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In this paper, an initial-value problem for the modified Korteweg-de Vries (mKdV) equation

is addressed. Previous numerical simulations of the solution of

ut − 6u2ux + uxxx = 0, −∞ < x < ∞, t > 0,

where x and t represent dimensionless distance and time respectively, have considered the

evolution when the initial data is given by

u(x, 0) = tanh(Cx), −∞ < x < ∞,

for C constant. These computations suggest that kink and soliton structures develop from

this initial profile and here the method of matched asymptotic coordinate expansions is used

to obtain the complete large-time structure of the solution in the particular case C = 1/3. The

technique is able to confirm some of the numerical predictions, but also forms a basis that

could be easily extended to account for other initial conditions and other physically significant

equations. Not only can the details of the relevant long-time structure be determined but

rates of convergence of the solution of the initial-value problem be predicted.
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1 Introduction

The modified Korteweg-de Vries (mKdV) equation is a completely integrable equation

which has been used to model a plethora of physically significant problems including

large amplitude internal waves in the ocean and the study of negative ions in plasmas. It

is known to admit a variety of exact solutions including self-similar solutions related to

the second Painlevé transcendent together with travelling and soliton forms. In common

with many other integrable partial differential systems, the mKdV equation has been the

subject of many computational studies of which here we highlight [1] and [2]. Among

other results, these calculations showed that various initial profiles tend to evolve towards

their corresponding long-time structure rather quickly and it this aspect of the problem

that is the central theme of the present paper. Here we demonstrate how the method of
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matched asymptotics can yield the complete large-time evolution and provide estimates

as to the nature and convergence rates of the solution.

It is important to emphasise at the outset that although our technique is applied in

detail to just one of the problems considered in [1] and [2], our approach generalises

easily to other initial conditions and to other evolution equations. Nevertheless, we shall

be studying the mKdV equation with initial conditions that are typical of those that

apply in the development of undular bores discussed in [3] and [9] and references therein.

Kotlyarov & Minakov [4] used rigorous methods using a Riemann–Hilbert formulation

to infer the long-time dynamics of the solution of the mKdV equation from an initially

step-like profile. Here we show how arguments based on matched asymptotics can also

address similar issues; indeed, we note the methodology has previously been used to

examine the long-time behaviour of solutions of the Korteweg-de Vries equation [6],

the nonlinear hyperbolic Fisher equation [8] and reaction–diffusion equations of the

Fisher–Kolmogorov type [7].

1.1 The initial value problem

Consider the normalised mKdV problem

ut − 6u2ux + uxxx = 0, −∞ < x < ∞, t > 0, (1.1)

which is to be solved subject to the initial condition

u(x, 0) = tanh
(
x/3

)
, −∞ < x < ∞ (1.2)

and the large-|x| behaviours

u(x, t) → ±1 as x → ±∞. (1.3)

Subsequently, we shall refer to problem (1.1)–(1.3) as our IVP. Before we outline our

methods, it is worth noting that equation (1.1) admits the following solutions of interest:

(i) A travelling wave (or kink) solution given, up to an arbitrary phase shift, by

u(x, t) = δ tanh(δ[x + 2δ2t]), (1.4)

where δ is a constant. This wave propagates in the −x direction with speed 2δ2

and connects u = +δ to u = −δ.

(ii) A solitary wave solution with positive polarity given, up to an arbitrary phase shift,

by

u(x, t) = −ub +
A2

2ub + a0 cosh
{
A(x −

[
A2 − 6u2

b

]
t)

} , (1.5)

where −ub is the constant background level, A is a constant (0 < A2 < 4u2
b), the

wave speed v = A2 − 6u2
b and

a0 =

√
4u2

b − A2.
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It was shown in [1] that the relevant Schrödinger potentials are reflectionless with an

associated discrete set of eigenvalues given by λ0 = 0, λ1 = 5/9 and λ2 = 8/9. Moreover,

the corresponding wave speeds are given by

v0 = −2, v1 = −38

9
and v2 = −50

9
(1.6)

respectively. We remark that λ0 = 0 corresponds to the kink solution with speed v0 = −2

whereas the eigenvalues λ1 and λ2 relate to soliton solutions with wave speeds v1 and v2

respectively. The upshot is that it is likely that at large times t � 1 the attractor of the

solution of IVP will consist of two solitary waves with speeds v1 and v2 on a background

u = −1 together with a kink solution of speed v0 that connects u = −1 to u = 1. Excellent

numerical verifications illustrating the development of this large-t attractor are given

in [1] and [2] and our objective is to obtain a corresponding analytical description of the

process. We will see that our procedure identifies the solitary wave and kink solutions

without need to reference the Schrödinger potentials mentioned above.

