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Decaying turbulence in a density-stratified fluid with a Prandtl number up to Pr= 70
is investigated by direct numerical simulation. In turbulent flow with a Prandtl
number larger than unity, it is well known that the passive scalar fluctuations
cascade to scales smaller than the Kolmogorov scale, and show the k−1 spectrum
in the viscous–convective range, down to the Batchelor scale. In decaying stratified
turbulence, the same phenomenon is initially observed for the buoyant scalar of
high Pr (= 70), until the Ozmidov scale becomes small and the buoyancy becomes
effective even at the Kolmogorov scale. After that moment, however, the velocity
components near the Kolmogorov scale begin to show strong anisotropy dominated
by the vertically sheared horizontal flow, which reduces the vertical scale of density
fluctuations. An analysis similar to that of Batchelor (J. Fluid Mech., vol. 5, 1959,
pp. 113–133) indeed shows that the vertically sheared horizontal flow reduces the
vertical scale of density fluctuations, without changing the horizontal scale.
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1. Introduction

Transport of scalars, such as heat, salt and pollutants, by fluid flow is a universal
phenomenon in nature, and is of importance in geophysics and engineering. The key
parameter that characterises the diffusivity of those scalars is the Prandtl number
Pr = ν∗/κ∗, which is defined by the ratio of the kinematic viscosity ν∗ of fluid to
the diffusion coefficient κ∗ of the scalar. (In this study, variables with or without an
upper asterisk denote dimensional or non-dimensional quantities, respectively.) Since
the diffusion coefficient of a substance in a liquid is generally much smaller than
that of heat, the corresponding Prandtl number is much higher. For example, the
value of Pr for salt in water is 700, and the passive scalars in water often have even
higher Prandtl numbers of order 103, while the Prandtl number for thermal diffusion
in water is only 7.

For turbulent stratified flows, the eddy viscosity and eddy diffusivity are often used
instead of their molecular values to model the effects of turbulent mixing that occur
at unresolved small scales. For example, ocean circulation models parametrise the
small-scale diffusion, often using the same value of turbulent eddy diffusivity for
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heat and salt. With the intention to investigate the effects of ‘differential diffusion’ of
scalars, Gargett, Merryfield & Holloway (2003) numerically simulated the turbulence
in a fluid stratified by both heat and salt, using different molecular-diffusion
coefficients (Pr = 7 and 70) for the two scalars. They showed that the turbulent
diffusivity of the scalar of Pr= 7 exceeds that of Pr= 70 by 6 %–22 %, and argued
that the difference of the turbulent diffusivity in seawater (Pr= 7 and 700) would be
even larger. While there is an uncertainty in the relation between the molecular and
turbulent diffusion, the thermohaline circulation predicted by the geophysical fluid
dynamics laboratory (GFDL) ocean model is indeed very sensitive to the ratio of
the turbulent eddy diffusivity between temperature and salinity (Gargett & Holloway
1992). Therefore, we need to know the effect of molecular diffusivity on the structure
of stratified turbulence, especially at high Prandtl numbers.

The behaviour of small-scale fluctuations of a high-Prandtl-number scalar has been
investigated theoretically by Batchelor (1959), assuming that the scalar is passive, i.e.
the scalar does not contribute to the fluid density and the buoyancy force is absent.
Batchelor showed that the scalar dissipates at the length scale of L∗B = Pr−1/2L∗K ,
and the scalar variance spectrum is proportional to k∗−1 in the viscous–convective
subrange (1/L∗K < k∗< 1/L∗B). The scale L∗K = (ν

∗3/ε∗K)
1/4 is the Kolmogorov scale (ε∗K

is the dissipation rate of kinetic energy) and L∗B is now called the Batchelor scale.
Batchelor’s k−1 spectrum has actually been observed in a water channel experiment
by Gibson & Schwarz (1963) and in oceanic measurements by Grant et al. (1968).

In a three-dimensional direct numerical simulation (DNS) of the forced isotropic
turbulence, Bogucki, Domaradzki & Yeung (1997) found the k−1 power spectrum
for passive scalars with a Prandtl number up to 7, showing the applicability of
Batchelor’s prediction even when the Reynolds number was not very high, i.e.
when the microscale Reynolds number Reλ = u∗rmsλ

∗/ν∗ is 77, where u∗rms is the
root-mean-square (r.m.s.) turbulent velocity and λ∗ is the Taylor microscale. Batchelor
(1959) indeed argues in his original paper that his scalar spectrum (∝ k−1) below the
Kolmogorov scale does not require a high Reynolds number, which would realise an
inertial subrange in the kinetic-energy spectrum. Yeung, Xu & Sreenivasan (2002)
subsequently performed a DNS of forced isotropic turbulence with a uniform mean
scalar gradient, and found that the scalar shows the k−1 power spectrum at a higher
Prandtl number (Pr = 64) but with a low Reynolds number (Reλ = 38). Yeung et al.
(2004) obtained the similar results with even higher Pr (= 1024) and lower Reλ (= 8).

The above results are all for a passive scalar in isotropic turbulence. In stratified
fluids, the distribution of the active scalars such as salt generates the buoyancy force,
and the scalars behave differently from passive scalars. In the studies of decaying
stratified turbulence, the suppression of vertical motion due to the exchange between
the vertical kinetic energy and the potential energy has been observed in both
experiments (e.g. Webster 1964; Lin & Pao 1979) and DNS (e.g. Riley, Metcalfe &
Weissman 1981; Métais & Herring 1989). After the initial fluctuations have decayed,
the buoyancy Reynolds number (Reb = ε

∗

K/(ν
∗N∗2) with N∗ being the Brunt–Väisälä

frequency) becomes small, and the turbulence eventually takes a horizontally layered
structure, which is often called a pancake vortex (e.g. Pao 1973; Métais & Herring
1989; Fincham, Maxworthy & Spedding 1996; Kimura & Herring 1996). Majda &
Grote (1997) obtained a similar pancake structure as an exact solution of the linear
advection–diffusion equations, in modelling the low-Froude-number limiting dynamics.
The Froude number was a measure of the ratio between the Brunt–Väisälä period
and the eddy turnover time, and was defined by Fr=U∗/(N∗L∗), with U∗ being the
characteristic velocity and L∗ the characteristic length.
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In a salt-stratified water channel (Pr = 700), evolution of the grid-generated
turbulence has been investigated at moderate mesh Froude numbers of order 101

(Stillinger, Helland & Van Atta 1983; Itsweire, Helland & Van Atta 1986). The
transition from isotropic turbulence to flow with internal waves was observed when
the Ozmidov scale L∗O = (ε∗K/N

∗3)1/2 decreased below the integral scale, where
the Ozmidov scale is the scale above which the stratification effect is significant
(Ozmidov 1965). In wind tunnel experiments for thermally stratified turbulence
(Pr∼ 0.7), Lienhard & Van Atta (1990) have shown that the counter-gradient vertical
density flux (i.e. conversion of potential energy into kinetic energy) is weaker for a
lower Prandtl number. The difference between thermally stratified water (Pr∼ 6) and
salt-stratified water (Pr ∼ 600) was investigated by Komori & Nagata (1996). They
realised the same initial disturbance using the same turbulence grid, but still found
that a higher Prandtl number generates a stronger and smaller-scale counter-gradient
flux. This Prandtl-number dependence could be explained also by linear processes
(Hanazaki & Hunt 1996). The low-Froude-number turbulence was realised in the
long-time development of the flow generated by a rake in a salt-stratified fluid
(Fincham et al. 1996; Praud, Fincham & Sommeria 2005), and the vertical shearing
of horizontal flow, which dominates the kinetic-energy dissipation, was found.

Recently, the decaying stratified turbulence at Pr = 1 with initially high Reynolds
numbers has been simulated by Bartello & Tobias (2013) and Maffioli & Davidson
(2016). In those papers, the theory of strongly stratified turbulence (Lindborg 2006) is
examined, and the horizontal spectra of horizontal kinetic energy and potential energy
in the inertial range are shown to follow the Kolmogorov and the Corrsin–Obukhov
spectrum if the buoyancy Reynolds number is O(10) or larger. Recent studies on
forced stratified turbulence (e.g. de Bruyn Kops 2015; Maffioli, Brethouwer &
Lindborg 2016; Maffioli 2017) also achieved a high Reynolds number (Reλ & 400),
for which the k−5/3 spectrum in kinetic energy was observed.

However, there have been only a few numerical studies intended for a Prandtl
number larger than unity, due to the difficulty in resolving the very small Batchelor
scales at high Prandtl numbers, while we know that the simulation at Pr ∼ 700 is
necessary for direct comparison with the salt-water experiments. The counter-gradient
scalar flux, which is stronger for Pr= 2 than for Pr= 1, has been observed in DNS
by Gerz & Yamazaki (1993). They argued that the potential energy of a high-Pr
(Pr > 1) scalar would not be dissipated directly by its molecular diffusion, but
would first be converted into kinetic energy and then dissipated by viscosity. The
turbulence triggered by Kelvin–Helmholtz instability in an initially two-layer fluid
was computed by Smyth (1999), and the dissipation-range scalar spectrum at Prandtl
numbers as high as 7 was investigated. The results showed that the spectral form of
the scalar dissipation agrees better with the spectrum proposed by Kraichnan (1968)
than with that by Batchelor (1959), with similarity to the results for passive scalars
(e.g. Bogucki et al. 1997). More recently, Salehipour, Peltier & Mashayek (2015)
investigated the Prandtl-number dependence (1 6 Pr 6 16) of a turbulent mixing
layer caused by the Kelvin–Helmholtz instability, and suggested the possibility of
an ‘ultraviolet catastrophe’ in the limit of high Pr, where a very abrupt transition to
turbulence occurs due to a direct and simultaneous injection of energy into all scales
of motion. In their subsequent paper (Salehipour & Peltier 2015), they reformulated
the diapycnal diffusivity, and showed that the corresponding turbulent Prandtl number
decreases monotonically with the buoyancy Reynolds number Reb.

