1 and receiver’s default time τ̂2 is very
difficult. Nevertheless, we shall show that as p, q → ∞, the underlying structure-type intensity
model (2.8) approaches the structure model (2.10). Detailed analysis will be given in Section 3.

The rest of the paper is organised as follows. In Section 3, we first establish the well-posedness
of the intensity model (2.8). Then we take the ‘structure-type’ intensity (2.12) and show that as
p, q → ∞, the solutions of the underlying intensity model (2.8) approach the solution of the
structure model (2.10). In Section 4, we study the infinite horizon problem for the structure
model, i.e. evaluate the function defined in (2.9) with T = ∞. We provide qualitative description
of the value of the IRS in terms of the swap rate h, as well as the optimal strategies for the payer
and the receiver. We study the structure model (2.10) in Section 5. Section 6 is our conclusion
and remarks.

3 Intensity models and its connection to structure model

This section is a pure mathematical analysis aiming at the well-posedness of the intensity model
and its connection to the structure model. We first as a preparation study the operator L in
(2.3). Then we study the semi-linear equation (2.8), using the technique introduced in [4] for
general non-negative �1 and �2. Then we take the special choice �1(r) = p H(b1 − r) and
�2 = qH(r − b2) to investigate the asymptotic behaviour of the solution as p, q → ∞.

Using the conventional notation, in the sequel we may write u(x, T) as u(x, t) and ∂T as ∂t. Also
we use ur and ut for partial derivatives with respect to r and t.

https://doi.org/10.1017/S0956792519000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000184


518 X. Chen and J. Liang

3.1 The operator L

The operator L defined in (2.3), generated from the Black–Scholes theory for the CIR model, is
important in our analysis. Here we first construct a few auxiliary functions and then study the
ordinary differential equation (ODE) Lu = F on a bounded interval with homogeneous Neumann
boundary conditions, where F is a function with at most a linear growth.

We begin with finding a fundamental solution set of the homogeneous linear equation
Lϕ = 0 on (0, ∞). The solutions are obtained by using the Laplace Transform. With suitable
normalisation, we have the following.

Lemma 3.1 Let L be defined in (2.3) where κ , β and σ are positive constants. Set

s1 = −β + √
β2 + 2σ 2

σ 2
, s2 = −β − √

β2 + 2σ 2

σ 2
, αi = |si|

s1 − s2

2κ

σ 2
.

The followings are two linearly independent solutions of Lϕ = 0 on (0, ∞):

ϕ1(r) =
∫ ∞

s1

(s − s1)α1−1(s − s2)α2−1e−rsds
/ ∫ ∞

0
tα1+α2−1e−tdt,

ϕ2(r) =
∫ s1

s2

(s1 − s)α1−1(s − s2)α2−1e−rsds
/ ∫ s1

s2

(s1 − s)α1−1(s − s2)α2−1ds.

In addition, ϕ1 is smooth on (0, ∞), ϕ2 is analytic on C and for some positive constants ci,

ϕ1 > 0, ϕ′
1 < 0, ϕ2 > 0, ϕ′

2 > 0 in (0, ∞),

|ϕ′
i(r)| = r−αi e−sir[ci + O(r−1)] as r → ∞,

ϕ′
1(r) = [1 + O(r)]r−2κ/σ 2

, ϕ2(r) = 1 + O(r2) as r ↘ 0.

Proof The integrals in the definitions of ϕ1 and ϕ2 are uniformly convergent. As integrations
and differentiations are interchangeable, for r> 0, we have

Lϕ1(r) =
∫ ∞

s1

(s − s1)α1−1(s − s2)α2−1e−rs

�(α1 + α2)

[
− σ 2

2
rs2 + (k − βr)s + r

]
ds

= 1

�(α1 + α2)

∫ ∞

s1

d

ds

(σ 2

2
(s − s1)α1 (s − s2)α2 e−rs

)
ds = 0,

by the special choices of s1, s2, α1 and α2. Similarly, we obtain Lϕ2(r) = 0. The particular choice
of the divisors

∫ ∞
0 tα1+α2−1e−tdt and

∫ s2
s1

(s − s1)α1−1(s − s2)α2−1ds provides the properties of
(ϕ1, ϕ2) listed in the Lemma. We call it a standard fundamental solution set.

Lemma 3.2 (i) For each ε� 0, ψ1(r) := √
κ + σ 2/2 + (r − ε)2 satisfies Lψ1 � 0 in [ε, ∞).

(ii) The inequality Lψ2(r) � 2b max{1, r} and Lψ2 > bψ2 are satisfied by the following:

a = min
{

1,
1

σ 2 + 2β + 2κ

}
, b = aκ , ψ2(r) =

{
1 if r � 1,
1 + a(1 − r)2 if r ∈ [0, 1].

(3.1)

Proof (i) Set A = κ + σ 2/2. Direct calculation gives, for r � ε,

Lψ1(r) = 1

ψ1

{
r
[
− σ 2

2

A

A + (r − ε)2
− κ + A + (r − ε)2

]
+ β[r − ε] + κε

}
> 0.

https://doi.org/10.1017/S0956792519000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000184


Pricing a double defaultable interest rate swap 519

(ii) When r> 1, Lψ2 = r � 2br. When r ∈ [0, 1],

Lψ = 2aκ + r[1 − a(σ 2 + 2κ + 2β) + 2aβr + a(1 − r)2] � 2aκ = 2b.

Thus, Lψ � 2b max{1, r}. Since 1 �ψ � 2, we also have Lψ > bψ .

Next we study the equation Lu = F, where F may have a linear growth. For this, we introduce

|||F||| := sup
r>0

|F(r)|
max{1, r} .

We say that F is at most linear growth if |||F|||<∞.

Lemma 3.3 Let c be a non-negative function on [0, ∞), bounded near the origin. Let F be a
function on [0, ∞) with at most a linear growth. Fix ε ∈ (0, 1/2] and let u be the solution of

Lu + cu = F in (ε, ε−1), u′(ε) = 0, u′(ε−1) = 0. (3.2)

Extend u to [0, ∞) by setting u(·) = u(ε) on [0, ε) and u(·) = u(ε−1) on [ε−1, ∞). Then there
exists a positive constant K that depends only on κ , β and σ such that

‖u‖L∞((0,∞)) � K |||F|||,
|u′(r)|� K min

{
1 + r−2κ/σ 2

, 1 + ‖c‖L∞((0,r))
} |||F||| ∀ r> 0.

The key here is that for any B> 0, the bounds of u′ on [B, ∞) does not depend on c.

Proof Since c(r) + r � ε for r ∈ [ε, ε−1], the second-order elliptic operator L + c on (ε, ε−1),
together with the homogeneous Neumann boundary condition is invertible (cf. [8]), the bound-
ary value problem (3.2) admits a unique solution. Next, set ū = |||F|||ψ2(r)/2b, where (b,ψ2)
is defined in (3.1). Note that ū′(ε)< 0, ū′(ε−1) = 0 and (L + c)ū � Lū � |||F||| max{1, r}� |F|.
Hence, by comparison, ±u � ū. Thus,

‖u‖L∞((0,∞)) � ‖ū‖L∞((0,∞)) = b−1 |||F||| .

Next we estimate u′. First we consider the case F � 0. By the maximum principle, u � 0 in
[0, ∞). Set

W (r) = rμe−νr, μ= 2κ

σ 2
, ν = 2β

σ 2
.

We derive from (3.2) that

−
(

Wu′
)′ = 2WF

σ 2r
−

(
1 + c(r)

r

)2Wu

σ 2
� 2WF

σ 2r
. (3.3)

For r ∈ [1, ε−1), integrating the inequality in (3.3) over [r, ε−1], we then obtain

u′(r) � 2

σ 2

∫ ε−1

r

W (ρ)

W (r)

F(ρ)

ρ
dρ � 2|||F|||

σ 2

∫ ∞

r

W (ρ)

W (r)
dρ � 2|||F|||

σ 2

∫ ∞

0

(
1 + z

)μ
e−νzdz.

Next, for each r ∈ [2, ε−1], there exists ξ ∈ [r − 1, r] such that, by the mean value theorem,

u′(ξ ) = u(r) − u(r − 1) �−‖u‖L∞ �−|||F|||/b.
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Thus, integrating the inequality in (3.3) over [ξ , r], we obtain

u′(r) � W (ξ )

W (r)
u′(ξ ) − 2

σ 2

∫ r

ξ

W (ρ)

W (r)

F(ρ)

ρ
dρ �−

(eν

b
+ 2eν

σ 2

)
|||F|||.

Thus, there exists a positive constant K1 that depends only on κ , β and σ such that

|u′(r)|� K1|||F||| ∀ r ∈ [2, ε−1].

Next we estimate u′ on [ε, 2]. We begin with integrating the equation (3.3) over [ε, ε−1] to
obtain the identity ∫ ε−1

ε

W (ρ)F(ρ)

ρ
dρ =

∫ ε−1

ε

(
1 + c(ρ)

ρ

)
W (ρ)u(ρ)dρ.

Now integrating the equation in (3.3) over r ∈ [ε, r], we obtain

−
∫ r

ε

(
1 + c(ρ)

ρ

)
u(ρ)}dρ �−σ

2

2
W (r)u′(r) �

∫ r

ε

W (ρ)F(ρ)

ρ
dρ.

Thus, for each r ∈ [ε, ε−1],

σ 2

2
W (r)|u′(r)| �

∫ ε−1

ε

W (ρ)F(ρ)

ρ
dρ � |||F|||

∫ ∞

0
max{ρμ, ρμ−1}e−νρdρ.

Thus, there exists a constant K2 that depends only on κ , β and σ such that

|u′(r)|� K2|||F|||r−μeνr ∀ r ∈ [ε, ε−1].

Finally, we estimate u′(r) using bonds of c. Integrating the equation in (3.3) over [ε, r], we obtain

σ 2

2
W (r)|u′(r)| �

∫ r

ε

W (ρ)F(ρ)

ρ
dρ +

∫ r

ε

(
1 + c(ρ)

ρ

)
W (ρ)u(ρ)dρ

� |||F|||
∫ r

0
ρμ−1dρ + ‖u‖L∞

∫ ρ

0

[
ρμ + c(ρ)ρμ−1

]
dρ

� |||F||| rμ
{ 1

μ
+ 1

b

[ 1

μ+ 1
+ ‖c‖L∞((0,r)

μ

]}
.