The remainder of the paper is structured as follows. In Sections 2 and 3, we carefully

trace the solution of IVP from the initial state through a sequence of crucial time-scales

that lead to the complete description of the long-time structure. In particular in Section

3.2, we consider the soliton parts of the solution, while the structure of the kink solution

is discussed in Section 4.1. We close in Section 5 with a few final remarks as to the main

outcomes of the analysis and how it might find wider applicability in future work.

2 The short-time solution

Our considerations start in the obvious manner by seeking the form of the solution at

early times. In view of the initial condition (1.2), we expand in ascending powers of t so

that

u(x, t) = u0(x) + tu1(x) + O
(
t2

)
, (2.1)

where u0(x) = tanh(x/3) which has the property that

u0(x) ∼
{

1 − 2 e−2x/3 + 2 e−4x/3 − 2 e−2x + · · · as x → ∞,

−1 + 2 e2x/3 − 2 e4x/3 + 2 e2x + · · · as x → −∞.
(2.2)

On substituting (2.1) into equation (1.1), we readily obtain

u(x, t) = u0(x) + t
[
6 u2

0 (x)u′
0(x) − u′′′

0 (x)
]
+ O

(
t2

)
(2.3)

and for x � 1, expansion (2.3) with (2.2)1 takes the form

u(x, t) ∼
[
1 − 2 e−2x/3 + · · ·

]
+ t

[
200

27
e−2x/3 − 1168

27
e−4x/3 + 136 e−2x

]
+ · · · ; (2.4)

we conclude that (2.3) remains uniform for x � 1 as t → 0. Similarly, for (−x) � 1 we

obtain

u(x, t) ∼ [−1 + 2 e2x/3 + · · · ] + t

[
200

27
e2x/3 − 1168

27
e4x/3 + 136 e2x

]
+ · · · (2.5)

which remains uniform for (−x) � 1 as t → 0.
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3 The asymptotic structure for large times

We can use the straightforward results derived immediately above to infer the details of

the structure of the solution for t = O(1), at least for |x| sufficiently large. The form of

expansion (2.4) for x � 1 as t → 0 suggests that in this region and for t = O(1) then

u(x, t) = 1 + g0(t) e
−2x/3 + g1(t) e

−4x/3 + g2(t) e
−2x + o(e−2x) (3.1)

for some functions gj(t), j = 0, 1, . . . to be determined. On substituting (3.1) into equa-

tion (1.1) we can derive a sequence of equations for the unknown functions gj(t) and, in

particular, it follows that

dg0

dt
= −100

27
g0,

dg1

dt
+

152

27
g1 = −8g2

0 and
dg2

dt
+ 4g2 = −4g3

0 − 24g0g1. (3.2)

These need to be solved subject to matching with with (2.3) as t → 0 which forces

gj(0) = 2(−1)j+1 for all integers j. It follows that

g0(t) = −2e− 100
27 t, g1(t) = 18e− 200

27 t − 16e− 152
27 t, g2(t) = 144e− 252

27 t − 126e− 100
9 t + 20e−4t,

(3.3)

so

u(x, t) = 1 − 2 e− 2
3 (

50
9 )t e− 2x

3 +
[
18 e− 4

3 (
50
9 )t − 16 e− 4

3 (
38
9 )t

]
e− 4x

3

+
[
−20 e−2(2t) − 126 e−2( 50

9 )t + 144 e−2( 42
9 )t

]
e−2x + o

(
e−2x

)
, (3.4)

as x → ∞ with t = O(1). Expansion (3.4) remains uniform for t � 1 provided x � t, but

becomes non-uniform when x = O(t).