In this paper we describe the results of a DNS of decaying stratified turbulence at
Prandtl numbers up to 70, with a higher resolution (up to 20483 grid points) than
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Strongly stratified turbulence

Viscosity-affected stratified flow

Time
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Classical Kolmogorov turbulence
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FIGURE 1. (Colour online) Reynolds number Re and inverse horizontal Froude number
1/Frh in decaying stratified turbulence analysed by DNS. Symbols show the initial values,
i.e. the values when the kinetic-energy dissipation rate becomes maximum and small-scale
velocity fluctuations have fully developed:u, present study;E, Riley et al. (1981) (RMW);
A, Staquet & Godeferd (1998) (SG); C, Bartello & Tobias (2013) (BT); @, Maffioli &
Davidson (2016) (MD). Temporal variations of parameters in the present study are shown
by three curves (Pr= 1, 7 and 70, from right to left). The classification into four regimes
is due to Brethouwer et al. (2007). The buoyancy Reynolds number becomes unity (Reb=

Re Fr2
h = 1) on the oblique dotted line.

the previous numerical simulations. This will realise conditions more similar to the
salt-stratified experiments (Pr ∼ 700) compared to the previous numerical studies,
which were intended mostly for Pr 6 7. The number of grid points necessary to
resolve the smallest scale of a scalar fluctuation in turbulent flow is estimated by
(L∗/L∗B)

3
= (L∗/L∗K)

3(L∗K/L
∗

B)
3
∼ Re9/4Pr3/2 (L∗ being the integral scale), where the

Reynolds number is defined by Re=U∗4/(ν∗ε∗K), with U∗ being the mean horizontal
velocity. Therefore, as long as the grid resolution L∗/L∗B is the same, Re Pr2/3 is
constant, showing that the maximum attainable Reynolds number for a simulation with
Pr= 70 becomes 702/3 (∼17) times smaller than that with Pr= 1. Then, our Reynolds
number (figure 1) would become one order of magnitude smaller than that of Maffioli
& Davidson (2016), who also used 2048 grid points in the horizontal direction. On
the other hand, our Reynolds number is close to that of Staquet & Godeferd (1998),
while the grid resolution is eight times higher than theirs (2563 grid points). Then,
the Prandtl number can be increased approximately up to 82 (= 64). Brethouwer
et al. (2007) argued that the parameter map in figure 1 can be divided into four
regimes, i.e. classical Kolmogorov turbulence (Frh > 1), weakly stratified turbulence
(Reb = Re Fr2

h > 1 and 0.02< Frh < 1), strongly stratified turbulence (Reb = Re Fr2
h > 1

and Frh < 0.02), and viscosity-affected stratified flow (Reb = Re Fr2
h < 1), where the

horizontal Froude number is defined by Frh= ε
∗

K/(N
∗U∗2). Our simulations start from

the weakly stratified turbulence regime, and enter the viscosity-affected stratified
flow regime. Therefore, after the turbulence has decayed, a clear dependence on the
molecular effects of the Prandtl number would be observed.

We will show first the Prandtl-number dependence of the statistical quantities such
as energies and vertical density flux (§ 3.1), then investigate the spatial distribution
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Decaying turbulence in a stratified fluid of high Prandtl number 825

of density fluctuations, which exhibits vertically small-scale structures at the highest
Prandtl number of 70 (§ 3.2), and examine the relevant spectra (§ 3.3). We finally
discuss the generation mechanism of the vertically thin structures of the density
fluctuations, modifying the theory for a passive scalar (Batchelor 1959) into a theory
for a buoyant scalar (§ 3.4).

2. Numerical procedure
We consider the turbulent flow of a density-stratified fluid whose stratification is

generated by a buoyant scalar of Prandtl number unity or larger (Pr= ν∗/κ∗> 1). The
quiescent fluid has the density distribution of ρ̄∗(z∗)= ρ∗0 + (dρ̄

∗/dz∗)z∗ (where z∗ is
the vertical coordinate and ρ∗0 is a representative density of the fluid) with a constant
vertical density gradient dρ̄∗/dz∗ = const. < 0. The Brunt–Väisälä frequency is given
by N∗=

√
−(g∗/ρ∗0 )(dρ̄∗/dz∗), where g∗ is the gravitational acceleration. As an initial

condition for the decaying turbulence, we consider an isotropic velocity fluctuation
with the integral length scale of L∗0 and the r.m.s. velocity of U∗0 .

The temporal variation of velocity, u∗i (i = 3 denotes the vertical component), is
governed by the Navier–Stokes equations under the Boussinesq approximation, i.e.

∂ui

∂t
+ uj

∂ui

∂xj
=−

∂p′

∂xi
+

1
Re0

∂2ui

∂x2
j
−

1
Fr2

0
ρ ′δi3, (2.1)

the density perturbation from its mean field ρ ′∗ (= ρ∗ − ρ̄∗(x∗3)) is governed by the
transport equation of density, i.e.

∂ρ ′

∂t
+ uj

∂ρ ′

∂xj
=

1
Re0Pr

∂2ρ ′

∂x2
j
+ u3, (2.2)

and the incompressibility condition is given by

∂ui

∂xi
= 0. (2.3)

Hereafter, (u, v, w) and (x, y, z) are read as (u1, u2, u3) and (x1, x2, x3), respectively,
and the quantities without an asterisk denote the values non-dimensionalised by the
length scale L∗0, the velocity scale U∗0 , the pressure scale ρ∗0 U∗20 and the density scale
−L∗0 dρ̄∗/dz∗. Throughout this study, the initial Reynolds number and the initial Froude
number are fixed at Re0 =U∗0 L∗0/ν

∗
= 100 and Fr0 =U∗0/(N

∗L∗0)= 1, and we examine
the Prandtl-number dependence of the flow using three Prandtl numbers (Pr = 1, 7
and 70).

In this study, only the kinetic energy is assumed to exist initially, since there
would be no initial potential energy due to density perturbations in the grid-generated
stratified turbulence (e.g. Stillinger et al. 1983; Lienhard & Van Atta 1990). The
initial energy spectrum is given in dimensional form by

E∗K(k
∗)= 16

√
2
π

U∗20
k∗4

k∗50
exp

{
−2
(

k∗

k∗0

)2
}
. (2.4)

This corresponds to the final period of decay of isotropic turbulence (Orszag &
Patterson 1972; Townsend 1976), and has been used for the initially isotropic stratified
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Pr Re0 Fr0 Time Number of grid points kmax min[kmax/kB]

1 100 1 0 6 t 6 40 10243 170.5 6.47
7 100 1 0 6 t 6 40 10243 170.5 2.45
70 100 1 0 6 t 6 6 20483 341 1.55
70 100 1 6 6 t 6 40 10243 170.5 1.60

TABLE 1. List of parameters used for the present DNS. The minimum value of kmax/kB
appears initially (figure 7a), i.e. when the Batchelor wavenumber kB is largest.

turbulence (e.g. Staquet & Godeferd 1998). Integration of the spectrum in the whole
range of wavenumber k∗ gives the initial kinetic energy KE∗0 = 3U∗20 /2 and the initial
integral scale L∗0 as

L∗0 =
3π

4KE∗0

∫
∞

0

E∗K(k
∗)

k∗
dk∗ =

√
2π

k∗0
. (2.5)

We note that the statistical quantities shown in the following section are not very
sensitive to the form of the initial energy spectrum, as long as the initial r.m.s. velocity
and integral scale are the same.

In the actual numerical simulation, isotropic fluctuations satisfying (2.4) are
developed in time without stratification until the enstrophy reaches its maximum,
so that an isotropic turbulence is well developed. We then apply the undisturbed
vertical density gradient, and set the time at t = 0. The simulation is terminated at
t = U∗0 t∗/L∗0 = 40, which is equal to approximately six Brunt–Väisälä periods (the
non-dimensional Brunt–Väisälä period is TBV = 2πU∗0/(N

∗L∗0) = 2πFr0 ∼ 6.3). The
microscale Reynolds number at t = 0 is Reλ = 42. The k−1 spectrum for passive
scalars has been observed in stationary turbulence at such a low Reynolds number
(e.g. Reλ = 38 in Yeung et al. (2002); Reλ = 8 in Yeung et al. (2004)).

The vorticity equation obtained by taking the curl of (2.1) and the transport equation
of the density perturbation (2.2) are solved by the Fourier spectral method in a cube
with boundary conditions of period 4π in all directions. The nonlinear terms are
evaluated pseudospectrally and the aliasing errors are removed by the 3/2 rule, so
that the maximum wavenumber kmax is 341 (and the minimum wavenumber kmin is 0.5)
when 20483 grid points are used. The parameters used for the numerical simulations
are summarised in table 1. For all cases, the value of kmax/kB is always larger
than 1.55, so that phenomena down to the Batchelor scale could be resolved. For the
case with the highest Prandtl number (Pr= 70), we begin the simulation at t= 0 with
20483 grid points, and reduce the resolution to 10243 at t = 6. The decrease of grid
resolution at t = 6 does not affect the numerical results since the Batchelor scale is
well resolved (kmax/kB= 1.60) even with the coarser grid (cf. figure 7a). For the time
integration, the diffusive terms are calculated analytically using the integrating factor,
while the other terms are approximated by the fourth-order Runge–Kutta method
(Rogallo 1977).

The numerical code is parallelised using the message passing interface (MPI) based
on the one-dimensional decomposition (i.e. decomposing the computational domain
into slabs). The computations have been carried out on the NEC SX-ACE in the
Cyberscience Center of Tohoku University, and the Earth Simulator Center of the
Japan Agency of Marine-Earth Science and Technology. The execution time required
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for the case of Pr= 70 is 19.2 h for the initial period of 0 6 t 6 6 (with 256 nodes),
and 21.8 h for the latter period of 6 6 t 6 40 (with 64 nodes). The execution time is
shorter for Pr= 1 and 7, i.e. 25.6 h for the whole period of 06 t6 40, using 64 nodes
throughout the computation.

