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Introduction

Let k be a perfect field of characteristic p and l be a prime number different from p. When

k is algebraically closed, in the framework of Grothendieck’s l-adic etale cohomology of

k-varieties, Bernstein, Beilinson and Deligne in their famous paper on perverse sheaves,

more precisely in [5, 4.5.1] (or see the p-adic translation here in Theorem 2.2.6),

established some Betti number estimates. The goal of this paper is to get the same

estimates in the context of Berthelot’s arithmetic D-modules. We recall that this theory of

Berthelot gives a p-adic cohomology stable under six operations (see [15]) and admitting

a theory of weights (see [3]) analogous to that of Deligne in the l-adic side (see [21]). This

allows us to consider Berthelot’s theory as a right p-adic analogue of Grothendieck’s
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l-adic etale cohomology. By trying to translate the proof of Betti number estimates in

[5, 4.5.1] in the framework of arithmetic D-modules, two specific problems appear. The

first one is that we do not have a notion of local acyclicity in the theory of arithmetic

D-modules. We replace the use of this notion by another one that we might call ‘relative

generic O-coherence’. The goal of the first chapter is to prove this property. The proof of

this relative generic O-coherence uses the precise description of the characteristic variety

of a unipotent overconvergent F-isocrystal (see [11]). Berthelot’s characteristic variety

of a holonomic arithmetic D-module endowed with a Frobenius structure. The second

emerging problem when we follow the original l-adic proof of Betti number estimates

is that we still do not have vanishing cycles theory as nice as in the l-adic framework

(so far, following [2] we only have a p-adic analogue of Beilinson’s unipotent nearby

cycles and vanishing cycles). Here, we replace successfully in the original proof on Betti

number estimates the use of vanishing cycles by that of some Fourier transform and of

Abe–Marmora formula [4, 4.1.6(i)] relating the irregularity of an isocrystal with the rank

of its Fourier transform. We conclude this paper by the remark that these Betti number

estimates allow us to state that the results of [5, Chapters 4 and 5] are still valid (except

[5, 5.4.7–8] because the translation is not clear so far).

Convention, notation of the paper

Let V be a complete discrete valued ring of mixed characteristic (0, p), K its field of

fractions, k its residue field which is supposed to be perfect, π be a uniformizer of V.

Let Fk : k → k be the Frobenius map given by x 7→ x p. When we deal with Frobenius

structures, we suppose that there exists a lifting σ0 : V → V of the Frobenius map Fk
that we fix. A k-variety is a separated reduced scheme of finite type over k. We say

that a k-variety X is realizable if there exists an immersion of the form X ↪→ P, where

P is a proper smooth formal scheme over V. In this paper, k-varieties will always be

supposed realizable. For any k-variety X , we denote by pX : X → Spec k the canonical

morphism. We denote formal schemes by curly or gothic letters and the corresponding

straight roman letter will mean the special fibre (e.g., if X is a formal scheme over V,

then X is the k-variety equal to the special fibre of X). The underlying topological space

of a k-variety X is denoted by |X |. When M is a V-module, we denote by M̂ its p-adic

completion and we set MQ := M ⊗V K . By default, a module will mean a left module.

Moreover, if f : P ′→ P is a morphism of formal schemes over V, we denote by L f ∗ the

functor defined by putting L f ∗(M) = OP ′,Q⊗
L
f −1OP,Q

f −1M, for any bounded below

complex M of OP,Q-modules. When f is flat, we remove L in the notation.

If T → S is a morphism of schemes and f : X → Y is an S-morphism, then we denote

by fT : XT → YT or simply by f : XT → YT the base change of f by T → S.

Concerning the cohomological operations of the theory of arithmetic D-modules of

Berthelot, we follow the usual notation (for instance, see the beginning of [3]). More

precisely, let S be a noetherian scheme such that p is nilpotent in OS . Let f : X → Y be

morphism of quasi-compact smooth S-schemes. If f is smooth, then the extraordinary

pull-back of level m by f has the factorization f !
(m)
: Db

coh(D
(m)
Y/S)→ Db

coh(D
(m)
X/S) (see [10,

2.2.4]). If f is proper, then the push-forward of level m by f has the factorization
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f+(m) : Db
coh(D

(m)
X/S)→ Db

coh(D
(m)
Y/S) (see [10, 2.4.4]). When there is no ambiguity with the

basis S, we remove ‘/S’ is the notation.

Let f : P → Q be a morphism of quasi-compact smooth formal V-schemes. If f
is smooth, then we have the extraordinary pull-back of level m by f of the form

f !
(m)
: Db

coh(D̂
(m)
Q )→ Db

coh(D̂
(m)
P ) and f !

(m)
: Db

coh(D̂
(m)
Q,Q)→ Db

coh(D̂
(m)
P,Q) (see [10, 3.4.6]),

and we have the extraordinary pull-back by f of the form f ! : Db
coh(D

†
Q,Q)→ Db

coh(D
†
P,Q)

(see [10, 4.3.4]). If f is proper, then we have the push-forward of level m of the form

f+(m) : Db
coh(D̂

(m)
P )→ Db

coh(D̂
(m)
Q ) and f+(m) : Db

coh(D̂
(m)
P,Q)→ Db

coh(D̂
(m)
Q,Q) (see [10, 3.5.3]),

and the push-forward by f of the form f+ : Db
coh(DP,Q)→ Db

coh(DQ,Q) (see [10, 4.3.8]).

Let a : X → Y be a morphism of (realizable) k-varieties. By definition, there exist

immersions ι : X ↪→ P and ι′ : Y ↪→ Q where P and Q are proper smooth formal

schemes over V. Replacing P by P ×Q, we can suppose that there exist a (proper)

smooth morphism of formal V-schemes of the form f : P → Q such that f ◦ ι = ι′ ◦ a.

By definition, Db
ovhol(X,P/K ) is the full subcategory of Db

ovhol(D
†
P,Q) (the derived

category of overholonomic complexes of D†
P,Q-modules) of the objects E such that

there exists an isomorphism of the form R0†
X (E)

∼
−→ E (see [3, 1.1.6]). Since this

category Db
ovhol(X,P/K ) does not depend on the choice of ι, we simply denote it

by Db
ovhol(X/K ) (see Definition [3, 1.1.5]). The extraordinary pull-back by a is by

definition R0†
X ◦ f ! : Db

ovhol(Y,Q/K )→ Db
ovhol(X,P/K ), which is simply denoted by

a! : Db
ovhol(Y/K )→ Db

ovhol(X/K ) (again, we check that this does not depend on ι, ι′

and f ). The push-forward by a is by definition f+ : Db
ovhol(X,P/K )→ Db

ovhol(Y,Q/K ),
which is simply denoted by a+ : Db

ovhol(X/K )→ Db
ovhol(Y/K ). We have also the dual

functor DX := R0†
X ◦DP : Db

ovhol(X/K )→ Db
ovhol(X/K ). Then we get a! := DY ◦ a+ ◦DX

and a+ := DX ◦ a! ◦DY . There is a canonical t-structure on Db
ovhol(X/K ) defined as

follows: if U is an open set of P so that X is closed in U then D6n
ovhol(X/K ) (respectively

D>n
ovhol(X/K )) is the subcategory of Db

ovhol(X/K ) of complexes E such E |U ∈ D6n
ovhol(D

†
U,Q)

(respectively D>n
ovhol(D

†
U,Q)), where the t-structure on Db

ovhol(D
†
U,Q) is the obvious one.

The heart of this t-structure is denoted by Ovhol(X/K ) (see Definition [3, 1.2.6]).

Suppose X smooth. Following [3, 1.2.14], we have a full subcategory Db
isoc(X/K )

of Db
ovhol(X/K ) whose cohomological spaces (for the above t-structure) belong

to Isoc††(X/K ) (the category of overconvergent isocrystals on X/K ). Recall that

Isoc††(X/K ) is equivalent to the category of overconvergent isocrystals on X/K denoted

by Isoc†(X/K ).
If j : U ↪→ X is an open immersion of (realizable) varieties, the functor

j ! : Db
ovhol(X/K )→ Db

ovhol(U/K ) (or the functor j ! : Ovhol(X/K )→ Ovhol(U/K )) will

simply be denoted by |U (in other papers, to avoid confusion, it was sometimes denoted

by ‖U but, here, there is no such risk since we do not work ‘partially’).

Let s be a positive integer and σ = σ s
0 : V → V the corresponding lifting of the sth

power of the Frobenius map F s
k : k → k. If X is a k-variety (respectively P is a smooth

formal V-scheme) then we denote by Xσ (respectively Pσ ) the corresponding k-scheme

of finite type (respectively smooth formal V-scheme) induced by the base change by

F s
k (respectively σ ). We denote by F s

X/k : X → Xσ the corresponding relative Frobenius
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which is a morphism of k-schemes. Notice, when X is k-smooth, F s
X/k is a morphism of

smooth k-varieties. When it exists (e.g., when P is affine), we denote by F s
P/V : P → Pσ

a morphism of smooth formal V-schemes which is a lifting of F s
X/k : X → Xσ . The

functor Db
coh(D

†
P,Q)→ Db

coh(D
†
Pσ ,Q) induced by the isomorphism Pσ ∼

−→ P is denoted

by E 7→ Eσ . We have the functor (F s
P/k)

!
: Db

coh(D
†
Pσ ,Q)→ Db

coh(D
†
P,Q). Recall that when

F s
P/k has a lifting F s

P/V : P → Pσ then we have (F s
P/k)

!
= (F s

P/V )
! (in general, even if

the lifting F s
P/V is not unique we can glue these functors: e.g., see [9, 2.1]). Finally, we

get the functor F∗ : Db
coh(D

†
P,Q)→ Db

coh(D
†
P,Q) which is defined for any E ∈ Db

coh(D
†
P,Q)

by setting F∗(E) := (F s
P/k)

!(Eσ ). The derived category of overholonomic F-complexes of

D†
P,Q-modules, denoted by F-Db

ovhol(D
†
P,Q), is the category whose objects are the data of

an object E of Db
ovhol(D

†
P,Q) endowed with a Frobenius structure, i.e., an isomorphism φ

of Db
ovhol(D

†
P,Q) of the form φ : F∗E ∼

−→ E . We get similarly the category F-Db
ovhol(X/K )

of overholonomic F-complexes on X/K . When X is smooth, we define similarly the

categories of F-objects F-Db
isoc(X/K ) and F-Isoc††(X/K ) (see [3, 1.2.14]).

1. Relative generic O-coherence

1.1. Preliminaries on cotangent spaces

Notation 1.1.1. Let X be a smooth k-variety. For any quasi-coherent OX -module E , we

denote by Sym(E) the symmetric algebra of E and by V(E) := Spec (Sym(E)) endowed

with its canonical projection V(E)→ Spec (OX ) = X . We denote by �1
X the sheaf of

differential form of X/Spec (k) (we skip k in the notation), and TX the tangent space of

X/Spec (k), i.e., the OX -dual of �1
X . We denote by T ∗X := V(TX ) the cotangent space

of X and πX : T ∗X → X the canonical projection. Recall that from [24, 1.7.9], there is a

canonical bijection between sections of πX and 0(X, �1
X ). We denote by T ∗X X the section

corresponding to the zero section of 0(X, �1
X ). If t1, . . . , td are local coordinates of X ,

we get local coordinates t1, . . . , td , ξ1, . . . , ξd of T ∗X , where ξi is the element associated

with ∂i , the derivation with respect to ti . Is this case, T ∗X X = V (ξ1, . . . , ξd) is the closed

subvariety of T ∗X defined by ξ1 = 0, . . . , ξd = 0.

Let f : X → Y be a morphism of smooth k-varieties. Using the equality [24, 1.7.11(iv)]

we get the last one X ×Y T ∗Y = X ×Y V(TY ) = V( f ∗TY ). The morphism f ∗�1
Y → �1

X
induced by f yields by duality TX → f ∗TY and then by functoriality V( f ∗TX )→ V(TY ) =

T ∗Y . By composition, we get the morphism denoted by ρ f : X ×Y T ∗Y → T ∗X . We write

by $ f : X ×Y T ∗Y → T ∗Y the base change of f under πY (instead of fT ∗Y
: X ×Y T ∗Y →

T ∗Y which seems too heavy).

