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Morphodynamic descriptions of fluid deformable surfaces are relevant for a range of
biological and soft matter phenomena, spanning materials that can be passive or active, as
well as ordered or topological. However, a principled, geometric formulation of the correct
hydrodynamic equations has remained opaque, with objective rates proving a central,
contentious issue. We argue that this is due to a conflation of several important notions that
must be disambiguated when describing fluid deformable surfaces. These are the Eulerian
and Lagrangian perspectives on fluid motion, and three different types of gauge freedom:
in the ambient space; in the parameterisation of the surface; and in the choice of frame field
on the surface. We clarify these ideas, and show that objective rates in fluid deformable
surfaces are time derivatives that are invariant under the first of these gauge freedoms,
and which also preserve the structure of the ambient metric. The latter condition reduces a
potentially infinite number of possible objective rates to only two: the material derivative
and the Jaumann rate. The material derivative is invariant under the Galilean group, and
therefore applies to velocities, whose rate captures the conservation of momentum. The
Jaumann derivative is invariant under all time-dependent isometries, and therefore applies
to local order parameters, or symmetry-broken variables, such as the nematic Q-tensor.
We provide examples of material and Jaumann rates in two different frame fields that are
pertinent to the current applications of the fluid mechanics of deformable surfaces.
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1. Introduction
Morphodynamic descriptions of fluid and elastic deformable surfaces have relevance
across a wide variety of biological and soft matter systems, including lipid membranes
(Rangamani et al. 2013; Morris & Turner 2015; Sahu et al. 2017, 2020a; Tchoufag et al.
2022) and vesicles (Boedec et al. 2014; Keber et al. 2014; Al-Izzi et al. 2020a,b), thin
layers of cortical cytoskeleton (Kruse et al. 2005; Bächer et al. 2021; Da Rocha et al.
2022), monolayers of epithelial tissue (Morris & Rao 2019; Al-Izzi & Morris 2021;
Julicher et al. 2018; Blanch-Mercader et al. 2021a,b; Hoffmann et al. 2022; Khoromskaia
& Salbreux 2023), liquid crystal shells (Napoli & Vergori 2012; Khoromskaia & Alexander
2017; Nestler & Voigt 2022; Nestler & Voigt 2022), actuating nematic elastomers and
glasses (Modes & Warner 2011; Modes et al. 2011; Mostajeran et al. 2017; Feng et al.
2024), composites of microtubules and kinesin motors (Sanchez et al. 2012; Ellis et al.
2018; Pearce et al. 2019, 2021) and actively polymerising actin filaments (Simon et al.
2019). These examples encompass a broad range of media which can be active or
passive (Salbreux & Juhlicher 2017; Al-Izzi & Alexander 2023), and which often possess
additional order in the form of a nematic director field. Active nematic surfaces have been
increasingly studied in the context of tissue mechanics and morphogenesis (Bächer et al.
2021; Rank & Voigt 2021; Alert 2022; Bell et al. 2022; Nestler & Voigt 2022; Salbreux
et al. 2022; Vafa & Mahadevan 2022; Khoromskaia & Salbreux 2023), where the nematic
ordering – and in particular the topological defects – are known to play an essential role in
the development of protrusions and extrusions (Julicher et al. 2018; Metselaar et al. 2019;
Al-Izzi & Morris 2021; Hoffmann et al. 2022; Pearce et al. 2022; Vafa & Mahadevan
2022, 2023; Hoffmann et al. 2023).

The underlying formulation of morphodynamics in this context has been explored in
recent years (Torres-Sánchez et al. 2019; Al-Izzi & Morris 2023), and while there is
a growing appreciation for the importance of a principled, geometric approach to the
correct hydrodynamic equations, certain aspects have remained opaque. Most notably,
and independent of any particular model or material under consideration, there is still
confusion about how notions that have long been well understood in a fixed flat space
translate to a moving and deforming surface, with the correct choice of objective rates
being a persistently contentious issue (Marsden & Hughes 1994; Nitschke & Voigt 2022;
Al-Izzi & Morris, 2023).

Partly, this difficulty arises from the large number of choices for objective rates. In
Marsden & Hughes (1994), it is shown that any linear combination of Lie derivatives of the
different covariant/contravariant/mixed forms of a tensor is objective. Furthermore, Kolev
& Desmorat (2021) show that there are yet more classes of objective rates that do not arise
from Lie derivatives. The choice of which rate is appropriate for a given application is not
obvious, and various authors have made different choices. Oldroyd (1950) discussed the
difference between upper- and lower-convected derivatives, introducing the “Oldroyd A”
and “Oldroyd B” models which are widely used in the literature on viscoelastic materials.
These have been used to model complex fluids and deforming surfaces Stone et al. (2023);
de Kinkelder et al. (2021). Al-Izzi & Morris (2023) employ the Jaumann rate, an average
of Oldroyd’s upper- and lower-convected rates, in their study of morphodynamics. The
same rate is widely employed in the literature on liquid crystals, for example in deGennes
& Prost (2013). Nitschke & Voigt (2022, 2023) have discussed the differences between
various rates – including the upper and lower convected, material and Jaumann rates –
in the context of deformable surfaces, and have computed them in various specific cases.
They use these empirical differences to make suggestions regarding which rate is correct
for which scenario. However, there remains no clear and principled method of choosing
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which is appropriate for a given application, and often there is little physical intuition
underlying the choices made. We therefore argue that there remains no clear consensus
about which rate is correct for a formulation of morphodynamics.

In this paper, we address the issue of objective rates in morphodynamics via three key
contributions.

The first is split across §§ 2 and 3. In § 2 we provide a formal mathematical description
of the motion of a deformable surface which clarifies the concepts of an ‘Eulerian’ and a
‘Lagrangian’ description. The way these terms are used in the literature on deformable
surfaces is imprecise and at odds with the way they are defined formally (e.g. by
Arnold & Khesin 2021) in the mathematical literature, which can lead to confusion. For
example, in the computational studies of Torres-Sánchez et al. (2019) and Sahu et al.
(2020b), the terms ‘Eulerian’ and ‘Lagrangian’ do not correspond to the use of the
terms by Arnold & Khesin (2021), but to the difference between ‘fixed-surface coordinate
systems’ and ‘convected coordinate systems’, a rather different concept. These are really
manifestations of an inherent gauge freedom that exists in the mathematical description
of a deforming surface, and the conflicting use of terminology has led to a muddling
between the Eulerian/Lagrangian dichotomy and the notions of objectivity and gauge
freedoms in morphodynamics, which we attempt to disentangle. In § 3, we precisely
describe three group actions that relate to different gauge freedoms in the description
of a deforming surface: a freedom in the ambient space which relates to objectivity, a
freedom in the coordinate parameterisation of the surface itself and the freedom to choose
a frame field along the surface. This last gauge freedom captures the distinction between
‘fixed-surface coordinate systems’ and ‘convected coordinate systems’: a ‘Lagrangian’
frame (really a convected coordinate system) is one that moves with the fluid, while an
‘Eulerian’ frame (really a fixed-surface coordinate system) is one which ‘stays still’. A
careful disambiguation of these distinct concepts provides both mathematical and physical
insights.

Secondly, in § 4 we carefully examine the concept of an objective rate for a deformable
surface. We clarify the formulation of objectivity by presenting it in terms of invariance
under certain gauge transformations – this is a principled approach making use of the
symmetries inherent in physics, and therefore our notions do not depend on the context
of a specific material. We also stress that it is important to impose another physically
motivated requirement on our rates, besides just objectivity: that the rate does not advect
the Euclidean metric in the ambient space. This constraint has not, to our knowledge,
been examined in the context of fluid dynamics in a fixed space, but when we consider a
deformable surface it becomes especially relevant. With this additional requirement, the
material and Jaumann rates emerge as the correct choices for the objective rate. These
are shown to be invariant under different group actions. The former applies to velocities,
whose rate is intimately linked with momentum conservation, and thus is synonymous
with the Galilean group of transformations. The latter applies to local, symmetry-broken
variables, such as the nematic Q-tensor, that are manifestly invariant under all time-
dependent isometries. More concretely, this comes down to whether the rate of a given
quantity should depend on (global) angular momentum, and therefore whether an observer
is spinning: the material derivative does not account for this, whereas the Jaumann rate is
“corotational”.

Our third contribution is to provide formulas for the material and Jaumann rates of
various quantities involved in surface dynamics. In § 5 we give expressions for these
quantities in two different choices of frame. The first is a local coordinate chart which
is not advected by the flow – an “Eulerian” parameterisation (Torres-Sánchez et al. 2019,
2020; Sahu et al. 2020b) – and the second is an orthonormal frame. Detailed computations
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of this formula using two different approaches – the Riemann–Cartan method of moving
frames, as well as the more familiar Ricci calculus that employs a coordinate frame and
Christoffel symbols – are presented in Appendices A and B. We also include Appendix C,
which overviews the geometric notions of pushforward and pullback that we make use of
throughout the text.

Sections 2 and 3 contain technical material regarding the distinction between Eulerian
and Lagrangian formulations of deformable surface physics and the three gauge freedoms
inherent in the formulation. In our discussion we employ various notions from differential
manifold theory, such as group actions, Lie derivatives and fibre bundles, to bring some
mathematical clarity to the subject. To aid readers who are unfamiliar with this material
we have given informal descriptions of these concepts as they are introduced, and more
technical details can be found in Frankel (2011). We strongly advocate a wider use of this
machinery, especially when discussing deformable surfaces, where geometry plays such
an essential role, and hope our discussion here helps promote this.

Readers who are less interested in these technical issues and more so in the practical
question of which objective rate to use and how to compute it may skip §§ 2 and 3 and focus
on §§ 4 and 5. We provide an overview of all the results in this paper in the discussion, § 6,
suitable for readers of all backgrounds.