3. Results
3.1. Energetics

We first consider the time development of the kinetic energy KE = u2
i /2 and the

potential energy PE= ρ ′2/(2Fr2
0), where the overline denotes the spatial average over

the entire periodic domain, i.e. · = (1/(4π)3)
∫
· dV . Their decay rates, dKE/dt and

dPE/dt, are determined by the following equations (e.g. Gerz & Yamazaki 1993):

d
dt

KE=−
ρ ′w
Fr2

0
− εK, (3.1)

d
dt

PE=
ρ ′w
Fr2

0
− εP, (3.2)

where the kinetic and potential-energy dissipation rates are defined by εK =

(∂ui/∂xj)2/Re0 and εP = (∂ρ ′/∂xj)2/(Pr Re0Fr2
0), respectively. The first term on the

right-hand side of these equations, i.e. ρ ′w/Fr2
0, is the vertical density flux which is

responsible for the energy exchange between KE and PE.
Figure 2(a) indeed shows the initial decrease of KE and the initial increase of PE.

After that, both energies show decaying oscillation with approximately half the Brunt–
Väisälä period (TBV/2=πFr0=π). The phases of oscillation are opposite since energy
conversion between KE and PE continues. The kinetic energy KE can be decomposed
into the horizontal kinetic energy KEH = u2 + v2/2 and the vertical kinetic energy
KEV = w2/2 (figure 2b), and only KEV shows a clear oscillation while KEH decays
almost monotonically, since PE exchanges energy directly with KEV .

Time oscillation of the vertical density flux is shown in figure 3(a), and comparison
with figures 2(a) and 2(b) show that KEV decreases and PE increases during 0< t. 2,
i.e. when the vertical density flux is positive, while the opposite happens during 2 .
t. 3, i.e. when the vertical density flux is negative. This shows clearly that the energy
exchange occurs through the vertical density flux (e.g. Gerz & Yamazaki 1993).

Now we consider the effect of the Prandtl number. According to (3.2), the initial
growth of PE (0.5 . t . 2) is more significant for higher Prandtl numbers, since the
dissipation rate εP is smaller (figure 3b) while the difference in the vertical density
flux is small (figure 3a). Since the peak value of PE is larger, more energy can be
converted back into KEV during 2. t. 3, through the counter-gradient vertical density
flux (figure 3a). This leads to a slightly larger KEV and KE, during the same period
(insets of figure 2a,b). The total energy (TE=KE+PE) also decays more slowly for
a higher Prandtl number (results not shown), mainly because of the smaller εP.

We note that the difference of KEV (and KE) between Pr = 7 and 70 is much
smaller than the difference between Pr = 1 and 7. Indeed, as will be shown later in
figure 13, the kinetic-energy spectra for Pr= 7 and 70 are almost identical at scales
larger than the Kolmogorov scale, and the Prandtl-number effects appear only at scales
smaller than the Kolmogorov scale. The velocity fluctuations at such small scales
do not practically contribute to kinetic energy, so that the kinetic energy becomes
insensitive to the large Prandtl numbers (Pr = 7 and 70). This may suggest that the
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FIGURE 2. (Colour online) Temporal variations of (a) kinetic energy KE = u2
i /2 and

potential energy PE= ρ ′2/(2Fr2
0), and (b) horizontal kinetic energy KEH = u2 + v2/2 and

vertical kinetic energy KEV = w2/2. The insets in panels 2(a) and (b) are close-ups of
KE and KEV , respectively. The vertical dotted line indicates the Brunt–Väisälä period, i.e.
t= TBV = 2πFr0 (= 6.28).

kinetic energy does not increase further even if we adopt a higher Prandtl number of
O(103), which is the typical Schmidt number for the scalar diffusion in liquids.

Figure 3(a) presents the Prandtl-number dependence of the vertical density flux.
It is almost independent of Pr until it reaches the first peak at t ∼ 0.6, but the Pr
dependence appears at t ∼ 1.5, after which the effects of density diffusion become
significant. The vertical density flux becomes more negative and more counter-gradient
for a higher Prandtl number (cf. figure 14a), in agreement with previous studies. For
example, wind tunnel experiments using thermally stratified air (Pr= 0.7) show only
a weak counter-gradient flux (Lienhard & Van Atta 1990), while the water channel
experiments using salinity stratification (Pr = 700) show a stronger counter-gradient
flux (Komori & Nagata 1996). The Prandtl-number dependence of the counter-gradient
flux was predicted also by the rapid distortion theory as an effect of molecular
diffusion (Hanazaki & Hunt 1996).

The dissipation rates of KE and PE, i.e. εK and εP, decrease almost monotonically
(figure 3b) after t ∼ 3, since the temporal oscillation occurs only at large scales,
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FIGURE 3. (Colour online) Temporal variations of (a) vertical density flux ρ ′w/Fr2
0

and (b) kinetic- and potential-energy dissipation rates εK = (∂ui/∂xj)2/Re0 and εP =

(∂ρ ′/∂xj)2/(Pr Re0Fr2
0). The vertical dotted line in panel (a) indicates the Brunt–Väisälä

period t= TBV = 2πFr0 (= 6.28).

while the dissipation is dominated by the non-oscillating small-scale components.
The kinetic-energy dissipation rate εK is slightly larger for a higher Prandtl number
(Pr > 1), since the potential energy at scales smaller than the Kolmogorov scale
becomes larger (cf. figure 13) and more energy is converted into kinetic energy at
small scales through the vertical density flux.

On the other hand, the potential-energy dissipation rate εP is smaller for a larger
Prandtl number due to the smaller diffusion coefficient. The time at which εP reaches
its maximum is delayed since it takes a longer time for a high-Prandtl-number scalar
to transfer potential energy to its small Batchelor scale and complete the initial
cascading process of the potential energy.

Figure 4 shows the temporal variation of the correlation coefficient of the vertical
density flux defined by ρ ′w/(ρ ′rmswrms), in which ρ ′rms= (ρ

′2)1/2 and wrms= (w2)1/2. The
time is non-dimensionalised here by the Brunt–Väisälä period T∗BV = 2π/N∗, and we
note that the correlation coefficient is initially equal to unity when the initial density
fluctuation is absent, and oscillates at approximately half the Brunt–Väisälä period
(e.g. Gerz & Yamazaki 1993; Hanazaki & Hunt 1996). The Prandtl-number effect is
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FIGURE 4. (Colour online) Correlation coefficient of the vertical density flux
ρ ′w/(ρ ′rmswrms) plotted against the buoyancy time t∗/T∗BV .

initially small until the correlation coefficient first becomes zero (N∗t∗/(2π) . 0.3),
but it becomes apparent with time, and the flux is persistently more strongly counter-
gradient for larger Prandtl numbers (Hanazaki & Hunt 1996; Komori & Nagata 1996).

The decay rate of KE and PE is examined by replotting figure 2(a) in a
double-logarithmic chart (figure 5). The kinetic energy decays like ∼t−1.1 after
t ∼ 2, independent of Pr. We note that the numerical simulation by Staquet &
Godeferd (1998) shows a decay exponent of ∼ −1.0, and the experiments show a
decay exponent of ∼−1.3 (Lienhard & Van Atta 1990; Fincham et al. 1996; Praud
et al. 2005). Since the experiments for a homogeneous fluid also give a similar
decay exponent of −1.3 to −1.0, the above results for stratified fluids show that the
stratification has only small effects on the decay rate of KE (i.e. dKE/dt). For a higher
Prandtl number, the vertical density flux ρ ′w/Fr2

0 becomes more counter-gradient near
the Kolmogorov scale (figure 14a) and injects more energy into the vertical velocity
component. Then, the kinetic energy becomes larger at small scales (figure 13), and
εK increases (figure 3b). These two effects approximately cancel on the right-hand
side of (3.1), so that the decay rate of KE is rather insensitive to the Prandtl number.
On the other hand, the potential energy decays faster for a larger Prandtl number for
a certain period (2 . t . 10) after the PE becomes maximum. After that moment,
however, PE decays like ∼t−1.1 regardless of Pr, since the decrease of εP with
increasing Pr cancels the decrease of ρ ′w/Fr2

0 on the right-hand side of (3.2). Thus,
the ratio PE/KE remains approximately constant at large times (t & 10).

We next examine how the anisotropy develops in the large-scale motion. Figure 6
shows the temporal evolution of KEH/(2KEV)= u2 + v2/(2w2), which should become
unity when the flow is isotropic. The ratio actually exceeds unity, and the overall
value increases until t ∼ 15, indicating that the vertical motion is suppressed by
buoyancy, and the horizontal flow becomes more dominant. When Pr = 1, the ratio
fluctuates around 2.2 after t ∼ 15, in agreement with Godeferd & Staquet (2003),
who reported that the ratio of r.m.s. horizontal velocity to r.m.s. vertical velocity,
i.e. (KEH/(2KEV))

1/2, approaches 1.5. The ratio KEH/(2KEV) becomes smaller for a
higher Prandtl number, since more potential energy is converted into vertical kinetic
energy via the vertical density flux (figure 3a), and the increase of KEV with Pr is
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FIGURE 5. (Colour online) Replot of figure 2(a) in a double-logarithmic chart.
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FIGURE 6. (Colour online) Temporal variation of the energy ratio KEH/(2KEV), which
should be unity for isotropic turbulence. The vertical dotted lines indicate the time t =
nTBV (n= 1, 2, . . .), where TBV (= 2πFr0 = 6.28) is the Brunt–Väisälä period.

larger than the increase of KEH (figure 2b). However, the decrease of the ratio due to
the increasing Pr seems to saturate between Pr= 7 and Pr= 70 for the same reason
as explained earlier in figure 2.