Thus, there exists a constant K3 depending only κ , β and σ such that

|u′(r)|� K3
(
1 + ‖c‖L∞((0,r))

)|||F||| ∀ r ∈ [ε, 1]. (3.4)

This completes the proof of the lemma for the case F � 0 (recalling u′ = 0 on [0, ε] ∪ [ε−1, ∞)).
For general F, we write F = F+ − F− and u = u+ − u−, where u± are solutions of

Lu± + cu± = F± in (ε, ε−1), u′
±(ε) = 0, u′

±(ε−1) = 0.

Since F± � 0 and |||F±|||� |||F|||, applying the previous estimate for u′± we then obtain the assertion
of Lemma 3.3.

3.2 Well-posedness of intensity model

Now we are ready to study the intensity model (2.8).

Theorem 1 Let κ , β and σ be positive constants, L be defined in (2.3), �1(·) and �2(·) be
non-negative and locally bounded functions defined on [0, ∞) and f be a function on [0, ∞)
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that has at most a linear growth. Then problem (2.8) admits a unique solution. In addition, there
exists a positive constant K that depends only on κ , β and σ such that

‖V‖L∞((0,∞)2) + ‖Vt‖L∞((0,∞)2) � K||| f |||,
|Vr(r, t)|� K min{1 + r−2κ/σ 2

, 1 + ‖�1 +�2‖L∞((0,r))} ||| f ||| ∀ r> 0, t> 0.

Furthermore, there exists a positive constant b that depends only on κ , β and σ such that

‖V (·, t) − V∗(·)‖L∞((0,∞)) � 2K ||| f |||e−bt ∀ t> 0;

here V∗ is the unique solution of the corresponding infinite horizon problem:

LV∗ −�1V−
∗ +�2V+

∗ = f in (0, ∞), V ′
∗ ∈ L∞((0, ∞)). (3.5)

Proof 1. We begin with the uniqueness proof, using a contradiction argument. Suppose V1 and
V2 are solutions of (2.8) and there exist positive r0 and t0 such that V1(r0, t0)> V2(r0, t0). Let ϕ1

and ϕ2 be those defined in Lemma 3.1. Set ε= [V1(r0, t0) − V2(r0, t0)]/[2ϕ1(r0) + ϕ2(r0)] and

w(r, t) = V1(r, t) − V2(r, t) − ε[ϕ1(r) + ϕ2(r)] ∀ r> 0, t ∈ [0, t0].

Since V1r and V2r are bounded and limr→∞[ϕ′
1(r) + ϕ′

2(r)] = ∞ and limr↘0[ϕ′
1(r) + ϕ′

2(r)] =
−∞, there exist positive constants A and B such that

wr > 0 in (0, A] × [0, t0], wr < 0 in [B, ∞) × [0, t0].

Consequently, there exist r̂ ∈ (A, B) and t̂ ∈ (0, t0] such that

w (r̂, t̂ ) = max
[A,B]×[0,t0]

w = max
(0,∞)×[0,t0]

w � w(r0, t0)> 0.

Now set �= (A, B) × (0, t0] and consider the function ζ (r, t) = w(r, t) − w(r̂, t̂) for (r, t) ∈ �̄.
First we have ζ < 0 on the parabolic boundary of �. Next,

Lζ =LV1 −LV2 − rw(r̂, t̂ ) =�1[V−
1 − V−

2 ] −�2[V+
1 − V+

2 ] − rw(r̂, t̂ ).

By the mean value theorem, there exist functions C1 and C2 such that V−
1 − V−

2 = −C1[V1 − V2]
and V+

1 − V+
2 = C2[V1 − V2]. In addition, 0 � C1 � 1 and 0 � C2 � 1. It then follows that

Lζ + [C1�1 + C2�2]ζ = −[C1�1 + C2�2][εϕ1 + εϕ2 + w (r̂, t̂ )] − rw(r̂, t̂)< 0,

for all (r, t) ∈ �̄. Hence, applying the maximum principle for ζ on �̄ we find then ζ < 0 in �.
But this contradicts ζ (r̂, t̂) = 0. This contradiction proves the uniqueness of the solution of (2.8).

2. For existence, we first consider approximation problems. Denote g(r, v) =�2(r)v+ −
�1(r)v−. For each ε ∈ (0, 1/2], let vε be the solution of the semi-linear initial boundary value
problem ⎧⎪⎪⎨

⎪⎪⎩
Lvε + g(r, vε) = f on (ε, ε−1) × (0, ∞),

vεr = 0 on ([0, ε] ∪ [ε−1, ∞)) × [0, ∞),

vε(·, 0) = 0 on [0, ∞) × {0}.
By a classical PDE theory, there exists a unique solution. We now provide a priori estimates.
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Let ψ2 be as in Lemma 3.2. Set v̄=ψ2||| f |||/2b. Then v̄r(ε)< 0 = v̄r(ε−1), and Lv̄ + g(r, v̄) �
Lv̄ � ||| f ||| max{1, r}� |f (r)|. Thus by comparison, vε � v̄. Similarly comparing vε with −v̄, we
have vε �−v̄. Thus,

‖vε‖L∞((0,∞)2) � ‖v̄‖L∞((0,∞)) � b−1 ||| f |||.
Next, set w ε = vεt . Differentiating the equations for vε with respect to t, we obtain⎧⎪⎪⎨

⎪⎪⎩
Lw ε + gv(r, vε)w ε = 0 on (ε, ε−1) × (0, ∞),

w ε
r = 0 on ([0, ε] ∪ [ε−1, ∞)) × (0, ∞),

wε(·, 0) = f on (ε, ε−1) × {0}.
Let w̄ ε := b1||| f |||ψ1(r), where ψ1 is as in Lemma 3.2 and b1 = max{2, (κ + σ 2/2)−1/2}. Since
gv � 0, comparing ±w ε with w̄ ε we obtain ±w ε � w̄ ε on [ε, ε−1] × [0, ∞). Thus, |w ε|� w̄ ε �
K3||| f ||| max{1, r}, where K3 = b1

√
1 + κ + σ 2/2. Hence, we have

|||vεt (·, t)|||� K3||| f ||| ∀ t> 0.

Finally, we estimate vεr . Fix t> 0. Set u(r) = vε(r, t), c(r) =�1(r)1vε(r,t)<0 +�2(r)1vε(r,t)>0 and
F(r) = f (r) − vεt (r, t). Then u is the unique solution of (3.2). Applying Lemma 3.3, we obtain

|vεr (r, t)|� K min{1 + r−2κ/σ 2
, 1 + ‖�1 +�2‖L∞((0,r))}|||F||| ∀ r ∈ (0, ∞), t> 0.

Note that |||F|||� [1 + K3]||| f |||. Thus, there exists a positive constant K4 that depends only on κ , β
and σ such that for each B ∈ (0, 1],

‖vεr ‖L∞((B,∞)×(0,∞)) � K4
[
1 + B−2κ/σ 2]||| f |||, (3.6)

‖vεr ‖L∞((0,B)×(0,∞)) � K4
[
1 + ‖�1 +�2‖L∞((0,B))

]||| f |||. (3.7)

3. With the above a priori estimates, we can find a sequence of ε↘ 0 such that along the
sequence, vε approaches a limit V which is a solution of (2.8). The a priori estimates for vε carry
over to the limit V . Since V is unique, the whole family {vε} converges to V as ε↘ 0.

4. Following a similar analysis as above with L replaced by L, we can obtain a solution V∗ of
the infinite horizon problem (3.5).

Now let V∗ be any solution of (3.5). Set ζ = V − V∗. There are functions C1 and C2 such
that V− − V−∗ = −C1(V − V∗), V+ − V+∗ = C2(V − V∗). In addition, 0 � C1 � 1 and 0 � C2 � 1.
Thus, setting C = C1�1 + C2�2, we have

(L+ C)ζ = 0 on (0, ∞)2, ζr ∈ L∞((0, ∞)2).

Let (b,ψ2) be as in Lemma 3.2. Now compare with ±ζ with ψ2(r)‖V∗‖L∞((0,∞))e−bt, we
find ±ζ �ψ2(r)‖V∗‖L∞(0,∞))e−bt. Hence, ‖ζ (·, t)‖L∞((0,∞)) � 2‖V∗‖L∞(0,∞))e−bt. This implies that
V∗ = limt→∞ V (·, t) so V∗ is unique, ‖V∗‖L∞((0,∞)) � K||| f ||| and ‖ζ (·, t)‖L∞((0,∞)) � 2K||| f |||e−bt.
This completes the proof of Theorem 1.

3.3 Convergent process from intensity model to structure model

Theorem 2 Let κ , β, σ , h, b1 and b2 be fixed positive constants, L be defined in (2.3), f (r) =
r − h and Q = (0, ∞)2. For each pair of positive constants p and q, let upq = V be the unique
solution of
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LV − p H(b1 − r) V− + q H(r − b2) V+ = f in Q,

V (·, 0) = 0, V ∈ C(Q̄), Vr ∈ L∞(Q).
(3.8)

Then as p, q −→ ∞, upq −→ u locally uniformly on Q̄, where u is the unique solution of the
following variational inequalities:

1. If 0< b1 < b2, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max{Lu − f , u} = 0 on [b2, ∞) × (0, ∞),

Lu − f = 0 in (b1, b2) × (0, ∞),

min{Lu − f , u} = 0 in (0, b1] × (0, ∞),

u(·, 0) = 0, u ∈ C(Q̄), ur ∈ L∞(Q);

(3.9)

2. If 0< b2 � b1, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max{Lu − f , u} = 0 in (b1, ∞) × (0, ∞),

u = 0 on [b2, b1] × (0, ∞),

min{Lu − f , u} = 0 in (0, b2) × (0, ∞),

u(·, 0) = 0, u ∈ C(Q̄), ur ∈ L∞(Q).