2. Eulerian vs Lagrangian perspectives
Consider the standard distinction between the Eulerian and Lagrangian perspectives on
fluid flow inside a fixed manifold S. In the Eulerian perspective, we imagine standing still
at a fixed point in S and watching the fluid flow past us. The Eulerian specification of the
flow field at a point p ∈ S and at time t is therefore a vector vt (p) in the tangent space
Tp S to the point p that gives the direction in which matter is flowing past us. Globally,
this results in a time-dependent vector field vt on S, a path in the space X(S) of vector
fields on S. By contrast, the Lagrangian perspective instead considers the medium to
be made up of fluid particles, whose paths we follow through time. At time t , the fluid
particle that was initially at point p ∈ S has moved to some new point ψt (p) ∈ S. For a
smooth fluid motion, this gives rise to a time-dependent diffeomorphism ψt of S, a path
in the diffeomorphism group Diff(S) –recall that a diffeomorphism is nothing more than
a smooth and invertible relabelling of the points of S, and that two diffeomorphisms can
be composed to give another diffeomorphism, which gives the collection Diff(S) of all
diffeomorphisms the mathematical structure of a group. Crucially, these two perspectives
are completely equivalent and can be mapped onto one another: the Eulerian flow field vt
and the Lagrangian diffeomorphism ψt are related by

vt ◦ψt = ∂tψt , (2.1)

where ∂t denotes partial differentiation with respect to time.
The deeper mathematical relationship between Eulerian and Lagrangian perspectives

has been studied using the language of differential geometry and Lie group theory, a set
of ideas originally developed by Arnold (2014) and described in detail in the textbook of
Arnold & Khesin (2021). We will not give a detailed discussion of this theory here, and
instead only concern ourselves with aspects salient to the differences between ordinary
fluid dynamics and the motion of deformable surfaces. Chief amongst these is the use of
(2.1) to interpret ∂tψt as a vector field on S: while this is fine in the setting of ordinary
fluid dynamics, trying to carry this reasoning over to the setting of deformable surfaces
requires care.
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Properly, a Lagrangian motion is a path through the diffeomorphism group Diff(S) (or
the group SDiff(S) of volume-preserving diffeomorphisms for an incompressible flow).
At each time t the tangent direction ∂tψt to this path lies in the tangent space Tψt Diff(S)
to the diffeomorphism group at the point ψt . At any point the tangent space to the
diffeomorphism group can be identified with its Lie algebra, and this is nothing more than
the space X(S) of vector fields on S – thus, for any fixed t , ∂tψt can be understood as a
vector field on S. When considering the motion and deformation of fluid surfaces, however,
this identification is more complicated, and correspondingly the relationship between the
Eulerian and Lagrangian perspectives is more complicated.

Notably, when dealing with deformable surfaces there is not one manifold, but three: an
abstract body B, which in our case is a two-dimensional (2-D) manifold because we are
considering a deformable surface; an ambient space in which the motion happens, which
for us will always be 3-D Euclidean space R

3 equipped with the Euclidean metric e; and
the image M of B in R

3, which is the physical surface which we observe. The ambient
space is the natural analogue of the fixed manifold in ordinary fluid dynamics, and must
remain invariant under any dynamics. The body is not usually equipped with a metric, but
often has a volume form μ which is interpreted as a density measure for an unstrained
configuration, and is necessary to describe conservation of mass and incompressibility.

To clarify, we consider a configuration of the system as an embedding r : B →R
3 of

the body into the ambient space, whose image is the material, a smooth submanifold M
of R

3. The collection of all such embeddings is a space Emb which has the structure
of an infinite-dimensional manifold – the details of infinite-dimensional spaces are not
relevant to our discussion here, what is relevant is that intuitive notions of smooth paths
and variations make sense in this context. A motion of the system is then a path rt : B →
R

3 of embeddings with images Mt , that is, a path in Emb – the role played by this space
is therefore analogous to the role played by the diffeomorphism group Diff(S) in the case
of ordinary fluid dynamics in a fixed space S.

The derivative ∂t rt defines a tangent vector to this path in the space Emb. Define Ut to
be the value of this derivative at time t , an element of Trt Emb: this is a map Ut : B →
TR3. For a deformable surface this map is the analogue of the derivative ∂tψt of the
diffeomorphism giving the Lagrangian description of the motion. However, note that this
map is not a vector field, either on B or in R

3, and it cannot be identified with one via the
relationship (2.1) used in ordinary fluid dynamics because the tangent space to Emb is not
isomorphic to a space of vector fields. This is one of the key differences when considering
the motion of a deformable surface.

We can derive two vector fields from the map Ut according to the diagram shown in
figure 1. The first of the two vector fields is the “right Eulerian velocity”, a map vt : Mt →
TR3 defined by

vt := Ut ◦ r−1
t . (2.2)

This is a vector field in R
3 defined along Mt . As such, it decomposes as vt = v‖

t + vn
t nt ,

where v‖
t is tangent to Mt and nt is the normal. There is also the ‘left Eulerian velocity’, a

vector field Vt : B → TB on B defined by

Vt := (Trt )
−1 ◦ Ut . (2.3)

Here, Trt denotes the tangent map induced by the embedding; see Appendix C for the
definition. The right Eulerian velocity pulls back to the left Eulerian velocity, r∗

t vt = Vt ,
but for purely dimensional reasons the normal component is lost and the pushforward of
the left Eulerian velocity is accordingly rt∗Vt = v‖

t , the tangent part vt .
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TB

B M B p

Trt
Tℝ3

ℝ3

Trt

rt

rt

Ut vt Ut

Vt  (p)

vt (rt (p))

rt (p)

Vt

Trt (p)TpB

π π ππ

Figure 1. An embedding rt of an abstract space B into R
3 induces a vector field Vt on B called the left Eulerian

velocity, as well as a map vt : Mt → TR3 on the image Mt of the embedding. We interpret that latter as a vector
field along Mt which has a part tangent to Mt but may also have a part normal to Mt , and refer to it as the right
Eulerian velocity. Pulling back this vector field along the embedding rt ‘forgets’ the normal part, yielding the
left Eulerian velocity Vt . The mathematical relationships between these maps are shown in the diagram on the
left, while a more visual representation is shown on the right. Here, Trt denotes the tangent map (matrix of
partial derivatives) induced by rt , π is the projection from the tangent bundle to the underlying manifold and
Ut = ∂t rt as described in the text.

Neither of these vector fields quite corresponds to our intuitive idea of Eulerian motion:
the right Eulerian velocity vt is defined on a surface that is intrinsically moving; the
left Eulerian velocity does not encode the normal motion of the surface. To properly
specify the Eulerian and Lagrangian descriptions of surface motion, we need to introduce a
small amount of additional structure which formally captures some intuitive notions about
surface dynamics that would be unnecessary if B were itself a 3-D body.

The manifold Mt has two natural vector bundles associated with it. The first is TMt ,
its usual 2-D tangent space. However, we also need to consider directions that contain a
component normal to Mt , and these lie in a 3-D bundle that we denote by Et , the restriction
of TR3 to Mt . The Euclidean metric defines an orthogonal splitting Et = TMt ⊕ Nt , where
Nt is the 1-D normal bundle. The orthogonal projection of the Euclidean metric onto TMt
is then exactly the induced metric on Mt (the first fundamental form). The right Eulerian
velocity vt is a section of the bundle Et ; to be explicit, a vector field defined along Mt that
has both tangent and normal components. This bundle is visualised in figure 2.

We fix an initial embedding r0 with image M0. The motion rt then induces
diffeomorphisms λt : M0 → Mt with λt = rt ◦ r−1

0 . The path λt (p) of some point p ∈ M0

is then naturally seen as the motion of a fluid particle in the ambient space R
3, as thus is

the a Lagrangian description of the motion. We have the relationship

vt ◦ λt = ∂tλt , (2.4)

and hence the right Eulerian velocity vt is the vector field naturally associated with the
Lagrangian motion λt .

The Eulerian description must involve standing at a fixed point on the initial manifold
M0. If Mt were a 3-D manifold, there we would be no problem with pulling back the
velocity field vt on Mt along λt to give a vector field on M0 that naturally corresponds to
the Eulerian picture of the motion Casey & Papadopoulos (2002). Because we consider a
2-D surface this does not work out for dimensional reasons, but this is a purely technical
issue that can easily be resolved with a simple definition.

The map Tλt : TM0 → TMt associates a tangent vector on M0 with a tangent vector on
Mt . Let us define a map At : E0 → Et that acts on the spaces of 3-D vector fields along
M0 and associates them with 3-D vector fields along Mt . To define this map, we use the
splitting Et = TMt ⊕ Nt into a tangent space and a normal bundle. By linearity, it suffices
for us to define that At acts on the TM0 factor exactly as Tλt , and acts on the N0 factor
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t

N0

p

E0

TM0

M0

Mt

ℝ2

ℝ2

vt (p)

st  (p)

st

pp
v0 (p)

v0 (p)

vt (λt (p))

vt (ψt (p))

ψt

λ*t  nt 
λ*t v┴

t 

λt

(a) (b)

Figure 2. Comparison of the Eulerian and Lagrangian pictures for motion in a fixed surface (a) and for a
deformable surface (b). In a fixed plane R

2, the Lagrangian picture involves a diffeomorphism ψt of R2 that
moves a fluid particle initially the point p to the point ψt (p). We may also consider an Eulerian picture,
where we stand still at the point p and watch the fluid flow past us, its direction at time t being given by
the vector vt (p). A deformable surface Mt embedded in R

3 undergoes a Lagrangian motion described by
a diffeomorphism λt : M0 → Mt that maps the initial surface onto the time t surface. The associated right
Eulerian velocity field vt lies in the extended tangent space Et to Mt , as described in the text. By pulling back
the entire tangent space via λt (inset) as described in the text we can define a time-varying vector field st along
M0 which plays the role of the Eulerian velocity at a fixed point p ∈ M0.

by mapping the unit normal n0 to M0 to the unit normal nt to Mt . Now, we may naturally
define a section st of E0 by

st (p) := A−1
t ◦ vt ◦ λt (p). (2.5)

Concretely, if vt ◦ λt = v‖
t + vn

t nt , then

st (p)= λ∗t v‖
t + (λ∗t vn

t )n0. (2.6)