The temporal developments of the Kolmogorov wavenumber k∗K = (ε
∗

K/ν
∗3)1/4, the

Ozmidov wavenumber k∗O = (N
∗3/ε∗K)

1/2 and the Batchelor wavenumber k∗B = Pr1/2k∗K
for Pr= 70 are plotted in figure 7(a) in their non-dimensional forms (i.e. kK = k∗KL∗0,
kO = k∗OL∗0 and kB = k∗BL∗0). The Ozmidov wavenumber determines the minimum size
of turbulent eddies whose overturning motion is prohibited by buoyancy (Dougherty
1961; Ozmidov 1965). It increases as εK decreases with time. On the other hand,
the Kolmogorov wavenumber decreases with time, and agrees with the Ozmidov
wavenumber at t ∼ 8. The agreement occurs always at the same wavenumber, i.e. at
k∗P = (N

∗/ν∗)1/2. We call k∗P the primitive wavenumber since the corresponding length
has been called the primitive length scale in stratified turbulence (Barry et al. 2001).
The primitive wavenumber k∗P, by its definition, is always between k∗K and k∗O. In the
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FIGURE 7. (Colour online) The evolution of (a) Kolmogorov, Ozmidov and Batchelor
wavenumbers kK, kO and kB for Pr = 70, and (b) buoyancy Reynolds number Reb for
Pr= 1, 7 and 70. In panel (a), the two horizontal dash-dotted lines indicate the maximum
wavenumbers (kmax) resolved by the two grids used for the computation (kmax= 341 when
t 6 6, and kmax = 170.5 when 6 6 t 6 40), and the horizontal dotted line indicates the
primitive wavenumber (kP = 10).

present numerical simulation, its non-dimensional value kP = (Re0/Fr0)
1/2 (= 10) is

invariant, since Re0 (= 100) and Fr0 (= 1) are fixed. The agreement time between kK

and kO is slightly delayed as the Prandtl number becomes larger. This can be inferred
from figure 3(b), which shows the increase of εK with Pr, and hence the increase of
kK and the decrease of kO, although the results for Pr= 1 and 7 are not included in
figure 7(a).

We present in figure 7(b) the temporal variation of the buoyancy Reynolds number

Reb =
ε∗K

ν∗N∗2
=

(
k∗K
k∗O

)4/3

, (3.3)

determined by the ratio between the Ozmidov scale and the Kolmogorov scale. If
the buoyancy Reynolds number is larger than unity (kK > kO), the smallest eddy is
not affected by buoyancy, and the flow at the Kolmogorov scale would be isotropic.
The buoyancy Reynolds number starts at approximately 50 in our simulation, and
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FIGURE 8. (Colour online) (a) Temporal variation of the mixing coefficient εP/εK .
(b) Mixing coefficient as a function of the buoyancy Reynolds number Reb, which
decreases with time.

decreases monotonically with time. It decreases to unity at t ∼ 8, i.e. when the
decreasing kK and the increasing kO agree at kP. After the buoyancy Reynolds
number has decreased far below unity, most of the energy dissipates at large scales,
and the flow is sometimes called viscosity-affected stratified flow (Brethouwer et al.
2007). The larger Prandtl number slows down the decrease of the buoyancy Reynolds
number because more potential energy is converted into kinetic energy at small scales
and retards the decrease of εK in (3.3).

Figure 8(a) shows the time development of the mixing coefficient εP/εK . It
increases initially with the increase of εP (cf. figure 3b), but then decreases with
some fluctuations. The mixing coefficient at Pr= 1 asymptotes to approximately 0.3,
in agreement with the previous numerical simulations (Riley & de Bruyn Kops 2003).
The value is also close to that of Maffioli et al. (2016) observed at much higher
Reynolds numbers (∼104) and lower Froude numbers (.0.03).

At early times (t∼5), the mixing coefficient does not depend strongly on the Prandtl
number, but the decrease with time is more significant for higher Prandtl numbers.
This occurs since εP becomes progressively smaller for higher Pr, while εK is always
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comparable (figure 3b). As time proceeds (t & 10), and when the buoyancy Reynolds
number falls below unity, the contour surfaces of the density perturbation become flat
(cf. figures 10d, 11f and 13c,d). Then, the horizontal diffusion becomes weak, and will
reduce εP. Figure 8(b) indeed shows that the difference in εP/εK becomes conspicuous
after Reb becomes below unity. This may also explain why the decrease of the mixing
coefficient due to Pr is more significant in the present simulation than in the mixing-
layer simulation by Salehipour et al. (2015) where the buoyancy Reynolds number
was much larger (Reb & 10).

3.2. Spatial distributions of energy

We next show in figure 9 the spatial distributions of the kinetic energy u2
i /2 and

the potential energy ρ ′2/(2Fr2
0) at t = 4, for low and high Prandtl numbers (Pr = 1

and 70). There is a strong effect of the Prandtl number on the potential energy, since
Pr controls the cascading process of the scalar. In the case of Pr= 70, the potential-
energy distribution (figure 9d) has a much smaller scale than that of the kinetic energy
(figure 9c), since the Batchelor scale is much smaller than the Kolmogorov scale,
while in the case of Pr = 1 (figures 9a and 9b), the length scales are comparable.
On the other hand, the effect of Pr on the kinetic-energy distribution is small, and
the results for Pr = 1 (figure 9a) and Pr = 70 (figure 9c) are similar. However, the
isosurfaces at Pr = 70 have small undulations, which do not exist at Pr = 1. The
undulations would be due to the energy converted from the potential energy at scales
smaller than the Kolmogorov scale (cf. figure 14a).

At this early time (t = 4), the flow is only weakly affected by buoyancy since
the time in units of the Brunt–Väisälä period is small (t∗/T∗BV = N∗t∗/(2π) =
t/(2πFr0) ' 0.64 < 1). For example, in the case of Pr = 70, the ratio kK/kO ('4,
figure 7a) gives a rather large value of Reb ('6 > 1, figure 7b), meaning that the
stratification is effective only in the large-scale motion. Then, the kinetic-energy
distribution looks nearly isotropic, and the scalar behaves like a passive scalar in
isotropic turbulence (figures 9c and 9d). The large buoyancy Reynolds number
Reb (> 1) is maintained also for Pr= 1 (figure 7b). Therefore, both the kinetic- and
potential-energy distributions appear approximately isotropic for both Pr= 1 and 70.

As time proceeds, the Ozmidov scale becomes smaller (figure 7a) and the buoyancy
becomes dominant down to smaller scales, including the energy-containing scale.
Then, the vertical kinetic energy becomes smaller than the horizontal kinetic energy,
as observed in the previous experiments (e.g. Lienhard & Van Atta 1990), numerical
simulations (e.g. Riley et al. 1981; Métais & Herring 1989) and in our figure 6. At
a much later time (t = 40 or t∗/T∗BV = N∗t∗/(2π) ' 6.4 > 1), the isosurfaces of the
kinetic and potential energy have pancake structures that enclose much of the kinetic
and potential energies, as shown in figure 10. Since the smaller-scale fluctuations
observed when t = 4 (figure 9) have already decayed, only the large-scale structures
remain. We note that the horizontal scales of isosurfaces are comparable in the
kinetic- and potential-energy distributions, not only for Pr = 1 (figures 10a and 10b)
but also for Pr = 70 (figures 10c and 10d). There are horizontal wrinkles on the
surface of pancakes of potential energy at Pr = 70 (cf. figure 11f ). These are the
small-scale vertical structures observed only at high Prandtl numbers, not observed
at lower Prandtl numbers (e.g. figure 10b). We will discuss the dominance of the
vertically sheared horizontal flow later (cf. figures 17 and 18).

To observe the small-scale structures more clearly, the distributions of potential
energy ρ ′2/(2Fr2

0) in the vertical plane (y = 0) are presented in colour scale in
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FIGURE 9. (Colour online) Spatial distributions of the energies at t = 4. The panels
show the isosurfaces of: (a) kinetic energy u2

i /2 (= 3KE) at Pr = 1; (b) potential
energy ρ ′2/(2Fr2

0) (= 6PE) at Pr = 1; (c) kinetic energy u2
i /2 (= 3KE) at Pr = 70; and

(d) potential energy ρ ′2/(2Fr2
0) (= 6PE) at Pr= 70.

figure 11, again at t = 4 and 40. In agreement with figure 9, the potential-energy
distribution at t = 4 is affected significantly by the Prandtl number, and the result
for Pr = 70 (figure 11e) contains much finer structures than those for lower Prandtl
numbers (figures 11a and 11c). The structures at t = 40 are rather independent of
Pr (figures 11b, 11d and 11f ) since most of the small-scale components below the
Kolmogorov scale have decayed (cf. figures 13c and 13d). However, similar to the
result at t = 4 (figure 11e), the vertical structure of the potential energy at high
Pr(= 70) has components of very small scales, which appear as many thin horizontal
streaks in figure 11( f ). These streaks correspond to the horizontal wrinkles on the
surface of pancakes (figure 10d). These would be due to the high-vertical-wavenumber
components observed in the potential-energy spectra, which will be discussed later
(cf. figure 13d).

The agreement between the horizontal scales of the velocity and density perturba-
tions at long time, observed even at a high Prandtl number (Pr= 70) in figure 10, is
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FIGURE 10. (Colour online) Spatial distributions of the energies at t = 40. The panels
show the isosurfaces of: (a) kinetic energy u2

i /2 (= 2KE) at Pr = 1; (b) potential
energy ρ ′2/(2Fr2

0) (= 4PE) at Pr = 1; (c) kinetic energy u2
i /2 (= 2KE) at Pr = 70; and

(d) potential energy ρ ′2/(2Fr2
0) (= 4PE) at Pr= 70.

identified in figure 12 by the longitudinal Taylor microscales of velocity

λ2
i = u2

i

/(
∂ui

∂xi

)2

, (i= 1, 2, 3), (3.4)

(no summation is taken over the repeated index i), and those of density perturbation

λ2
ρ′,i = ρ

′2

/(
∂ρ ′

∂xi

)2

, (i= 1, 2, 3), (3.5)

where λ1 and λ3 are associated with the horizontal and vertical scales of velocity,
and λρ′,1 and λρ′,3 are associated with those of density perturbations (e.g. Riley
et al. 1981). The initial values of λ1 and λ3 are almost equal (λ1 = λ3) since
the initial velocity fluctuations are isotropic. However, as time proceeds, the
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FIGURE 11. (Colour online) Spatial distributions of the potential energy ρ ′2/(2Fr2
0) in

the vertical plane (y= 0). The panels show the colour-scale image at: (a) Pr = 1, t = 4;
(b) Pr= 1, t= 40; (c) Pr= 7, t= 4; (d) Pr= 7, t= 40; (e) Pr= 70, t= 4; and ( f ) Pr= 70,
t= 40.

horizontal microscales become larger than the vertical microscales (λ1 > λ3 and
λρ′,1 > λρ′,3), corresponding to the appearance of the pancake structure in the kinetic
and potential-energy distributions (e.g. at t= 40, figure 10).