(3.10)

Proof We divide the proof into several steps. Set �1(r) = pH(b1 − r) and �2(r) = qH(r − b2).
(1) First we search for upper bounds of upq when r ∈ (b2, ∞]. Since f (r) = r − h � r, by

comparison, we have upq � 1. Next, fix an arbitrary ρ > 0 and consider the function

m(ρ) = [b2 + 2ρ]
{

1 + σ 2 + β2 + κ2/b2
2

ρ2

}
,

V (r) = (r − b2 − ρ)2

ρ2
+ m(ρ)

q
for r ∈ [b2, b2 + 2ρ].

When r = b2 or r = b2 + 2ρ, we have V > 1> upq. For r ∈ [b2, b2 + 2ρ], we have

LV −�1V− +�2V+ − f � LV − f + m(ρ)

� r

ρ2

{
− σ 2 −

(κ
r

− β
)

(r − b2 − ρ) + (r − b2 − ρ)2
}

− f + m(ρ)

� m(ρ) − r − r

ρ2

(
σ 2 + β2 + κ2

r2

)
� 0.

Thus, by comparison upq � V for r ∈ [b2, b2 + 2ρ]. In particular,

upq(b2 + ρ, t) � m(ρ)

q
∀ ρ > 0, t> 0.

Using the L∞ bound of upq,r (c.f. (3.6)), we then find that

lim
q→∞ sup

t≥0,r∈[b2,R],p>0
u+

pq(r, t) = 0 ∀ R> b2.
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(2) Next, we search for lower bounds of upq when r ∈ [0, b1]. First of all, we have ‖upq‖L∞(Q) �
M := K||| f |||. Next fix ρ ∈ [0, b1) and set

m1(ρ) = h

M
+ σ 2b1 + (κ + βb1)b1

(b − ρ)2
, v = −M

{ (r − ρ)2

(b1 − ρ)2
+ m1(ρ)

p

}
.

When r = b1, we have MV <−M < upq. For r ∈ [0, b1], we have

LV −�1V− +�2V+ − f � LV + h − Mm1(ρ)

= M

(b1 − ρ)2

{
σ 2r + (κ − βr)(r − ρ) − (r − ρ)2

}
+ h − Mm(ρ)

� M
{
− m(ρ) + h

M
+ σ 2b1 + (κ + βb1)b1

(b − ρ)2

}
� 0.

Thus, by comparison upq � V on [0, b1] × [0, ∞). In particular,

upq(ρ, t) �−Mm1(ρ)

p
, ∀ t> 0, ρ ∈ [0, b1). (3.11)

Hence, using the L∞ bound of upq,r in [b1/2, ∞) × [0, ∞) (c.f. (3.6)), we derive that

lim
p→∞ sup

t≥0,r∈[0,b1],q>0
u−

pq(r, t) = 0.

(3) We estimate upq,r for r ∈ [0, b1 ∧ b2/2]. We write the equation for upq as

Lupq = F := f + pu−
pq − upq,t in (0, b1 ∧ b2/2].

Using the estimate (3.11), we have when r ∈ [0, b1 ∧ b2/2], we have

0 � pu−
pq � Mm(b1 ∧ b2/2).

Thus, by an estimate similar to that for (3.4) with c = 0 we find that upq,r is bounded; here we
use limε↘0 W (ε)upq,r(ε, t) = 0. Hence, there exists a positive constant K(κ , β, σ , h, b1 ∧ b2) that
depends only on κ , β, σ , h, b1 ∧ b2 such that, for each p> 0 and q> 0,∥∥∥upq

∥∥∥
L∞(Q)

+
∥∥∥∂upq

∂t

∥∥∥
L∞(Q)

+
∥∥∥∂upq

∂r

∥∥∥
L∞(Q)

� K(κ , β, σ , h, b1 ∧ b2).

(4) Now, we can use the local compactness of the family {upq}p>0.q>0 and a diagonal process
to find a sequence {pj, qj}∞j=1 in (0, ∞)2 and a function v defined on [0, ∞)2 such that

lim
j→∞ pj = ∞, lim

j→∞ qj = ∞, lim
j→∞

∥∥∥upjqj − v

∥∥∥
C1/2([0,R]2)

= 0 ∀ R> 0.

In addition,

‖u‖L∞(Q) + ‖ut‖L∞(Q) + ‖ur‖L∞(Q) � K(κ , β, σ , h, b1 ∧ b2).

(5) Now we derive the equation for u.

(i) First, we have

u � 0 on [0, b1] × [0, ∞), u � 0 on [b2, ∞) × [0, ∞).

Thus, if b1 � b2, then u = 0 in [b2, b1] × [0, ∞). If b1 < b2, then for r ∈ (b1, b2), we obtain
from Lupq = f that Lu − f = 0 in (b1, b2) × [0, ∞).
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(ii) In (0, b2) × (0, ∞), we have Lupq − f = pH(b1 − r)u−
pq � 0. Hence, in the distribution

sense,

Lu − f � 0 in (0, b2) × (0, ∞).

Similarly, in the distribution sense we have

Lu − f � 0 in (b1, ∞) × (0, ∞).

(iii) Now suppose u(r0, t0) = 3δ > 0 for some r0 ∈ (0, b1] ∩ (0, b2) and t0 > 0. Then in a
small neighbourhood (r0, t0), u � 2δ. By uniform convergence, we have upjqj � δ in this
small neighbourhood for all j � 1. Hence, for i � 1, we have Lupiqi − f = 0 in this small
neighbourhood. Sending i → ∞, we obtain Lu − f = 0. Thus, we have

min{Lu − f , u} = 0, in
(

(0, b1] ∩ (0, b2)
)

× (0, ∞).

Similarly, we can show that

max{Lu − f , u} = 0, in
(

(b1, ∞) ∩ [b2, ∞)
)

× (0, ∞).

Thus, u is the solution of (3.9) when b1 < b2, and is the solution of (3.10) when b1 � b2.
Since (3.10) consists of two standard variational inequalities, there exists a unique solution.

The uniqueness of (3.9) will be proved in Section 5. Once we have the uniqueness of the limit,
we conclude that as p, q → ∞, upq −→ u locally uniformly in [0, ∞)2. This completes the proof
of Theorem 2.

We end this section by providing a few more estimates for the case b1 < b2. Since Lu − f = 0
in (b1, b2) × [0, ∞), using the bounds of u, ur and ut, we find that there exists a positive constant
K depending only on κ , β, σ , h, b1, b2 such that∥∥∥|u| + |ur| + |ut| + |urr|

∥∥∥
L∞((b1,b2)×(0,∞))

� K.

By interpolation, there exists a positive constant K5 depending only on κ , β, σ , h, b1, b2 such that

‖ur(r, ·)‖C1/2([0,∞)) � K5, ∀ r ∈ [b+
1 , b+

2 ].

In particular, both ur(b
+
1 , t) and ur(b

−
2 , t) are well defined for all t � 0.

Now we consider the equation min{Lu − f , u}(b1, t) = 0.
(i) Suppose u(b1, t)> 0. Then u> 0 in a neighbourhood of (b1, t) and we can derive that Lu −

f = 0 in a neighbourhood of (b1, t).
(ii) Suppose u(b1, t) = 0. Since Lupq − f � 0 for r ∈ (0, b2), we derive that there exists a

positive constant K depending only on κ , β, σ , b1, b2, h such that

rupq,rr � K in (0, b2) × (0, ∞), ∀ p> 0, q> 0.

Thus, for small positive ε > 0,

1

ε

∫ ε

0
upq,r(b1 + ρ, t)dρ = 1

ε

∫ ε

0

(
upq,r(b1 − ρ, t) +

∫ b1+ρ

b1−ρ
upp,rr(θ , t)dθ

)
dρ

� upq(b1, t) − upq(b1 − ε, t)

ε
+ Kε.
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Set (p, q) = (pj, qj), and sending j → ∞, we find that

1

ε

∫ ε

0
ur(b1 + ρ, t)dρ � u(b1, t) − u(b1 − ε, t1)

ε
+ Kε= −u(b1 − ε, t)

ε
+ Kε� Kε.

Sending ε↘ 0, we derive that ur(b
+
1 , t) � 0.

Similarly we can show that if u(b2, t) = 0, then ur(b
−
2 , t) � 0.

Remark 3.1 In (3.9), the equation min{Lu − f , u}(b1, t) = 0 can be interpreted as follows:

1. if u(b1, t1)> 0, then Lu − f = 0 in a neighbourhood of (b1, t);
2. if u(b1, t1) = 0, then ur(b

+
1 , t) � 0.

Similarly, the equation max{Lu − f , u}(b2, t) = 0 can be defined as follows:

1. if u(b2, t)< 0, then Lu − f = 0 in a neighbourhood of (b2, t);
2. if u(b2, t) = 0, then ur(b

−
2 , t) � 0.

In the rest of this paper, we study the variational inequality (3.9).

4 The infinite horizon problem from the structure-type model

As a preparation for the study of the mathematical formulation of the structure-type model (3.9),
here we consider the corresponding infinite horizon (i.e. T = ∞) problem, being the limit as
p, q → ∞ of the infinite horizon problem of the intensity model (3.5) with �1 = pH(r − b1) and
�2 = qH(r − b2). The case b2 � b1 is relatively easy since we have the boundary condition u = 0
for r ∈ [b2, b1]. Hence, for definiteness, we consider only the case 0< b1 < b2. We focus on the
qualitative behaviour of the solution. We recall that the model is formally derived according to
the following assumption:

the payer can select to terminate the contract whenever rt < b1 and the receiver can select
to terminate the contract whenever rt > b2.

We shall use τ ∗∗
1 the optimal termination time for payer and τ ∗∗

2 the optimal termination time for
the receiver. More detailed properties, such as the relationship among the solution and the swap
rate h and default bounds b1 and b2, for the solution of this infinite horizon structure model will
be analysed.

4.1 The double obstacle problem and one of the main results

The infinite horizon problem is to find a solution u = u(r) of the double variational inequality⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{Lu − f , u} = 0 in (0, b1],

Lu − f = 0 in (b1, b2),

max{Lu − f , u} = 0 in [b2, ∞),

ur ∈ L∞((0, ∞)).