We denote by T f the function from the set of subvarieties of T ∗X to the set

of subvarieties of T ∗Y defined by posing, for any subvariety V of T ∗X , T f (V ) :=
$ f (ρ

−1
f (V )). If f is an open immersion, then ρ f is an isomorphism. In that case,

T f := $ f ◦ ρ
−1
f : T ∗X → T ∗Y is an open immersion and this is compatible with the

above definition of T f . The application T : f 7→ T f is transitive (with respect to the

composition), i.e., we have the equality Tg ◦T f = Tg◦ f for any g : Y → Z (e.g., look at

the bottom of the diagram (1.1.2.1) where f and u are replaced respectively by g and f ).

https://doi.org/10.1017/S1474748017000299 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000299


Betti number estimates in p-adic cohomology 961

We define the k-variety T ∗X Y (recall a k-variety is a separated reduced scheme of finite

type over k from our convention) by setting T ∗X Y := ρ−1
f (T

∗

X X). When f is an immersion,

T ∗X Y is viewed as a subvariety of T ∗Y via T ∗X Y ⊂ X ×Y T ∗Y
$ f
↪→ T ∗Y , i.e., we simply denote

$ f (T ∗X Y ) by T ∗X Y .

Lemma 1.1.2. Let u : Z → X and f : X → P be two morphisms of smooth k-varieties.

(1) We have the equality (Z ×X ρ f )
−1(T ∗Z X) = T ∗Z P. When u is an immersion, this

might be written of the form ρ−1
f (T

∗

Z X) = T ∗Z P or T f (T ∗Z X) = $ f (T ∗Z P). If u and

f are immersions, this might be written T f (T ∗Z X) = T ∗Z P. Finally, when u is an

immersion and f is an open immersion, we might identify T ∗Z X and T ∗Z P.

(2) When u is an immersion (respectively an open immersion), we have the inclusion

Z ×X T ∗X P ⊂ T ∗Z P (respectively the equality Z ×X T ∗X P = T ∗Z P) in Z ×P T ∗P.

Proof. (1) First, let us prove part (1) of the lemma. The composition ( f ◦ u)∗�P
∼
−→

u∗ ◦ f ∗�P → u∗�X → �Z is the canonical one. Indeed, since this is local, then we reduce

to the case where varieties are affine and then this is checked by an easy computation.

This implies that the composition Z ×P T ∗P
Z×Xρ f
−→ Z ×X T ∗X

ρu
−→ T ∗Z is equal to ρ f ◦u .

Consider the following diagram

T ∗Z Z
� _

��
�

T ∗Z Xoo
� _

��
�

T ∗Z Poo
� _

��
T ∗Z Z ×X T ∗X

�

ρu
oo

$u

��

Z ×P T ∗P
Z×Xρ f

oo

��

$ f //

�

Z ×X T ∗P

u
��

T ∗X X ×P T ∗P
ρ f

oo
$ f // T ∗P,

(1.1.2.1)

where the upper left square and the composition of both upper squares are by definition

Cartesian (for the second case, use ρ f ◦u = ρu ◦ (Z ×X ρ f )). This yields the cartesianity of

the upper right square. Hence, we get the equality (Z ×X ρ f )
−1(T ∗Z X) = T ∗Z P. When u is

an immersion, this yields T f (T ∗Z X) = $ f (T ∗Z P). The other assertions of (1) are obvious.

(2) Now, let us check part (2) of the lemma. Since (Z ×X ρ f )
−1(Z ×X T ∗X X) =

Z ×X ρ
−1
f (T

∗

X X) = Z ×X T ∗X P and (Z ×X ρ f )
−1(T ∗Z X) = T ∗Z P (this is the first part of

the Lemma), we reduce to check the inclusion Z ×X T ∗X X ⊂ T ∗Z X (respectively equality

Z ×X T ∗X X = T ∗Z X) of subvarieties of T ∗X .

(i) First, suppose that u is an open immersion. In that case ρu : Z ×X T ∗X → T ∗Z is an

isomorphism and we check easily the desired equality ρ−1
u (T ∗Z Z) = Z ×X T ∗X X by coming

back to the definition of T ∗X X and T ∗Z Z .

(ii) Suppose now that u is only an immersion. Let Z be the closure of Z in X . From the

part 2(i) of the proof, the respective case of the part (2) of the lemma is satisfied. Hence,

since Z → Z is an open immersion, we get Z ×Z T ∗
Z

X = T ∗Z X . Using this latter equality,
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we reduce to check the inclusion Z ×X T ∗X X ⊂ T ∗
Z

X . In other words, we can suppose Z =

Z . Moreover, from the part (1) and the respective case of the part (2) of the Lemma, the

check is local in X . Hence, we can suppose that X has local coordinates t1, . . . , td such that

t1, . . . , tr , the global section of OZ induced by t1, . . . , tr , are local coordinates of Z . We

get local coordinates t1, . . . , td , ξ1, . . . , ξd of T ∗X , where ξi is the element associated with

∂i , the derivation with respect to ti . We get also local coordinates t1, . . . , tr , ξ1, . . . , ξ r
of T ∗Z , where ξ i is the element associated with ∂ i , the derivation with respect to t i .

Then, ρu : Z ⊗X T ∗X → T ∗Z is smooth and 1⊗ ξr+1, . . . , 1⊗ ξd are local coordinates

relatively to ρu (in fact they induce an isomorphism of the form Z ⊗X T ∗X
∼
−→ Ad−r

T ∗Z )

and the image of ξ1 . . . , ξ r via ρu are 1⊗ ξ1, . . . , 1⊗ ξr . Hence we get ρ−1
u (T ∗Z Z) = T ∗Z X =

V (1⊗ ξ1, . . . , 1⊗ ξr ) and Z ×X T ∗X X = V (1⊗ ξ1, . . . , 1⊗ ξd) as subvarieties of Z ×X T ∗X .

Hence, Z ×X T ∗X ⊂ T ∗Z X .

Lemma 1.1.3. Let f : X → P be a morphism of smooth k-varieties and (X i )16i6r be a

family of smooth subvarieties of X (respectively open subvarieties of X) such that X ⊂⋃r
i=1 X i . Then, T ∗X P ⊂

⋃r
i=1 T ∗X i

P (respectively T ∗X P =
⋃r

i=1 T ∗X i
P).

Proof. From the first equality of Lemma 1.1.2, we reduce to the case X = P. Using the

second part of Lemma 1.1.2, we get the inclusions X i ×X T ∗X X ⊂ T ∗X i
X (respectively the

equalities X i ×X T ∗X X = T ∗X i
X), which yields the desired result when X = P.

Proposition 1.1.4. Let f : X → Y be a smooth morphism of smooth varieties. Let B be a

smooth subvariety of Y and A := f −1(B).

(1) The morphism ρ f is a closed immersion. If f is étale then ρ f is an isomorphism.

(2) We have ρ−1
f (T

∗

A X)
1.1.2(1)
= T ∗AY = $−1

f (T ∗B Y ), ρ f ($
−1
f (T ∗B Y )) ⊂ T ∗A X and T f (T ∗A X)

⊂ T ∗B Y .

(3) When f is surjective, we have the equality T f (T ∗A X) = T ∗B Y .

Proof. (1) From [28, 17.11.1], the canonical morphism f ∗�Y → �X is injective. By

duality we get the surjection TX → f ∗TY . Hence, from [24, 1.7.11(iv) and (v)], the

morphism ρ f : X ×Y T ∗Y → T ∗X is a closed immersion. When f is etale, from [28,

17.11.2], the canonical morphism f ∗�Y → �X is an isomorphism and then so is ρ f .

(2) (a) In this step, we check the equality T ∗X Y = $−1
f (T ∗Y Y ) (= X ×Y T ∗Y Y ).

(i) From the respective case of Lemma 1.1.2(2), this is local in X . Moreover,

this is local in Y . Indeed, let V be an open set of Y . We put U := f −1(V ) and

fV : U → V the induced morphism. On the one hand (U ×Y T ∗Y )∩$−1
f (T ∗Y Y ) =

U ×Y T ∗Y Y = U ×V (V ×Y T ∗Y Y )
1.1.2(2)
= U ×V T ∗V Y

1.1.2(1)
= U ×V T ∗V V = $−1

fV
(T ∗V V ) and on

the other hand (U ×Y T ∗Y )∩ T ∗X Y = U ×X T ∗X Y
1.1.2(2)
= T ∗U Y

1.1.2(1)
= T ∗U V , which give the

localness in Y .

(ii) Let g : Y → Z be another smooth morphism of varieties. If this equality is satisfied

for f and g, i.e., if T ∗X Y = $−1
f (T ∗Y Y ) and T ∗Y Z = $−1

g (T ∗Z Z), then we get that the squares
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of the following diagram are Cartesian:

T ∗X X
� _

��
�

X ×Y T ∗Y Yoo
� _

��
�

X ×Z T ∗Z Zoo
� _

��
T ∗X X ×Y T ∗Y

ρgoo X ×Z T ∗Z
ρ foo

ρg◦ f

jj

Hence, the rectangle is also Cartesian, i.e., T ∗X Z = X ×Z T ∗Z Z , which is the desired

equality.
(iii) Since from the step (i) the check of equality T ∗X Y = $−1

f (T ∗Y Y ) = X ×Y T ∗Y Y
is local in X and Y , then we can suppose that Y has local coordinates t1, . . . , td
and that there exists an etale morphism of the form X → An

Y whose composition
with the projection An

Y → Y gives f . Since from the step (ii) the equality T ∗X Y =
$−1

f (T ∗Y Y ) = X ×Y T ∗Y Y is transitive with respect to the composition, we reduce to the

case where n = 0 or X = An
Y . Suppose n = 0, i.e., f is etale. Let t ′1, . . . , t ′d be the local

coordinates of X induced by t1, . . . , td . We get local coordinates t1, . . . , td , ξ1, . . . , ξd
of T ∗Y , where ξi is the element associated with the derivation with respect to ti
and local coordinates t ′1, . . . , t ′d , ξ

′

1, . . . , ξ
′

d of T ∗X , where ξ ′i is the element associated

with the derivation with respect to t ′i . The isomorphism ρ f : X ×Y T ∗Y
∼
−→ T ∗X

sends ξ ′i to 1⊗ ξi . Since T ∗X X = V (ξ ′1, . . . , ξ
′

d) then T ∗X Y := ρ−1
f (T

∗

X X) = V (1⊗ ξ1, . . . , 1⊗
ξd) = X ×Y V (ξ1, . . . , ξd) = X ×Y T ∗Y Y . Suppose now that X = An

Y . Let td+1, . . . , td+n
be the coordinates of An

k and let ξd+1, . . . , ξd+n be the element of T ∗An
k associated

respectively with the derivation with respect to td+1, . . . , td+n . We get local coordinates
t1, . . . , td+n, ξ1, . . . , ξd+n of T ∗X . In that case the morphism ρ f is a closed immersion of
the form ρ f : An

× T ∗Y ↪→ T ∗X so that An
× T ∗Y = V (ξd+1, . . . , ξd+n) in T ∗X . Since

T ∗X X = V (ξ1, . . . , ξd+n) in T ∗X then ρ−1
f (T

∗

X X) is the closed subvariety of An
× T ∗Y

defined by ξ1 = 0, . . . , ξd = 0, i.e., ρ−1
f (T

∗

X X) = An
× T ∗Y Y (recall T ∗Y Y = V (ξ1, . . . , ξd) in

T ∗Y ), which is the desired equality.

(b) Let i : B ↪→ Y be the structural immersion. By applying Lemma 1.1.2(1) to the case

of A→ B → Y , we get (A×B ρi )
−1(T ∗A B) = T ∗AY . Moreover, (A×B ρi )

−1(A×B T ∗B B) =
A×B T ∗B Y . From part (a), we have T ∗A B = A×B T ∗B B. This implies the first equality

T ∗AY = A×B T ∗B Y = X ×Y T ∗B Y = $−1
f (T ∗B Y ). Hence, we have checked the equality

ρ−1
f (T

∗

A X) = $−1
f (T ∗B Y ). By applying ρ f to this equality, we get ρ f ($

−1
f (T ∗B Y )) =

ρ f (ρ
−1
f (T

∗

A X)) ⊂ T ∗A X . By applying this time $ f to this equality, we get T f (T ∗A X) =

$ f (ρ
−1
f (T

∗

A X)) = $ f ($
−1
f (T ∗B Y )) ⊂ T ∗B Y . When f is surjective, then so is $ f (see [23,

3.5.2(ii)]). Hence, the latter inclusion is in fact an equality.