When Pr = 1 (figure 12a), the microscales of velocity are nearly equal to those
of density perturbation at all times (i.e. λ1 ' λρ′,1 and λ3 ' λρ′,3). With the increase
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FIGURE 12. (Colour online) Temporal variation of the horizontal and vertical Taylor
microscales of velocity and density perturbation for (a) Pr= 1 and (b) Pr= 70.

of Pr (= 70, figure 12b), however, the temporal behaviour of the microscales of
density perturbation (λρ′,1 and λρ′,3) changes significantly, while that of the velocity
microscales (λ1 and λ3) changes only a little. Namely, the microscales λρ′,1 and λρ′,3
initially decrease significantly due to the initial potential-energy cascade (t . 4), but
after that, they increase again, and the horizontal microscale of density perturbation
λρ′,1 becomes almost equal to the horizontal microscale of velocity λ1 at large times
(t & 30). The increase of the vertical microscale λρ′,3 is not so large, and it is still
smaller than the vertical microscale of velocity λ3 at the end of the simulation (t= 40).
These results are consistent with the agreement only in the horizontal scale of the
kinetic- and potential-energy distributions at Pr= 70 (figure 10c,d).

3.3. Energy spectra
We next present the energy spectrum in order to further investigate the small-scale
anisotropy of the high-Pr scalar distribution at late times. The horizontal and the
vertical spectra of the kinetic energy are defined by

EK(kH)=
∑

∣∣∣√k2
x+k2

y−kH

∣∣∣<kmin/2
kz

1
2
|ûi(kx, ky, kz)|

2 1
kmin

(3.6)

and

EK(kV)=
∑
|kz|=kV

kx,ky

1
2
|ûi(kx, ky, kz)|

2 1
kmin

, (3.7)

respectively. Here, ûi denotes the Fourier component of ui, its argument (kx, ky, kz) is
the wavenumber vector, and the minimum wavenumber kmin is 0.5 since the side of
the computational box is 4π in the non-dimensional form. Similarly, we define the
horizontal and vertical potential-energy spectra as follows:

EP(kH)=
∑

∣∣∣√k2
x+k2

y−kH

∣∣∣<kmin/2
kz

1
2Fr2

0
|ρ̂ ′(kx, ky, kz)|

2 1
kmin

, (3.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.471


Decaying turbulence in a stratified fluid of high Prandtl number 839

and

EP(kV)=
∑
|kz|=kV

kx,ky

1
2Fr2

0
|ρ̂ ′(kx, ky, kz)|

2 1
kmin

. (3.9)

The horizontal and vertical spectra of the kinetic and potential energy at t = 4 and
t= 40 are plotted in figure 13 for all the Prandtl numbers.

At an early time of t = 4 (figure 13a,b), the Kolmogorov wavenumber is greater
than the Ozmidov wavenumber (i.e. Reb > 1) and the buoyancy does not affect the
flow at the Kolmogorov scale. Indeed, the comparison between figures 13(a) and 13(b)
shows that the isotropy of the velocity and density perturbations (EK(kH)∼EK(kV) and
EP(kH) ∼ EP(kV) at the same kH and kV) still remains below the Kolmogorov scale.
We note also that when Pr = 1, i.e. when the Kolmogorov scale and the Batchelor
scale agree, the kinetic-energy spectra are almost equal to the potential-energy spectra
at high wavenumbers (i.e. EK(kH) = EP(kH) at kH & kK and EK(kV) = EP(kV) at
kV & kK). The potential-energy spectra below the Kolmogorov scale are larger for a
larger Prandtl number due to the scalar cascade to a smaller diffusion scale. The
kinetic-energy spectra below the Kolmogorov scale also increase with the Prandtl
number due to the larger energy conversion from the potential energy by the vertical
density flux (cf. figures 3a,b and 14a). On the other hand, at large scales (k< kK), the
difference due to the Prandtl number is small in figure 13(a,b). The k−1 power law
of the potential-energy spectrum appears at Pr= 70 for kK . kH . kB and kK . kV . kB,
showing that Batchelor’s theory holds until the buoyancy affects the sub-Kolmogorov
scale (i.e. when kO < kK). The k−5/3

H law of the energy spectra, which is observed
by the recent high-Re simulations at Pr = 1 (e.g. Lindborg 2006; Brethouwer et al.
2007; Bartello & Tobias 2013; de Bruyn Kops 2015; Maffioli & Davidson 2016), is
absent in the present result. This would be due to the low Reynolds number used in
this study. The spectra will be observed if the Reynolds number becomes sufficiently
large, since the low-wavenumber (k< kK) spectra would not be affected significantly
by the Prandtl number.

The energy spectra in the final period of decay (t = 40), i.e. when the Ozmidov
wavenumber is far beyond the Kolmogorov wavenumber (kK � kO or Reb � 1, cf.
figure 7), are presented in figure 13(c,d). In figure 13(c), the horizontal spectra
of potential energy EP(kH) for Pr = 7 and 70 decrease significantly at high
wavenumbers, compared to the other spectra. These spectral curves approach the
curves of kinetic-energy spectra EK(kH) since the energy is converted from potential
energy to kinetic energy via the vertical density flux. For example, when Pr = 7,
the two spectral curves of EP(kH) and EK(kH) almost agree for kK < kH . 10. The
tendency is weaker in the vertical spectra of potential energy EP(kV) for Pr = 7
and 70 (figure 13d). This corresponds to the Prandtl-number dependence of the
potential-energy distributions observed in figures 10 and 11, where the small-scale
fluctuations in the vertical direction existed only in the case of Pr = 70 (figure 10d)
and not in the case of Pr= 1 (figure 10b).

Figure 14(a) shows the Prandtl-number dependence of the co-spectrum of the
vertical density flux

Cρ′w(k)=
∑

∣∣∣√k2
x+k2

y+k2
z−k

∣∣∣<kmin/2

1
Fr2

0
Re[ρ̂ ′(kx, ky, kz)ŵ∗(kx, ky, kz)]

1
kmin

, (3.10)
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FIGURE 13. (Colour online) Plots of (a) EK(kH) and EP(kH) at t = 4, (b) EK(kV) and
EP(kV) at t = 4, (c) EK(kH) and EP(kH) at t = 40 and (d) EK(kV) and EP(kV) at t = 40,
where the four energy spectra EK(kH), EK(kV), EP(kH) and EP(kV) are defined by (3.6)–
(3.9). The Kolmogorov, Ozmidov and Batchelor wavenumbers for Pr = 70 are indicated
by the arrows at the top of each panel.

which satisfies
1

Fr2
0
ρ ′w=

∫
∞

0
Cρ′w(k) dk, (3.11)

where the asterisk in (3.10) denotes the complex conjugate, and not a dimensional
quantity. The co-spectrum at large scales (k . kO) oscillates in time and changes sign,
i.e. it is positive when t = 4 (figure 14a), while it is negative when t = 6. On the
other hand, the co-spectrum at wavenumbers larger than the Kolmogorov wavenumber
(k& kK) is persistently negative and counter-gradient, showing that the potential energy
is converted continuously into kinetic energy.

The larger potential energy in the small-scale fluctuations of a higher-Prandtl-
number scalar would lead to a stronger counter-gradient flux at small scales, so that
the vertical density flux ρ ′w/Fr2

0 becomes more strongly counter-gradient (figure 3a).
At the same time, the kinetic-energy spectra EK(kH) and EK(kV) decay more slowly
near the Kolmogorov wavenumber (figure 13a,b).
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FIGURE 14. (Colour online) Prandtl-number dependence of (a) the co-spectrum of the
vertical density flux, Cρ′w(k), and (b) dissipation spectra of kinetic and potential energies,
DK(k) and DP(k), in the pre-multiplied form at t = 4. The Kolmogorov, Ozmidov and
Batchelor wavenumbers for Pr= 70 are indicated by the arrows at the top of each panel.

The same spectral behaviour has been observed in the previous experiments. For
example, water channel experiments for salt stratification (Pr= 700; Komori & Nagata
1996) showed a strong counter-gradient flux at high wavenumbers. On the other hand,
wind tunnel experiments for thermally stratified flow (Pr= 0.7; Lienhard & Van Atta
1990) showed a weaker counter-gradient flux at low wavenumbers. In a numerical
simulation for two Prandtl numbers (Pr= 1 and 2), Gerz & Yamazaki (1993) found a
persistent counter-gradient flux at high wavenumbers only for Pr= 2. Similar Prandtl-
number dependence has been obtained by the rapid distortion theory (RDT) (Hanazaki
& Hunt 1996).

In figure 14(b) we show the pre-multiplied spectra of energy dissipation rates at
t= 4. The dissipation spectra of kinetic energy and potential energy are defined by

DK(k)=
∑

∣∣∣√k2
x+k2

y+k2
z−k

∣∣∣<kmin/2

k2
j

Re0
|ûi(kx, ky, kz)|

2 1
kmin

, (3.12)
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FIGURE 15. (Colour online) Normalised potential-energy spectrum for Pr = 70:
(a) horizontal spectrum and (b) vertical spectrum. The vertical solid line shows
the Kolmogorov wavenumber divided by the Batchelor wavenumber, i.e. k∗K/k

∗

B =

1/
√

70' 0.12.

and

DP(k)=
∑

∣∣∣√k2
x+k2

y+k2
z−k

∣∣∣<kmin/2

k2
j

Pr Re0Fr2
0
|ρ̂ ′(kx, ky, kz)|

2 1
kmin

, (3.13)

respectively. The peak wavenumber of kinetic-energy dissipation (kDK(k)) shifts
only slightly with Pr, while that of potential-energy dissipation (kDP(k)) increases
significantly with Pr. Figure 14(b) shows also that the peak wavenumber of kDK(k)
is close to the Kolmogorov wavenumber kK , and the peak of kDP(k) is close to
the Batchelor wavenumber kB. The increase of the maximum value of kDK(k) with
Pr explains the slight increase of εK as already discussed in figure 3(b). A similar
trend has been observed in the vorticity spectrum of the turbulent mixing layer (see
figures 12 and 13 of Salehipour et al. (2015)).