(4.1)

Here for a parameter h ∈ (0, ∞), f (r) = r − h. Also L is as in (2.3) with fixed positive constants
κ , β and σ . Due to the degenerate nature of the elliptic operator at r = 0, it is not appropriate
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to supply boundary conditions at r = 0. Hence, we use ur ∈ L∞ to ensure the uniqueness. Note
that ur ∈ L∞ implies that u(0) = limr↘0 u(r) is well defined. As we shall see in the following,
the solution is piecewise smooth. Hence, we can use the convention that urr(r) = ∞ if ur(r+) −
ur(r−)> 0 and urr(r) = −∞ if ur(r+) − ur(r−)< 0. Consequently, the condition Lu − f � 0 at
r = b1 and Lu − f � 0 at r = b2 imply that

ur(b
+
1 ) � ur(b

−
1 ), ur(b

−
2 ) � ur(b

+
2 ).

From a mathematical finance point of view, it is natural to define a solution of problem (4.1)
by the viscosity solution F[u] = 0 on (0, ∞), where F(·) is defined in (2.11).

Here ζ is called a test function. It is well known that in the definition the test function can be
replaced a local one: ζ ∈ C2((r − ε, r + ε)) for some ε > 0. Also, a viscosity solution of Lu = f in
an open interval (in (0, ∞)) is also a smooth and classical solution of Lu = f in that open interval.
Hence, if u is a viscosity solution and u(r)> 0 with r ∈ (0, b2) or u(r)< 0 with r ∈ (b1, ∞), then
u is smooth and Lu = f in an neighbourhood of r.

For easy reference, we define

ω(r) = r2κ/σ 2
e−2κr/σ 2 ∀ r � 0, (4.2)

h0 =
∫ b2

0
1

ω(r)ϕ2
2 (r)

∫ r
0 ω(s)ϕ2(s)ds∫ b2

0
1

ω(r)ϕ2
2 (r)

∫ r
0

1
sω(s)ϕ2(s)ds

, (4.3)

h1 =
∫ b2

b1

1
ω(r)ϕ2

2 (r)

∫ r
b1
ω(s)ϕ2(s)ds∫ b2

b1

1
ω(r)ϕ2

2 (r)

∫ r
b1

1
sω(s)ϕ2(s)ds

, (4.4)

h2 =
∫ b2

b1

1
ω(r)ϕ2

2 (r)

∫ b2
r ω(s)ϕ2(s)ds∫ b2

b1

1
ω(r)ϕ2

2 (r)

∫ b2
r

1
sω(s)ϕ2(s)ds

. (4.5)

Using mean value theorem, one can derive that 0< h0 < h1 < h2 and b1 < h1 < h2 < b2.
In the rest of this section, we solve problem (4.1) and describe its qualitative behaviour in term

of the swap rate h by proving the following.

Theorem 3 Assume that 0< b1 < b2. For each h ∈R, (4.1) with f = r − h admits a unique
solution u = u(h; ·). The solution is decreasing in h. Define h0, h1 and h2 by (4.2)–(4.5). Then
0< h0 < h1 < h2, b1 < h1 < h2 < b2 and the following holds:

(1) If h ∈ (−∞, h0], u does not depend on b1 and is the unique solution of the following:

Lu − f = 0 in (0, b2), u = 0 in [b2, ∞), ur ∈ L∞((0, ∞)).

In addition, u> 0 in (0, b2) and u(h; 0) is strictly decreasing in h ∈ (−∞, h0] with
u(h0; 0) = 0.
‘Here the receiver is always out of money, so he has to terminate the contract whenever
he is allowed. Thus, τ ∗∗

1 = ∞, τ ∗∗
2 = inf {t> 0 | rt � b2}.’

(2) If h ∈ (h0, h1], there exists z = z(h) ∈ (0, h) ∩ (0, b1] such that (z, u) is the unique solution
of

Lu − f = 0 & u> 0 in (z, b2), u = 0 in [0, z] ∪ [b2, ∞), u′(z) = 0.
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In addition, z(·) is continuous and strictly increasing on [h0, h1] with z(h0) = 0, z(h1) = b1.
‘Here the receiver is out of money when rt > z(h) and the payer is out of money when
rt < z(h). Hence, τ ∗∗

1 = inf {t> 0 | rt � z(h)} and τ ∗∗
2 = inf {t> 0 | rt � b2}.’

(3) If h ∈ (h1, h2), then u is the unique continuous solution of

Lu − f = 0 in (b1, b2), u = 0 in [0, b1] × [b2, ∞).

In addition, u′(b+
1 )< 0, u′(b−

2 )< 0 and there exists a unique z = z(h) ∈ (b1, b2), such that

u< 0 in (b1, z), u(h; z(h)) = 0, u> 0 in (z, b2).

Also z(·) is continuous and strictly increasing on [h+
1 , h−

2 ] with z(h+
1 ) = b1 and z(h−

2 ) = b2.
‘Here the payer is out of money when rt < z(h) and the receiver is out of money when
rt > z(h). Hence, τ ∗∗

1 = inf {t> 0 | rt � b1}, τ ∗∗
2 = inf {t> 0 | rt � b2}.’

(4) If h ∈ [h2, ∞), there exists z(h) ∈ (h, ∞) ∩ [b2, ∞) such that (z, u) is the unique solution of

Lu − f = 0 & u< 0 in (b1, z), u = 0 in [0, b1] ∪ [z, ∞), u′(z) = 0. (4.6)

In addition z(·) is continuous and strictly increasing on [h2, ∞) with z(h2) = b2.
‘Here the payer is out of money when rt < z(h) and the receiver is out of money when
rt > z(h). Hence, τ ∗∗

1 = inf {t> 0 | rt � b1}, τ ∗∗
2 = inf {t> 0 | rt � z(h)}.’

The proof will be given in the subsequent subsections.
Note that the piecewisely defined function z(·) is continuous and strictly increasing on [h0, ∞).

Define z(h) = 0− for h< h0. We have the following characterisations: for every h ∈R,

u(h; ·) � 0 on (0, z(h)], u(h, ·) � 0 on [z(h), ∞),

We call

r = z(h), (4.7)

the parity level. If the current floating interest rate is at the parity level, the value of the swap
is zero; above the parity level, the swap favours the payer; and below the parity level, the swap
favours the receiver.

When h � h0, there is no parity level since the contract always favours the payer.
When h ∈ (−h0, h1], the swap always favours the payer, provided that he terminates the

contract when floating rate is too low.
When h ∈ (h1, h2), we have z(h) ∈ (b1, b2).
When h ∈ [h2, ∞), the swap always favours the receiver provided that he chooses to terminate

the contract whenever interest is too high.
Thus, at initiation the swap rate h should be set in the range of (h1, h2) ⊂ (b1, b2). If the current

interest rate is r0 ∈ (b1, b2), then the swap rate should be the unique h satisfying u(h; r0) = 0, i.e.
r0 = z(h) or h = h(r0), where h(·) is defined in (4.9).

Remark 4.1 As the domain [0, ∞) of the independent variable r is bounded from below, there
is no parity-level free boundary when h ∈ (0, h0]; on the other side, no matter how big h is, the
parity-level free boundary, z(h), always exists.

In the rest of this section, we perform pure mathematical analysis to prove Theorem 3.

https://doi.org/10.1017/S0956792519000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000184


Pricing a double defaultable interest rate swap 529

4.2 Uniqueness and monotonicity in the swap rate h

Lemma 4.1 Problem (4.1) admits at most one solution.

Proof Suppose, on the contrary, that there are two different solutions, say u1 and u2. Exchanging
the roles of u1 and u2 if necessary, we can find r0 > 0 such that u1(r0)> u2(r0). Let ϕ1 and ϕ2 be
as in Lemma 3.1. Set ε= [u1(r0) − u2(r0)]/[2ϕ1(r0) + ϕ2(r0)] and consider the function

w(r) = u1(r) − u2(r) − ε[ϕ1(r) + ϕ2(r)], ∀ r> 0.

Since u′
1 and u′

2 are bounded, we have limr↘0 w′(r) = ∞ and limr→∞ w(r) = −∞. Hence, there
exists r̂ ∈ (0, ∞) such that

w(r̂) = max
(0,∞)

w(·) � w(r0)> 0.

We now derive a contradiction by considering three cases:

(1) r̂ ∈ (b1, b2), (2) r̂ ∈ (0, b1], (3) r̂ ∈ [b2, ∞).

(1) Suppose r̂ ∈ (b1, b2). Then Lu1 = f and Lu2 = f in a neighbourhood of r̂ and w′(r̂) = 0 �
w′′(r̂). This gives the following contradiction:

0< r̂w(r̂) � Lw(r̂) = Lu1 − Lu2 − εLϕ1 − εLϕ2

∣∣∣
r=r̂

= 0.

(2) Suppose r̂ ∈ (0, b1]. Then u2(r̂) � 0 and u1(r̂) = w(r̂) + u2(r̂) + ε[ϕ1(r̂) + ϕ2(r̂)]> 0.
Hence, u1 is smooth and Lu1 = f in a neighbourhood of r̂. Consequently, ζ (r) := u1(r) −
ε[ϕ1(r) + ϕ2(r)] − w(r̂) can be used as a test function for the viscosity solution u2 at r = r̂,
leading to the following contradiction:

0 � min{Lζ − f , ζ }|r=r̂ � Lζ − f |r=r̂ = −r̂w(r̂)< 0.

(3) Suppose r̂ ∈ [b2, ∞). Then u1(r̂) � 0 and u2(r̂) = u1(r̂) − w(r̂) − ε[ϕ1(r̂) + ϕ2(r̂)]< 0.
Hence, u2 is smooth and Lu2 − f = 0 in a neighbourhood of r̂. Consequently, ζ (r) :=
u2(r) + ε[ϕ1(r) + ϕ2(r)] + w(r̂) is a test function for the viscosity solution u1 at r = r̂,
leading to the following contradiction:

0 � max{Lζ − f , ζ }|r=r̂ � Lζ − f |r=r̂ = r̂w(r̂)> 0.

All of the above contradictions imply that (4.1) admits at most one solution.

Following the same proof as above, we can show the following.

Lemma 4.2 Suppose h< � and u1(·) and u2(·) are solutions of (4.1) with f (r) = r − h and
f (r) = r − �, respectively. Then u1 � u2.