1.2. Inverse and direct images of complexes of arithmetic D-modules and

characteristic varieties

1.2.1 (Characteristic variety and characteristic cycle (of level 0)). Let X be a smooth
V-formal scheme, X be the reduction of X modulo π (recall π is a uniformizer of V).
Let m ∈ N be an integer. Let us recall Berthelot’s definition of characteristic varieties (of
level m) as explained in [10, 5.2].

https://doi.org/10.1017/S1474748017000299 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000299


964 D. Caro

(1) Let G be a coherent D(0)
X -module. Berthelot checked the equality T ∗X :=

Spec grD(0)
X , where D(0)

X is filtered by the order. Since πX : T ∗X → X is affine,
the functor πX∗ induces an equivalence from the category of (quasi-)coherent

OT ∗X -modules to that of (quasi-)coherent grD(0)
X -modules. We denote by ∼ a

quasi-inverse functor. Even if it is tempting to identify both categories, we try
to distinguish them to avoid confusion. Choose a good filtration (Gn)n∈N, i.e., a
filtration such that grG is a coherent grD(0)

X -module (see the definition [10, 5.2.3]).
We denote by g̃r the composition of gr with ∼. So, g̃rG is a coherent OT ∗X -module.
The characteristic variety of level 0 of G, denoted by Car(0)(G) is by definition the
support of g̃rG in T ∗X which is viewed canonically as a subvariety of T ∗X . Berthelot
checked that this is well defined (i.e., that this is independent of the choice of the
good filtration). Moreover, he defined the characteristic cycle associated with G that
we denote (we add (0) to avoid confusion) by ZCar(0)(G) (for a detailed definition
see [10, 5.4.1]).

(2) Let F be a coherent D̂(0)
X -module. The characteristic variety Car(0)(F) of level 0

of F is by definition the characteristic variety of level 0 of F/πF as coherent

D(0)
X -module, i.e., Car(0)(F) := Car(0)(F/πF). Similarly, we define the characteristic

cycle ZCar(0)(F) of level 0 of F by setting ZCar(0)(F) := ZCar(0)(F/πF).

(3) Let E be a coherent D̂(0)
X,Q-module. Choose a coherent D̂(0)

X -module
◦

E without

p-torsion such that there exists an isomorphism of D̂(0)
X,Q-modules of the form

◦

EQ
∼
−→ E . The characteristic variety of level 0 of E denoted by Car(0)(E) is

by definition that of
◦

E as coherent D̂(0)
X -module, i.e., Car(0)(E) := Car(0)(

◦

E/π
◦

E).
Berthelot checked that this is well defined. Similarly, we define the characteristic

cycle ZCar(0)(E) of level 0 of E by setting ZCar(0)(E) := ZCar(0)(
◦

E/π
◦

E).
(4) Let (N , φ) be a coherent F-D†

X,Q-module, i.e., a coherent D†
X,Q-module N

and an isomorphism of D†
X,Q-modules φ of the form φ : F∗N ∼

−→ N . Then

there exists a (unique up to isomorphism) coherent D̂(0)
X,Q-module N (0) and

an isomorphism φ(0) : D̂(s)
X,Q⊗D̂(0)

X,Q
N (0) ∼

−→ F∗N (0) which induces canonically φ.

Then, the characteristic variety of N denoted by Car(N ) is by definition the
characteristic variety of level 0 of N (0), i.e., Car(N ) := Car(0)(N (0)). Finally, the
characteristic cycle of N denoted by ZCar(N ) is by definition the characteristic
variety of level 0 of N (0).

(5) Let E ∈ Db
coh(D

(0)
X ) and let (E, φ) ∈ F-Db

coh(D
†
X,Q). By definition, we define the

characteristic variety of these complexes by setting Car(0)(E) :=
⋃

r Car(0)(Hr (E))
and Car(E) :=

⋃
r Car(0)(Hr (E)).

Lemma 1.2.2. Let u : V → W be a morphism of k-varieties.

(1) If u is flat then for any OW -module N we have Supp(u∗N ) = u−1(SuppN ).
(2) If u is finite, then for any coherent OV -module M we have Supp(u∗(M)) =

u(Supp(M)).
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Proof. Since a flat morphism of local rings is faithfully flat, we get the first assertion.

Let M be a coherent OV -module. From [23, 5.2.2], SuppM is a closed subset of V .

Since u is closed, by using [23, 3.4.6], we get the inclusion Supp(u∗(M)) ⊂ u(Supp(M)).

Set W ′ := W \Supp(u∗M), V ′ := u−1(W ′) and u′ : V ′→ W ′ the morphism induced by

u. Since u is finite, then u∗M is a coherent OW -module. Hence W ′ is an open subset

of W . Since u′∗(M|V ′) = u∗(M)|W ′ = 0, since u′ is affine and M|V ′ is a quasi-coherent

OV ′-module, this yields M|V ′ = 0. Hence, SuppM ⊂ V \ V ′ = u−1(Supp(u∗M)), which

is equivalent to the inclusion u(Supp(M)) ⊂ Supp(u∗(M)).

Proposition 1.2.3. Let f : X → Y be an étale morphism of integral smooth k-varieties.

Let E ∈ Db
coh(D

(0)
X ), F ∈ Db

coh(D
(0)
Y ).

(1) We have the equality |Car(0)( f !
(0)
(F))| = ρ f ($

−1
f (|Car(0)(F)|)).

(2) If f is moreover finite, then |Car(0)( f+(0)(E))| = $ f ◦ ρ
−1
f (|Car(0)(E)|) =: T f (|Car(0)

(E)|).
(3) If f is moreover finite and surjective of degree d and if F is a coherent D(0)

Y -module,

then

ZCar(0)( f+(0) f !
(0)
(F)) = d ZCar(0)(F). (1.2.3.1)

Proof. Since f is etale, ρ f is an isomorphism (this is equivalent to say that the

canonical morphism grD(0)
X → f ∗grD(0)

Y is an isomorphism). We get the etale morphism

of k-varieties T f := $ f ◦ ρ
−1
f : T ∗X → T ∗Y which is included in the Cartesian square:

T ∗X
T f //

�πX

��

T ∗Y

πY

��
X

f // Y

To check the first assertion we can suppose that F is a coherent D(0)
Y -module. Let

(Fn) be a good filtration of F . Then ( f ∗Fn) be a good filtration of f !
(0)
(F) (which is

equal as OX -module to f ∗F). With this filtration, we check g̃r( f !
(0)
(F)) ∼−→ T ∗f (g̃r(F))

(remark that πT ∗X,∗ ◦T
∗

f ◦ ∼ is isomorphic to grD(0)
X ⊗ f −1grD(0)

Y
f −1(−) as functor from

the category of quasi-coherent grD(0)
Y -modules to that of quasi-coherent grD(0)

X -modules).

From Lemma 1.2.2(1), since T f is flat we get Supp T ∗f (g̃r(F)) = T −1
f (Supp(g̃r(F))).

Since T −1
f (Supp(g̃r(F))) = ρ f ($

−1
f (Supp(g̃r(F)))), we obtain the first equality of the

proposition.

Suppose now that f is finite and etale. To check the second assertion we can suppose

that E is a coherent D(0)
X -module. Let (En) be a good filtration of E . Then ( f∗En) be

a good filtration of f+(0)(E) (which is isomorphic to f∗(E) as OY -module. With this

filtration, we check g̃r( f+(0)(E))
∼
−→ T f ∗(g̃r(E)). From Lemma 1.2.2(2), since T f is finite,

we get Supp(T f ∗(g̃r(E))) = T f (Supp(g̃r(E))). Hence, we get the second equality of the

proposition.
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Suppose now that f is finite and etale and surjective of degree d. From the first and the

second equality of the proposition, we get |Car(0)( f+(0) f !
(0)
(F))| = T f (T

−1
f (|Car(0)(F)|)).

Since f is surjective, then so is T f . Hence |Car(0)( f+(0) f !
(0)
(F))| = |Car(0)(F)|. By unicity

of the structure of reduced subscheme of T ∗Y attached to a closed subspace (of T ∗Y ),

we have in fact the equality Car(0)( f+(0) f !
(0)
(F)) = Car(0)(F) as subvariety. It remains

to compute the multiplicity (see Berthelot’s definition of characteristic cycles of [10,

5.4.1]). Let (Fn) be a good filtration of F . From what we have already checked above in

the proof, we have the good filtration ( f∗ f ∗Fn) of f+(0) f !
(0)
(F) and with this filtration,

g̃r( f+(0) f !
(0)
(F)) ∼−→ T f ∗ ◦T

∗

f (g̃r(F)). Then, we obtain the desired computation using

Lemma [22, A.1.3] and the following fact : if φ : A→ B is an étale morphism, Q a prime

ideal of B, P := φ−1(Q), if M is an AP-module then BQ⊗AP M has the same length as

BQ-module than M as AP-module.

Every results of [35, 2] concerning the extraordinary inverse and direct images of

complexes of filtered arithmetic D-modules are still valid for arithmetic D-modules at

level 0 without new arguments for the check. For the reader convenience, via the following

two propositions we translate in the context of arithmetic D-modules of level 0 the

corollaries [35, 2.5.1 and 2.5.2] that we need below to check Proposition 1.2.7 which will

be an ingredient of the proof of Theorem 1.4.2.

Proposition 1.2.4 (Laumon). Let f : X → Y be a morphism of smooth k-varieties. For any

F ∈ Db
coh(D

(0)
Y ) such that the restriction ρ f |$

−1
f (|Car(0)(F)|) is proper, we have f !

(0)
(F) ∈

Db
coh(D

(0)
X ) and |Car(0)( f !

(0)F)| ⊂ ρ f ($
−1
f (|Car(0)(F)|)).

Proposition 1.2.5 (Laumon). Let f : X → Y be a morphism of smooth k-varieties. For any

E ∈ Db
coh(D

(0)
X ) such that the restriction $ f |ρ

−1
f (|Car(0)(E)|) is proper, we have f+(0)(E) ∈

Db
coh(D

(0)
X ) and |Car(0)( f+(0)E)| ⊂ $ f (ρ

−1
f (|Car(0)(E)|)) =: T f (|Car(0)(E)|).

1.2.6. Let f : P ′→ P be a proper morphism of smooth formal V-schemes. Let (E ′, φ)
be a coherent F-D†

P ′,Q-module. From the equivalence of categories of [9, 4.5.4], there

exist (unique up to isomorphism) a coherent D̂(0)
P ′,Q-module F ′(0) and an isomorphism

φ(0) : D̂(s)
P ′,Q⊗D̂(0)

P ′,Q
F ′(0) ∼−→ F∗F ′(0) which induced (E ′, φ) by extension. Fix an integer

i ∈ Z. From the isomorphisms

D̂(s)
P,Q⊗D̂(0)

P,Q
Hi f+(0)(F ′(0))

∼
−→

[10,3.5.3.1]
Hi f+(s)

(
D̂(s)
P ′,Q⊗D̂(0)

P ′,Q
F ′(0)

)
(1.2.6.1)

∼
−→
φ(0)

Hi f+(s)(F
∗F ′(0)) ∼

−→
[10,3.5.4.1]

F∗Hi f+(0)(F ′(0)), (1.2.6.2)

we get Car(Hi f+(E ′)) = Car(0)(Hi f+(0)(F ′(0))). Choose a coherent D̂(0)
P ′ -module without

p-torsion E ′(0) such that E ′(0)Q
∼
−→ F ′(0). Since Hi f+(0)(F ′(0))

∼
−→ (Hi f+(0)(E ′(0)))Q, then

by putting G(0) as equal to the quotient of Hi f+(0)(E ′(0)) by its p-torsion part,

Car(0)(Hi f+(0)(F ′(0))) := Car(0)(G(0)) ⊂ Car(0)(Hi f+(0)(E ′(0))) (for the equality, see the
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definition [10, 5.2.5]). Hence,

|Car(Hi f+(E ′))| ⊂ |Car(0)(Hi f+(0)(E ′(0)))| :=
∣∣Car(0)

(
k⊗V Hi f+(0)(E ′(0))

)∣∣.
By using a spectral sequence (the result is given in the beginning of the proof of

[40, I.5.8]), we obtain the monomorphism k⊗V Hi f+(0)(E ′(0)) ↪→ Hi (k⊗L
V f+(0)(E ′(0))).

Hence, |Car(0)(k⊗V Hi f+(0)(E ′(0)))| ⊂ |Car(0)(Hi (k⊗L
V f+(0)(E ′(0))))|. We have k⊗L

V f+(0)

(E ′(0)) ∼−→ f+(0)(E
′(0)
), where E ′(0) := k⊗V E ′(0) ∼−→ k⊗L

V E ′(0). Finally we get

|Car(Hi f+(E ′))| ⊂ |Car(0)(Hi f+(0)(E
′(0)
))|. (1.2.6.3)

From Proposition 1.2.5, since f is proper then |Car(0)(Hi f+(0)(E
′(0)
))|⊂T f (|Car(0)(E ′(0))|).

By Berthelot’s definition of the characteristic variety of E ′, we have Car(E ′) = Car(0)(E ′(0)).
Hence, by using the spectral sequence Er,s

2 = Hr f+(Hs(E))⇒ Hn f+(E) and the beginning

of the remark [11, 3.7] we check the following proposition.

Proposition 1.2.7. Let f : P ′→ P be a proper morphism of smooth formal V-schemes.