We now examine whether the energy spectra obey the well-known scaling laws.
The potential-energy spectra normalised by the strain rate at the Kolmogorov scale
(ν∗/ε∗K)

1/2, the potential-energy dissipation rate ε∗P and the scalar diffusion coefficient
κ∗ for Pr = 70 are shown in figure 15. Note that the Kolmogorov wavenumber
normalised by the Batchelor wavenumber is constant in time: k∗K/k

∗

B = 1/
√

70' 0.12.
When t . 10, the spectral collapse onto a single curve at wavenumbers higher
than the Batchelor wavenumber and the k−1 power law are clearly found in both the
horizontal and the vertical spectra as well as the passive scalar spectrum (e.g. Bogucki
et al. 1997; Yeung et al. 2004). After t ∼ 10, at which the Ozmidov wavenumber
exceeds the Kolmogorov wavenumber, the horizontal spectrum begins to decrease in
k∗H > k∗K and increase in k∗H < k∗K , resulting in a very steep spectrum. On the other
hand, the Batchelor scaling reasonably holds for the vertical spectrum even after the
Ozmidov wavenumber exceeds the Kolmogorov wavenumber (t & 10); they converge
well in k∗V > k∗K as shown in figure 15(b). It is also found that the slope around
k∗V/k

∗

B ' 5× 10−2 becomes steeper as time passes, and eventually approaches −3.
Figure 16 presents the kinetic-energy spectra for Pr= 70 normalised by the energy

dissipation ε∗K and the kinematic viscosity ν∗. The result is similar to the normalised
potential-energy spectrum in the sense that the horizontal spectrum deviates from
the Kolmogorov scaling when t & 10, whereas the vertical spectrum completely
collapses onto a single curve. The collapse of the vertical spectrum is also reported
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FIGURE 16. (Colour online) Normalised kinetic-energy spectrum for Pr = 70:
(a) horizontal spectrum and (b) vertical spectrum. The vertical solid line shows
k∗H/k

∗

K = 1 or k∗V/k
∗

K = 1.

by the experiment using a salt-stratified fluid by Praud et al. (2005). However, the
k−3

V power law in the vertical spectrum they observed is not found in figure 16(b)
because the Reynolds number is too small to realise such a constant slope in the
low-wavenumber range in our simulations. The normalised spectrum of the vertical
velocity in salt-stratified water experiments (Pr = 700) is presented in figure 19
of Itsweire et al. (1986), showing a slight dispersion at k∗x/k

∗

K & 100. Though they
attributed the dispersion of the spectra at high wavenumbers to experimental noise, the
energy spectrum could actually deviate from the universal curve since the Kolmogorov
scale approaches the Ozmidov scale far downstream of the water channel in their
experiment (cf. their figures 4 and 8).

3.4. Generation of the vertically thin structures in the density perturbation
In the remainder of this paper, we discuss how the anisotropic distribution of
the potential energy at high wavenumbers for high Prandtl numbers is generated.
According to Batchelor (1959), the scalar fluctuations smaller than the Kolmogorov
scale are generated by a straining motion of the fluid at the Kolmogorov scale.
Thus, we examine the direction of the principal axes of the strain-rate tensor,
which is defined by Sij = (∂ui/∂xj + ∂uj/∂xi)/2. Since the strain-rate tensor is a
real-valued symmetric tensor, it has three principal values (α > β > γ ) and the
corresponding principal axes (α, β and γ ) are orthogonal. The incompressibility
condition (α + β + γ = 0) requires α > 0 and γ < 0. We consider the cosines of the
angles between the principal axes and the vertical axis,

cos θzα = ez · α, cos θzβ = ez · β, cos θzγ = ez · γ , (3.14a−c)

and the cosine of the angle between the density gradient and the vertical axis,

cos θzρ′ = ez ·
∇ρ ′

|∇ρ ′|
, (3.15)

where ez is the unit vector in the vertical direction.
Figure 17(a) presents the probability density functions (p.d.f.s) of |cos θzα|,
|cos θzβ |, |cos θzγ | and |cos θzρ′ | for Pr = 70 at t = 4. The highest probability of
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FIGURE 17. (Colour online) (a,c) The p.d.f.s of |cos θzα|, |cos θzβ |, |cos θzγ | and |cos θzρ′ |

for Pr= 70. (b,d) Joint p.d.f.s of |cos θzα| and |cos θzγ | for Pr= 70. Time (a,b) t= 4 and
(c,d) t= 40.

|cos θzα| and |cos θzγ | occurs when |cos θzα| = 1 (or θzα = 0, π) and |cos θzγ | = 1 (or
θzγ = 0,π), respectively, indicating that the most expansive direction (α) and the most
contractive direction (γ ) tend to align with the vertical axis probably because of the
Brunt–Väisälä oscillation due to the buoyancy. However, α and γ cannot align with
the vertical axis at the same time because they are orthogonal. This can be confirmed
by the joint p.d.f. of |cos θzα| and |cos θzγ | in figure 17(b). There are two local
maxima at (|cos θzα|, |cos θzγ |) = (0, 1) and (1, 0). Also, the probability density of
|cos θzβ | becomes largest when |cos θzβ | = 0 (or θzβ = π/2), as shown in figure 17(a).
After all, at an early time of t = 4, either the most expansive direction (α) or the
most contractive direction (γ ) tends to be along the vertical axis, while the other two
principal axes are horizontal. The p.d.f.s of |cos θzα|, |cos θzβ | and |cos θzγ | are nearly
independent of time until the Ozmidov wavenumber approaches the Kolmogorov
wavenumber (3 . t . 6). Figure 17(a) also shows that the probability density of
|cos θzρ′ | becomes highest at |cos θzρ′ | = 1, indicating that the density gradient ∇ρ ′
tends to be vertical and the horizontally flat distribution of density begins to be
generated.

Figure 17(c) shows the p.d.f.s at t= 40. The p.d.f.s of |cos θzα| and |cos θzγ | have a
peak at |cos θzα| ∼ 0.8 and |cos θzγ | ∼ 0.7, respectively. The joint p.d.f. of |cos θzα| and
|cos θzγ | in figure 17(d) displays only one peak at |cos θzα| ∼ |cos θzγ | ∼ 0.7 ∼ 1/

√
2,

meaning that both the most expansive direction (α) and the most contractive direction
(γ ) tend to make an angle of 45◦ with the vertical axis. This situation occurs when the
vertical shear of the horizontal flow is dominant in the strain-rate tensor (appendix A).
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The transition to the p.d.f.s corresponding to the vertically sheared horizontal flow
takes place when the Ozmidov wavenumber becomes as large as the Kolmogorov
wavenumber (t ∼ 8 for Pr = 70). Smyth (1999) also reported that α and γ point
at 45◦ from the vertical after the stratified shear turbulence triggered by the Kelvin–
Helmholtz instability had decayed (Reb→ 1) and the flow exhibits a pancake structure.
The p.d.f. of |cos θzρ′ | shows that the density gradient tends to direct towards the
vertical axis, and the tendency is much more significant compared to the case of t= 4.

In order to investigate whether the vertically sheared horizontal flow is dominant
at late times in our simulation, we decompose the kinetic-energy dissipation rate into
four components:

εH,H =
1

Re0

(
∂u
∂x

)2

+

(
∂u
∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

(horizontal shear of horizontal flow),

(3.16)

εH,V =
1

Re0

(
∂u
∂z

)2

+

(
∂v

∂z

)2

(vertical shear of horizontal flow), (3.17)

εV,H =
1

Re0

(
∂w
∂x

)2

+

(
∂w
∂y

)2

(horizontal shear of vertical flow), (3.18)

and

εV,V =
1

Re0

(
∂w
∂z

)2

(vertical shear of vertical flow), (3.19)

where
εK = εH,H + εH,V + εV,H + εV,V . (3.20)

The contribution from the vertical shear of the horizontal flow, εH,V , is expected to
be dominant at late times of our simulation. Note that it is not equal to the kinetic-
energy dissipation rate of the VSHF (vertically sheared horizontal flow) mode (Smith
& Waleffe 2002) because εH,V includes Fourier modes of kH =

√
k2

x + k2
y 6= 0. For an

isotropic turbulence (Taylor 1935),(
∂u
∂x

)2

=

(
∂v

∂y

)2

=

(
∂w
∂z

)2

=
1
15

(
∂ui

∂xj

)2

, (3.21)

and(
∂u
∂y

)2

=

(
∂u
∂z

)2

=

(
∂v

∂x

)2

=

(
∂v

∂z

)2

=

(
∂w
∂x

)2

=

(
∂w
∂y

)2

=
2
15

(
∂ui

∂xj

)2

, (3.22)

lead to

εH,H

εK
=

6
15
,

εH,V

εK
=

4
15
,

εV,H

εK
=

4
15
,

εV,V

εK
=

1
15
. (3.23a−d)

Temporal variation of these ratios in stratified flow at Pr = 70 is presented in
figure 18(a), illustrating the deviation from their isotropic values. After t∼ 8, εH,V/εK
rapidly increases, and it eventually reaches ∼0.6, while εH,H/εK and εV,H/εK become
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FIGURE 18. (Colour online) (a) Temporal variations of the ratios of εH,H, εH,V, εV,H
and εV,V to the kinetic-energy dissipation rate εK for Pr= 70. The horizontal dotted lines
indicate the values for isotropic turbulence: 1/15, 4/15 and 6/15 from below. (b) The Pr
dependence of εH,V/εK .

significantly smaller than their isotropic values. The salt-stratified experiments by
Fincham et al. (1996) and Praud et al. (2005) reported a higher value of εH,V/εK∼0.9.
The smaller εH,V/εK in our simulation would not be due to the low-Prandtl-number
effect because εH,V/εK generally decreases with increasing Prandtl number (figure 18b).
As the previous numerical simulations by Hebert & de Bruyn Kops (2006) report the
Reynolds-number dependence of εH,V/εK , in which εH,V/εK decreases with decreasing
Reynolds number at low Reynolds numbers (see their figure 1), the difference in
εH,V/εK might be caused by the small Reynolds number of our simulation.