Then st is always a 3-D vector field along M0, as we may consider it to be the Eulerian
flow field of the motion. It of course satisfies s0 = v0, because the map A0 is just the
identity map. We visualise this pullback process in figure 2. We could also describe this in
a convective representation on the manifold B, by pulling the whole bundle Et back along
the embedding rt , and taking the pullback r∗

t st as the left Eulerian velocity, a section of
r∗

t Et .
The ways in which the terms ‘Eulerian’ and ‘Lagrangian’ are often used in the literature

– especially in computational studies (Torres-Sánchez et al. 2019, 2020; Sahu et al. 2020b)
– refers to something quite different from the Eulerian–Lagrangian split we have just
outlined. Rather, they describe different ways of parameterising quantities on the surface
in terms of a surface frame field: this may be convected with the fluid (‘Lagrangian’)
or not (‘Eulerian’). The freedom to choose the frame is a kind of ‘gauge freedom’, and
the physics is agnostic to the particular choice of gauge. There are, in fact, several gauge
freedoms that arise in the mathematical formulation of morphodynamics, some of which
leave the physics invariant and some of which do not, and these choices play an essential
role in the formulation of objectivity and observer motion. We describe this in detail in the
next section.
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3. Gauge freedom
We describe gauge freedoms in the usual language of gauge theory in physics, in terms of
the action of a symmetry group and the principal bundle which it defines (Frankel 2011;
Naber 2011a,b). We introduce this technical language to help make contact with other
areas of physics and also for precision, but a familiarity with it is not essential to follow
the key arguments of this section, as long as the reader grasps the intuitive notion of a
symmetry group acting on a space, which we describe now.

Informally, a group action describes the way that transformations move points around in
a physical space. For example, the circle group acts on a plane by rotations: the rotation by
an angle α maps a point specified by (r, θ) in polar coordinates to the point (r, θ + α). The
group act divides the space up into pieces that it leaves invariant –in our example, these
pieces are circles of constant radius in the plane, since any rotation will keep the points
on one of these circles on that circle. This partition of the space up into a parameterised
family of pieces is, loosely, the concept of a bundle.

In order to help fix ideas, we briefly comment on how gauge freedoms manifest in
the motion of a fluid in a fixed space S. There is a natural action of the group Diff(S)
on this space which captures the notion of a Lagrangian flow – a diffeomorphism ψ

moves the point p to the point ψ(p) in S. It has a subgroup Isom(S) of isometries, those
diffeomorphisms φ that fix the metric g on S, φ∗g = g. In n-dimensional Euclidean space
this is the Euclidean group E(n) of rotations and translations. If we add in time-dependent
isometries with a constant velocity, so-called Galilean boosts, then we obtain the Galilean
group, Gal. Hydrodynamics is manifestly not invariant under the action of Diff(S), but it
is required to be invariant under Gal. This then corresponds to a gauge freedom in how we
specify our equations of motion, as we are free to describe the physics itself in any inertial
reference frame. Informally, objectivity is the invariance of our equations of motion under
the action of the Galilean group, which can be interpreted as their invariance under a
motion of a hypothetical observer in an inertial reference frame.

There is a second gauge freedom which is not concerned with the physics, but simply the
representation of physical quantities. A frame field on S is a choice of basis for the tangent
space Tp S at every point p, which varies smoothly on space. We should be careful to
disambiguate this from the notion of an inertial reference frame or a hypothetical observer,
and hence from the notion of objectivity – it is a fundamentally different concept. To
describe a physical quantity that is a vector or a tensor – for example the velocity field
v – we pick some frame field e j – for example a coordinate frame – which spans the tangent
space to S, and then we may write v = v j e j for some set of functions v j . However, the
frame field is entirely arbitrary and bears no relation to the physics. We are free to choose
a different frame field ē j and instead write v = v̄ j ē j . Of course, the vector field v does
not change under a change of frame, and it does not matter whether the frame field is a
coordinate frame, whether it is orthonormal, or whether it varies in time. This freedom to
choose the frame field is then associated with the action of Diff(S) not on the manifold
itself, but on the frame bundle FS → S, an action which sends a frame e j to the new frame
ψ∗e j .

Now we return to the setting of deformable surfaces. In this problem there are really
three distinct gauge freedoms, and part of the confusion around objectivity and “Eulerian”
vs “Lagrangian” motions has to do with a failure to properly disambiguate between them.
The state of the deforming surface is captured by an element r ∈ Emb. There are two group
actions on this space: E(3) and Diff(B) act on Emb respectively from the right and the left.

The first group E(3) is the isometry group of the ambient space, and it reflects our ability
to change reference frames in the ambient space (not on the surface). The second group
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Diff(B) is the diffeomorphism group of B, and its action on Emb reflects our ability to
make arbitrary changes of coordinate system in the base space. This is a gauge freedom
related to the parameterisation of the motion of the surface itself, independently on any
physics or quantities defined on the surface. The third gauge freedom again concerns an
action of Diff(B), but this time on the frame bundle FB → B; equivalently, an action of
the diffeomorphism group Diff(Mt ) of the embedded surface at time t on its own frame
bundle FMt → Mt . Informally, a frame on M consists of a choice, for each point p ∈ M , of
basis for the tangent space Tp M , and the frame bundle F M → M consists of all possible
choices of frame on M – for example, any global choice of coordinate function defines
a frame. As with motion in a fixed space, this group action describes our freedom in
choosing a local frame field with which to represent quantities defined along the surface.

We concretely define each of these group actions and their associated gauge freedoms
in the following subsections, and describe their physical interpretation in more detail.

3.1. Gauge freedom in the ambient space
First we describe the action of the isometry group. For an isometry φ ∈ E(3) and
embedding r ∈ Emb, the group action sends r to the composition φ ◦ r and sends the
image M of r to a different submanifold φ(M). While these two submanifolds will in
general be different, they are related by a rigid body motion and not by a deformation (that
is, a “pure motion”) and the first and second fundamental forms induced on φ(M) are the
same as those on M – more precisely, the pullbacks of these quantities to B are equal.

Readers familiar with bundle theory may appreciate an alternative perspective on this:
it is possible to view this gauge freedom as introducing a fibre bundle structure on Emb,
parameterising the choices of “observer reference frame” in the ambient space in the
following way. Group actions on a space define quotient spaces and principal bundles over
those spaces (Frankel 2011; Naber 2011a,b), by collapsing any submanifold left invariant
by the group action down to a single point in the quotient. We define Iso to be the quotient
space defined by the action of E(3) on Emb. This is the space of deformable surfaces up to
isometry, which can be interpreted as surfaces with a fixed centre of mass (we can always
use a translation to move this to the origin) and a fixed orientation at the centre of mass
(a global rotation ensures this can always point along the z-axis). Alternatively, we may
view it as the space of deformable surfaces with a single fixed point p at which the normal
direction never changes. Associated with Iso is the fibre bundle

E(3)→ Emb → Iso. (3.1)

Sitting above a point in Iso is the group E(3) which parameterises all possible placements
and orientations for the centre of mass (equivalently a fixed point p) of the surface – this
is the gauge freedom, and fixing a given isometry returns us to a point in the full space
Emb. A path of distinct embeddings which correspond to the same point in Iso can be
distinguished by an observer stood at a fixed point in space, but if the observer is allowed
to move with the surface they can change their position so that their view of it never
changes. More succinctly, in Iso we see only deformation and not the motion.

The action of E(3) is then associated with a gauge freedom – the equations of motion
are invariant under the action of E(3), and so the physics does not really “see” motion in
Emb, it only sees motion in the quotient space Iso.

As we saw in the case of a fixed space, the definition of objectivity requires extending
this group action to the larger space of time-dependent isometries, of which the Galilean
group Gal is a subgroup. We discuss this, including some of the subtleties, in more detail
in the next section.
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3.2. Gauge freedom on the deforming surface
The group Diff(B) acts on Emb as follows. Let r ∈ Emb be an embedding and ψ a
diffeomorphism (coordinate change) of B. The action of Diff(B) sends r to r ◦ψ .
The image of B under r ◦ψ is the same as its image under r , i.e. these two different
embeddings define exactly the same submanifold M of R3, but they correspond to distinct
points in Emb. This coordinate change therefore induces no motion and no deformation
of the surface. Instead of considering motion relative to B we may instead consider it
relative to M0, the initial material surface, in which case we consider the action of the
group Diff(M0) – clearly isomorphic to the group Diff(B) – acting to change coordinates
in the initial surface, with corresponding action on the diffeomorphism λt : M0 → Mt .

Again, it may help readers familiar with bundle theory to view this gauge freedom as
parameterising choices of coordinates on the surface via a fibre bundle structure on Emb.
The quotient space defined by the action of Diff(B) on Emb is the ‘space of membranes’
Memb, which can alternatively be described as the collection of all images of embeddings

Memb = {r(B) | r ∈ Emb}. (3.2)

From the perspective of an outside observer it is impossible to distinguish points in Emb
that correspond to the same point of Memb, even if the observer moves around – all that
distinguishes them is the patameterisation of the surface, which has no physical meaning.
We then have an associated fibre bundle,

Diff(B)→ Emb → Memb. (3.3)

Sitting above each point in Memb – which is nothing more than some submanifold M of
Euclidean space with the same topology as B – is a copy of the group Diff(B), which can
be thought of as parameterising all possible coordinate systems on M .

We want to consider the effects of changing this particular gauge on our description of
the motion. Let rt : B →R

3 be any path of embeddings describing a motion, with image
Mt , and let ψt be an arbitrary time-dependent diffeomorphism of B. We associate with
ψt its “drive velocity” wψt = (∂tψt ) ◦ψ−1

t , which is a vector field on B which can be seen
as the velocity of an observer moving around on B (not in the ambient space) starting
at an initial point p whose own (Lagrangian) motion is ψt (p). A time-dependent drive
velocity generates a “fictitious flow” ∂t w

ψ
t on the surface, and thus the hydrodynamics of

any physical quantity defined on the surface is not invariant under this group action even
though the motion of the surface itself is.