Let (E ′, φ) ∈ F-Db
coh(D

†
P ′,Q). We have the inclusion

|Car( f+(E ′))| ⊂ T f (|Car(E ′)|).

1.2.8. Let f : P ′→ P be a finite étale surjective morphism of smooth formal V-schemes.

(1) Let (E ′, φ) be a coherent F-D†
P ′,Q-module. With the notation 1.2.6, since f+(0) = f∗

(and then preserves the property of p-torsion freeness) and f+ = f∗, the inclusion

(1.2.6.3) is an equality. In fact, with the usual notation of characteristic cycles (see

[10, 5.4]), we get the equality

ZCar( f+(E ′)) = ZCar(0)( f+(0)(E
′(0)
)). (1.2.8.1)

(2) Moreover, let (E, φ) be a coherent F-D†
P,Q-module. From the equivalence of

categories of [9, 4.5.4], there exist (unique up to isomorphism) a coherent

D̂(0)
P,Q-module F (0) and an isomorphism φ(0) : D̂(s)

P,Q⊗D̂(0)
P,Q

F (0) ∼
−→ F∗F (0) which

induces (E, φ) by extension. Choose a coherent D̂(0)
P -module without p-torsion E (0)

such that F (0) ∼
−→ E (0)Q . Since D†

P ′,Q = f ∗D†
P,Q = f !D†

P,Q and D̂(0)
P ′ = f ∗D̂(0)

P =

f !
(0)D̂(0)

P , we check that f !
(0)E (0) = f ∗E (0) has no p-torsion and that f !(E) ∼−→

D†
P ′,Q⊗D̂(0)

P ′
f !
(0)E (0). Moreover, putting E (0) := k⊗V E (0), we get

ZCar( f !(E)) = ZCar( f !
(0)
E (0)). (1.2.8.2)

Proposition 1.2.9. Let f : P ′→ P be a finite étale surjective morphism of degree d of

integral smooth formal V-schemes. Let (E, φ) be a coherent F-D†
P,Q-module. Then we get

ZCar( f+ f !E) = d ZCar(E); (1.2.9.1)

χ(P, f+ f !(E)) = d ·χ(P, E). (1.2.9.2)
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Proof. From the equality of characteristic cycles (1.2.3.1) and both equalities of the

paragraph 1.2.8, we get ZCar( f+ f !E) = d ZCar(E). Moreover, the equality (1.2.9.2) is a

consequence of (1.2.9.1) and of Berthelot’s index theorem [10, 5.4.4].

We need at the end of the proof of Theorem 1.4.2 the following lemma.

Lemma 1.2.10. Let X be a smooth V-formal scheme, X be the reduction of X modulo π .

(1) Let G be a coherent D(0)
X -module. Choose a good filtration (Gn)n∈N of G. Then the

following assertions are equivalent

(a) Car(0)(G) ⊂ T ∗X X .

(b) grG is OX -coherent (for the OX -module structure induced by OX ↪→ grD(0)
X ).

(c) G is OX -coherent (for the OX -module structure induced by OX ↪→ D(0)
X ).

(2) Let (E, φ) be a coherent F-D†
X,Q-module. The following assertions are equivalent.

(a) Car(E) ⊂ T ∗X X .

(b) E is OX,Q-coherent (for the OX,Q-module structure induced by OX,Q ↪→ D†
X,Q).

Proof. Let us check the first part. Let us check that (a) implies (b). Since this is local,

we can suppose that X affine with local coordinates t1, . . . , td . Let ξi be the global

section of grD(0)
X which is the element associated with ∂i , the derivation with respect

to ti . Since the ideal defining the closed immersion Car(0)(G) ↪→ T ∗X is the radical of the

annihilator of grG, the inclusion Car(0)(G) ⊂ T ∗X X implies that ξ N
1 , . . . , ξ

N
d annihilate grG

for some integer N large enough. Hence, grG is a coherent grD(0)
X /(ξ1, . . . , ξd)

Nd -module.

Since grD(0)
X /(ξ1, . . . , ξd)

Nd is a finite OX -algebra (via the composition OX → grD(0)
X →

grD(0)
X /(ξ1, . . . , ξd)

Nd), we conclude that grG is OX -coherent. Now, suppose (b) satisfied.

Then, by definition of a good filtration, this implies that Gn = G for n large enough. Hence,

G is OX -module. Finally, suppose (c). Then, the constant filtration (Gn = G)n∈N is a good

filtration (it might be more convenient to complete the filtration by Gn = 0 if n < 0).

Then the action of ξi on grG = G0/G−1 = G is zero (because the action of ξi is induced

by maps of the form Gi/Gi−1 → Gi+1/Gi , which are zero). Hence, Car(0)(G) ⊂ T ∗X X (recall

that the construction of Car(0)(G) does not depend on the choice of the good filtration).

Now, we deduce the second part from the first one. Let E (0) be the coherent

D̂(0)
X,Q-module endowed with an isomorphism φ(0) : D̂(s)

X,Q⊗D̂(0)
X,Q

E (0) ∼−→ F∗E (0) which

induces canonically φ. Choose a coherent D̂(0)
X -module

◦

E (0)without p-torsion endowed

with the isomorphism of the form
◦

E (0)Q
∼
−→ E (0). If E is OX,Q-coherent, then E (0) is

OX,Q-coherent (see [13, 2.2.14]) Then, from [7, 3.1.3], we can choose
◦

E (0) so that

it is OX-coherent. Since Car(
◦

E (0)/π
◦

E (0)) = Car(E) and
◦

E (0)/π
◦

E (0) is OX -coherent, this

yields from the first part the inclusion Car(E) ⊂ T ∗X X . Conversely, suppose Car(E) ⊂
T ∗X X . Then, from the first part

◦

E (0)/π
◦

E (0) is OX -coherent. Hence,
◦

E (0) is OX-coherent,

which yields that E (0) is OX,Q-coherent. With [13, 2.2.14], this implies that E is

OX,Q-coherent.
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1.3. Generic smoothness up to Frobenius descent

We prove below in this section Proposition 1.3.9 which states that, up to some Frobenius

descent (see Lemma 1.3.10), a morphism is generically smooth. This will be useful later

in the proof of Theorem 1.4.2.

1.3.1 (Universal homeomorphism). Let f : X → Y be a morphism of schemes.

(1) Following Definitions [23, 3.5.4] (and Remark [23, 3.5.11]) or [26, 2.4.2], f is

by definition a universal homeomorphism (respectively is universally injective) if

for any morphism of schemes g : Y ′→ Y , the morphism fY ′ : X ×Y Y ′→ Y ′ is a

homeomorphism (respectively is injective).

(2) Some authors use the name of ‘purely inseparable’ (e.g., [36, 5.3.13]) or ‘radicial’

(e.g., [23, 3.5.4]) instead of ‘universally injective’. From definition [23, 3.5.4],

proposition [23, 3.5.8] and remark [23, 3.5.11], the following conditions are

equivalent:

(a) f is universally injective;

(b) for any field K , the map X (K )→ Y (K ) is injective;

(c) f is injective and for any point x of X the monomorphism of the residue fields

k( f (x))→ k(x) induced by f is purely inseparable (some authors say ‘radicial’

instead of ‘purely inseparable’).

(3) Suppose now that f : X → Y is a morphism of k-varieties. Using proposition [26,

2.4.5], we check that f is a universal homeomorphism if and only if f is finite,

surjective and radicial.

Lemma 1.3.2. Let X be a k-variety. Then the relative Frobenius F s
X/k : X → Xσ , the

morphism F s
k : Xσ → X (induced from F s

k by base change) and the absolute Frobenius

morphism F s
X/k : X → X (equal to F s

X = F s
k ◦ F s

X/k) are universal homeomorphisms.

Proof. From the characterization 1.3.1(3), F s
k : Spec k → Spec k is a universal

homeomorphism. Hence, by stability of this property by base change we get that

F s
k : Xσ → X is a universal homeomorphism. From Lemma [36, 3.2.25], we check that

F s
X/k is finite. Hence, so is by composition F s

X . Since F s
X induces the identity on the

underlying topological space, F s
X is bijective. Moreover, the monomorphism of the residue

fields k(x)→ k(x) induced by F s
X is the sth power of the Frobenius, hence it is radicial.

From 1.3.1(2(c)), this yields that F s
X is radicial. From 1.3.1(2(b)), this implies that F s

X/k
is also radicial. With the characterization 1.3.1(3), we get that F s

X/k and F s
X are universal

homeomorphisms.

Definition 1.3.3. Let us clarify some terminology. Let f : X → Y be a smooth morphism

of schemes. Let Z be a closed subscheme of X . We say that Z is ‘a strict normal crossing

divisor relatively to Y ’ (via f ) if for any point x ∈ Z , there exists an open affine set V of Y
containing y := f (x), there exists an open affine set U of X containing x and included in

f −1(V ), there exists an etale V -morphism of the form U → An
V given by global sections

t1, . . . , tn such that Z ∩U = V (t1 · · · tr ) for some integer r .
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Remark. When Y is of the form Spec K , with K a perfect field, a ‘strict normal crossing

divisor of X relatively to Y ’ is the same than ‘a strict normal crossing divisor of X ’ (the

latter is an absolute notion only depending on X), which might justify the terminology.

The following lemma is straightforward.

Lemma 1.3.4. Let f : X → Y be a smooth morphism of schemes. Let Z be a closed

subscheme of X . Let g : Y ′→ Y be morphism of schemes, X ′ := X ×Y Y ′, Z ′ := Z ×Y Y ′.
If Z is a strict normal crossing divisor of X relatively to Y then Z ′ is a strict normal

crossing divisor of X ′ relatively to Y ′.

Lemma 1.3.5. Let f : X → Y be a smooth morphism of smooth k-varieties with Y integral.

Let Z be a closed subvariety of X . Let η be the generic point of Y , k(η) be the function

field of Y , Xη := X ×Y Spec k(η), Zη := Z ×Y Spec k(η). If Zη is a strict normal crossing

divisor of Xη relatively to Spec k(η) then there exists a dense open set V of Y such that,

setting XV := f −1(V ) and ZV := Z ∩ XV , the closed subvariety ZV of XV is a strict

normal crossing of XV relatively to V .

Proof. We can suppose X integral. By definition, there exists a covering U1,η, . . . ,Um,η
by open affine k(η)-subvarieties of Xη such that there exists a k(η)-morphism Ui,η → An

η

given by global section ti,1, . . . , ti,n . Consider the projective system of open affine dense

k-subvarieties of Y and remark that Spec k(η) is the projective limit of this system.

For any open affine k-subvariety V of Y , put XV := f −1(V ) and ZV := Z ∩ XV . By

using [27, 8.8.2(ii)], there exists an open affine k-subvariety V of Y such that there

exist a scheme Ui of finite type over V (recall that from [25, 1.6] to be of finite

type or of finite presentation over a locally noetherian scheme is the same) and some

k(η)-isomorphism Ui ×V Spec k(η)
∼
−→ Ui,η for any i . By using Theorem [27, 8.8.2(i)] and

Theorem [27, 8.10.5(iii)], shrinking V if necessary, we can suppose that there exists an

open immersion Ui ↪→ XV which induces (via the isomorphism Ui ×V Spec k(η)
∼
−→ Ui,η)

the open immersion Ui,η ↪→ Xη. By using Theorem [27, 8.10.5(vi)], we can suppose that

(Ui )i=1,...,m is an open covering of XV . By using theorem [27, 8.8.2(i)] and theorem [28,

17.7.8], shrinking V is necessary, there exists an etale V -morphism of the form Ui → An
V

which induces the etale k(η)-morphism Ui,η → An
η.

Lemma 1.3.6. Let L/ l be an algebraic extension of fields of characteristic p such that L
is perfect. Let X be a smooth variety over l, Z be closed subvariety of X . If (Z ×Spec l
Spec L)red is a strict normal crossing divisor of X ×Spec l Spec L then there exists a finite

extension l ′ of l included in L such that (Z ×Spec l Spec l ′)red is a strict normal crossing

divisor of X ×Spec l Spec l ′ relatively to Spec l ′.

Proof. For any finite extension l ′ of l included in L, set Z(l ′) := Z ×Spec l Spec l ′, X(l ′) :=
X ×Spec l Spec l ′ and Z ′(L) := (Z ×Spec l Spec L)red. By using [27, 8.8.2(ii)], there exists a

finite extension l ′ of l included in L such that there exist a l ′-scheme of finite type Z ′
(l ′)

satisfying Z ′(L)
∼
−→ Z ′

(l ′)×Spec (l ′) Spec (L). From [27, 8.7.2] we get that Z ′
(l ′) is reduced.
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Using [27, 8.8.2(i)] and [27, 8.10.5(iv) and (vi)], increasing l ′ if necessary, there exist a

surjective closed immersion Z ′
(l ′) ↪→ Z(l ′) inducing by extension Z ′(L) ↪→ Z(L). Since Z ′

(l ′)
is reduced, we get Z ′

(l ′) := Z(l ′) red. Increasing l ′ if necessary, proceeding as in the proof of

Lemma 1.3.5, we check that Z ′
(l ′) is a strict normal crossing divisor of X(l ′) relatively to

Spec l ′.