In an entirely analogous manner, we can determine the form of the solution as x → −∞
with t = O(1). It is found that

u(x, t) = −1 + 2 e
2
3 (

50
9 )t e

2x
3 +

[
−18 e

4
3 (

50
9 )t + 16 e

4
3 (

38
9 )t

]
e

4x
3

+
[
20 e2(2t) + 126 e2( 50

9 )t − 144 e2( 42
9 )t

]
e2x + o

(
e2x

)
(3.5)

which remains uniform for t � 1 provided (−x) � t, but becomes non-uniform when

(−x) = O(t).

3.1 The modified solution for |x| = O(t) and t → ∞

The solutions noted above point to the need of a modified structure for the solution once

|x| = O(t) to account for the breakdown of (3.4) and (3.5). First we deal with the problem

for x < 0 and proceed by introducing the new scaled coordinate

y =
x

t
,

where y = O(1) as t → ∞. The form of the solution (3.5) implies that

u(y, t) = −1 + e−tθ(y,t), (3.6)
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where

θ(y, t) = θ0(y) + θ1(y)
1

t
+ o

(
1

t

)
(3.7)

as t → ∞ with y < 0 and θ0(y) > 0. On substituting the ansatz (3.6) and (3.7) into

equation (1.1) we derive the leading-order problem

(
θ′

0

)3 − (y + 6)θ′
0 + θ0 = 0, (3.8)

θ0(y) ∼ −2

3
(y − v2) as y → −∞, (3.9)

where, in accordance with (1.6), v2 = −50/9. The final condition (3.9) arises from matching

expansion (3.7) for y → −∞ with the form (3.5).

Equation (3.8) admits the one-parameter family of linear solutions

θ0(y) = Ay + A
(
6 − A2

)
(3.10)

which shows that the required solution to (3.8) subject to (3.9) is simply

θ0(y) = −2

3
(y − v2) for y < v2. (3.11)

If expansion (3.6)–(3.7) is taken to further terms it transpires that θ1 = − ln 2 and,

continuing further, then

u(y, t) = −1 + 2 e
2
3
(y−v2)t − 18 e

4
3
(y−v2)t + 16 e

4
3
(y−v1)t + 126 e2(y−v2)t

− 144 e2(y+42/9)t + 20 e2(y−v0)t + o
(
e2(y−v0)t

)
(3.12)

with y sufficiently negative and where the wave speeds v0–v2 are as given in (1.6).

3.1.1 The breakdown of solution (3.12)

The expansion (3.12) as y → −∞ matches directly onto the form of (3.5) but, unfortunately,

it contains a non-uniformity in the vicinity of y = 3v2 − 2v1 = −74/9. This then requires

us to monitor the nature of the appropriate solution near this point in order to identify

the appropriate solution in y > −74/9.

The neighbourhood of y = −74/9 turns out to play little more than a passive role

and here we are led to the introduction of the scaled coordinate η = (y + 74/9)t, where

η = O(1) as t → ∞. Then the structure of (3.12) suggests that

u(η, t) = −1 + G0(η)e
− 16

9 t + G1(η)e
− 32

9 t + G2(η)e
− 48

9 t + G3(η)e
− 64

9 t + O
(
e− 112

9 t
)

(3.13)

for functions Gj(η) to be determined by the routine substitution of expansion (3.13) into

equation (1.1) and solving sequentially. If this is done, and the constants fixed by ensuring

that the solution matches to (3.12) as η → −∞, then

u(η, t) = − 1 + 2e
2η
3 e− 16

9 t − 18e
4η
3 e− 32

9 t +
[
16e

4η
3 + 126e2η

]
e− 48

9 t

−
[
144e2η + 810e

8η
3

]
e− 64

9 t + O
(
e− 112

9 t
)
.

(3.14)
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The η → ∞ limit of (3.14) tells us the structure of the solution in the y = O(1) regime on

the other side of y = −74/9 and then standard manipulations lead to

u(y, t) = − 1 + 2 e
2
3
(y−v2)t − 18 e

4
3
(y−v2)t + 126 e2(y−v2)t + 16 e

4
3
(y−v1)t

− 810 e
8
3
(y−v2)t − 144 e2(y+42/9)t + o

(
e2(y+42/9)t

)
.