Once we have uniqueness and monotonicity, what we need now is to construct solutions. This
will be done in the following subsections.
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4.3 The case h ∈ (−∞, h0]

Lemma 4.3 Let h0 be defined in (4.3), ϕ2 be defined as in Lemma 3.1 and ω as in (4.2). For each
h ∈ (−∞, h0], the solution of (4.1) with f = r − h is given by

u(h; r) = ϕ2(r)
∫ b2

r∧b2

∫ ρ

0

2(s − h)

σ 2s

ω(s)ϕ2(s)

ω(ρ)ϕ2
2(ρ)

dsdρ. (4.8)

It has the property that Lu − f = 0< u in [0, b2) and u = 0 on [b2, ∞). Also, u(h0; 0) = 0.

Proof Using variation of constant, we can solve Lu − f = 0 in (0, b2] together with the boundary
condition u(b2) = 0 and ur ∈ L∞ to obtain the formula (4.8). Since u = 0 and f > 0 on [b2, ∞),
we have max{Lu − f , u} = 0 in (b2, ∞). It remains to show that u> 0 in (0, b2) so that min{Lu −
f , u} = 0 in (0, b1], Lu − f = 0 in (b1, b2) and max{Lu − f , u} = 0 at r = b2 (since ur|r=b2− < 0
and urr|r=b2 = ∞.)

For r ∈ [0, b2], write (4.8) as u(h; r) = ϕ2(r)c(h; r). Note that c(h; 0) is a strictly decreasing
function of h and by the definition of h0, we have c(h0; 0) = 0. Thus, c(h; 0) � 0 = c(h; b2) for
h � h0. Also, direct differentiation gives, for r ∈ (0, b2],

ω(r)ϕ2
2(r) cr(h; r) =

∫ r

0

2(h − s)

σ 2s
ω(s)ϕ2(s)ds.

Note that the integrand changes sign at moist once, so cr(h; ·) in [0, b2] changes sign at most once.
It follows that c(h; ·) in [0, b2] is either strictly decreasing or first increasing and then decreasing.
Consequently, c(h; r)> 0 for r ∈ (0, b2) and h � h0. This completes the proof.

4.4 The case h ∈ [h0, h1]

Lemma 4.4 Define

h(z) =
∫ b2

z
1

ω(r)ϕ2
2 (r)

∫ r
z ω(s)ϕ2(s)ds∫ b2

z
1

ω(r)ϕ2
2 (r)

∫ r
z

1
sω(s)ϕ2(s)ds

∀ z ∈ [0, b1]. (4.9)

Then h(·) is continuous and strictly increasing on [0, b1], h(0) = h0 and h(b1) = h1. For z ∈ [0, b1]
and h = h(z), the unique solution of (4.1) is given by

u(h; r) = ϕ2(r)
∫ [r∨z]∧b2

z

∫ ρ

z

2(h − s)

σ 2s

ω(s)ϕ2(s)

ω(ρ)ϕ2
2(ρ)

ds dρ; (4.10)

the solution satisfies u = 0 in [0, z] ∪ [b2, ∞), Lu − f = 0< u in (z, b2) and ur|r=z = 0.

Proof Suppose z ∈ (0, b1] and h = h(z). Using variation of constant to solve Lu = f in [z, b2]
supplemented with the initial conditions u(z) = 0 and u′(z) = 0, we obtain the formula (4.10).

Note that h = h(z)> z so f < 0, u = 0 and min{Lu − f , u} = 0 in [0, z). In addition, since
u′(z) = 0, we have min{Lu − f , u} = 0 in at r = z. Furthermore, since h = h(z)< b2, we have
max{Lu − f , u} = 0 in (b2, ∞). Hence, to show that u given by (4.10) is a solution, it remains
to show that u> 0 in (z, b2).

Write (4.10) as u = ϕ2(r)c(h; r). We see that c(h; z) = 0 and, by the definition of h(z), c(h; b2) =
0. Also,
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ω(r)ϕ2
2(r) cr(h; r) =

∫ r

z

2(h − s)

σ 2s
ω(s)ϕ2(s)ds ∀ r ∈ [z, b2].

It follows that cr changes sign at most once. Thus, c is first increasing from 0 at r = z and then
decreasing to 0 at r = b2. This implies that c> 0 for r ∈ (z, b).

Thus, u in (4.10) is a solution of (4.1). Since the solution is unique, we know that h(·) is a
strictly increasing function. Finally, by the definition of h0 and h1, we see that h0 = h(0) and
h1 = h(b1). This completes the proof.

As an inverse function of h = h(z), z = z(h) is typically referred to as the free boundary for the
variational inequality min{Lu − f , u} = 0 in (0, b2) with u(b2) = 0 and ur ∈ L∞. This also solves
the infinite horizon problem for (3.10) in [0, b2].

4.5 The case h ∈ [h2, ∞)

Lemma 4.5 Define

h(z) =
∫ z

b1

1
ω(r)ϕ2

2 (r)

∫ z
r ω(s)ϕ2(s)ds∫ z

b1

1
ω(r)ϕ2

2 (r)

∫ z
r

1
sω(s)ϕ2(s)ds

∀ z ∈ [b2, ∞). (4.11)

Then h(b2) = h2 and h(·) is continuous and strictly increasing in [b2, ∞). For z ∈ [b2, ∞) and
h = h(z), the unique solution of (4.1) is given by

u(h; r) = ϕ2(r)
∫ z

[r∨b1]∧z

∫ z

ρ

2(h − s)

σ 2s

ω(s)ϕ2(s)

ω(ρ)ϕ2
2(ρ)

ds dρ; (4.12)

the solution satisfies u = 0 on [0, b1] ∪ [z, ∞), ur|r=z = 0 and Lu − f = 0> u in (b1, z).

The proof follows from an analysis similar to that in the previous section, so it is omitted.
We remark that the solution is also that for the infinite horizon problem of (3.10) in the interval

[b1, ∞).

4.6 The case h ∈ [h1, h2]

Lemma 4.6 Let u(h1; r) and u(h2; r) be the solutions of (4.1) with f (r) = r − h1 and f (r) =
r − h2, respectively. Then for every h ∈ [h1, h2], the solution of (4.1) is given by

u(h; r) = h2 − h

h2 − h1
u(h1; r) + h − h1

h2 − h1
u(h2; r). (4.13)

It satisfies u = 0 in [0, b1] ∪ [b2, ∞) and Lu = f in (b1, b2). In addition, for each h ∈ [h1, h2],
there exists z(h) ∈ [b1, b2] such that u(h; ·)< 0 in (b1, z(h)) and u(h; ·)> 0 in (z(h), b2).
Furthermore, the function z(·) is continuous and strictly increasing on [h1, h2] with z(h1) = b1

and z(h2) = b2.

Proof Fix h ∈ (h1, h2) and define u(h; ·) as in (4.13). By the definitions of u(h1; ·) in Lemma
4.4 and u(h2; ·) in Lemma 4.5, we see that u(h; ·) = 0 in [0, b1] ∪ [b2, ∞) and that Lu(h; ·) = f in
(b1, b2). Furthermore, since

ur(h1; b1) = 0> ur(h2; b1+), ur(h1; b2−)< 0 = ur(h2; b2),
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FIGURE 1. The function h = h(r), and its inverse r = z(h).

we see that ur(h; b1+)< 0 and ur(h; b2−)< 0; see Remark 3.1. Thus, u is the unique solution of
(4.1). It remains to show the existence of z(h).

First applying the maximum principle to Lu = f in (b1, b2) with boundary conditions
u(h; b1) = 0 and u(h; b2) = 0, we find that u< 1 in [b1, b2]. Next, differentiating Lu = f , we have

{
− σ 2r

2

∂2

∂r2
−

(σ 2

2
+ κ − βr

) ∂
∂r

+ β + r
}

ur = 1 − u> 0.

This implies that ur does not have a local negative minimum in (b1, b2). Since ur(h; b1+)< 0,
ur(h; b2−)< 0 and

∫ b2
b1

urdr = 0, the equation ur(h; ·) = 0 has exactly two roots in (b1, b2). Thus,
u first decreases from 0 at r = b1 to its global negative minimum, then increases to its global
positive maximum and finally decreases to 0 at r = b2. Hence, there exists a unique z(h) ∈ (b1, b2)
such that u< 0 in (b1, z(h)) and u> 0 in (z(h), b2). Since by Lemma 4.2, u(h; r) is a decreasing
function of h, we see that z is continuous and strictly increasing on (h1, h2), z(h1) = b1 and z(h2) =
b2. This completes the proof.

Proof of Theorem 3. The assertions of Theorem 3 follows from Lemmas 3.2–4.6.
Figure 1 uses the parameters

κ = 0.5, β = 1, σ = 0.5, b1 = 1, b2 = 2,

and the calculated results are

s1 = 0.898979, s2 = −8.89898, α1 = 0.0917517, α2 = 0.908248,

and

h0 = 0.225406, h1 = 1.07801, h2 = 1.66554.

5 The finite horizon problem of the structure-type model

In this section, we study the parabolic variational inequality (3.9), being a structure model for
the underlying IRS. For definiteness, we consider the case 0< b1 < b2. Also we define h0, h1, h2

as in (4.3), (4.4), (4.5). We prove the following.
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Theorem 4 Assume that 0< b1 < b2. For each h ∈R, (3.9) with f = r − h admits a unique
solution. The solution is decreasing in h. Also, the following holds:

(1) If h ∈ [h1, h2], u is the solution of the initial boundary value problem{
Lu − f = 0 in D := (b1, b1) × [0, ∞),
u = 0 on [0, ∞)2 \ D.

In addition, there exists s ∈ C∞([0, ∞)) such that for each t> 0, s(t) ∈ (b1, b2) and

u(·, t)< 0 in (b1, s(t)), u(·, t)> 0 in (s(t), b2).