Lemma 1.3.7. Let a : X → P be a dominant morphism of smooth integral k-varieties.

Let Z ↪→ X be a proper closed subset. Then there exist a dense open subvariety U of

P, a universal homeomorphism g : U ′→ U of k-varieties with U ′ normal, a projective,

generically finite and etale U ′-morphism of the form f : Ṽ ′→ (X ×P U ′)red such that Ṽ ′

is integral and Ṽ ′ is smooth over U ′, f −1(Z ×P U ′)red is the support of a strict normal

crossing divisor in Ṽ ′ relatively to U ′.

Proof. (1) Let l be the field of fractions of P and l be an algebraic closure of l, L :=
lGal(l/ l) the fixed field by Gal(l/ l). Following [34, V.6.11], L is perfect (in other words,

since l is an algebraic closure of L, l/L is separable) and L/ l is purely inseparable. We

put X(L) := X ×P Spec (L), Y(L) := (X(L))red and Z(L) := Z ×P Spec (L).
Using theorems [27, 8.4.1] and [27, 8.10.5(v)], we get the X ×P Spec (l) is irreducible

and separated (we use these Theorems in the following context: consider the projective

system (US)S of open affine dense subvarieties of P and next consider the projective

system (a−1(US))S of open integral subvarieties of X whose projective limit is X ×P
Spec (l)). Since X(L)→ X ×P Spec (l) is a universal homeomorphism, we get that X(L) is

also irreducible and separated. Hence, Y(L) is an integral L-variety, with L a perfect field.

From the desingularization de Jong’s theorem (see [20] or [8, 4.1]), this implies that there

exists a projective, generically finite and etale morphism φL : Y ′(L)→ Y(L) such that Y ′(L)
is integral, smooth over Spec L and Z ′(L) := φ

−1
L (Z(L))red is the support of a strict normal

crossing divisor in Y ′(L).
(a) By using [27, 8.4.2], [27, 8.7.2], [27, 8.8.2(ii)] and [27, 8.10.5(v)], there exists a finite

(radicial) extension l ′ of l included in L such that there exist two integral l ′-varieties Y(l ′)
and Y ′

(l ′) satisfying Y(L)
∼
−→ Y(l ′)×Spec (l ′) Spec (L) and Y ′(L)

∼
−→ Y ′

(l ′)×Spec (l ′) Spec (L).
(b) We put X(l ′) := X ×P Spec (l ′) and Z(l ′) := Z ×P Spec (l ′). By increasing l ′ is

necessary, it follows from [27, 8.8.2(i)] that there exists a morphism φl ′ := Y ′
(l ′)→ Y(l ′)

(respectively Y(l ′)→ X(l ′)) inducing φL (respectively the surjective closed immersion

Y(L) ↪→ X(L)). By using [28, 17.7.8] and [27, 8.10.5] and Lemma 1.3.6, by increasing

l ′ is necessary, we can suppose that Y(l ′)→ X(l ′) is a surjective closed immersion (i.e.,

Y(l ′) = (X(l ′))red since Y(l ′) is reduced), that φl ′ is projective, generically finite and etale

morphism, that Y ′
(l ′) is smooth over Spec l ′ and Z ′

(l ′) := φ
−1
l ′ (Z(l ′))red is the support of a

strict normal crossing divisor of Y ′
(l ′) relatively to Spec l ′.

(2) Let P ′ be the normalization of P in l ′ (see the definition [36, 4.1.24]). Then the

canonical morphism g : P ′→ P is a universal homeomorphism, i.e., is finite (e.g., use [36,

4.1.27]), surjective and radicial (e.g., use the exercise [36, 5.3.9(a)]). By using [27, 8.8.2(ii)]

(this time, we consider the projective system of open affine dense subvarieties of P ′), there
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exists a dense open affine subvariety U ′ of P ′, two morphisms V ′→ U ′ and Ṽ ′→ U ′

such that Y(l ′)
∼
−→ V ′×U ′ Spec (l ′) and Y ′

(l ′)
∼
−→ Ṽ ′×U ′ Spec (l ′). Since P ′ is noetherian,

by using propositions [27, 8.4.2] and [27, 8.7.2], we get that V ′ and Ṽ ′ are integral.

Hence, shrinking U ′ is necessary, we can suppose V ′ = (X ×P U ′)red. By shrinking U ′ is

necessary, using [27, 8.8.2(i)], there exists a U ′-morphism f : Ṽ ′→ V ′ which induces φl ′ .

By shrinking U ′ is necessary, by using [28, 17.7.8] and [27, 8.10.5] and Lemma 1.3.5, we

get the desired properties.

Lemma 1.3.8. Let g : U ′→ U be a universal homeomorphism of integral k-varieties. We

suppose U normal. Then, for s large enough, there exists a unique morphism h : U → U ′σ

making commutative the following diagram

U ′
g //

Fs
U ′/k
��

U

Fs
U/k
��

h

||
U ′σ

gσ // Uσ .

(1.3.8.1)

Moreover, this morphism h is a universal homeomorphism.

Proof. From 1.3.2, we know that F s
U ′/k and F s

U/k are universal homeomorphisms. Hence,

this is sufficient to check that there exist a unique morphism h : U → U ′σ making

commutative the diagram (1.3.8.1). This is equivalent to check the existence and

uniqueness of a morphism i : U → U ′ making commutative the diagram

U ′
g //

Fs
U ′

��

U

Fs
U
��

i

~~
U ′

g // U.

(1.3.8.2)

We can suppose U affine. We set U = Spec A, U ′ = Spec A′, L := FracA, L ′ := FracA′.
Since g is surjective, g∗ : A→ A′ is injective. Since A is normal and since A→ A′ is

finite, then A = A′ ∩ L. For s large enough, we can suppose (L ′)ps
⊂ L. Hence the image

of F s∗
U ′ : A′→ A′ is included in A. This yields the desired morphism A′→ A.

Proposition 1.3.9. Let a : X → P be a dominant morphism of smooth integral k-varieties.

Let Z ↪→ X be a proper closed subset. Then, for s large enough, there exists a dense

open subvariety U of P, such that, putting W := (Xσ ×Pσ U )red (where Xσ ×Pσ U means

the base change of Xσ by the composition of F s
U/k : U → Uσ with the open immersion

Uσ
⊂ Pσ ), there exists a projective, generically finite and etale U -morphism of the form

φ : W ′→ W such that W ′ is integral and smooth over U , Z ′ := φ−1(Zσ ×Pσ U )red is the

support of a strict normal crossing divisor in W ′ relatively to U .

Proof. Using the Lemmas 1.3.7 (for the construction of g and f ) and 1.3.8 (for

the construction of h), with their notation we get the diagram of morphisms of
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k-schemes

W ′

φ

��
�

��

W ′ //

�
��

Ṽ ′σ

f σ

��
Tred

�

� � // T //

�

� _

��

(Xσ ×Pσ U ′σ )red� _

��
W := (Xσ ×Pσ U )red

� � // Xσ ×Pσ U //

�
��

Xσ ×Pσ U ′σ //

��
�

Xσ ×Pσ Uσ //

��
�

Xσ

��
U h //

Fs
U/k

55U ′σ
gσ // Uσ // Pσ

where T := (Xσ ×Pσ U )×(Xσ×Pσ U ′σ ) (Xσ ×Pσ U ′σ )red and W ′ := Ṽ ′σ ×U ′σ U . Since W ′ is

smooth over U and U is k-smooth, then W ′ is k-smooth (and in particular integral since

it is irreducible). Hence W ′red = W ′ and then W ′ = W ′×T Tred (use [23, 5.1.7]), which

justify the cartesianity of the left square of the top. Using [23, 5.1.7], we get the equality

Tred = (Xσ ×Pσ U )red =: W and the cartesianity of the left square of the second row. Since

f σ is projective, generically finite and etale then so is φ : W ′→ W . From 1.3.4, we get

that Z ′ := φ−1(Zσ ×Pσ U )red is the support of a strict normal crossing divisor relatively

to U .

Lemma 1.3.10. Let f : P ′→ P be a finite, surjective morphism of smooth formal

V-schemes. Let E be a coherent D†
P,Q-module. Then E is OP,Q-coherent if and only if

f !(E) is OP ′,Q-coherent.

Proof. Since P and P ′ are regular, then from [36, 4.3.11], the morphism P ′→ P is

flat. Since OP ′ is p-adically complete and without p-torsion, then using lemma [37,

2.1] (in the case where I = (π)), the morphism f : P ′→ P is also flat. Since f is

also finite, then f∗OP ′ is a locally free OP -module of finite type. Hence, we get that

the canonical morphism f ∗D̂(m)
P := OP ′ ⊗ f −1OP f −1D̂(m)

P → lim
←−

i OP ′ ⊗ f −1OPi
f −1D(m)

Pi
=

D̂(m)
P ′→P is an isomorphism for any integer m > 0. Hence tensoring by Q over Z and

passing the limits through the level, this yields that the canonical morphism f ∗D†
P,Q :=

OP ′ ⊗ f −1OP f −1D†
P,Q→ D†

P ′→P,Q is an isomorphism. Hence, this implies that the

canonical morphism f ∗(E)→ f !(E) is an isomorphism, where f ∗E := OP ′ ⊗ f −1OP f −1E ,

and f !(E) := D†
P ′→P,Q⊗

L
f −1D†

P,Q
f −1E . If E is OP,Q-coherent this yields that f !(E) is

OP ′,Q-coherent. Conversely, suppose f !(E) is OP ′,Q-coherent. Since the OP,Q-coherence is

local in P, we can suppose P affine. Since E is a coherent D†
P,Q-module, this is sufficient to

check that 0(P, E) is of finite type over 0(P,OP,Q) (see [13, 2.2.13]). Since the extension

0(P,OP,Q)→ 0(P ′,OP ′,Q) is faithfully flat (because f : P ′→ P is flat and surjective),

since 0(P ′, f !E) ∼−→ 0(P ′,OP ′,Q)⊗0(P,OP,Q) 0(P, E) is of finite type over 0(P ′,OP ′,Q),
we conclude.
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1.4. The result

Lemma 1.4.1. Let α : X̃ → X be a finite étale surjective morphism of smooth k-varieties.

Let E ∈ Db
ovhol(X/K ) (respectively Ẽ ∈ Db

ovhol(X̃/K )). The property Ẽ ∈ Db
isoc(X̃/K ) is

equivalent to the property α+(Ẽ) ∈ Db
isoc(X/K ). The property E ∈ Db

isoc(X/K ) is equivalent

to the property α+(E) ∈ Db
isoc(X̃/K ).

Proof. Left to the reader.

Theorem 1.4.2. Let P1 be a smooth separated formal V-scheme, P2 be a proper smooth

formal V-scheme, P := P1×P2 and pr : P → P1 be the projection. Let E be a complex of

F-Db
ovhol(D

†
P,Q).

Then there exists an open dense formal subscheme U1 of P1 such that, for any finite

étale surjective morphisms of the form α1 : P̃1 → P1 and α2 : P̃2 → P2, putting P̃ = P̃1×

P̃2, α : P̃ → P and Ẽ := α+(E), we have (pr ◦α)+(Ẽ)|U1 ∈ Db
coh(OU1,Q).

Proof. (I) We can suppose that α1 = Id. Indeed, consider the following diagram

P̃1× P̃2
α2 //

�α1

��

P̃1×P2

α1

��

pr //

�

P̃1

α1

��
P1× P̃2

α2 // P1×P2
pr // P1.

Suppose there exists an open dense formal subscheme U1 of P1 such that pr+ ◦
α2+(α

+

2 (E))|U1 ∈ Db
coh(OU1,Q). Using base change isomorphism (see for instance [3,

1.3.10]), since α+1 = α
!

1 (because α is finite etale), we get α+1 ◦ (pr+ ◦α2+)
∼
−→ (pr+α2+) ◦

α+1 . Hence, we get the first isomorphism:

α1+α
+

1 pr+ ◦α2+(α
+

2 (E))
∼
−→ α1+pr+α2+α

+

1 (α
+

2 (E))
∼
−→ α1+pr+α2+(Ẽ)

∼
−→ pr+α+(Ẽ).

From Lemma 1.4.1, this implies that (pr ◦α)+(Ẽ)|U1 ∈ Db
coh(OU1,Q).