(3.15)

It might be hoped that this solution holds for all y > −74/9 but it too contains another

non-uniformity in the vicinity of y = −62/9. To resolve this difficulty, it is again necessary

to re-expand the solution in what turns out to be another passive layer very reminiscent

of the one around y = −74/9. In the interests of brevity, we do not detail the precise

forms of the expansion and solutions in this zone as they closely mimic (3.14), (3.15)

above with only minor changes. All that needs to be noted is that the analysis leads to

the solution for −62/9 < y < v2 in which

u(y, t) = − 1 + 2 e
2
3
(y−v2)t − 18 e

4
3
(y−v2)t + 126 e2(y−v2)t − 810 e

8
3
(y−v2)t

+ 16 e
4
3
(y−v1)t − 144 e2(y+42/9)t + o

(
e2(y+42/9)t

)
.

(3.16)

This solution contains no further non-uniformities and holds for all y ∈ (−62/9, v2)

but as y → v−
2 it is plain that the many of the small exponential terms in (3.16) become

O(1). This suggests that this location marks the position of a significant jump in the

leading-order form of the solution and indeed this is precisely where the first soliton

component of the large time solution appears. (It has been pointed out to us that while

many of the details above may seem routine, extreme care needs to be exercised when

series become disordered in this way; for a seminal exposition of this phenomenon the

interested reader is referred to [5].)

3.2 The soliton zone

Within this soliton region x ∼ s(t) and

u(z, t) = U0(z) + o(1) , (3.17)

where the travelling wave coordinate

z ≡ x − s(t) = O(1) (3.18)

and

s(t) = v2t + φ0 + φ1(t) + o(φ1(t)) ,

with φ0 a constant and φ1(t) = o(1) an as yet undetermined gauge function. This function

can be determined by rewriting (3.16) in terms of z; routine manipulations show that this

form can be expressed as

u = − 1 + 2 e
2
3 (z+φ0)e

2
3φ1 − 18 e

4
3 (z+φ0)e

4
3φ1 + 126 e2(z+φ0)e2φ1 − 810 e

8
3 (z+φ0)e

8
3φ1

+ 16 e
4
3 (z+φ0) e− 16

9 t − 144 e2(z+φ0)e− 16
9 t + · · · ;

(3.19)
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the terms in the second line of this result imply that (3.17) should be refined to

u(z, t) = U0(z) + e− 16
9 tU1(z) + · · · (3.20)

and the fact that for φ1(t) = o(1) then ekφ1 = 1+ kφ1 + · · · implies also that φ1(t) = e− 16
9 t.

On substituting expansion (3.20) into equation (1.1), we find that

U ′′′
0 − 6U2

0U
′
0 − v2U

′
0 = 0 for − ∞ < z < ∞, (3.21)

which is to be solved subject to matching to (3.19) as z → −∞.

We can immediately integrate equation (3.21) once to deduce that

U ′′
0 − 2U3

0 − v2U0 − (2 + v2) = 0 (3.22)

and a phase–plane analysis of this second-order autonomous non-linear second-order

differential equation establishes the existence of a homoclinic connection with

U0(z) = −1 +
2

9 + 6
√

2 cosh
(
2z/3

) . (3.23)

The translational invariance in z has been chosen (without loss of generality) so that

matching expansion (3.17) with (3.23) requires that

φ0 = −3

2
ln

(
3
√

2
)
. (3.24)

We conclude that

u(z, t) = −1 +
2

9 + 6
√

2 cosh
(
2z/3

) + O
(
e− 16

9 t
)

(3.25)

with z = O(1), where z = x − s(t) and

s(t) = v2t − 3

2
ln

(
3
√

2
)

+ O
(
e− 16

9 t
)
. (3.26)

At leading order, we have the expected soliton which has an amplitude 2/(9 + 6
√

2) and

travels with speed v2 (= −50/9) on the background level u = −1 (see (1.5) with ub = 1

and A = 2/3). We also note that the rate of convergence of the solution of IVP to the

soliton is exponential and of size O(e− 16
9 t).