Moreover, s(0) = h and s(∞) = z(h), where z(h) is defined by (4.7) as in Theorem 3.
‘Here the parity level is rt = s(T − t), the payer is out of money if rt < s(T − t) and the
receiver is out of money if rt > s(T − t). Hence, the optimal strategies are τ ∗

1 = inf {t>
0 | rt < b1} and τ ∗

2 = inf {t> 0 | rt > b2}.’
(2) If h ∈ (h2, ∞), there exist T1 ∈ [0, ∞) and s ∈ C([0, ∞)) ∩ C∞([0, T1) ∪ (T1, ∞)) such

that (u, s) is the unique solution of the following free boundary problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lu − f = 0, ∀ t> 0, r ∈ (b1, s(t) ∨ b2),

u(r, t) = 0, ∀ t> 0, r ∈ [0, b1] ∪ [s(t) ∨ b2, ∞),

u(·, 0) = 0, s(0) = h at t = 0,

s(t) ∈ (b1, b2), u(s(t), t) = 0, ∀ t ∈ (0, T1),

u(·, T1)< 0 in (b1, b2), ur(b
−
2 , T1) = 0, s(T1) = b2,

s(t)> b2, ur(s(t), t) = 0, ∀ t> T1.

(5.1)

In addition, T1 > 0 if h ∈ (h2, b2) and T1 = 0 if h ∈ [b2, ∞). Also, s′ > 0 in (T1, ∞) and
s(∞) = z(h), where z(h) is as in Theorem 3.
‘Here the payer is out of money if rt < s(T − t) and the receiver is out of money
if rt > s(T − t), so the optimal strategy is τ ∗

1 = min{t> 0 | st � b1}, τ ∗
2 = inf {t> 0 | rt �

b2 ∨ s(T − t)}.’
(3) If h ∈ (0, h1), there exist T1 ∈ [0, ∞), T0 ∈ (T1, ∞] and s ∈ C([0, ∞)) ∩ C∞([0, T1) ∪

(T1, T0)) such that (u, s) is the unique solution of the following free boundary problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lu − f = 0, ∀ t> 0, r ∈ (s(t) ∧ b1, b2),

u(r, t) = 0, ∀ t> 0, r ∈ (0, s(t) ∧ b1] ∪ [b2, ∞),

u(·, 0) = 0, s(0) = h at t = 0,

s(t) ∈ (b1, b2), u(s(t), t) = 0, ∀ t ∈ (0, T1),

u(·, T1)> 0 in (b1, b2), ur(b
+
1 , T1) = 0, s(T1) = b1,

s(t) ∈ (0, b1), ur(s(t), t) = 0, ∀ t ∈ (T1, T0),

s(t) := 0−, |ur(0, t)|<∞, ∀ t> T0.

(5.2)

In addition, T1 = 0 if h � b1; T1 > 0 if h ∈ (b1, h1); T0 = ∞ and s(∞) = z(h) if h ∈
[h0, h1); T0 <∞ if h ∈ (0, h0). Also s′ < 0 on (T1, T0).
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‘The receiver is out of money when rt > s(T − t), and the payer is out of the money when
rt < s(T − t). Thus τ ∗

1 = inf {t> |rt � b1 ∧ s(T − t)} and τ ∗
2 = inf {t> 0 | rt � b2}.’

(4) If h ∈ (−∞, 0], u is the solution of the following initial boundary value problem:⎧⎪⎪⎨
⎪⎪⎩
Lu − f = 0, ∀ t> 0, r ∈ (0, b2),

u(r, t) = 0 if t = 0 or r � b2,

ur ∈ L∞((0, ∞)2).

(5.3)

‘The receiver is always out of money so τ ∗
1 = ∞, τ ∗

2 = inf {t> 0 | rt � b2}.’
We call the curve r = s(T) the parity curve since it has the following properties:

u(·, T) � 0 on (0, s(T)], u(·, T) � 0 on [s(T), ∞) ∀ T � 0.

The rest of this section is devoted to the pure mathematical proof of the above theorem.

5.1 Uniqueness and monotonicity in h

Lemma 5.1 For each h ∈R, Problem (3.9) with f = r − h admits at most one solution. In
addition, the solution is decreasing in h.

Proof Let h and � be constants with h � �. Let u = v1 and u = v2 be (viscosity) solutions of
(3.9) with f (r) = r − h and f (r) = r − �, respectively. We want to show that v1 � v2. Suppose
v1 � v2 is not true. Then there exist positive r0 and t0 such that v1(r0, t0)> v2(r0, t0). Let ϕ1 and
ϕ2 be as in Lemma 3.1. Set ε= [v1(r0, t0) − v2(r0, t0)]/[2ϕ1(r0) + ϕ2(r0)] and

w(r, t) = v1(r, t) − v2(r, t) − ε[ϕ1(r) + ϕ2(r)] ∀ r> 0, t ∈ [0, t0].

Since v1r and v2r are bounded, there exist positive constants A and B such that

wr > 0 in (0, A] × [0, t0], wr < 0 in [B, ∞) × [0, t0].

Consequently, there exist r̂ ∈ (A, B) and t̂ ∈ (0, t0] such that

w (r̂, t̂ ) = max
[A,B]×[0,t0]

w = max
(0,∞)×[0,t0]

w � w(r0, t0)> 0.

We now derive a contradiction by considering three cases:

(1) r̂ ∈ (b1, b2), (2) r̂ ∈ (0, b1], (3) r̂ ∈ [b2, ∞).

(1) Suppose r̂ ∈ (b1, b2). Then Lv1 = r − h and Lv2 = r − � in a neighbourhood of (r̂, t̂),
wr(r̂, t̂) = 0, wrr(r̂, t̂) � 0 and wt(r̂, t̂) � 0. But this gives the contradiction

0< r̂w (r̂, t̂ ) �Lw (r̂, t̂ ) = �− h � 0.

(2) Suppose r̂ ∈ (0, b1]. Then v2(r̂, t̂) � 0 and v1(r̂, t̂) = w (r̂, t̂ ) + v2(r̂, t̂) + ε[ϕ1(r̂) +
ϕ2(r̂)]> 0. Hence, v1 is smooth and Lv1 = r − h in a neighbourhood of (r̂, t̂). Thus, we
can use ζ (r, t) := v1(r, t) − ε[ϕ1(r) + ϕ2(r)] − w (r̂, t̂ ) as a test function for the viscosity
function v2 at (r̂, t̂) to derive the following contradiction: since v2(r̂, t̂) = ζ (r̂, t̂) and
ζ � v2,
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0 � min{Lζ − r + �, ζ }|r=r̂,t=t̂ �Lζ − r + �|r=r̂,t=t̂ = �− h − r̂w (r̂, t̂ )< 0.

(3) Suppose r̂ ∈ [b2, ∞). Then v1(r̂, t̂) � 0 and v2(r̂, t̂) = v1(r̂, t̂) − w (r̂, t̂ ) − ε[ϕ1(r̂) +
ϕ2(r̂)]< 0. Hence, v2 is smooth and Lv2 = r − � in a neighbourhood of (r̂, t̂). Thus,
following an analogous argument as above, we can use ζ (r, t) := v2(r, t) + ε[ϕ1(r) +
ϕ2(r)] + w(r̂, t) as a test function for the viscosity v1 at (r̂, t̂) to derive another contra-
diction.

All of the above contradictions imply that v1 � v2. This gives monotonicity of solutions in h.
Setting h = �, we also obtain the uniqueness.

5.2 Case 1: h ∈ [h1, h2] and the parity curve

We solve (3.9) for h ∈ [h1, h2] and partially solve (3.9) for h ∈ (b1, h1) ∪ (h2, b2).

Lemma 5.2 Let h ∈ (b1, b2), f = r − h and v be the solution of the initial boundary value
problem

Lv = f in D := (b1, b2) × (0, ∞), v = 0 on [0, ∞)2 \ D. (5.4)

There exists a continuous function s defined on [0, ∞) such that s(0) = h and for each t> 0,

v(·, t)< 0 in (b1, s(t)), v(s(t), t) = 0, v(·, t)> 0 in (s(t), b2).

In addition, there exists T1 ∈ (0, ∞] such that

s(t) ∈ (b1, b2), vr(b
+
1 , t)< 0, vr(b

−
2 , t)< 0 ∀ t ∈ (0, T1).

Consequently, u := v solves (3.9) in [0, ∞) × [0, T1]. Furthermore, the following holds:

1. If h ∈ [h1, h2], then T1 = ∞;
2. If h ∈ (b1, h1), then T1 <∞, vr(b1, T1) = 0 and v > 0 and vt > 0 in (b1, b2) × [T1, ∞);
3. If h ∈ (h2, b2), then T1 <∞, vr(b2, T1) = 0 and v < 0 and vt < 0 in (b1, b2) × [T1, ∞).

When h< h1, the receiver is out of money when rt > s(T − t), since s(T − t)< b2 so τ ∗
2 =

inf {t> 0| rt > b2}. When h ∈ (b1, h1) and time to expiration is T with T < T1, the payer is out
of money if rt > s(T − t), so τ ∗

1 = inf {t> 0 | rt < b1}. Thus, v(r, T) is the solution of (5.4) when
T � T1. Analogous discussion holds for the case h ∈ (h2, b2).

Proof We divide the proof into several steps.

(1) First we investigate vt = ∂v
∂t . Differentiating Lv = f with respect to t, we find that

Lvt = 0 in D, vt = 0 on {b1, b2} × (0, ∞), vt(r, 0) = r − h for r ∈ (b1, b2). (5.5)

The equation Lvt = 0 in D and condition vt = 0 on the lateral boundary imply that the
number of roots of vt(·, t) = 0 in (b1, b2) does not increase as t increases. Hence, there
exists T̂ ∈ (0, ∞] such that vt(·, t) = 0 admits exactly one root in (b1, b2) when t ∈ [0, T̂);
if T̂ <∞, either vt > 0 in (b1, b2) × [T̂1, ∞) or vt < 0 in (b1, b2) × [T̂ , ∞).
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(2) Next we consider the sign of vr on the lateral boundary. We consider vrt(b
+
1 , ·) and

vrt(b
−
2 , ·).

(a) For each t ∈ (0, T̂), there exists a unique s̃(t) ∈ (b1, b2) such that vt(·, t)< 0 in (0, s̃(t))
and vt(·, t)> 0 in (s̃(t), b2). Then by Hopf’s Lemma, vtr(b

+
1 , t)< 0 and vtr(b

−
2 , t)< 0.