(II) We proceed by induction on the dimension of the support X of E . The case where

X → P1 is not surjective is obvious (indeed, since α+α
+(E) has is support in X , we can

choose U1 to be the open dense subset of P1 complementary to pr(X)). Hence, we can

suppose that X → P1 is surjective. There exists a smooth dense open subvariety Y of

X such that E |Y ∈ F-Db
isoc(Y,P/K ) (see the notation [3, 1.2.14] and use [14, 3.1.1]).

We put Z := X \ Y , endowed with its canonical structure of subvariety of X (recall

that varieties are reduced following the convention of the paper). Let j : Y ⊂ X be the

inclusion and i : Z ↪→ X the corresponding closed immersion. By using the exact triangle

of localization of the form i+i !(E)→ E → j+ j+(E)→+1 (see [3, 1.1.8(ii)]), by devissage

and by induction hypothesis, we can suppose Y integral, that E is a module and that

E ∼
−→ j+ j+(E) with j+(E) ∈ F-Isoc††(Y,P/K ). By abuse of notation (to simplify them),

P1 will mean a dense open set U1 of P1 (be careful that the open set has to be independent

of the choice of α2), X and P will mean the base change of X and P by the inclusion

U1 ⊂ P1.

(1) From de Jong desingularization theorem, there exists a surjective, projective,

generically finite étale morphism a : X ′→ X , with X ′ integral and smooth such that
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Z ′ := a−1(Z) is the support of a strict normal crossing divisor of X ′. Since a is projective,

there exists a closed immersion of the form u′ : X ′ ↪→ P̂N
×P (this is the product in the

category of formal schemes over V) such that the composition of u′ with the projection

f : P̂N
×P → P is equal to the composition of a with the closed immersion X ↪→ P.

Since E ∼
−→ j+ j+(E), by setting E ′ := a!(E), Y ′ := a−1(Y ), P ′ := P̂N

×P, we get E ′ ∼−→
j+ j+(E ′) (use the base change isomorphism [3, 1.3.10]) and j+(E ′) ∈ F-Isoc††(Y ′,P ′/K )
(with the convention given at the beginning of the paper, recall that j means also the

morphisms induced by base change form j). We denote by (X ′,MZ ′) the smooth log whose

the underlying scheme is X ′ and the log structure MZ ′ comes canonically from the strict

normal crossing divisor Z ′. Sometimes we simply denote it by (X ′, Z ′) if the notation is

not confusing. From Kedlaya’s semistable reduction theorem (more precisely the global

one, i.e., [33, 2.4.4]), we can suppose that the overconvergent isocrystal E ′|Y ′ on Y ′ extends

to a convergent log-F-isocrystal on (X ′,MZ ′). Using the properties satisfied by a, using

for instance [12, 6.3.1], we get that a+ ◦ a!(Ẽ) is a direct factor of Ẽ . Since by transitivity

α+a!
∼
−→ a!α+ (recall α+ = α!) and a+α+

∼
−→ α+a+ then pr+a+α+α+(a+(E)) is a direct

factor of pr+α+Ẽ . By definition of cohomological operations (see the beginning of the

paper), pr+a+α+α+(a+(E)) = (pr ◦ f )+α+α+(E ′), where in the latter term pr ◦ f : P ′ =
P̂N
×P2×P1 → P1 is the projection and α : P̂N

× P̃ → P̂N
×P = P ′. This implies that

we can reduce to the case where X is smooth, Z is the support of a strict normal crossing

divisor of X and E |Y extends to a convergent log-F-isocrystal on (X,MZ ) and we can

forget the notation of part (1) of the proof.

(2) From Proposition 1.3.9, replacing P1 by an open affine dense formal subscheme if

necessary and for s large enough, putting W := (Xσ ×Pσ1 P1)red, there exists a projective,

surjective, generically finite and etale P1-morphism of the form φ : W ′→ W such that

W ′ is integral and smooth over P1, Z ′ := φ−1(Zσ ×Pσ1 P1)red is the support of a strict

normal crossing divisor in W ′ relatively to P1. Let a : W = (Xσ ×Pσ1 P1)red → Xσ be

canonical morphism. We set Y ′ := φ−1(Y σ ×Pσ1 P1)red. Put ψ := Y ′→ (Y σ ×Pσ1 P1)red and

b : (Y σ ×Pσ1 P1)red → Y σ the morphisms induced respectively by φ and a. Since φ is

projective, for some integer N putting P3 := P̂N
×Pσ2 and taking f : P3 → Pσ2 to be

the projection, we get the commutative diagram of the left:

Z ′
� � //

�red

��

W ′
� � //

φ

��

P ′ = P3 ×P1
pr′ //

f

��

P1

(Zσ ×Pσ1
P1)red
� � //

��
�red

W = (Xσ ×Pσ1
P1)red
� � //

a

��
�red

Pσ
2 ×P1

prσ //

Fs
P1/V
��

�

P1

Fs
P1/V
��

Zσ
� � // Xσ �

� // Pσ
2 ×Pσ

1

prσ // Pσ
1 ,

Y ′
� � jσ //

�ψ

��

W ′

φ

��
(Yσ ×Pσ1

P1)red
� � jσ //

b
��

�

W

a

��
Yσ
� � jσ // Xσ

(1.4.2.1)

where the symbol ‘�red’ means the cartesianity in the category of reduced schemes, where

pr′ : P3 → SpfV is the structural morphism. Since (Y σ ×Pσ1 P1)red = a−1(Y σ ), we get the

morphism jσ : (Y σ ×Pσ1 P1)red → (Xσ ×Pσ1 P1)red = W . We have also jσ : Y ′→ W ′. Hence,

this justifies the cartesianity of the diagram of the right of (1.4.2.1).
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We put G := a!(Eσ ) = (F s
P1/V )

!(Eσ ) and G′ := φ!(G) = R0†
W ′ f !(G). Since a ◦φ induces

the morphism of smooth log-schemes (W ′,MZ ′)→ (Xσ ,MZσ ), since Eσ |Y σ extends

to a convergent log-F-isocrystal on (Xσ ,MZσ ) then G′|Y ′ extends to a convergent

log-F-isocrystal on (W ′,MZ ′).

(3) Let Z ′1, . . . , Z ′r ′ be the irreducible components of Z ′. For any subset I ′ of {1, . . . , r ′},
we set Z ′I ′ :=

⋂
i ′∈I ′ Zi ′ . Then |Car(G′)| ⊂

⋃
I ′⊂{1,...,r ′} T

∗

Z ′I ′
P ′.

Proof. Since the check is local on P ′, we can suppose P ′ affine with local coordinates

t ′1, . . . , t ′d ′ inducing local coordinates t ′1, . . . , t ′n′ of W ′ and such that Z ′i ′ = V (t ′i ′) for

i ′ = 1, . . . , r ′. From [39], there exists a smooth affine formal V-scheme W′ whose special

fibre is W ′. Let u : W′ ↪→ P ′ be a lifting of W ′ ↪→ P ′ and let F ′ := u!(G′). From [11,

1.4.3.1], we have |Car(F ′)| ⊂
⋃

I ′⊂{1,...,r ′} T
∗

Z ′I ′
W ′. Since G′ ∼−→ u+(F ′) (this comes from

Berthelot–Kashiwara’s theorem), from [10, 5.3.3], we get |Car(G′)| = Tu(|Car(F ′)|). Using

Lemma 1.1.2, we get Tu(T ∗Z ′I ′
W ′) = T ∗Z ′I ′

P ′, which gives the desired result.

(4) We put G̃′ := ασ+2 (G′). We have |Car(pr′+α
σ
2+(G̃

′))| ⊂ T ∗P1
P1.

Proof. Since pr′ is proper, from Proposition 1.2.7, we get the inclusion

|Car(pr′+α
σ
2+(G̃

′))| ⊂ Tpr′(|Car(ασ2+(G̃
′))|).

Using (1.2.9.1), we get |Car(ασ2+α
σ+
2 (G′)| = |Car(G′)|. Hence,

Tpr′(|Car(ασ2+(G̃
′))|)=Tpr′(|Car(G′)|)⊂Tpr′

( ⋃
I ′⊂{1,...,r ′}

T ∗Z ′I ′
P ′
)
=

⋃
I ′⊂{1,...,r ′}

(Tpr′(T ∗Z ′I ′
P ′)),

where the inclusion comes from the step (3). Moreover, from Lemma 1.1.2, Tu I ′
(T ∗Z ′I ′

Z ′I ′) =

T ∗Z ′I ′
P ′, where u I ′ : Z ′I ′ ↪→ P ′ is the closed immersion. By transitivity of the application T

(see 1.1.1), Tpr′(T ∗Z ′I ′
P ′) = Tpr′(Tu I ′

(T ∗Z ′I ′
Z ′I ′)) = Tpr ′◦u I ′

(T ∗Z ′I ′
Z ′I ′). Since pr ′ ◦ u I ′ : Z ′I ′ →

P1 is smooth, using 1.1.4(2), we get the inclusion Tpr ′◦u I ′
(T ∗Z ′I ′

Z ′I ′) ⊂ T ∗P1
P1, which yields

the desired result.

(5) G is a direct factor of φ+(G′) (which is by definition, if we look at the left diagram

of (1.4.2.1), equal to f+(G′)).
(a) We have the isomorphism b!

∼
−→ b+. Indeed, from [3, 1.3.12], since b is a universal

homeomorphism, the functors b! and b+ induce quasi-inverse equivalences of categories

(for categories of overholonomic complexes). Since b is proper, then b+ = b! (i.e., via the

biduality isomorphism, b+ commutes with dual functors). Hence, we get that b! commutes

also with dual functors.

(b) Since θ := b ◦ψ is a morphism of smooth varieties and Eσ |Y σ is an isocrystal,

then θ !(Eσ |Y σ ) ∼−→ θ+(Eσ |Y σ ). Hence, since θ is proper, we get the morphisms by

adjunction (see [3, 1.3.14(viii)]) Eσ |Y σ → θ+θ
+(Eσ |Y σ ) ∼−→ θ+θ

!(Eσ |Y σ )→ Eσ |Y σ . The

composition is an isomorphism. Indeed, since Eσ |Y σ is an isocrystal, we reduce to check

it on a dense open subset of Y σ . Hence, we can suppose that ψ and b are morphisms

of smooth varieties. Using [3, 1.3.12] and the transitivity of the adjunction morphisms,
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we reduce to check such property for ψ . Since ψ is generically finite and etale, this is

already known (e.g., see [12, 6.3.1]).

(c) We have just checked that Eσ |Y σ is a direct factor of θ+θ
!(Eσ |Y σ ). This

implies that b!(Eσ |Y σ ) is a direct factor of b!θ+θ !(Eσ |Y σ )
∼
−→ b!b+ψ+θ !(Eσ |Y σ )

∼
−→
[3,1.3.12]

ψ+θ
!(Eσ |Y σ ) ∼−→ ψ+(G′|Y ′). We get jσ+b!(Eσ |Y σ ) is a direct factor of jσ+ψ+(G′|Y ′).

By base change isomorphism (e.g., see [3, 1.3.10]), by using the cartesianity of the

right diagram of (1.4.2.1), we get the isomorphism (a ◦φ)! jσ+
∼
−→ jσ+θ

!. By applying

the functor (a ◦φ)! to the isomorphism Eσ ∼
−→ jσ+ jσ !Eσ we obtain G′ ∼−→ jσ+ jσ !G′.

This yields φ+(G′)
∼
−→ φ+ jσ+(G′|Y ′)

∼
−→ jσ+ψ+(G′|Y ′) and G ∼

−→ a! jσ+(Eσ |Y σ )
∼
−→

jσ+b!(Eσ |Y σ ), which gives the desired result.

(6) Putting G̃ := ασ2+(G), (using some base change isomorphism) the step (5)

implies that G̃ is a direct factor of φ+(G̃′) = f+(G̃′). Since pr′+α
σ
2+(G̃

′)
∼
−→

prσ+α
σ
2+φ+(G̃

′), we obtain |Car(prσ+α
σ
2+(G̃))| ⊂ |Car(pr′+α

σ
2+(G̃

′))|. From part (4), this

yields |Car(prσ+α
σ
2+(G̃))| ⊂ T ∗P1

P1. Let p̃r : P̃2 → SpfV be the structural morphism. Since

prσ+α
σ
2+(G̃) = p̃rσ+(G̃), using the second part of the Lemma 1.2.10, this inclusion is

equivalent to say that p̃rσ+(G̃) ∈ Db
coh(OP1,Q). Since G̃ ∼

−→ a!(Ẽσ ), we obtain p̃rσ+(G̃)
∼
−→

p̃rσ+(a
!(Ẽσ )) ∼−→ (F s

P1/V )
!p̃rσ+(Ẽσ ). From Lemma 1.3.10, this implies that p̃rσ+(Ẽσ ) ∈

Db
coh(OPσ

1 ,Q), which yields p̃r+(Ẽ) ∈ Db
coh(OP1,Q).