We next apply an analysis similar to Batchelor (1959) to the late stage of decaying
stratified turbulence, i.e. after a certain large time t0 (typically t0 > 20; cf. figure 18)
for which the vertically sheared horizontal flow is dominant down to the Kolmogorov
scale. A brief review of the theory for a high-Pr passive scalar by Batchelor (1959)
is given in appendix B. We consider the deformation of a fluid element whose linear
dimension is slightly smaller than the Kolmogorov scale, and whose translational
velocity is uel(t)= (uel, vel,wel). New spatial coordinates X= (X, Y, Z) which translate
with the fluid element are introduced, but, unlike in Batchelor (1959), they do
not rotate, so that the X, Y and Z axes are always parallel to the x, y and z axes,
respectively. Then, the new coordinate axes do not necessarily agree with the principal
axes of the strain-rate tensor. Assuming that X = x at t= t0, i.e. the fluid element is
initially located at x= 0, the spatial coordinates X are defined by

X= x−
∫ t

t0

uel(τ ) dτ . (3.24)

A new temporal coordinate T , which represents the elapsed time after t = t0, is also
introduced, defined by

T = t− t0. (3.25)

If we assume that the velocity in the translational coordinates, (U,V,W), is dominated
by vertically sheared horizontal flow, i.e. (U, V, W) = (SXZ, SYZ, 0), the transport
equation of the density perturbation (2.2) becomes

∂ρ ′

∂T
+ SXZ

∂ρ ′

∂X
+ SYZ

∂ρ ′

∂Y
=

1
Re0Pr

(
∂2ρ ′

∂X2
+
∂2ρ ′

∂Y2
+
∂2ρ ′

∂Z2

)
+wel(t0 + T), (3.26)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.471


Decaying turbulence in a stratified fluid of high Prandtl number 847

101 103100 10210-1

10-2

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4 kK kB kO

D13, D23

k

D
ij(

k)

D11

D12

D13

D21

D23

D31

D32

D33

D22

FIGURE 19. (Colour online) Kinetic-energy dissipation spectrum tensor, Dij, at t= 40 for
Pr= 70. The Kolmogorov, Ozmidov and Batchelor wavenumbers for Pr= 70 are indicated
by the arrows at the top of the panel.

in the frame of reference moving with the fluid element. The detailed derivation of
(3.26) is presented in appendix C.

The assumption that the flow at scales smaller than the Kolmogorov scale is
dominated by the vertical shear of the horizontal flow at late times is verified again
by examining the kinetic-energy dissipation spectrum tensor, which is defined by

Dij(k)=
∑

∣∣∣√k2
x+k2

y+k2
z−k

∣∣∣<kmin/2

k2
j

Re0
|ûi(kx, ky, kz)|

2 1
kmin

, (3.27)

(no summation is taken over the repeated indices i and j), and satisfies

1
Re0

(
∂ui

∂xj

)2

=

∫
∞

0
Dij(k) dk. (3.28)

As shown in figure 19, the contributions from the vertical shear of the horizontal flow
(D13 and D23) are greater than the other components at all wavenumbers at t= 40 for
Pr=70, but they are close to D31, D32 and D33 at k∼ kK , indicating that the assumption
of the vertically sheared horizontal flow holds moderately well.

The magnitude of the strain rate SX ('SY) is estimated from figure 18 as follows:

εH,V

εK
=
(∂u/∂z)2 + (∂v/∂z)2

Re0εK
'

2S2
X

Re0εK
' 0.5 at t & 20, (3.29)

which gives

|SX| '
1
2

√
Re0εK or |S∗X| '

1
2

√
ε∗K

ν∗
=

1
2t∗K
, (3.30a,b)

where t∗K is the dimensional Kolmogorov time.
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FIGURE 20. (Colour online) The evolution of the time scale of change of the mean shear
rate tS and the Kolmogorov time tK at Pr= 70.

If we define the mean shear rate S by

S=

(
(∂u/∂z)2 + (∂v/∂z)2

2

)1/2

, (3.31)

it would vary in the time scale of

tS =−
S

dS/dt
. (3.32)

The time scale tS for the case of Pr = 70 is plotted with the Kolmogorov time
in figure 20, showing that tS is one order of magnitude larger than tK . Thus, in
the following analysis, we assume that the shear rate (SX, SY) is steady during
the Kolmogorov time. We mention here, however, that a Lagrangian analysis (e.g.
Girimaji & Pope 1990) is necessary to validate the assumption of steady shearing,
since we consider here that the coordinates translate with the fluid element. For
isotropic turbulence, Kraichnan’s spectrum, which takes into account the unsteadiness
of the strain rates, often fits the previous DNS results (Bogucki et al. 1997; Smyth
1999) better than Batchelor’s spectrum, which assumes steady straining.

We now seek a solution of (3.26) in the form of

ρ ′(X, T)= A(T) sin(m(T) ·X)+
∫ T

0
wel(t0 + τ) dτ , (3.33)

with an initial condition of A(0) = A0 and m(0) = (mX0, mY0, mZ0). Substitution of
(3.33) into (3.26) gives four ordinary differential equations:

dmX

dT
= 0,

dmY

dT
= 0,

dmZ

dT
=−(SXmX + SYmY), (3.34a−c)

and
dA
dT
=−

m2
X +m2

Y +m2
Z

Re0Pr
A, (3.35)
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which can be solved as

mX =mX0, mY =mY0, mZ =mZ0 − (SXmX0 + SYmY0)T, (3.36a−c)

and

A(T) = A0 exp
[
−

1
Re0Pr

{
(m2

X0 +m2
Y0 +m2

Z0)T

−mZ0(SXmX0 + SYmY0)T2
+

1
3
(SXmX0 + SYmY0)

2T3

}]
. (3.37)

Invariance of the horizontal wavenumbers mX and mY indicates that the vertically
sheared horizontal flow does not alter the horizontal scale of density perturbation.
The vertical wavenumber mZ increases linearly with time, and the increase during the
Kolmogorov time tK can be estimated using (3.30) and (3.36) as

|1mZ| = |mZ(tK)−mZ0| = |SXmX0 + SYmY0|tK .
|mX0| + |mY0|

2
' |mX0|. (3.38)

This would not be large when the flow has a large horizontal scale. Then, the
wavenumber vector m would become aligned with the vertical axis slowly if observed
in the Kolmogorov time scale, and the density gradient finally directs upwards (cf.
figure 17c). The increase of the vertical wavenumber of fluid elements would explain
why the vertical spectrum of potential energy EP(kV) below the Kolmogorov scale
becomes larger than the horizontal spectrum EP(kH) at late times, as observed in
figure 15.

We note that the second term on the right-hand side of (3.33) shows the variation
of density perturbation due to the vertical movement of the fluid element. The density
perturbation increases (or decreases) when the vertical velocity of the fluid element is
positive (or negative), since the background density field is stably stratified. However,
this term is a function of only T (and t0) and is independent of X, and adds the same
density perturbation to every point in the fluid. Therefore, it has no dynamical effects.

In the present numerical simulation, the small-scale vertical structure of the potential
energy has been observed only at the highest Prandtl number (Pr = 70), but has not
been observed at lower Prandtl numbers (Pr = 1 and 7; cf. figures 10 and 11). The
reason would be explained by (3.37), considering a fluid element with an initial
disturbance of wavenumber |m(0)| = αkK , where α is a constant of order unity. The
amplitude decay during the Kolmogorov time can be estimated from (3.37) as

A(tK)

A0
' exp

(
−
α2k2

KtK

Re0Pr

)
= exp

(
−
α2

Pr

)
. (3.39)

If the Prandtl number is not large (Pr = O(α2) = O(1)), the density perturbation
decreases to 1/e of its initial value during the Kolmogorov time. This means that the
density perturbations would decay before the vertically small-scale density distribution
is generated in a time typically much longer than tK . When the vertically small-scale
components are generated in the density perturbation, corresponding small-scale
components of velocity would be generated through the vertical density flux. However,
the latter components would also decay in the Kolmogorov time, and will not affect
the vertical scale of the velocity perturbation.
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The present form of solution is very similar to the previous result by the RDT,
which takes into account the initial condition (Hanazaki & Hunt 2004). The main
differences are that the present result is intended for a small-scale phenomenon
near the Kolmogorov scale, and the Prandtl number is not limited to Pr = 1. Both
results show, however, that the temporal variation of wavenumber vector m(T) and
the amplitude of perturbation A(T) are determined only by the shear (cf. Townsend
1976), and irrelevant to the stratification even when the scalar is buoyant. The present
results indeed reduce to equations (2.6) and (4.4) of Hanazaki & Hunt (2004), under
the condition of Pr= 1 and SY = 0.

We finally mention that the nonlinear advection terms in the Navier–Stokes
equations and the density equation vanish for the vertically sheared horizontal flow,
and such a flow is governed exactly by the linear equations (Majda & Grote 1997).
Therefore, the flow dominated by the vertically sheared horizontal flow would be
described well by the linear theory.

4. Conclusions
We have investigated the decaying turbulence in a density-stratified fluid of a high

Prandtl number up to Pr= 70 through a direct numerical simulation. The main results
of this study are summarised as follows.

The kinetic and potential energies decay more slowly for higher Prandtl numbers,
since the scalar fluctuations of a higher Prandtl number dissipate more slowly and
more potential energy can be converted into vertical kinetic energy through the vertical
density flux, which is more negative and more counter-gradient. The Prandtl-number
effect is generally less significant for the velocity fluctuation (e.g. KE and εK) than the
density fluctuation (e.g. PE and εP), since the effect of molecular diffusion becomes
conspicuous at scales smaller than the Kolmogorov scale.