As z → ∞ we move back towards the region where y = O(1) but now y > v2. In order

to assist with the subsequent calculation, it is instructive to examine the form of expansion

(3.25) for z � 1. In this limit

u(z, t) ∼
(

−1 +
2

3
√

2
e− 2z

3 − 18

(3
√

2)2
e− 4z

3 +
126

(3
√

2)3
e−2z + · · ·

)

+
(
A0e

4z
3 + · · ·

)
e− 16

9 t + · · ·
(3.27)
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for some constant A0, which, when rewritten in terms of y = x/t = (z + s(t))/t gives that

u(y, t) = − 1 +
2

(3
√

2)2
e− 2

3 (y−v2)t − 18

(3
√

2)4
e− 4

3 (y−v2)t +
126

(3
√

2)6
e−2(y−v2)t + · · ·

+
A0

(3
√

2)2
e

4
3 (y−v1)t + · · · .

(3.28)

It turns that the solution u(y, t) is uniformly valid for v2 < y < −226/45. Now we recall

the behaviour noted earlier for (3.16) where it was clear that one of the exponentially

small terms in that solution became O(1) as y → v2 pointing the way to a soliton zone.

Exactly the same phenomenon occurs here. The last term in (3.28) becomes as large as

the leading order form as y → v−
1 . Across the region v2 < y < v1, there will be a number

of locations where various of the terms within (3.28) become disordered and thus strictly

speaking require further analysis. However, again as before, the re-ordering of the terms

occurs in an entirely passive way and there is little need to spell out all the details. Rather,

we just note that after the last of the re-orderings but prior to the second soliton region

wherein −42/9 < y < v1 we have

u(y, t) ∼ −1 +

(
A0

(3
√

2)2
e

4
3 (y−v1)t + · · ·

)
+ O

(
e− 2

3 (y−v2)t
)
. (3.29)

3.2.1 The second soliton

As y → v−
1 a rescaling is required to account for the second soliton structure. In the

interest of conciseness, we restrict ourselves to a statement of the main results. Here

u(ẑ, t) = −1 +
8

9 + 3
√

5 cosh
(
4ẑ/3

) + O
(
e− 8

9 t
)
, (3.30)

where ẑ = x − ŝ(t) and

ŝ(t) = v1t +
3

4
ln

(
96

A0

√
5

)
+ O

(
e− 8

9 t
)
. (3.31)

At leading order, we thus have a soliton of amplitude 8/(9 + 3
√

5) which travels at speed

v1 on the background level u = −1. Once more the convergence of the solution of IVP

is exponential in t and occurs at an O(e− 8
9 t) rate. We note that as z → ∞ we move back

into the zone where y = x/t = O(1) but now y > v1 (= −38/9).

We have now developed the whole of the large time solution in the region x < −38t/9

which includes two soliton zones. To complete our description, it is necessary to examine

the region y > v1 and this is tackled next.

4 The solution structure for x > −38t/9

We commence our study of the region as x → +∞ in much the same manner as for large

negative values of x. For y = x/t satisfying y < −74/9, we proceeded via steps (3.6)–(3.11)
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to derive the form (3.12); in a completely analogous manner we find that for y > 46/9

u(y, t) = 1 − 2e− 2
3 (y−v2)t − 16e− 4

3 (y−v1)t + 18e− 4
3 (y−v2)t − 20e−2(y−v0)t + O

(
e−2(y+42/9)t

)
. (4.1)

As previously, a number of non-uniformities occur as y is reduced corresponding to

various of the terms in (4.1) becoming disordered. Again these technical issues can be

resolved by consideration of a succession of entirely passive regions; for the record these

occur at y = 46/9, y = 22/9 and y = 2/9 but we do not dwell on the details. Rather we

just note that to the left of the last of these passive regions where y < 2/9 the solution is

u(y, t) = 1 − 20e−2(y−v0)t − 2e− 2
3 (y−v2)t − 16e− 4

3 (y−v1)t + o
(
e− 4

3 (y−v1)t
)
. (4.2)

It is clear that this form must be modified as y → v+
0 , that is to say, as y → −2+. It

is to be expected that in this limit the solution will be altered at leading order and, to

anticipate the below, we shall see this where the kink solution appears.

4.1 The solution in the kink region

Within the kink zone, we expect that u = O(1) and y = −2 + O(t−1). Written in terms of

the travelling co-ordinate

u(z̃, t) = UK (z̃) + o(1), (4.3)

where z̃ = x − s̃(t) with

s̃(t) = v0t + φ̃0 + φ̃1(t) + o(φ̃1(t)).