Concretely, if we define a new embedding rψt := rt ◦ψt , then this embedding has the
same image Mt as rt and the associated right Eulerian velocity field is

vψt = vt + rt∗wψt , (3.4)

where vt = (∂t rt ) ◦ r−1
t is the Eulerian velocity field associated with rt . We note that,

since wψt is a vector field on B, its pushforward rt∗wψt is a tangent vector field on Mt with
no component along the normal direction. In particular, this suggests a natural choice of
gauge transformation in which ψt is chosen so that −rt∗wψt is exactly the tangential part
of vt , and hence the velocity field in this gauge is directed along the normal direction to
Mt . Indeed, this gauge can be defined as one in which the pullback of vψt vanishes, which
obviously requires that

0 = r∗
t vψt = Vt + wψt . (3.5)
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M0
M0

Mt

Mt
(ψt (p), ht (p))

ψt

ψt ( p)

ψN
t  ( p)

vMt   ez

vNt  (ez − hMt   )

( p, ht (ψt
−1

  ( p)))

ψN
t  p

p

(b)(a)

Figure 3. (a) Construction of a Monge gauge. The evolution of an initially flat surface (green) can be
decomposed as a pair (ψt (p), ht (p)) where ψt (orange) is a diffeomorphism is the initial surface M0 and
the ht is a height function. By making a time-dependent change of gauge using the inverse ψ−1

t as described
in the text, we can ensure the evolution is determined purely by a gauge-transformed height function ht ◦ψ−1

t ,
which ensures a fluid particle initially at the point p evolves purely in the vertical direction (pink). (b) Transition
from the Monge gauge (pink) to the normal gauge (purple). This involves a diffeomorphism ψN

t (blue) whose
drive velocity is −∇hM

t , where hM
t = ht ◦ψ−1

t is the height function in the Monge gauge. In the Monge gauge
the velocity vector of the surface is vM = vM ez , while in the normal gauge it is vN = vN (ez − ∇hM ).

We call this the ‘normal gauge’. This tells us that the space Memb only ‘sees’ the normal
part of the motion and never the tangential part, which can always be cancelled out by
a relabelling of the fluid particles. Computationally, when describing the evolution of
the deforming surface itself (but not quantities on the surface) it is convenient to work
in the space Memb, moving the mesh points purely along the normal direction Torres-
Sánchez et al. (2019). Because the surface is invariant under these gauge transformations
this presents no issue. However, Memb ignores all evolution on the surface, and therefore
we cannot describe the evolution of other quantities on the surface in this gauge, only the
motion of the surface itself.

For a concrete example of this gauge transformation, choose B =R
2 to be a plane. Let

us fix the usual x, y, z on R
3, and identify B with the plane M0 with coordinates (x, y, 0).

Thus the deforming surface Mt at time t can be related to its initial value by the Lagrangian
motion λt , which can be written in the form

λt (x, y)= (ψt (x, y), ht (x, y)). (3.6)

In this expression ψt :R2 →R
2 is a diffeomorphism of M0 and ht :R2 →R is a ‘height’

function. At a point p = (x, y, z) that lies on Mt the velocity field is

vt (p)= (∂tψt ) ◦ψ−1
t (x, y)+ ht (ψ

−1
t (x, y))ez, (3.7)

where ez is the unit vector along the Cartesian z direction in R
3. Now we make a change

of gauge using the diffeomorphism ψ−1
t ∈ Diff(M0). The Lagrangian motion in this new

gauge is λM
t = λt ◦ψ−1

t , or in coordinates

λM
t (x, y)= (x, y, ht (ψ

−1
t (x, y))). (3.8)

Defining hM
t = ht ◦ψ−1

t , we see that that the motion in this gauge can be described
entirely in terms of a height function. We call this the ‘Monge gauge’ (Monge 1850)
because it is related to a local parameterisation of the surface in terms of Monge patches,
and we illustrate this transition in the leftmost panel of figure 3a.
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It is easy to see the transformation from the Monge gauge to the normal gauge. The
normal direction on the surface is ez − ∇hM

t , and so we see that the transformation to this
gauge involves a diffeomorphism ψN

t ∈ Diff(M0) with drive velocity wN
t = −∇hM

t . This
describes the motion of a surface in the quotient space Memb, where the velocity is only
ever in the normal direction. This is illustrated in the rightmost panel of figure 3b.

3.3. Frame fields
To express vector and tensor quantities on the deforming surface Mt we choose a frame
field e1, e2, n spanning the bundle Et along Mt where n is the unit normal and e j is a
tangential frame field on Mt – that is, for each point p ∈ Mt we choose a basis for Et at p,
such that this basis varies smoothly as we move around on M . Given that our deformable
surface is moving in time, our frame will also vary in time. The most natural way to define
the tangential frame is to pick a fixed set of coordinates x1, x2 on the base space B and
push the coordinate directions ex j , j = 1, 2, forwards along the embedding rt to give a
frame for the tangent space to Mt

e j := rt∗ex j . (3.9)

Conversely, any tangential frame field specified on Mt can be pulled back to give a frame
field on B. The gauge freedom is then associated with the freedom to pass to a different
frame field on B (or equivalently Mt ).

A frame field obtained by pushing forward a constant coordinate basis is what Torres-
Sánchez et al. (2019) refer to as a “Lagrangian parameterisation”. This is because the
frame freely moves along with the flow field, and therefore it is conceptually “Lagrangian”,
although we emphasise that it has nothing to do with the Eulerian–Lagrangian split in the
formulation of hydrodynamics we outlined in § 2. The tangent part of this frame field is
advected along with the velocity field of the surface according to

∂t e j = −Lve j . (3.10)

We are of course free to choose a different time-dependent frame ē j (t) on B (which may or
may not be associated with time-dependent coordinates x j (t)) and push it forward to give
a frame e j := rt∗ē j on the surface. The choice is completely arbitrary; this is what Torres-
Sánchez et al. (2019) and Sahu et al. (2020b) refer to as an ‘arbitrary mixed Eulerian–
Lagrangian parameterisation’. The time evolution is then

∂t e j = −Lve j + rt∗∂t ē j . (3.11)

There is a special case where the frame on B is chosen so that rt∗∂t ē j = −∇iv
j e j ; that

is, the frame field is not advected by the tangential part of the flow. This is the standard
choice for hydrodynamics in a fixed space. For a deforming surface, this gives rise to the
concept of a frame that is advected only by the normal part of the flow, which conceptually
corresponds to an observer that is ‘standing still’ on the deforming surface. Torres-Sánchez
et al. (2019) refer to this as an ‘Eulerian parameterisation’.

In the language of group actions, this freedom to choose the tangential part of the
frame field is associated with the action of Diff(B) on the frame bundle FB → B,
where the diffeomorphism ψ ∈ Diff(B) acts on a frame by pushforward. Because our
surface is evolving in time we consider time-dependent paths of frame fields defined by
the pushforward along a time-dependent diffomorphism ψt . The gauge transformations
associated with parameterisations of the surface in the “Monge gauge” and “normal
gauge” that we introduced in the previous subsection act on the frame bundle FB,
selecting a frame field that moves only in the z direction and only in the normal direction
respectively; the latter is of course the “Eulerian parameterisation” of Torres-Sánchez
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et al. (2019). An arbitrary time-dependent change of gauge then gives a “mixed Eulerian–
Lagrangian parameterisation” (Torres-Sánchez et al. 2019; Sahu et al. 2020b), of which
the Monge gauge is a particular example.

4. Objective rates
We now consider questions of objectivity and objective rates in fluid dynamics. Physical
quantities are not generally required to be invariant under general diffeomorphisms, as a
change to a non-inertial reference frame will introduce ‘fictitious forces’ as we described
in the previous section – a familiar example is the Coriolis force experienced by a rotating
observer. However, proper formulation of physical laws requires them to be invariant under
an appropriate subgroup of symmetry transformations, represented by diffeomorphisms,
which gives rise to the concept of objectivity. Which group of transformations is required
by objectivity is determined by the physics of the object under consideration.

For hydrodynamics in a fixed space S, a rate Dvt is a way of taking the derivative of
material quantities along the Eulerian flow field vt . To be a rate, the map D must satisfy
the Liebniz rule: for any time-dependent tensor field σ t and function ft of time

D( ftσ t )= (D ft )σ t + ft Dσ t . (4.1)

This condition implies that all rates will act the same on scalar functions. Intuitively,
the distinction between the ordinary time derivative ∂t and a rate D is that the former
only captures the way in which a material quantity itself changes in time, while the latter
captures this as well as accounting for its advection along the flow.

There is enormous freedom in defining rates. There are three notions of differentiation
that make sense on a manifold – the Lie derivative, the exterior derivative, and covariant
derivatives – and all of them may appear in a rate in various forms. The first two depend
only on the manifold topology and are essentially unique, while there are many possible
choices for the covariant derivative – requiring metric compatibility and torsion-freeness
fixes the Levi-Civita connection ∇ of the metric, but a priori neither of these conditions is
required to define a rate. Typical rates appearing in the literature include the Oldroyd rate
(Oldroyd 1950), also called the upper-convected derivative

DOσ t = ∂tσ t + Lvt σ t , (4.2)

the material derivative

DMσ t = ∂tσ t + ∇vt σ t , (4.3)

and the Jaumann rate (Jaumann 1911; Prager 1961; Masur 1961), also called the
corotational derivative,

DJσ t = ∂tσ t + 1
2

(
Lvt σ t +

(
Lvt σ

�
t

)	)
. (4.4)

The Jaumann rate is the average of Oldroyd’s upper-convected derivative and his lower-
convected derivative Oldroyd (1950).

Invariance of a rate under the action of a group of diffeomorphisms G of the space S in
which the fluid moves is expressed in the following condition: the rate D of any tensor σt
has to satisfy the equation

φ∗Dφ∗vtφ∗σ t = Dvt σ t , (4.5)
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for every element φ ∈ G of the group. Classically, objectivity of a rate is formulated as
invariance under the group of Galilean transformations Gal, which consists of all time-
independent isometries of S along with time-dependent isometries that have a constant
velocity, Galilean boosts.