The difference due to the increase of the Prandtl number becomes less significant
for larger Pr (e.g. for Pr & 7), although there is no upper threshold value of Pr
at which further Pr dependence completely disappears. Since the molecular-diffusion
term in the governing equation is proportional to 1/Pr, the direct effect of molecular
diffusion is already small at Pr= 7 compared to that at Pr= 1, if the spatial structure
of the density distribution is the same. Therefore, further increase of Pr from 7 to 70,
or to 700, will not significantly reduce the value of 1/Pr (i.e. from 1/7 to 1/70, or
to 1/700), and the effects of those Pr increments would be small. The large-scale
components are more insensitive to the increase of Pr since the scalar diffusion is not
significant at large scales, while the small-scale components, especially those smaller
than the Kolmogorov scale, are more susceptible to the increase of Pr which generates
new small-scale structures.

The buoyancy effect is initially limited to large scales, but extends gradually
to smaller scales, and the density fluctuations smaller than the Kolmogorov scale
show very different structures before and after they are affected by the buoyancy.
Before the buoyancy becomes effective down to the Kolmogorov scale (kO < kK and
Reb > 1), the fluid motion is nearly isotropic at small scales, and the density behaves
just like a passive scalar in isotropic turbulence. Indeed, the kinetic and potential
energy have very similar horizontal and vertical spectra (i.e. EK(kH) ∼ EK(kV) and
EP(kH) ∼ EP(kV) for the same kH and kV), and the potential energy shows a k−1

spectrum in the viscous–convective subrange (kK . kH . kB and kK . kV . kB) at the
highest Pr (= 70).

After the buoyancy becomes effective below the Kolmogorov scale (kK < kO and
Reb < 1), the kinetic- and potential-energy distributions show pancake structures.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.471


Decaying turbulence in a stratified fluid of high Prandtl number 851

The horizontal scales of these pancakes are comparable for all Pr(= 1, 7, 70),
but the vertical scale of potential-energy distribution is smaller for higher Pr, and
the pancakes at the highest Pr (= 70) have horizontal wrinkles on their surface.
Correspondingly, the vertical spectrum below the Kolmogorov scale is larger than the
horizontal spectrum (i.e. EP(kV) > EP(kH) for the same kH and kV (>kK)), and the
potential energy no longer follows the k−1 spectrum.

As long as the buoyancy Reynolds number Reb is larger than unity, the normalised
kinetic-energy spectrum follows the Kolmogorov scaling and the normalised potential-
energy spectrum follows the Batchelor scaling. However, after Reb falls below unity,
the horizontal spectra no longer collapse onto a single curve below the Kolmogorov
scale, while the curves of vertical spectra continue to collapse there.

The small-scale anisotropy of potential energy observed when Reb < 1 is generated
by the vertically sheared horizontal flow at the Kolmogorov scale. Its dominance
could be shown by p.d.f.s for the angles between the vertical axis and the principal
axes of the strain-rate tensor, and by the contribution to the total kinetic-energy
dissipation. Our theoretical analysis similar to Batchelor (1959) shows that the
vertically sheared horizontal flow at the Kolmogorov scale reduces the vertical scale
of density fluctuations, but does not change the horizontal scale.

We finally discuss how the Prandtl-number effect investigated in this paper will
change for a different initial Reynolds number Re0 or a different initial Froude number
Fr0. If the Reynolds number increases, the difference between the energy-containing
scale and the Kolmogorov scale becomes larger. Then, the large-scale quantities such
as energy will become more insensitive to the Prandtl number, while the small-scale
quantities such as the energy-dissipation rate are still normally affected by the
Prandtl number. If the Froude number decreases, or if the Brunt–Väisälä frequency
N∗ increases, the buoyancy Reynolds number Reb (= ε

∗

K/(ν
∗N∗2)) will decrease since

the kinetic-energy dissipation rate ε∗K will not change significantly (Bartello & Tobias
2013). The reduction of Reb means that the effect of stratification becomes more
significant and the nonlinear effect becomes weaker, so that the molecular effect of
the Prandtl number becomes more conspicuous.
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Appendix A. Principal axes of the vertically sheared horizontal flow
We derive here the angles between the vertical axis and the principal axes of the

strain-rate tensor of the vertically sheared horizontal flow, in which only ∂u/∂z and
∂v/∂z are non-zero and the other elements are zero. The principal values of the strain-
rate tensor are

α =
1
2

√(
∂u
∂z

)2

+

(
∂v

∂z

)2

, β = 0, γ =−
1
2

√(
∂u
∂z

)2

+

(
∂v

∂z

)2

, (A 1a−c)

and the corresponding principal axes are

α=

(∂u/∂z)/(2‖S‖)
(∂v/∂z)/(2‖S‖)

1/
√

2

 , β=

 (∂v/∂z)/
√
(2‖S‖)

−(∂u/∂z)/
√
(2‖S‖)

0

 , γ =

−(∂u/∂z)/(2‖S‖)
−(∂v/∂z)/(2‖S‖)

1/
√

2

 ,
(A 2a−c)
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where ‖S‖=
√
{(∂u/∂z)2 + (∂v/∂z)2}/2 is the Frobenius norm of the strain-rate tensor.

Then, both θzα and θzγ become π/4, and θzβ becomes π/2 since ez ·α= ez · γ = 1/
√

2
and ez · β = 0.

Appendix B. Review of the theory for a high-Pr passive scalar (Batchelor 1959)

Here is a brief review of the theory by Batchelor (1959), which describes the
sub-Kolmogorov behaviour of a high-Pr passive scalar in isotropic turbulence.
He considered a material element of fluid whose dimension is smaller than the
Kolmogorov scale, and with an initially sinusoidal variation of the high-Pr scalar.
The length scale of change of the velocity gradient is assumed to be larger than
the Kolmogorov scale, and the principal values of the strain-rate tensor are constant
for time intervals at least as large as the Kolmogorov time. Then, the element is
in effect distorted by a purely straining motion of a constant magnitude. Choosing
the Cartesian coordinates, (X, Y, Z), which translate and rotate with the element and
which correspond to the principal axes of the strain-rate tensor of the element, the
convection–diffusion equation of the scalar θ in the non-dimensional form becomes

∂θ

∂t
+ αX

∂θ

∂X
+ βY

∂θ

∂Y
+ γZ

∂θ

∂Z
=

1
Re0Pr

(
∂2θ

∂X2
+
∂2θ

∂Y2
+
∂2θ

∂Z2

)
, (B 1)

where the largest principal value of the strain-rate tensor, α, and the smallest principal
value, γ , satisfy α > 0 and γ < 0, respectively, because of the incompressibility
condition (α + β + γ = 0). Equation (B 1) is satisfied by θ(X, t)= A(t) sin(m(t) · X),
with

dmX

dt
=−αmX,

dmY

dt
=−βmY,

dmZ

dt
=−γmZ, and

dA
dt
=−

m2
X +m2

Y +m2
Z

Re0Pr
A,

(B 2a−d)
where the wavenumber vector m= (mX,mY,mZ). The solution with the initial condition
A(0)= A0 and m(0)= (mX0,mY0,mZ0) is

m(t)= (mX0 exp(−αt),mY0 exp(−βt),mZ0 exp(−γ t)), (B 3)

and

A(t)= A0 exp
[

1
2Re0Pr

(
m2

X −m2
X0

α
+

m2
Y −m2

Y0

β
+

m2
Z −m2

Z0

γ

)]
. (B 4)

For a sufficiently large t, the solution asymptotes to

|m|2→m2
Z0 exp(−2γ t) and A→ A0 exp

(
|m|2

2γRe0Pr

)
. (B 5a,b)

This shows that the small-scale fluctuations are generated in the most contractive
direction (Z direction), and the planes of constant θ are turned so that the direction
of their normal, m, approaches asymptotically the direction of the greatest rate of
contraction.
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Appendix C. Transport equation of the density perturbation in the reference
frame moving with the fluid element

We consider the transformation of the transport equation of the density perturbation
in the stationary coordinates (x, t) into that in the translational coordinates (X, T).
These two coordinates are related by

X= x−
∫ t

t0

uel(τ ) dτ , and T = t− t0, (C 1a,b)

where uel(t)= (uel, vel,wel) is the velocity of the fluid element relative to the stationary
coordinates and t0 is a time at which Reb� 1 is satisfied. Let the density perturbation
in the translational coordinates be %′(X, T) (= ρ ′(x, t)). Then, the partial derivatives
with respect to the variables in the stationary coordinates are rewritten by using the
chain rule as

∂ρ ′

∂t
=
∂%′

∂T
∂T
∂t
+
∂%′

∂X
∂X
∂t
+
∂%′

∂Y
∂Y
∂t
+
∂%′

∂Z
∂Z
∂t
=
∂%′

∂T
− uel

∂%′

∂X
− vel

∂%′

∂Y
−wel

∂%′

∂Z
, (C 2)

∂ρ ′

∂x
=
∂%′

∂X
,

∂ρ ′

∂y
=
∂%′

∂Y
, and

∂ρ ′

∂z
=
∂%′

∂Z
. (C 3a−c)

Substituting the above relations into (2.2) leads to the transport equation of the density
perturbation in the frame of reference moving with the fluid element,

∂%′

∂T
+U

∂%′

∂X
+ V

∂%′

∂Y
+W

∂%′

∂Z
=

1
Re0Pr

(
∂2%′

∂X2
+
∂2%′

∂Y2
+
∂2%′

∂Z2

)
+W +wel(t0 + T),

(C 4)
where U= (U, V,W) is the velocity in the translational coordinates and satisfies

U=
dX
dt
= u− uel. (C 5)

Assuming the vertically sheared horizontal flow (U, V,W)= (SXZ, SYZ, 0), we finally
obtain

∂%′

∂T
+ SXZ

∂%′

∂X
+ SYZ

∂%′

∂Y
=

1
Re0Pr

(
∂2%′

∂X2
+
∂2%′

∂Y2
+
∂2%′

∂Z2

)
+wel(t0 + T), (C 6)

which reduces to (3.26) by replacing %′ with ρ ′.
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