2. Betti numbers estimates

2.1. The curve case

Lemma 2.1.1. Let f : Y → X be a smooth morphism of integral smooth k-varieties

of relative dimension d (i.e., d = dim Y − dim X). If F ∈ D>0
ovhol(Y/K ) then f+(F) ∈

D>−d
ovhol(X/K ). If G ∈ D60

ovhol(Y/K ) then f!(G) ∈ D6d
ovhol(X/K ).

Proof. Since the second statement follows by duality (recall f! = DX ◦ f+ ◦DY and

dual functors exchange D>n with D6−n), let us check the first one. As explained in

the convention of the paper, since our varieties are realizable, there exist a smooth

morphism φ : Q→ P of proper smooth formal V-schemes, immersions ι : X ↪→ P,

ι′ : Y ↪→ Q so that φ ◦ ι′ = ι ◦ f . The morphism f is the composition of an immersion

of the form u′ : Y ↪→ φ−1(X) followed by the morphism φ−1(X)→ X induced by φ.

Since u′+ : D>0
ovhol(Y/K )→ D>0

ovhol(φ
−1(X)/K ), we reduce to the case where Y = φ−1(X).

Let U be an open set of P such that ι factors through a closed immersion X ↪→

U. Put V := φ−1(U) and ψ : V→ U be the morphism induced by φ. By definition,

F ∈ D>0
ovhol(Y/K ) = D>0

ovhol(Y,Q/K ), f+(F) = φ+(F) and φ+(F) ∈ D>−d
ovhol(X,P/K ) means

that φ+(F)|U ∈ D>−d
ovhol(D

†
U,Q). Since this last property is local in U, we can suppose U

affine. Hence, there exists a closed immersion of smooth formal V-schemes u : X ↪→ U

which lifts X ↪→ U. Set Y := V×U X, which is a smooth lifting of Y . Put v : Y ↪→ V

the projection, which is a closed immersion and θ : Y → X the second projection. We

have ψ+(F |V)
∼
−→ φ+(F)|U and F |V ∈ D>0

ovhol(Y,V/K ) ∼= D>0
ovhol(D

†
Y,Q), where the latter

equivalence of categories are given by the quasi-inverse functors v+ and v! (this is a form of
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Berthelot–Kashiwara’s theorem). Hence, we reduce to check that the functor θ+ induces

the factorization θ+ : D>0
ovhol(D

†
Y,Q)→ D>−d

ovhol(D
†
X,Q), which is obvious because, since θ is

a smooth morphism of smooth formals V-schemes of relative dimension d, then we have

θ+(E) = Rθ∗(E ⊗OY �
•

Y/X)[d] for any E ∈ D>0
ovhol(D

†
Y,Q).

Lemma 2.1.2. Let X be an integral k-variety of dimension d. If F ∈ D>0
ovhol(X/K ) then

f+(F) ∈ D>−d
ovhol(Spec k/K ). If G ∈ D60

ovhol(X/K ) then f!(G) ∈ D6d
ovhol(Spec k/K ).

Proof. As for the proof of Lemma 2.1.1, we reduce to check the first statement. We

proceed by induction on the dimension of X . Choose an open smooth dense subvariety

U of X . Put Z := X \U . Let j : U ↪→ X , i : Z ↪→ X be the corresponding morphisms of

k-varieties. Since i !(F) ∈ D>0
ovhol(Z/K ), then, by induction hypothesis, we get pZ+i !(F) ∈

D>−d
ovhol(Spec k/K ). From Lemma 2.1.1, we get pU+ j !(F) ∈ D>−d

ovhol(Spec k/K ). Applying

pX+ to the exact triangle of localization i+i !(F)→ F → j+ j !(F)→+1 (see [3,

1.1.8(ii)]), we get the exact triangle pZ+i !(F)→ pX+(F)→ pU+ j !(F)→+1.

Lemma 2.1.3. Let u : Z ↪→ X be a closed immersion of k-varieties. Suppose X smooth

and integral. Let E ∈ F-Isoc††(X/K ). Then u!(E) ∈ F-D>r
ovhol(Z/K ) (see the notation of

[3, 1.2]), with r = dim X − dim Z .

Proof. First, suppose that Z is smooth. Then, we get the exact functor

u![r ] : F-Isoc††(X/K )→ F-Isoc††(Z/K ) and the Lemma follows. More generally, we prove

the Lemma by induction on the dimension of Z . When the dimension of Z is 0 then Z
is a finite etale over Spec k (recall a reduced k-scheme of finite type of dimension 0 is

finite etale over Spec k, and by our convention k-varieties are assumed to be reduced)

and then this case has already been checked. Suppose dim Z > 1. Then there exists a

dense open smooth subset Z0 of Z . Put T := Z \ Z0. Let j : Z0 → Z and i : T → Z be

the corresponding immersions. Put F := u!(E). Then we conclude by using the induction

hypothesis and consider the exact triangle of localization i+i !(F)→ F → j+ j !(F)→+1
(see [3, 1.1.8(ii)]). From the smooth case, j !(F)[r ] ∈ F-Isoc††(Z0/K ) and then j+ j !(F) ∈
F-D>r

ovhol(Z/K ). By induction hypothesis, we get i !(F) ∈ F-D>r ′
ovhol(T/K ), with r ′ :=

dim X − dim T > r . Since i+ is exact, i+i !(F) ∈ F-D>r ′
ovhol(Z/K ) ⊂ F-D>r

ovhol(Z/K ).

Notation 2.1.4. Let X be an integral variety and E ∈ F-Ovhol(X/K ). Then, there exists a

smooth dense open subvariety Y of X such that E |Y ∈ F-Isoc††(Y/K ) (see the notation [3,

1.2.14] and use [14, 3.1.1]). Then, by definition, rk(E) means the rank of the corresponding

overconvergent isocrystal associated to E |Y (which does not depend on the choice of such

open dense subvariety Y ).

Lemma 2.1.5. We suppose that k is infinite. Let f : Y → X be a smooth morphism of

integral smooth k-varieties. We suppose there exists a k-valued point x of X such that

Yx := f −1(x) is an integral k-variety of dimension d. Let F ∈ F-Isoc††(Y/K ) such that

f+(F) ∈ F-Db
isoc(X/K ). Then we have the inequalities:

rkH−d f+(F) 6 rk(F); (2.1.5.1)

rkHd f!(F) 6 rk(F). (2.1.5.2)
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Proof. (0) We remark that rk(F) = rk(DY (F)) (recall [1, 3.12]). Since DX H−d f+(F) =
HdDX f+(F) = Hd f!DY (F) (recall f!(F) := DX ( f+(DY (F))) and DY ◦DY

∼
−→ Id), we get

similarly rkH−d f+(F) = rkHd f!(DY (F)). Hence, we reduce to check the first inequality.

Let ix : x ↪→ X be the canonical closed immersion. Recall that from the convention

of the paper ix : Yx ↪→ Y (respectively f : Yx → x) means the morphism induced

from ix (respectively f ) by base change. The functors i !x [dim X ] : F-Isoc††(X/K )→
F-Isoc††(x/K ) and i !x [dim X ] : F-Isoc††(Y/K )→ F-Isoc††(Yx/K ) are exact and preserve

the rank (and in particular an isocrystal G is null if and only if i !x [dim X ](G) = 0). We

have the base change isomorphism i !x [dim Y ] ◦ f+(F)
∼
−→ f+ ◦ i !x [dim Y ](F) (e.g., see [3,

1.3.10]). Hence, we reduce to the case where X = Spec k, i.e., f = pY (see the notation

of the paper).

(1) We check that for any open dense subset V of Y , we have H−d pY+(F)
∼
−→

H−d pV+(F |V ). Indeed, let V be a open dense subset of Y and put Z := Y \ V . We

denote by j : V ↪→ Y the canonical open immersion and i : Z ↪→ Y the canonical closed

immersion. Since V is dense in Y , then dZ := dim Z < d. Since F is an isocrystal, then

from Lemma 2.1.3 we have i !(F) ∈ F-D>d−dZ
ovhol (Z/K ). Hence, via Lemma 2.1.2, this

implies pZ+i !(F) ∈ F-D>d−2dZ
ovhol (Spec k/K ). Since dZ 6 d − 1, we get d − 2dZ > −d + 2.

This yields H−d pZ+i !(F) = 0 and H−d+1 pZ+i !(F) = 0. Applying pY+ to the exact

triangle of localization i+i !(F)→ F → j+ j !(F)→+1 (see [3, 1.1.8(ii)]), we get the

exact triangle pZ+i !(F)→ pY+(F)→ pV+(F |V )→+1. By considering the long exact

sequence associated with the latter exact triangle, we conclude.

(2) We check the lemma in the case where d = 1. From (1), we can suppose that Y is

affine. Choose a smooth compactification Y of Y and put D := Y \ Y . Choose a closed

point y of D. With the notation [19, 7.1.1], we associate to F an A†
Y -module M endowed

with a connexion. Then H−1 pY+(F) is equal to the horizontal sections of M . Let A(y)
be the Robba ring (or local algebra following the terminology of [19]) corresponding

to y (see the notation of [19, 7.3]). Using [19, 6.2] we get that the dimension over K
of the K -vector space of the horizontal sections of M ⊗A†

Y
A(y) (which is bigger than

that of the horizontal sections of M) is less or equal to the rank of M (which is also

the rank of F).

(3) Now we prove the lemma by induction on d. Suppose d > 2. From part (1) of

the proof, using [31], we can suppose that there exists a finite etale morphism of the

form φ : Y → Ad
k . Let g be the composite of φ with the projection A1

k ×Ad−1
k → Ad−1

k .

There exists a dense open subvariety U of Ad−1
k such that g+(F)|U ∈ F-Db

isoc(U/K )
(see the notation [3, 1.2.14] and use [14, 3.1.1]). Let V := g−1(U ) and h : V → U
the induced smooth morphism of relative dimension 1. Since k is infinite and U is

dense in Ad−1
k , there exists a k-valued point x of U . Since g is surjective, g−1(x) is

a smooth variety of dimension 1. Shrinking V (from now V is only a open dense

subset of g−1(U )) if necessary, we can assume that h−1(x) is an integral smooth

variety of dimension 1 (use again part (1) of the proof). Proceeding as in part (0)

and using part (2) of the proof, we get rkH−1h+(F |V ) 6 rk (F |V ) = rk (F). By using

the induction hypothesis, we obtain rk H−d+1 pU+(H−1h+(F |V )) 6 rkH−1h+(F |V ).
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Using Lemma 2.1.1, the functors pU+[−d + 1] and h+[−1] are left exact. Hence, we

get H−d pV+(F |V )
∼
−→ H−d+1 pU+(H−1h+(F |V )) and we are done.

Lemma 2.1.6. We suppose that k is algebraically closed. Let X be a smooth irreducible

curve, j : U ↪→ X an open immersion such that Z := X \U is a closed point. Let F ∈
F-Isoc††(U/K ). Let i : Z ↪→ X be the closed immersion. Then, for n = 0, 1, we have the

inequality

dimK Hni ! j!(F) 6 rk(F). (2.1.6.1)

Proof. Let θ j : j!(F)→ j+(F) be the canonical morphism. Let C be the mapping

cone of θ j . By definition, H−1(C) ∼−→ ker(θ j ) and H0(C) ∼−→ coker(θ j ). Since j !(θ j )

is an isomorphism (use j ! = j+), then j !(C) = 0. By using the triangle of localization

i+i !(C)→ C → j+ j !(C)→+1, this implies that the canonical morphism i+i !(C)→ C
is an isomorphism, i.e . the cone of θ j has its support in Z (see the terminology

of [3, 1.3.2(iii)]). Since i ! j+ = 0, since the cone of θ j has its support in Z ,

then by using Berthelot–Kashiwara theorem (in the form of [3, 1.3.2(iii)]), we get

ker(θ j )
∼
−→ i+H0i ! j!(F) and coker(θ j )

∼
−→ i+H1i ! j!(F). From the last isomorphism of

corollary [3, 1.4.3], we obtain DX i+H0i ! j!(F)
∼
−→ i+H1i ! j!(DU (F)). Hence, by using

again Berthelot–Kashiwara theorem (in the form of [3, 1.3.2(iii)]), and the relative

duality isomorphism (i.e., the isomorphism [3, 1.3.14(vi)]), we get H0i ! j!(F)
∼
−→

DZ H1i ! j!(DU (F)) and we reduce to check the case n = 1.