The Lie derivative satisfies (4.5) for any diffeomorphism φ, which means that the
Oldroyd rate (4.2) is “general covariant”. The material derivative (4.3) satisfies (4.5) for an
isometry φ provided the covariant derivative is metric compatible, i.e. ∇ is the Levi-Civita
connection. The Jaumann rate, being expressed in terms of Lie derivatives, also satisfies
(4.5) for all isometries, but unlike the Oldroyd rate it does not satisfy (4.5) for a general
diffeomorphism.

Now we return to the motion of a deformable surface. In this setting the rate is not a
derivative on the ambient space R

3, rather, we take the rate of quantities defined along a
path rt of embeddings. The rates depend on both the path and the velocity fields associated
with the tangent direction Ut = ∂t rt to the path. In fluid dynamics on a fixed surface
possible objective rates are induced by covariant derivatives on the diffeomorphism group;
mathematically this is the correct description from the perspective of the geometric theory
of fluid dynamics (Arnold 2014; Arnold & Khesin 2021). The natural extension of this
theory to the motion of deformable surfaces is to consider the configuration space Met(B)
of Riemannian metrics on B (Rougée 2006; Fiala 2011). This is equivalent to considering
dynamics in the quotient space Memb, with the motion now viewed as the path gt = r∗

t e
of metrics on B induced by the embeddings (note that distinct paths in Emb that descend
to the same path in Memb induce the same metrics). The tangent and cotangent spaces of
Met(B) play host to the strain rate and stress in this theory – as the corresponding tangent
and cotangent spaces to Diff(B) do for fluid dynamics in a fixed space (Arnold & Khesin
2021) – and covariant derivatives on Met(B) correspond exactly to the possible objective
rates (Kolev & Desmorat 2021). This correspondence implies that there are an enormous
number of objective rates which are all equally valid from a purely mathematical point of
view; physical intuition is required to choose the correct one.

We will not adopt this perspective here. Instead, we describe the dynamics in terms of
the motion in the ambient space, and objectivity in terms of invariant under a subgroup
G ⊂ Diff(R3) of the diffeomorphism group in the ambient space. Technically we should
consider an appropriate subgroup of the group of diffeomorphisms of spacetime, but this
is equivalent to considering time-dependent paths of diffeomorphisms φt ∈ Diff(R3), and
we will not labour the distinction. Under a change of coordinates corresponding to such a
time-dependent paths of diffeomorphisms φt the velocity field vt changes to φt∗vt + wt ,
where wt = (∂tφt ) ◦ φ−1

t is the drive velocity. The condition of invariance of a rate D
under this change of coordinates is

φ∗
t Dφt∗vt+wtφt∗σ t = Dvt σ t . (4.6)

Satisfying this condition requires the rate to account for, and in some sense counteract, the
drive velocity of the diffeomorphism.

To understand how this constrains the form of the rate, we explain how to construct rates
starting from the most simple candidate, the partial derivative ∂t with respect to time, and
describe the groups of diffeomorphisms that they are invariant under. Under the action of
a diffeomorphism φt the rate of a tensor σ t changes to

∂tφt∗σ t = φt∗∂tσ t − Lwtφt∗σ t ,

= φt∗
(
∂tσ t − Lφ∗

t wt σ t
)
.

(4.7)
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In the second line we have used the facts that φ∗φ∗ = φ∗φ∗ is the identity that
that φ∗Luσ = Lφ∗uφ∗σ for any diffeomorphism φ, vector field u and tensor σ . This
calculation shows that the partial derivative is only invariant under time-independent
diffeomorphisms. This calculation motivates the definition of the Oldroyd rate (4.2), as
the addition of a Lie derivative causes the extra terms that involve the drive velocity to
cancel

∂t (φt∗σ t )+ Lφt∗vt+wt (φt∗σ t )= φt∗
(
∂tσ t − Lφ∗

t wt σ t + Lvt σ t + Lφ∗
t wt σ t

)
,

= φt∗
(
∂tσ t + Lvt σ t

)
,

(4.8)

and thus the Oldroyd rate is invariant under all time-dependent diffeomorphisms. By
contrast, the material derivative (4.3) is not invariant under general diffeomorphisms, or
even general time-dependent isometries. Indeed, we compute that

∂t (φt∗σ t )+ ∇φt∗vt+wt (φt∗σ t )= φt∗
(
∂tσ t − Lφ∗

t wt σ t + ∇vt σ t + ∇φ∗
t wσ t

)
. (4.9)

When φt is a translation with constant velocity, then covariant derivatives equal Lie
derivatives ∇φ∗

t wσ t = Lφ∗
t wσ t . Using this relation in (4.9) causes the extra terms to cancel

and illustrates that the material derivative is objective when we restrict our transformations
to constant rotations and time-dependent translations with constant velocity. The latter are
Galilean boosts, and hence this calculation shows that the material derivative is invariant
under exactly the Galilean group Gal.

We argue that it is a physical necessity that rates satisfy an additional condition beyond
objectivity: the Euclidean metric e in the ambient space should not be advected by the flow

Dvt e = 0. (4.10)

This asserts that the motion of the fluid does not change the fundamental structure of
space. Of course, there are examples where advection of the metric is desired – such as
in general relativity, where the movement of masses changes the curvature of space–time
– but we argue that this is not one of those cases. There is no physical reason why the
metric of the embedding space knows anything about non-relativistic flows, either on a
3-D submanifold or on a 2-D curved surface. Additionally, this condition is important
to avoid the appearance of changes in the induced metric on the surface that are not
related to a real deformation. Consider the following simple example. The induced metric
(first fundamental form) g on the surface is defined by taking the Euclidean metric and
projecting it down onto the surface. The rate of the surface metric is therefore

Dg = De − n� ⊗ Dn� − Dn� ⊗ n�, (4.11)

where n is the surface normal. Suppose we have a flat surface z = 0 undergoing a purely
tangential flow. The surface does not change, and hence the metric induced on the surface
is constant in both space and time, as is the normal – thus, there should be no advection
with the flow at all. This would also be the case for a flow normal to the surface but
spatially constant, meaning the surface simply moves without deforming. If the rate
advects the Euclidean metric then (4.11) implies an advection of either the metric or the
normal. Plainly this should not be the case for the examples just given where there is no
deformation.

Lie derivatives are general covariant but do not preserve the metric except in the special
case when the velocity field is a Killing field (i.e. it is the velocity field of a time-dependent
isometry). Typically this will not be the case, and hence the Oldroyd rate is out if we
require this additional condition. The partial derivative clearly does preserve the ambient
metric, but lacks the appropriate objectivity properties. The material derivative obviously
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Rate Objective with respect to Preserves ambient metric?

Partial derivative Time-independent φ ∈ Diff(R3) Yes
Oldroyd Time-dependent φt ∈ Diff(R3) No
Material Galilean transforms φt ∈ Gal Yes
Jaumann Time-dependent φt ∈ E(3) Yes

Table 1. For the four rates considered in the main text we show the largest group of diffeomorphisms under
which the given rate is invariant. We also indicate whether the rate preserves the Euclidean metric in the
ambient space.

preserves the metric – provided it involves a metric-compatible connection – but is not
invariant under general isometries.

The requirement of preserving the metric as well as being invariant under all time-
dependent isometries motivates the addition of a corotational part to the Oldroyd rate,
which leads us to the Jaumann rate (5.4). The corotational terms must themselves be
invariant under a time-dependent isometry. Equation (4.9) illustrates that these terms
cannot involve covariant derivatives, only combinations of Lie derivatives (Marsden &
Hughes 1994). The simplest possible expression with this property is then

1
2

((
Lvt σ

�
t

)	 − Lvt σ t

)
. (4.12)

Adding this term to the Oldroyd rate indeed yields the Jaumann rate (5.4). Because these
terms involve the metric connection (through the raising and lowering operators) the
Jaumann rate is not invariant under a general diffeomorphism, but it is invariant under all
time-dependent paths of isometries. Furthermore, the Jaumann rate satisfies the condition
(4.10) and does not advect the ambient metric. The result of these calculations for the
different rates is summarised in table 1.

It follows that the plethora of rates in the literature can be reduced to two, the material
and the Jaumann. Which of these two rates is the correct one? The essential difference
between them is that the material derivative “feels” constant speed rotations while the
Jaumann does not. The correct choice of rate for a given material quantity then boils down
to whether that quantity should be sensitive to angular velocities on the deforming surface.
In the gauge transformation picture outlined in the previous section this can be interpreted
as a question about which of the spaces Emb,Memb, and Iso the quantity lives in.

A quantity (by which we mean physical fields as well as differential operators like rates)
defined on Emb can be “pushed down” to one of the quotient spaces Memb and Iso by
removing the part of it that changes under the action of the appropriate gauge group. A
quantity can be defined on Iso if it only depends on the first and second fundamental
forms of the surface and is insensitive to a spatially constant but time-dependent angular
momentum, which has no meaning when we quotient out by the action of the isometry
group. Concretely, if v is the velocity field of our surface, we can decompose it as v =
vess + wiso, where wiso is the drive velocity of some time-dependent isometry and vess

is the “essential” part. The Jaumann rate depends only on this essential part and ignores
the isometry part – this is equivalent to the rate descending to a well-defined derivative on
the quotient space Iso. The key example of a quantity that is invariant under the effect of
a time-dependent isometry is a nematic director or Q-tensor in the standard Frank–Oseen
or Beris–Edwards formulations, respectively (deGennes & Prost 2013; Stewart 2019). In
both cases, the free energy functionals in these models only capture local gradients, and as
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such a nematic director will not feel a translation nor a continuous rotation of the surface
about an axis. The Jaumann rate is the appropriate choice for any physical quantity which
has this property, and indeed corotational derivatives are used to formulate the equations
of nematodynamics in a flat space (deGennes & Prost 2013; Stewart 2019).