(b) Suppose T̂ <∞ and vt > 0 in (b1, b2) × [T̂ , ∞). Then by Hopf’s lemma, vtr(b
+
1 , t)>

0> vtr(b
−
2 , t) for all t> T̂ . This implies that vrt(b

−
2 , t)< 0 and vr(b

−
2 , t)< 0 for all

t> 0. Also vrt(b
+
1 , ·)< 0 in (0, T̂) and vrt(b

+
1 , ·)> 0 in (T̂ , ∞). Thus, there exists T1 ∈

(T̂ , ∞] such that vr(b
+
1 , ·)< 0 in (0, T1) and vr(b

+
1 , ·)> 0 in (T1, ∞].

(c) Suppose T̂ <∞ and vt < 0 in (b1, b2) × [T̂ , ∞). Then by Hopf’s Lemma, vtr(b
+
1 , t)<

0< vtr(b
−
2 , t) for all t> T̂ . This implies that vr(b

+
1 , t)< 0 for all t> 0 and there exists

T1 ∈ (T̂ , ∞] such that vr(b
−
2 , ·)< 0 in (0, T1) and vr(b

−
2 , ·)> 0 in (T1, ∞].

Set T1 = ∞ in the case (a). Then in any case we have vr(b
+
1 , ·)< 0 and vr(b

+
2 , ·)< 0 in

(0, T1) so u := v is the solution of (3.9) on [0, ∞) × [0, T1].

Observe that v(·, ∞) := limt→∞ v(·, t) is the solution of Lv(·, ∞) = f on (b1, b2) with
boundary condition v= 0 at r = b1 and r = b2. Using Theorem 3, we derive the following:
(a) If h ∈ [h1, h2], then T1 = ∞.
(b) If h ∈ (b1, h1), then T1 <∞, vr(b

+
1 , T1) = 0 and vt > 0 in (b1, b2) × [T1, ∞).

(c) If h ∈ (h2, b2), then T1 <∞, vr(b
−
2 , T1) = 0 and vt < 0 in (b1, b2) × [T1, ∞).

(3) Next we investigate the roots of v = 0 in (b1, b2) × (0, T1].
For each t ∈ (0, T1), we have vr(b

−
1 , t)< 0 and vr(b+, t)< 0. We can define

�(t) = sup{r ∈ [b1, b2] | vr(·, t)< 0 in (b1, r)},
ρ(t) = inf {r ∈ [b1, b2] | vr(·, t)< 0 in (r, b2)}.

Since
∫ b2

b1
vr(r, t)dr = v(b2, t) − v(b1, t) = 0, for each t ∈ (0, T1),

�(t)<ρ(t), vr(·, t)< 0 in [b1, �(t)) ∪ (ρ(t), b2], vr(�(t), t) = 0, vr(ρ(t), t) = 0.

Since when t is small vt ≈ r − h, vrt ≈ 1 and vr ≈ t, we have �(0+) = b1 and ρ(0+) = b2.
We will show that vr(r, t) � 0 for r ∈ (�(t), ρ(t)). For this, we observe the following:

(i) Since 1 is a supersolution, by comparison, v < 1 on D̄.
(ii) Set L1 =L− σ 2

2
∂
∂r + β. Differentiating Lv = 0, we find that

L1vr = 1 − v > 0 in [b1, b2] × (0, ∞).

Thus, vr cannot attain a negative local minimum. Hence, vr � 0 on ∪0<t<T1 [�(t), ρ(t)] ×
{t}. Using strong maximum principle, we then conclude that for each t ∈ (0, T1),

vr(·, t)< 0 in [b1, �(t)), vr > 0 in (�(t), ρ(t)), vr < 0 in (ρ(t), b2].

Since v(b1, t) = 0 and v(b2, t) = 0, there exists a unique s(t) ∈ (�(t), ρ(t)) such that

v(·, t)< 0 in (b1, s(t)), v(s(t), t) = 0, v(·, t)> 0 in (s(t), b2).

In addition, if h ∈ (b1, h1), then T1 <∞, s(T1) = b1 and v > 0 on (b1, b2) × [T1, ∞); if
h ∈ (h2, b2), then T1 <∞, s(T1) = b2 and v < 0 on (b1, b2) × [T1, ∞).

This completes the proof of Lemma 5.2.

Figure 2 uses the parameters as in Figure 1. and T = 1, s(0) = 1.25.
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FIGURE 2. Parity-level s(t) in Case 1.

5.3 Case 2: h ∈ (h2, ∞) and monotonicity of free boundary

For h ∈ (h2, b2), we set T1 as in Lemma 5.2 and set u0(·) = v(·, T1), w0 = vt(·, T1) and s0 = b2. For
h ∈ [b2, ∞), we set T1 = 0, u0(·) = 0, w0 = (r − h)1(b1,h](r) and s0 = h. Let u on [0, ∞) × [T1, ∞)
be the solution of the following initial boundary value variational inequality:

max{Lu − f , u} = 0 in (b1, ∞) × [T1, ∞), u(·, T1) = u0, u = 0 on [0, b1] × [T1, ∞).

Note that this is exactly one part of the problems stated in (3.10). We shall show that there
exists an increasing s ∈ C([T1, ∞)) with s(T1) = s0 such that u(·, t)< 0 in (b1, s(t)) and u(·, t) = 0
in [s(t), ∞). Thus, Lu − f = 0 in (b1, b2) × [T1, ∞). As ur(b

+
1 , ·)< 0 on (T1, ∞), we also have

min{Lu − f , u} = 0 on [0, b1] × [T1, ∞). Thus, u is the solution of (3.9).
To solve the variational inequality and study the regularity of the free boundary {r = s(t)},

we convert the problem to the classical Stefan problem for w = ut. We first provide a formal
derivation of the free boundary condition at r = s(t). Assume for the moment that w := ut is
continuous near the free boundary r = s(t). Then u = ur = ut = 0 at r = s(t). From Lu = f at

r = s(t)−, we find that − σ 2s(t)
2 urr(s(t)−, t) = s(t) − h. Hence, differentiating the free boundary

condition ur(s−(t), t) = 0, we find that

ds(t)

dt
= − urt

urr

∣∣∣
r=s(t)−

= σ 2s(t)

2

wr(s(t)−, t)

s(t) − h
∀ t> 0.

Thus, formally, w = ut is the solution of the following free boundary problem: for (w, s),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lw = 0, w< 0, in Q := {(r, t)| t> T1, r ∈ (b1, s(t))},
w(·, T1) = w0(·), s(T2) = s0, at t = T1,
w(r, t) = 0, ∀ t> T1, r ∈ [0, b1] ∪ [s(t), ∞),

(s(t) − h)
ds(t)

dt
= σ 2

2
s(t)wr(s(t)−, t), ∀ t> T1.

(5.6)
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Note that we have w0(·) = ut(·, T1)< 0 in (0, s0) and w0(·) = 0 in [s0, ∞). This is a Stefan problem
modelling a solidification process where w stands for the temperature, (b1, s(t)) is the solid region,
where w< 0, and [s(t), ∞) is the liquid region, where w = 0; the latent heat at position r is
1 − h/r. Once we solve (5.6), we can obtain the solution of (3.9) in [0, ∞) × (T1, ∞) by defining
u by

u(r, t) = u0(r) +
∫ t

T1

w(r, t)dt ∀ r ∈ (0, ∞), t � T1. (5.7)

Lemma 5.3 Problem (5.6) admits a unique solution. In addition, w< 0 in Q and

s ∈ C([T1, ∞)) ∩ C∞((T1, ∞)), s′ > 0 in (T1, ∞), s(∞) = z(h).

Moreover, u defined by (5.7) is the unique solution of (3.9) in [0, ∞) × [T1, ∞).

Proof When h ∈ (h2, b2), we have a standard Stefan problem and the assertion of the theorem
is quite standard; see, for example, Friedman [7]. When h � b2, we have s0 = h so the equation
for ds/dt in (5.6) at t = 0 is singular. For reader’s convenience and also for the simplicity of
presentation, we provide a proof here for the case h ∈ [b2, ∞) – i.e. T1 = 0, s0 = h, and w0(r) =
(r − h)1(b1,h].

1. Suppose there is a solution for t ∈ [0, T]. By comparing the solution u with the infinite
horizon problem, we obtain a precise upper bound: h< s(t)< z(h) for all t ∈ (0, T], where
z(h) is defined in Theorem 3.

2. Now we establish a local in time existence of (5.6). For this, let δ be a positive constant to
be determined later. We define

Xδ = {s ∈ C([0, δ]) | (s − h)2 ∈ C1([0, δ]), s′ � 0, s � 2z(h) + 1}. (5.8)

For s ∈ Xδ , we define W as the solution of the initial boundary value problem⎧⎪⎪⎨
⎪⎪⎩
LW = 0, ∀ r ∈ (b1, s(t)), t ∈ [0, δ],

W (r, t) = 0, ∀ t ∈ [0, δ], r ∈ [0, b1] ∪ [s(t), ∞),

W (r, 0) = r − h, ∀r ∈ [b1, h].

(5.9)

We now estimate Wr(s(t), t). First of all, by the maximum principle, we have W � 0. Hence,
Wr(s(t)−, s)> 0 for all t ∈ (0, δ]. Next, for each R ∈ [h, z(h) + 1], we denote by �(r, R) the
solution of the initial value problem

L�= 0 in (0, R], �|r=R = 0, �r|r=R = 1.

Then with μ= 2κ/σ 2 and ν = 2β/σ 2, we have σ 2
(
rμe−νr�r

)
r
= 2rμe−ρr�. Thus, �<

0<�r for r ∈ (0, R). We now define

N = sup
R∈[h,2z(h)+1],r∈[b1,R)

R − r

|�(r, R)| , δ = 1

σ 2N
.

Then for r ∈ [b1, R], we have N |�(r, R)|� R − r � h − r. Since s′ � 0, for each T ∈ (0, δ],
comparing W (r, t) with N�(r, s(T)) for r ∈ [b1, s(τ )] and t ∈ [0, T], we find that 0 �
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W (r, t) � N�(r, s(T)) for r ∈ [0, s(t)] and t ∈ [0, T]. This implies that

0 � Wr(s(T), T) � N�r(s(T), s(T)) = N ∀ T ∈ [0, δ]. (5.10)

Now, define ŝ � h by

ŝ(T) = h +
√
σ 2

∫ T

0
s(t)Wr(s(t), t)dt ∀ T ∈ [0, δ].