In order to identify the appropriate size of φ̃1 = o(1), it is instructive to recast (4.2) in

terms of these new co-ordinates. It follows that as y → −2+ so

u ∼ 1 − 20e−2ze2φ̃0e2φ̃1 − 2e− 2
3 ze− 2

3 φ̃0e− 2
3 φ̃1e− 64

27 t − 16e− 4
3 ze− 4

3 φ̃0e− 4
3 φ̃1e− 80

27 t + · · · (4.4)

which suggests that (4.3) be refined to

u(z̃, t) = UK(z̃) + U1(z̃)e
− 64

27 t + O
(
e− 80

27 t
)

(4.5)

and that φ̃1 = O(e− 64
27 t). The leading order problem can then be cast as

U ′′′
K − 6U2

KU
′
K − v0U

′
K = 0, −∞ < z̃ < ∞, (4.6)

UK(z̃) → 1− as z̃ → ∞, (4.7)

UK (z̃) bounded as z̃ → −∞. (4.8)

The requirement (4.7) arises from matching expansion (4.2) to (4.3) and equation (4.6)

integrates once to obtain

U ′′
K − 2U3

K − v0UK = 0. (4.9)

It then follows that

UK (z̃) = tanh
(
z̃ + φ̃c

)
, (4.10)
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for some constant φ̃c. On setting φ̃c = 0 the translational invariance in z̃ is fixed and it is

now clear that (4.10) is the kink, or double layer, solution of (1.1). Matching the solution

to (4.2) as y → v+
0 up to O(1) fixes

φ̃0 =
1

2
ln 10. (4.11)

The correction term U1(z̃) satisfies

U ′′′
1 + U ′

1

(
2 − 6U2

k

)
− U1

(
64

27
+ 12UKU

′
K

)
= −64

27
U ′

K (4.12)

and has asymptotic properties

U1(z̃) ∼ A2e
− 2

3 z̃ + 4e−2z̃ as z̃ → ∞, (4.13)

U1(z̃) ∼ B1e
− 2

3 z̃ + 4e2z̃ as z̃ → −∞, (4.14)

where A2 and B1 are constants. Matching expansion (4.5) with expansion (4.3) (as y → v+
0 )

up to O(e− 64
27 t) determines

A2 = − 2

101/3
.

We conclude therefore that in the kink solution zone

u(z̃, t) = tanh z̃ + O
(
e− 64

27 t
)
, (4.15)

where z̃ = x − s̃(t) and

s̃(t) = v0t +
1

2
ln 10 + O(e− 64

27 t)

as t → ∞. Hence again the convergence of the solution of IVP to the kink is exponential

in t.

The calculation is now almost complete but before describing the final step it is

instructive to examine the next term in expansion (4.5). If we look for an expansion of

the form

u(z̃, t) = UK (z̃) + U1(z̃)e
− 64

27 t + U2(z̃)e
− 80

27 t + o
(
e− 80

27 t
)
, (4.16)

it follows that U2(z̃) ∼ B2e
− 4

3 z̃ as z̃ → −∞ for some B2. The upshot is that as in this limit

we move back towards the region where y (= x/t) < −2. If we write the solution (4.16) in

terms of y we find that

u(y, t) ∼ −1 +
2

10
e2(y−v0)t + B1(10)

1
3 e− 2

3 (y−v2)t + B2(10)
2
3 e− 4

3 (y−v1)t. (4.17)

4.2 The solution in the region v1 < y < v0

In Section 3, we developed the form of the solution when t → ∞ for y < v1, and above we

followed the solution through the kink zone located at y = v0 = −2. All that is left to do

https://doi.org/10.1017/S095679251500025X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251500025X


Large-time solution of the mKdV equation 941

is to examine the intermediate region v1 < y < v0. Here it is straightforward to establish

that

u(y, t) = −1 +
2

10
e2(y−v0)t + B1(10)

1
3 e− 2

3 (y−v2)t + B2(10)
2
3 e− 4

3 (y−v1)t + o
(
e− 4

3 (y−v1)t
)
. (4.18)