A physical quantity which does not have this property is the surface velocity. For
example, a spherical surface experiencing a constant speed rotation about an axis (a time-
dependent isometry, but not an element of the Galilean group) will experience a centripetal
force inwards that will act to deform it. Velocities do care about ambient space motions,
and hence we should choose a rate that involves invariance under the Galilean group but
not the full group of time-dependent isometries. The correct rate for a velocity field is
therefore the material rate, not the Jaumann. The appropriate rate for a general physical
quantity in morphodynamics can be deduced analogously by determining its behaviour
under rotations with constant speed.

This analysis leads to a natural question: What does this mean for models that use the
Oldroyd rate, or some other rate entirely? Are such models inherently incorrect? It appears
that our analysis implies this, but there is a subtlety. Suppose a model is of the form
DO

t u = F, where u is a broken symmetry variable and F a force that may depend on both
u and the velocity field v. It may well be the case there are terms in the force F which
can be moved over to the left-hand side of the equations, allowing us to rewrite the model
as D J

t u = F′. This would then be an example of a model which appears to violate the
objectivity constraints we have discussed, but only because it is written in a way that is
slightly misleading from the perspective of our analysis.

For a concrete example of how this could occur, consider the Eriksen–Leslie equation
for the evolution of a nematic director field n moving with velocity v

DJ
t n = 1

γ1
h + λn − γ2

γ1

(
∇v + (∇v)T

)
· n. (4.13)

Here, γ1, γ2 are viscosities, λ is a Lagrange multiplier and h is the molecular field arising
from the variation of the nematic free energy (deGennes & Prost 2013). This is written in
terms of the Jaumann rate, as we advocate. However, one can split the Jaumann rate into
the material rate plus the corotational part (A16), and then move the latter term over to
the right-hand side of the equation with the forces. Then the Eriksen–Leslie equation will
be written, apparently incorrectly, in terms of a material rate – of course, it is exactly the
same model. We can perform a similar shuffling of terms to write it using the Oldroyd
rate. Even more confusingly, we can actually move the term involving the viscosity γ2 to
the left-hand side and incorporate it into the rate. After some rescaling of the coefficients,
the equation will then be written in terms of a rate of the form

Dt n = ∂t n + cLvn + (1 − c)
(
Lvn�

)	
. (4.14)

This is an interpolation between the upper- and lower-convected rates, with a
dimensionless parameter 0 � c � 1– in this example it is a ratio of viscosities. This rate
is invariant under the same group of transformations as the Jaumann rate, but preserves
the metric only when c = 1/2 (in which case it is the Jaumann rate). It is possible that
some models making use of more esoteric objective rates have implicitly performed such
a process, bringing a term into the rate that should properly be included among the forces
in the model.

We suggest that writing models in this way obscures the fundamental physics, and ought
to be avoided. To avoid such confusions we advocate for always making use of either
the material or Jaumann rate, as appropriate for the variable under consideration, when
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formulating a model. The others terms in the model should be derived in a principled way,
for example from an Onsager expansion.

5. Computations of the material and Jaumann rate
We now give expressions for the rates of various quantities that are important for
membrane dynamics and morphology. Throughout this section we denote the Jaumann
rate along the Eulerian velocity vt by D J

t and the material derivative by DM
t . As described

in the previous section, the material derivative is the appropriate rate for velocities,
while the Jaumann is the appropriate rate for quantities that are insensitive to angular
momentum, such as a nematic Q-tensor or polarisation field. We also give two expressions,
one in a coordinate basis and and a second where the quantities are computed relative to
an orthonormal frame.

In Appendix A we give a clear derivation of these formulas using Cartan’s method of
moving frames in the ambient space. In Appendix B we give an alternative derivation
using the surface covariant derivative. Both approaches are equivalent and give the same
result.

5.1. Rates in a coordinate frame
We begin with the formulas in a coordinate frame. Let x j , j = 1, 2, denote coordinates on
B. We push the associated coordinate basis ex j on B forward along the embeddings rt to
obtain a coordinate basis on Mt

e j := rt∗ex j . (5.1)

These will not in general be orthogonal or normalised. We follow Al-Izzi & Morris (2023)
and choose a time-varying coordinate frame on B that is not advected by the left Eulerian
velocity Vt . We make this choice to ensure that our formulas are consistent with those
derived for ordinary hydrodynamics in a flat space, and also because this is the most
practical choice for computations.

Write n for the surface normal. The velocity field is v = v j e j + vnn. Let u = u j e j +
unn be some other vector field. Its material derivative is

DM
t u =

(
∂t u

j + vi∇i u
j + uivkΓ

j
ki − uivnb j

i − vi unb j
i − un∇ jvn

)
e j

+
(
∂t u

n + vi∇i u
n + vi u j bi j + ui∇iv

n
)

n.
(5.2)

This agrees with the formula obtained by Nitschke & Voigt (2023). This leads to a formula
for the acceleration

DM
t v =

(
∂tv

j + vi∇iv
j + vivkΓ

j
ki − vivnb j

i − vivnb j
i − vn∇ jvn

)
e j

+
(
∂tv

n + vi∇iv
n + viv j bi j + vi∇iv

n
)

n.
(5.3)

The details of these calculations are shown in Appendices A and B. In these and all other
formulas in this section, ∇ denotes the Euclidean metric connection in the ambient space,
not the connection on the surface, and Γ k

i j are the Christoffel symbols. A discussion of
the relationship between the ambient connection and the surface is given in Appendix B.
This formula for the acceleration is identical to the one derived in Waxman (1984) by less
formal means, as well the formulas derived by Sahu (2022), Nitschke & Voigt (2022) and
Yavari et al. (2016).
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P(t)

V

P(0)

Figure 4. Lie dragging a tangent vector field P along a flow v on the surface results in a new vector field which
has a component out of the surface – we illustrate P at a single point being dragged along an integral curve of
v. In order to keep the field P in the surface, a counteracting force must push back against this effect.

We also compute the Jaumann rate of u

DJ
t u =

(
∂t u

j + vi∇i u
j − uivnb j

i − 1
2
vi unb j

i − 1
2

un∇ jv
n − ui

2
(∇iv

j − ∇ jvi )

)
e j

+
(
∂t u

n + 1
2

ui∇iv
n + vi∇i u

n + 1
2
vi u j bi j

)
n.

(5.4)
By setting the normal component of u to zero in (5.4), we obtain the Jaumann rate of a
nematic polarisation field P = P1e1 + P2e2 tangent to the surface

DJ
t P =

(
∂t P j + vi∇i P j − Pivnb j

i − Pi

2
(∇iv

j − ∇ jvi )

)
e j

+ 1
2

(
Pi∇iv

n + vi P j bi j

)
n.

(5.5)

Note this formula has a normal component, which may seem surprising. However, we can
see this as the predictable result of Lie dragging a vector field along a curved surface.
Consider a flow that is tangent to the surface, and drag a vector P(0) at a given point along
that flow as in figure 4 to get a new vector P(t). We see that this results in the vector lifting
off the surface.

Keeping a vector field confined to the tangent plane of a surface therefore requires
additional forces. These might arise from an embedding fluid, or from some other,
unspecified interfacial physics, but a mathematical understanding of the precise nature
of such forces typically requires a consideration of how finite thickness surfaces formally
limit to manifolds (e.g. Lomholt & Miao 2006; Lomholt 2006a,b). Either way, we can
imagine a counteracting force whose strength is sufficient to ensure that the nematic
director being tangential is a hard constraint. This can be implemented using a Lagrange
multiplier, or simply by projecting (5.5) into the surface, which results in the formula
derived elsewhere (deGennes & Prost 2013; Stewart 2019; Salbreux et al. 2022; Al-Izzi &
Morris 2023).

5.2. Rates in an orthonormal frame
An alternative approach to the use of a coordinate frame is to work with an orthonormal
basis e1, e2 for the deforming surface. This approach may be a convenient choice when
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dealing with a nematic polarisation field on the surface, as we can take this to be the basis
vector e1, and it is also more appropriate for an arbitrary Eulerian–Lagrangian approach
to surface dynamics Torres-Sánchez et al. (2019).

When dealing with an arbitrary frame as opposed to a coordinate frame it is more
convenient to employ the Riemann–Cartan (“moving frame”) formalism of differential
geometry, in which the gradients of the frame field are encoded by the connection 1-
form ωk

i j rather than the Christoffel symbols Γ k
i j . For readers who are unfamiliar with this

framework, we define the connection form and describe its relationship to the intrinsic and
extrinsic geometry of the surface in Appendix A, where we also give the full derivation
of each formula in this section. The reader may also see Frankel (2011) for a detailed
introduction to Riemann–Cartan geometry.

For a general basis, the time derivatives are

∂t e j = Rt Je j + ∇ jv
nn,

∂t n = −∇ jvne j .
(5.6)

Here, we have introduced the map J = n× which affects a 90 degree rotation about the
unit normal, Je1 = e2 and Je2 = −e1. The function Rt is a time-dependent function which
characterises the in-plane rotation of the basis. The choice of this function is a gauge
freedom, and it may be set to zero by a particular choice of the orthonormal (ON) frame.

The equation for the material derivative is

DM
t u =

(
∂t u

k + vi∇i u
k + vi u jωk

i j − un∇kvn − vi unbk
i

)
ek + uk Rt Jek

+
(
∂t u

n + vi∇i u
n + u j∇ jv

n + vi u j bi j

)
n.

(5.7)

The Jaumann rate of a vector field is

DJ
t u = u j Rt Je j +

(
∂t u

k + vi∇i u
k + u j

2

(
∇kv j − ∇ jv

k
)

+ vi u j

2

(
2ωk

i j +ωi
jk −ωi

k j

)

−un

2

(
∇kvn + v j bk

j

))
ek +

(
∂t u

n + vi∇i u
n + 1

2
vi u j bi j + 1

2
u j∇ jv

n
)

n.