Then we have, for each t ∈ (0, δ],

ŝ(t)> h, 2
(

ŝ(t) − h
) d̂s(t)

dt
= σ 2s(t)wr(s(t), t).

In addition, by Cauchy inequality, ŝ(t) − h< s(t)/2 + σ 2Nδ/2 so ŝ(t) � 2h + σ 2Nδ �
2s0 + 1. Hence, the map T s := ŝ maps Xδ to itself. It is easy to see that T is a compact
and continuous operator. Thus, by Schauder’s fixed points theorem, T admits a fixed point
in Xδ . We denote (one of) the fixed point by s, and the corresponding solution of (5.9) by w.
Then (w, s) is a solution of (5.6) for t ∈ [0, δ]. By a bootstrap argument, we can show that
s ∈ C∞((0, δ]) and (s − h)2 ∈ C1([0, δ]). From Step 4 below, we see that the corresponding
u is the unique solution of (3.9) for t ∈ [0, δ]. Hence, by comparing with the solution of the
infinite horizon problem, we have s(t)< z(h) for all t ∈ [0, δ].

3. Repeating the same argument, we can establish the solution of (5.6) for t ∈ [0, δ],
[δ, 2δ], . . .. Hence, we obtain a solution of (5.6). The solution satisfies s ∈ C∞((0, ∞)), (s −
h)2 ∈ C1([0, ∞)), 0<wr(s(t)−, t)<N and h< s(t) � z(h) for all t> 0.

4. We now recover u from w to verify our formal derivation of the free boundary problem.
We define (i) ψ(r) = 0 for r ∈ (0, s0], and (ii) ψ(r) = t is the inverse function of r = s(t)
when t ∈ (0, ∞). Then for t> 0 and r ∈ (b1, s(t)), we have

u(r, t) =
∫ t

0
w(r, τ )dτ =

∫ t

ψ(r)
w(r, τ )dτ , ur(r, t) =

∫ t

ψ(r)
wr(r, τ )dτ ,

ut(r, t) = w(r, t) =
∫ t

ψ(r)
wt(r, τ )dτ + f 1r∈[b1,h],

urr(r, t) =
∫ t

ψ(r)
wrr(r, τ )dτ − 1r∈(h,s(t))

wr(s(t), t)
ds(t)

dt

=
∫ t

ψ(r)
wrr(r, τ )dτ − σ 2

2
f 1r∈(h,s(t)).

It then follows that

u< 0, Lu − f = 0 ∀ t> 0, r ∈ (b1, s(t)),

u(s(t), t) = 0, ur(s(t), t) = 0 ∀ t> 0,

u(r, 0) = 0 ∀ r ∈ [b1, h], s(0) = h, s′(t)> 0 ∀ t> 0.

Thus, u is a solution of (5.1) on (0, ∞) × [0, ∞). Since b2 < s(t) and urr(b1, t) = −∞ for
t ∈ (0, ∞), u is also a solution of (3.9). By uniqueness of the solution of (3.9), we see that
(w, s) is unique. This completes the proof of Lemma 5.1.
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FIGURE 3. Parity-level s(t) in Case 2.

Figure 3 uses the parameters as in Figure 2 but s(0) = 1.70, and it hit b2 about t = 0.27.

5.4 Case 3: h ∈ (0, h1) and monotonicity of free boundary

For h ∈ (b1, h1), we set T1 as in Lemma 5.2 and set u0(·) = v(·, T1), w0 = vt(·, T1) and s0 = b1. For
h ∈ (0, b1), we set T1 = 0, u0(·) = 0, w0 = (r − h)1[h,b2)(r) and s0 = h. Let u on (0, ∞) × [T1, ∞)
be the solution of the following initial boundary value variational inequality:

min{Lu − f , u} = 0 in (0, b2) × (T1, ∞), u(·, T1) = u0, u = 0 on [b2, ∞) × [T1, ∞), ur ∈ L∞.

Note that this is one part of the problem in (3.10). One can formally derive that w := ut is the
solution of ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lw = 0, w> 0, ∀ t> T1, r ∈ (s(t), b2),

w(·, T1) = w0(·), s(T1) = s0 at t = T1,

w(r, t) = 0, ∀ t> T1, r ∈ (0, s(t)] ∪ [b2, ∞)

s(t) ∈ (0, h), ∀ t ∈ (T1, T0),

ds(t)

dt
= σ 2s(t)wr(s+(t), t)

2[s(t) − h]
, ∀ t ∈ (T1, T0),

s(t) := 0−, |wr(0, t)|<∞ ∀ t> T0.

(5.11)

One can perform a similar analysis as in the previous section to show the following.

Lemma 5.4 Assume that h ∈ (0, h1). Then problem (5.11) admits a unique solution satisfying

s ∈ C([T1, ∞)) ∩ C∞((T1, T0)), s′ < 0 in (T1, T0).

In addition, T0 = ∞ and s(∞) = z(h) if h ∈ [h0, h1); T0 <∞ and u> 0 in [0, b2) × (T0, ∞) if
h ∈ (0, h0). Moreover, u defined by (5.7) is the unique solution of (3.9) on [0, ∞) × [T1, ∞).
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FIGURE 4. Parity-level s(t) in Case 3.

It is never optimal for the payer to choose to terminate the contract if time to expiration is
longer than T0. Hence, when h ∈ (h0, h1), the payer still needs to choose to terminate the contract
if the floating interest rate is too low.

The proof follows from a similar idea as that in the previous section. We omit the details.
We remark that when t ∈ [0, T0), we can use the boundary condition ur(s(t), t) = 0 to show that
ur ∈ L∞((0, ∞) × [0, T0]). When T > T0, u is the solution of

Lu = f in [0, b2) × [T0, ∞), u = 0 on [b2, ∞) × [T0, ∞), ur ∈ L∞.

Here the condition ur ∈ L∞ is needed to ensure the uniqueness.
Proof of Theorem 4. Assertions (1)–(3) of Theorem 4 follows from Lemmas 5.1–5.4. For the

case h � 0, we have f > 0 in (0, ∞) so the solution of (5.3) satisfies u> 0 in (0, b1) × [0, ∞).
This implies that u is the solution of (3.9). This completes the proof of Theorem 4.

Figure 4 uses the parameters as in Figure 2, but s(0) = 1.074. It hits b1 at about t = 0.061.

6 Conclusion

In this paper, we establish intensity and structure-type models for pricing defaultable IRSs,
where the float interest rate follows a CIR process. It is proved that the solution of the inten-
sity model with structural-type intensities goes to the one of the structure-type models. Existence
and uniqueness of the both solutions are proved.

For the predetermined default barriers b1, b2, the IRS has possibilities of ‘in’ or ‘out’ money
on the barriers. If a proper credit default swap insures a party from the loss due to counterparty’s
default, an IRS may be resumed by the intermediary at time when one party is at default. It is
equivalent to the case that the party can choose to terminate the contract. As a result, the structural
model turns to an optimal stopping problem; mathematically, it becomes a problem with double
variational inequalities combined with an equation in their corresponding regions.

We have discussed both the time-dependent and time-independent problems for the structure-
type models, whose solutions are able to be obtained by limits of the one of the intensity models.
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Also, the solutions are proved to be unique. The structures of the solutions are carefully analysed.
Different cases of the swap rates are considered. We found the following facts:

For the infinite horizon problem from the structure-type model:

1. For a ‘reasonable’ swap rate h, there exists a so-called parity-level curve r = z(h). If the
current floating interest rate is at the parity level, the value of the swap is zero; above the
parity level, the swap favours the payer; and below the parity level, the swap favours the
receiver.

2. There exist constants h0, h1 and h2, which can be easily evaluated and it satisfies 0<
h0 < h1 < h2 and b1 < h1 < h2 < b2, to divide the swap rate h into regions of distinct
characteristic behaviour described as follows:
(a) When h � h0, there is no parity level since the contract always favours the payer.
(b) When h ∈ (h0, h1], there exists a parity-level free boundary z(h) ∈ (0, h) ∩ (0, b1], such

that the receiver is out of money when float interest rate is above z(h) and the payer
is out of money when float interest rate is below z(h); thus, the payer terminates the
contract when rt � z(h) ∧ b1.

(c) When h ∈ (h1, h2), which is properly contained in (b1, b2), there exists a parity-level
free boundary z(h) ∈ (b1, b2), such that the receiver is out of money when float interest
rate is above z(h) and the payer is out of money when float interest rate is below z(h);
thus, the payer terminates the contract when rt ≤ b1 and the receiver terminates the
contract when rt ≥ b2.

(d) When h ∈ [h2, ∞), there exists a parity-level free boundary z(h) ∈ (h, ∞) ⊂ [b2, ∞),
such that the receiver is out of money when float interest rate is above z(h) and the
payer is out of money when float interest rate is below z(h).

A‘reasonable’ initiation swap rate should be set in the range of (h1, h2) ⊂ (b1, b2).
3. The swap value is monotone with respect to the swap rate h.

For the time-depending problem from the structure-type model:

1. Above parity level, the free boundary becomes a function of time r = s(h; T).
2. A ‘reasonable’ initiation swap rate should be set in the range of (h1, h2) ⊂ (b1, b2):

(a) when h ∈ (h1, h2), the parity-level free boundary is r = s(h; T) ∈ C∞(0, ∞);
(b) when h ∈ [h2, ∞), the parity-level free boundary s(h; T) ∈ C([0, ∞)) ∩ C∞([0, T1) ∪

(T1, ∞)) – i.e. the free boundary will hit the default boundary b2 at finite time T1;
(c) when h ∈ (0, h1], the parity-level free boundary s(h; T) ∈ C([0, ∞)) ∩ C∞([0, T1) ∪

(T1, T0)) – i.e. the free boundary will hit the default boundary b1 at finite time T1,
and the free boundary falls below zero after T0.

There are IRSs having ‘cap locks’, i.e. if the receiver only pays a maximum ceiling rate, M ,
if the floating interest rate is higher than the ceiling rate, and will guarantee to pay a minimum
floor rate, m, if the floating rate is below the floor rate. These kinds of IRSs are within the scope
of our model if we modify f by setting

f (r) =
⎧⎨
⎩

M − h if r>M ,
r − h if r ∈ [m, M],
m − h if r<m.
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