Unfortunately, expansion (4.18) becomes non-uniform as y → − 26
9

+
which points to the

need for one final expansion. It is interesting that in this limit all three exponential terms

within (4.18) become comparable in size and we examine the solution here by introducing

a suitable scaled co-ordinate ξ = (y + 26
9
)t so that

u(ξ, t) = −1 + S(ξ)e− 48
27 t + o

(
e− 48

9 t
)
. (4.19)

The function S(ξ) satisfies

S ′′′ − 28

9
S ′ − 48

27
S = 0 (4.20)

and this is to be solved subject to matching with form (4.18) as ξ → ∞ which requires

S(ξ) ∼ 2

10
e2ξ + B1(10)

1
3 e− 2

3 ξ + B2(10)
2
3 e− 4

3 ξ as ξ → ∞. (4.21)

The solution of (4.20) subject to (4.21) is seen to be

S(ξ) =
2

10
e2ξ + B1(10)

1
3 e− 2

3 ξ + B2(10)
2
3 e− 4

3 ξ (4.22)

and as ξ → −∞ we move back into the region where v1 < y < −26/9. Here

u(y, t) = −1 + B2(10)
2
3 e− 4

3 (y−v1)t + B1(10)
1
3 e− 2

3 (y−v2)t +
2

10
e2(y−v0)t + o

(
e2(y−v0)t

)
; (4.23)

a solution that again becomes disordered as y → v+
1 . However, this is just the location

of the second soliton solution that was discussed in Section 3.2.1. Therefore, all that

remains to complete the large-t asymptotic structure of IVP is to match expansion (4.23)

as y → v+
1 to expansion (3.30) as z → ∞ which is ensured if

B2 =
512

10
2
3 5A0

and B1 =
4
√

6

10
1
3 A

1
2

0 5
1
4

.

5 Closing remarks and discussion

In this paper, we have presented the complete asymptotic structure of the large-t solution

to IVP and have shown the emergence of the solution consisting of two solitary waves

plus a kink solution. In particular, we have ascertained the existence of the following.

(i) A relatively fast solitary wave of amplitude 2/(9 + 6
√

2) which travels with a speed

v2 (= − 50
9
) on the background level u = −1, see (3.25). The rate of convergence of

the solution of IVP to this soliton is O(e− 16
9 t).
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(ii) A slower solitary wave of amplitude 8/(9 + 3
√

5) which travels at speed v1 (=

− 38
9
), again on the background level u = −1, see (3.30). In this case, the rate of

convergence of the solution to the soliton is O(e− 8
9 t).

(iii) A kink solution which travels at speed v0 (= −2) and which connects the level

u = +1 to the level u = −1. The rate of convergence to the kink is O(e− 64
27 t).

All these results are in excellent accord with the numerical simulations described

within [1] and [2]. While some of the features of the solution are well known, our

matched asymptotic analysis furnishes new estimates of the convergence rates of the

computations. It would be of interest to couple the results of our work to more accurate

numerical solutions that are possible with modern methods and this is a topic of ongoing

research.

What is most attractive about the techniques outlined here is the potential for applica-

tion to a whole hierarchy of non-linear evolution equations. Although the analysis on the

surface appears to be intricate and complicated, with many different regions of interest

that require separate consideration, in reality most of the detail follows in a natural

manner. Given the specified initial condition, in Section 2 we used standard methods

to infer the structure of the solution at relatively early times. The results allowed us to

develop solutions for large |x| to moderate times and these in turn enabled us to identify

the relevance of the scale x ∼ O(t). Once this scaling was highlighted, the remainder of the

calculation was rendered little more than routine. As might be expected the two soliton

zones and the kink solution required some more careful analysis to ensure that matching

was accomplished properly but otherwise the methodology was standard. It should be

emphasised that the overall procedure required little more than familiar methods but led

to accurate predictions of the size and positions of the various features as well as new

information concerning the rates of convergence of the solution.

Finally, we remark that the computations in [1] and [2] examined the evolution of the

mKdV equation from a number of different initial conditions including profiles leading

to many more soliton structures. As might be expected, a more complicated long-time

structure of the solution requires a correspondingly involved analysis, but it can still be

followed through using precisely the techniques described here. It is perhaps somewhat

surprising that the suitable application of standard methods of matched asymptotics can

yield complete details of the long-term structure of complicated non-linear evolution

equations.
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