(5.8)
Again, these equations use the ambient space connection ∇ and not the surface connection.
Written out in this choice of frame, the rate now involve the connection coefficients ωk

i j ,
which are not be symmetric in the lower two indices as they are for a coordinate frame. If
we do choose the component e1 of the frame to be a nematic polarisation direction, then
these coefficients have the physical interpretation as the surface splay and bend distortions
of the polarisation field. Write κ for the (in-plane) bend magnitude and s for the splay of
the polarisation field. Then the connection coefficients are (Pollard & Alexander 2021; Da
Silva & Efrati 2021)

ω2
11 = −ω1

12 = κ, ω2
21 = −ω1

22 = s. (5.9)

We can use these to express (5.8) in terms of the nematic distortion modes.

6. Discussion
In this paper, we have brought some mathematical clarity to the formulation of
morphodynamics. We have described the Eulerian and Lagrangian perspectives on the
motion of a fluid deformable surface and shown how these map on to equivalent
formulations for the motion of a fluid in a fixed space. Using a symmetry group
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analysis, we have shown that morphodynamics has three inherent (and independent) gauge
freedoms, which are associated with isometries of the ambient space, the parametrisation
of the surface and the choice of the frame field. The latter two gauge freedoms are
especially important when developing numerical simulations of the motion of a fluid
deformable surface, and neatly capture the distinction between ‘fixed-surface coordinate
systems’ and ‘convected coordinate systems’.

Ultimately, once we have disambiguated between these notions, we argue that objective
rates in morphodynamics should be treated precisely as with their fixed space counterparts:
as invariant under time-dependent isometries of the ambient (full) space. As shown
elsewhere, however, this yields an infinite number of possibilities (Marsden & Hughes
1994; Kolev & Desmorat 2021). We therefore require that these rates should also conserve
the ambient space metric, as they would in a fixed space. Under this additional constraint,
we show that the material and Jaumann rates are the only possible choices.

The material derivative leads to rates that are invariant under the action of the Galilean
group – fixed isometries and constant velocity translations, or “boosts”. Since Noether’s
theorem identifies the Galilean group with conservation of momentum, this therefore
applies to the velocity field; the resultant rate (i.e. acceleration) is not invariant under
non-inertial gauges, which induce fictitious forces. The Jaumann derivative, by contrast,
is invariant under all time-dependent isometries. It is the correct rate for hydrodynamic
variables whose long wavelength behaviour arises not from conservation laws, but due to
symmetry breaking, and the related presence of Goldstone modes (Hohenberg & Halperin
1977): a pertinent example is the Q-tensor that captures nematic degrees of freedom
(deGennes & Prost 2013).

Taken together, this protocol essentially ensures that the largest group of time-dependent
isometries that the whole system is invariant under is just the Galilean group, as
required by the informal understanding of objectivity. We provide several examples of
how to calculate such rates, both in a coordinate system which is convected by the
flow and also for an arbitrary frame field. The latter formulas are needed for numerical
simulations making use of an “arbitrary mixed Eulerian–Lagrangian” parameterisation of
the surface 2020, Torres-Sánchez et al. (2019); Sahu et al. (2020b). For this calculation
we have employed the Riemann–Cartan method of moving frames, a formulation which
is especially convenient should one wish to develop simulations making use of discrete
differential geometry and discrete exterior calculus techniques.

One point of contention that our work raises is with the use of the Oldroyd rate in
constitutive relations of certain non-Newtonian fluids (Oldroyd 1950; Edwards & Beris
2023). It is not clear to us how this practice fits into the framework that we have outlined.
Our results call into question the use of upper- and lower-convected rates, and suggest that
one should instead use their average, the Jaumann rate. It remains unclear exactly what
consequences this has for the predictions of models using the Oldroyd or some other rate.
It is possible that many such models are fine, and are subject to the issue we described at
the end of § 4: there is some other term appearing in the equations that can be folded into
the rate to give the Jaumann rate.

Nonetheless, there is still a question of what the fundamental difference is between the
predictions of a model using the Oldroyd rate and those of one involving the Jaumann. We
have not been able to find a simple example which is especially illuminating in this regard.
One example of a study examining these issues is Hinch & Harlen (2021), who discuss in
detail the difference between the predictions of models using upper- and lower-convected
derivatives and whether they agree with experiment. While Hinch & Harlen (2021) argue
very differently from us, considering the specific microstructure of materials and not the
general symmetry constraints we examine here, it is interesting that they also conclude
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that “something in between is appropriate”, i.e. that one should use the Jaumann rate.
In the specific context of morphodynamics, Nitschke & Voigt (2022) have empirically
evaluated the various rates we have considered here for several simple examples. They
find scenarios in which the Oldroyd rates are equal to the Jaumann, and other scenarios in
which they are different. Nonetheless, a clear understanding of the practical differences in
the choice of rate vis a vis model predictions remains elusive, and we believe this is a deep
question requiring further thought. We hope our results here draw greater attention to this
issue in the modelling of complex fluids and stimulate additional studies, and we further
emphasise the need for a mathematically precise approach to building models so as to
avoid introducing further confusion. Coordinate-free descriptions that rely on fundamental
symmetry laws are especially helpful in this regard.

More generally, we remark that many of the ideas that we present borrow from, or are
motivated by, Arnold’s theory of hydrodynamics (Arnold & Khesin 2021), which has been
greatly influential and has led to a deeper understanding of fluid dynamics, especially
the role played by topology and geometry. To take the analogy further would involve a
formulation of morphodynamics which focuses on the Riemannian metric and second
fundamental form as the central dynamical objects, as opposed to the embedding. Such an
approach has been discussed previously by Morris & Rao (2019), where both objects were
treated as symmetry-broken variables, but to our knowledge the idea not been developed
since. Aside from offering a fresh perspective, computer simulations in this formulation
of morphodynamics seemingly sidestep computational issues which require the adoption
of a normal gauge or a Monge gauge. Either way, we argue that geometrical tools, such as
the pushforward and pullback, gauge symmetry analysis and the language of differential
geometry and/or exterior calculus can help to highlight and clarify the role played by
geometry in the morphodynamics of fluid deformable surfaces, and we welcome further
work in the area.

Acknowledgements. J.P. and R.G.M. acknowledge support from the EMBL-Australia program. S.C.A. and
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Appendix A. Calculation of rates in the Cartan formalism
We calculate the material and Jaumann rates using Cartan’s moving frame approach to
differential geometry (Cartan 1945; Frankel 2011). In what follows, Greek indices α, β, γ
run from from 1 to 3, while Latin indices i, j, k run from 1 to 2. Let eα be any frame along
the surface, with e3 = n the normal direction. Write eα for the dual 1-form. Define the
connection 1-forms associated with the Euclidean connection ∇ in the ambient space by

∇eα =ωβαeβ,
deα = −ωαβ ∧ eβ,

(A1)

with components

ω
γ
β (eα)=ω

γ
αβ. (A2)

In our problem it does not make sense to take derivatives along the normal n, so the surface
geometry is encoded by dropping all coefficients of e3 from the connection form. The 1-
forms ω1

3, ω
2
3 then encode exactly the second fundamental form b = −∇n, while ω2

1 is the
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connection 1-form of the induced metric on the surface

ω1
3 = −b1

1e1 − b1
2e2,

ω2
3 = −b2

1e1 − b2
2e2,

ω2
1 =ω2

11e1 +ω2
21e2.

(A3)

We now separate out the normal component of the frame from the tangential components.
Then the connection 1-form encodes the following relationships:

∇i e j =ωk
i j ek + bi j n,

∇i n = −b j
i e j .

(A4)

We are free to choose the tangential frame however we wish. Following Al-Izzi & Morris
(2023) we take the components e1, e2 of the frame to be the pushforward of some
coordinates x1, x2 on the base space B along the embedding r . Explicitly, we define
coordinate vectors ex j on the base B, and then set

e j := r∗ex j . (A5)

Using the rules for the time derivative of a pushforward, see Appendix C, along with the
fact that coordinates x1, x2 do not depend on time, we conclude that

∂t e j = −Lve j , (A6)

where v = ∂t r ◦ r−1 is the velocity field. Moreover, since the x j are coordinates we
have

[e1, e2] = [r∗ex1, r∗ex2] = r∗[ex1, ex2] = 0. (A7)

This implies (ωk
12 −ωk

12)= 0, and so the coefficients in the components of the connection
1-forms are all symmetric. The time derivative of the normal component can be derived
from the fact that it is orthogonal to the e j , which implies that n · ∂t e j = −e j · ∂t n.

Write the velocity as v = v j e j + vnn. To compute the rate of any vector field u = uαeα ,
we can use the Leibniz formula

Dt u = (
∂t u

α + vβ∇βuα
)

eα + uαDt eα. (A8)

In order to compute the material and Jaumann rates, we need only compute their action on
the basis elements. Firstly, let us compute the time derivatives of the frame. By (A6), we
obtain this from the Lie derivatives

Lve j = ∇ve j − ∇e j v,

= vi
(
ωk

i j −ωk
ji

)
ek − ∇ jv

i ei − vn∇ j n − ∇ jv
nn,

=
(
vnbi

j − ∇ jv
i
)

ei − ∇ jv
nn

Lvn = ∇vn,
= −v j bi

j ei .

(A9)

Here, we have used the fact that ei is a coordinate basis, so that ωk
i j is symmetric. These

yield the time derivatives for a constant coordinate frame on the base space. In practice,
it is preferable to choose a time-dependent coordinate basis for B, corresponding to
performing a time-dependent gauge transformation. The formula for the change of the
frame is then

∂t e j = −Lve j + r∗∂t ex j . (A10)
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We choose the time-dependent change of gauge so that r∗∂t ex j cancels out the term
∇ jv

i ei that would appear in the Lie derivative of v; informally, this involves moving to a
coordinate frame that is not advected by the tangential part of the flow. This particular
choice then results in the time derivatives obtained by Al-Izzi & Morris (2023) and
Salbreux et al. (2022)

∂t ei = −vnb j
i e j + ∇iv

nn,
∂t n = −∇ jvne j .

(A11)

We continue to work in this natural choice of time-dependent coordinate system in what
follows.

Now we compute our rates. We begin with the material rate. The action of this rate on
the basis vectors is

∂t ei + ∇vei =
(
vkω

j
ki − vnb j

i

)
e j +

(
v j bi j + ∇iv

n
)

n,

∂t n + ∇vn = −
(
vi b j

i + ∇ jvn
)

e j .
(A12)

Inserting these terms in the Leibniz formula (A8) for a general vector field u leads us to
(5.2). We already have the Lie derivatives of the frame, Eq. A9, so to obtain the Jaumann
rate it remains to compute the Lie derivatives of the coframe

Lve j = ιvde j + dv j ,

= ιv

(
−ω j

ikei ∧ ek + b j
i ei ∧ n�

)
+ ∇iv

j ei ,

=
(
vi b j

i n� − vnb j
i ei + vk(ω

j
ik −ω

j
ki )e

i
)

+ ∇iv
j ei ,

=
(
∇iv

j − vnb j
i

)
ei + vi b j

i n�,

Lvn� = ιvdn� + dvn,

= ∇iv
nei .

(A13)

We have again used the fact that ωk
i j is symmetric for the vanishing of the tangential part of

the connection form, and the 2-form dn� vanishes because the second fundamental form
is also symmetric. These then lead us to Lie derivatives of a general vector field u and its
dual 1-form u�

Lvu = u j Lve j + vi∇i u
j e j + un Lvn + vi∇i u

nn,

=
(
vi∇i u

j − ui∇iv
j − unvi b j

i + vnui b j
i

)
e j +

(
vi∇i u

n − ui∇iv
n
)

n,
(A14)

Lvu� = u j Lve j + vi∇i u j e
j + un Lvn� + vi∇i u

nn�,

=
(
vi∇i u j + un∇ jv

n + ui∇ jv
i − vnui b

i
j

)
e j +

(
vi∇i u

n + uiv
j bi

j

)
n�.

(A15)

Putting these together leads to

1
2

(
Lvu + (

Lvu�
)	) = 1

2

(
2vi∇i u

j + un∇ jvn − vi unb j
i + ui (∇ jvi − ∇iv

j )
)

e j

+ 1
2

(
vi u j bi j + 2vi∇i u

n − ui∇iv
n
)

n.
(A16)
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Now we compute the time derivative of u using (A11),

∂t u =
(
∂t u

j − uivnb j
i − un∇ jvn

)
e j +

(
∂t u

n + ui∇iv
n
)

n. (A17)

Combining (A16) with (A17) then gives the final result, (5.4). We emphasise that this
formula holds only when e j is a specific time-dependent choice of coordinate basis of the
base space B. For a time-independent coordinate basis on B we pick up the additional
term ui∇iv

j e j that accounts for the advection of the coordinates.
We now choose to work with an ON basis e1, e2 for the tangent space to the the

deforming surface, and introduce e3 = n. Along the surface, the euclidean metric e does
not change, and therefore we have ∂t eα · eβ = 0. The evolution of the normal is constrained
by the fact that ∂t n = −∇ jvne j , and therefore we have

∂t e1 = Rt e2 + ∇1vnn,
∂t e2 = −Rt e1 + ∇2vnn,
∂t n = −∇1vne1 − ∇2vne2.

(A18)

Here, Rt is a function on Mt of both position and time. It describes an intrinsic rotation
of the coordinate system which we are free to choose as we wish, including by setting it
to be zero, as it is a gauge freedom. For reasons of generality we choose to leave it in our
calculations. Introduce the operation J = n×. Then we may write more succinctly

∂t e j = Rt Je j + ∇ jvnn,
∂t n = −∇ jvne j .

(A19)

The material rate is then readily seen to be (5.7). The Lie derivatives of n, n� in this ON
frame are the same as in the coordinate frame. The Lie derivatives of e j and e j are then

Lve j =
(
vi (ωk

i j −ωk
ji )+ vnbk

j − ∇ jv
k
)

ek − ∇ jv
nn

Lve j =
(
vi (ω

j
ki −ω

j
ik)+ ∇kv

j − vnb j
k

)
ek + vi b j

i n�.
(A20)

Thus

DJ
t e j = Rt Je j + 1

2

(
∇kv j − ∇ jv

k + vi (2ωk
i j +ωi

jk −ωi
k j )

)
ek + 1

2

(
vi bi j + ∇ jv

n
)

n,

DJ
t n = −1

2

(
∇kvn + v j bk

j

)
ek .

(A21)
Using the Leibniz formula, we then derive the Jaumann rate of a general vector field in an
ON frame, (5.8).

Appendix B. Calculation of rates using Christoffel symbols
Here, we give a computation of the objective and Jaumann rates using more traditional
differential geometry notation based on a coordinate basis. The Gauss and Weingarten
equations are

∂i e j = Γ k
i j ek + bi j n, (B1)

∂i n = −bi
kek , (B2)
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where Γ k
i j = (1/2)gkl(∂i gl j + ∂ j gli − ∂l gi j ) are the Christoffel symbols associated with

the induced metric of the surface. The dynamics of the basis is given by

∂t e j = −vnbi
j e j + ∇̄iv

nn, (B3)

∂t n = −∇̄iv
nei , (B4)

where ∇̄ is the covariant derivative on the surface (not the ambient connection ∇). Note
that we have made a choice of frame here where our coordinates move only with the
normal velocity, such that for a fixed flat manifold we will recover the standard formulas
of fluid mechanics.

In addition we note that the triad {e1, e2, n} is not a coordinate basis of R
3, so the

components of the dual basis are not closed. This means that we also need the following
formulas:

dei = bi
j e

j ∧ n�, (B5)

dn� = 0, (B6)

as the second fundamental form measures the deviation from a closed coordinate frame of
the embedding space. We now give the formulas for partial, covariant and Lie derivatives
of the surface vector u = ui ei + unn.

The partial derivative is

∂t u =
(
∂t u

i − u jvnb j
i − un∇̄ ivn

)
ei +

(
∂t u

n + ui ∇̄iv
n
)

n, (B7)

and the covariant derivative along the velocity v = vi ei + vnn is given by

v(u)= vi∂i

(
u j e j + unn

)
=

(
vi ∇̄i u

j − vi bi
j un

)
e j +

(
vi u j bi j + vi ∇̄i u

n
)

n. (B8)

Summing (B7) and (B8) gives the main result (5.2). To obtain the exact formula (5.2) it is
also necessary to replace the surface connections ∇̄ with the ambient space connection ∇,
which accounts for the presence of the connection form in (5.2).

The Lie derivative of the vector u along the flow v is given by, =
Lvu = v(u)− u(v), (B9)

= vi∂i

(
u j e j + unn

)
− ui∂i

(
v j e j + vnn

)

=
[
vi ∇̄i u

j − ui ∇̄iv
j + bi

j
(

uivn − vi un
)]

e j +
[
vi ∇̄i u

n − ui ∇̄iv
n
]

n. (B10)

The computation of the Lie derivative of the 1-form u� = ui ei + unn� is a little more
involved. We make use of Cartan’s formula Lvu� = dιvu� + ιvdu�. The exterior derivative
of u� is, =

du� = ∂ j ui e
j ∧ ei + ui b

i
j e

j ∧ n� + ∂ j u
ne j ∧ n�. (B11)

We then find that, =

Lvu� =
[
u j ∇̄iv

j + un∇̄iv
n + v j ∇̄ j ui − u j b

j
iv

n
]

ei +
[
uiv j bi j + vi ∇̄i u

n
]

n�. (B12)
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The Lie derivative part of the Jaumann rate is therefore, =
1
2

[
Lvu + (

Lvu�
)	] =

[
1
2

u j ∇̄ iv j + 1
2

un∇̄ ivn + v j ∇̄ j ui − 1
2

u j b
jivn − 1

2
u j ∇̄ jv

i
]

ei

+
[

1
2

uiv j bi j + vi ∇̄i u
n − 1

2
ui ∇̄iv

n
]

n.

(B13)
Summing (B7) and (B13) gives the Jaumann rate given in (5.4). In this formula the extra
terms that appear when replacing surface derivatives by ambient space derivatives cancel.

Appendix C. Pushforward and pullback
Let f : A → B be a diffeomorphism between manifolds A, B. Recall that f induces a
linear map T f : TA → TB. In local coordinates xi on A and X j on B we may write f in
terms of its components f j as X j = f j (x1, x2, . . . , ), and then the tangent map T f is just
the matrix of partial derivatives ∂ f j/∂xi . It also defines a dual linear map T f ∗ : T∗B →
T∗ A (the adjoint or transpose of T f ), a pullback f ∗, and a pushforward f∗. We give the
action of the pushforward and pullback on general tensors.

On functions

A B

R

f

g
f∗g=g◦f−1

A B

R

f

f∗h=h◦f
h

(C1)

On vector fields

TA TB

A B

Tf

π π

f

u w

(C2)

f ∗w = T f −1 ◦ w ◦ f, f∗u = T f ◦ u ◦ f −1. (C3)

On covector fields (1-forms)

T∗A T∗B

A B

π

T∗f
π

f

α β

(C4)

f ∗β = T∗ f ◦ β ◦ f, f∗α = (T∗ f )−1 ◦ α ◦ f −1. (C5)

On general differential forms and tensors the action is determined by distributivity over
the wedge product of forms and the tensor product of tensors. Also note that f ∗ = f −1∗
and vice versa, so these operations are inverse to one another.

For a time-dependent family of maps ft : A → B we also make use of the
time derivatives of the pushforward and pullback of quantities along this map. Let
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wt = ∂t ft ◦ f −1
t be the drive velocity, a vector field on B. Given a time-independent tensor

field σ on A, we have

∂t f ∗
t σ = f ∗

t Lwσ , ∂t ft∗σ = −Lw ft∗σ . (C6)

If σ t also depends on time, then

∂t f ∗
t σ t = f ∗

t (∂tσ t + Lwσ t ) , ∂t ft∗σ t = ft∗∂tσ t − Lw ft∗σ t . (C7)
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