We have the exact sequence 0→ j!+(F)→ j+(F)→ i+H1i ! j!(F)→ 0, where j!+(F)
is the intermediate extension as defined in [3, 1.4.1], i.e., j!+(F) is the image of

θ j . From Kedlaya’s semistable theorem [30], there exists a finite surjective morphism

f : P ′→ X , with P ′ smooth integral, such that f !(F) comes from a convergent

isocrystal on P ′ with logarithmic poles along f −1(Z). Since P ′ and X are smooth,

since f is finite and surjective then f is flat (e.g., see [28, IV.15.4.2]). Let X ′ be an

open dense subset of P ′ such that Z ′ := f −1(Z)∩ X ′ is a closed point. We get the

(quasi-finite) flat morphism a : X ′→ X and the open immersion j : U ′ := a−1(U )→ X ′

and a : U ′→ U . Since a is flat and quasi-finite, then a! is exact. Hence, we get the

exact sequence 0→ a! j!+(F)→ a! j+(F)→ a!i+H1i ! j!(F)→ 0. From the base change

isomorphism (e.g., see [3, 1.3.10]), we get a! j+(F)
∼
−→ j+a!(F). Hence, a! j!+(F) is a

subobject of j+a!(F). Moreover, j !a! j!+(F)
∼
−→ a! j ! j!+(F)

∼
−→ a!(F). This yields, from

[3, 1.4.8], that the inclusion j!+(a!(F)) ↪→ j+(a!(F)) factors through the composition

a! j!+(F) ↪→ a! j+(F)
∼
−→ j+a!(F). Then, we get the epimorphism

i+H1i ! j!(a!F)
∼
−→ j+(a!(F))/j!+(a!(F))� a! j+(F)/a! j!+(F)
∼
−→ a!i+H1i ! j!(F)

∼
−→
[3,1.3.10]

i+H1i ! j!(F),

where for the last isomorphism we use also that a induces the isomorphism a : a−1(Z)
∼
−→

Z (because k is algebraically closed). By applying i ! (and by using Berthelot–Kashiwara

theorem), we get dimK H1i ! j!(F) 6 dimK H1i ! j!(a!F). Since a!F is log-extendable, then

from [3, 3.4.19.1] we obtain the inequality dimK H1i ! j!(a!F) 6 rk(a!F) = rk(F).
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Since the proof of the main result on Betti estimate (see Theorem 2.2.6) in the case of

curves is easier (e.g., remark that we do not need in this case the Lemma 1.4.2) and since

its proof is made by induction, we first check separately this curve case via the following

proposition.

Proposition 2.1.7 (Curve case). Suppose k is algebraically closed. Let X1 be a projective,

smooth and connected curve, E ∈ F-D60(X1/K ) (see the notation of [3, 1.2]). There

exists a constant c(E) such that, for any finite étale morphism of degree d1 of the form

α1 : X̃1 → X1 with X̃1 connected, by putting Ẽ := α+1 (E), we have

(1) dimK H1 pX̃1+
(Ẽ) 6 c(E);

(2) For any integer r 6 0, dimK H r pX̃1+
(Ẽ) 6 c(E)d1.

Proof. There exists an open dense affine subvariety U1 of X1 such that E |U1 ∈

F-Db
isoc(U1/K ) (see the notation [3, 1.2.14] and use [14, 3.1.1]). Let Z1 be the closed

subvariety X1 \U1, j : U1 ↪→ X1 and i : Z1 ↪→ X1 be the immersions. We put Ũ1 :=

α−1
1 (U1), Z̃1 := α

−1
1 (Z1) i.e we get the Cartesian squares:

Z̃1
i //

�α1

��

X̃1

α1

��
�

Ũ1

α1

��

joo

Z1
i // X1 U1.

joo

By considering the exact triangle j! j !(E)→ E → i+i+(E)→+1 (see [3, 1.1.8(ii)]) we

reduce to check the proposition for E = j! j !(E) or E = i+i+(E) (and because the functors

j! j ! and i+i+ preserve D60).

(1) In the case where E = i+i+(E), we can suppose that Z1 is a point. We put

G := i+(E). Since Z̃1 is d1 copies of Z1, then we get α1+α
+

1 G ∼
−→ Gd1 . Since i+

∼
−→ i! and

α+1
∼
−→ α!1, then we get from the base change isomorphism (e.g., see [3, 1.3.10]): α+1 i+

∼
−→

i+α+1 . Since E = i+i+(E), this implies α1+(Ẽ) = α1+α
+

1 (E)
∼
−→ i+α1+α

+

1 i+(E) = i+α1+α
+

1

(G) ∼−→ i+Gd1 . Hence, pX̃1+
(Ẽ) ∼−→ pX1+(i+Gd1)

∼
−→ Gd1 , which gives the desired result.

(2) Suppose now E = j! j !(E). We put F = j !(E), F̃ = j !(Ẽ). Using the spectral

sequence Er,s
2 = H r pX̃1+

(Hs(Ẽ))⇒ H r+s pX̃1+
(Ẽ), we reduce to the case where F ∈

F-Isoc††(U1/K ) (and then F̃ ∈ F-Isoc††(Ũ1/K )). Since X1 is proper and smooth

integral of dimension 1, then pX̃1+
(Ẽ) ∼−→ pX̃1!

(Ẽ) is a complex concentrated in degree

−1, 0, 1 (use Lemma 2.1.1). Since U1 is affine, then pŨ1!
is left t-exact (see [3,

1.3.13(i)]). Since Ẽ ∼
−→ j!(F̃), then pX̃1+

(Ẽ) ∼−→ pX̃1!
(Ẽ) ∼−→ pŨ1!

(F̃). Hence, we get

H−1 pX̃1+
(Ẽ) = 0. From (2.1.5.2), we get dimK H1 pX̃1+

(Ẽ) = dimK H1 pŨ1!
(F̃) 6 rk(F̃) =

rk(F). It remains to estimate |χ(X̃1, Ẽ)|. Since pX̃1+
(Ẽ) ∼−→ pX1+(α1+α

+

1 (E)), we get

the equality χ(X̃1, Ẽ) = χ(X1, α1+α
+

1 (E)). From Lemma 1.2.9 (recall also that from

[39, III.6.10], there exist some smooth proper formal V-schemes X1 and X̃1 which are

respectively a lifting of X1 and X̃1, so we are in the geometrical context of Lemma 1.2.9),

we have the formula χ(X1, α1+α
+

1 (E)) = d1 ·χ(X1, E). Hence, we can choose in that case

c(E) = max{|χ(X1, E)|; rk(F)}.
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2.2. The result and some applications

In this subsection, we need the Fourier transform (see 2.2.2). Hence, we assume here

that there exists π0 ∈ K such that π
p−1
0 = −p and such that σ(π0) = π0. Let q := ps ,

W (Fq) be the ring of Witt vectors of Fq . We get a complete discrete valuation ring of

residue field Fq by setting V0 := W (Fq)[X ]/(X p−1
+ p) (indeed, X p−1

+ p is an Eisenstein

polynomial). The class of X is a uniformizer of V0. Remark that the canonical lifting of

the sth Frobenius power of Fq is the identity of V0. We define the extension ρ : V0 → V
by sending the class of X to π0. Since σ(π0) = π0, this homomorphism ρ is compatible

with Frobenius liftings i.e., σ ◦ ρ = ρ. Let K0 be the field of fraction of V0. We know the

K0 = Frac(W (Fq))(µp), where µp ⊂ Qp are the group of p-rooth of unity (see [6, 1.3]).

We fix a nontrivial additive character ψ : Fq → µp ⊂ K0.

2.2.1. We denote by Lψ the Artin–Schreier isocrystal in F-Isoc††(A1
Fq
/K0) (see

Proposition [6, 1.5]). The extension V0 → V induces the morphism P̂1
V → P̂1

V0
. We

obtain the morphism of ringed spaces f : (̂P1
V ,OP̂1

V
(†∞)Q)→ (̂P1

V0
,OP̂1

V0
(†∞)Q), where

∞ is the closed point P1
Fq
\A1

Fq
and respectively P1

k \A
1
k . Recall (see the convention

of the paper) that F-Isoc††(A1
Fq
/K0) (F-Isoc††(A1

k/K )) is equivalent to the category of

coherent OP̂1
V0
(†∞)Q-modules E (respectively coherent OP̂1

V
(†∞)Q-modules E) endowed

with an integrable connexion and a Frobenius structure i.e., an isomorphism of the

form F∗(E) ∼−→ E . Hence, we get the functor f ∗ : F-Isoc††(A1
Fq
/K0)→ F-Isoc††(A1

k/K ).

We still denote by Lψ the object of F-Isoc††(A1
k/K ) which is the image by f ∗ of the

Artin–Schreier isocrystal Lψ in F-Isoc††(A1
Fq
/K0).

2.2.2 (Fourier transform). Let S be a k-variety. Let us briefly review the geometric Fourier

transform defined by Noot-Huyghe in [38], but only in the specific case of A1
S/S. Let

µ : A1
k × (A

1
k)
′
→ A1

k be the canonical duality bracket given by t 7→ xy, where (A1
S)
′ is

the ‘dual affine space over S’, which is nothing but A1
S (we have A1

S = SpecOS[x] and

(A1
S)
′
= SpecOS[y]). We denote the composition by µS : A1

S ×S (A1
S)
′
→ A1

k × (A
1
k)
′
→ A1

k .

Now, consider the following diagram: (A1
S)
′

p2
←− A1

S ×S (A1
S)
′

p1
−→ A1

S . Similarly to Katz

and Laumon in [29, 7.1.4, 7.1.5] (in fact, here is the particular case where r = 1), for any

E ∈ F-Db
ovhol(A

1
S), the geometric Fourier transform Fψ (E) is defined to be

Fψ (E) := p2+(p!1E⊗̃A2
S
µ!SLψ [−1]) (2.2.2.1)

(cf. [38, 3.2.1]1). Here ⊗̃ is compatible with Laumon’s notation (see [29, 7.0.1, p. 192])

and was defined in the context of arithmetic D-modules in [3, 1.1.6].

2.2.3. An important property for us of Fourier transform is the following. The functor

Fψ [1] is acyclic, i.e., if E ∈ F-Ovhol(A1
S/K ) then Fψ (E)[1] ∈ F-Ovhol((A1

S)
′/K ) (cf. [38,

Theorem 5.3.1]).

1Notice that our twisted tensor product and hers are the same.
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Remark. This might be simpler in our case to define the Fourier transform by

setting Fψ (E) := p2+(p!1E⊗̃A2
S
µ!SLψ ) (and then Fψ (E) ∈ F-Ovhol((A1

S)
′/K )) but, to

avoid confusion with the standard notation, we stick with the convention of [4, 3.2.2]

or [38, 3.2.1] (for this latter reference, remark that there is a typo in [38, 3.1.1] :

Kπ = δ∗Lπ [2N − 2] and not Kπ = δ∗Lπ [2− 2N ]).

Lemma 2.2.4. Let f : T → S be a morphism of k-varieties. Let E ∈ F-Db
ovhol(A

1
S/K ) and

F ∈ F-Db
ovhol(A

1
T /K ). We have the canonical isomorphisms

f !Fψ (E)
∼
−→ Fψ ( f !E); (2.2.4.1)

f+Fψ (F)
∼
−→ Fψ ( f+F). (2.2.4.2)

Proof. We have the canonical isomorphisms:

f !Fψ (E) = f ! p2+
(

p!1E⊗̃A2
S
µ!SLψ [−1]

) ∼
−→
[3,1.3.10]

p2+ f !
(

p!1E⊗̃A2
S
µ!SLψ [−1]

)
∼
−→
[3,1.1.9.1]

p2+
(

f ! p!1E⊗̃A2
T

f !µ!SLψ [−1]
)
.

Since µT = µS ◦ f , by transitivity of the extraordinary inverse image, we obtain

the isomorphism f !µ!SLψ [−1]
∼
−→ µ!TLψ [−1]. Hence, p2+

(
f ! p!1E⊗̃A2

T
f !µ!SLψ [−1]

) ∼
−→

p2+
(

p!1( f !E)⊗̃A2
T
µ!TLψ [−1]

)
= Fψ ( f !E), which gives 2.2.4.1. Moreover, by transitivity of

the push-forward, we get the first isomorphism:

f+Fψ (F) = f+ p2+
(

p!1(F)⊗̃A2
T
µ!TLψ [−1]

) ∼
−→ p2+ f+

(
p!1(F)⊗̃A2

T
f !µ!SLψ [−1]

)
∼
−→
[3,A.6]

p2+
(

f+ p!1(F)⊗̃A2
S
µ!SLψ [−1]

)
∼
−→
[3,1.3.10]

p2+
(

p!1( f+F)⊗̃A2
S
µ!SLψ [−1]

)
= Fψ ( f+F).

We use the following remark during the proof of the main theorem.

Remark 2.2.5. Let RK be the Robba ring over K (e.g., see [32, 15.1.4]). Let M be

a differential module on RK , i.e., a free RK -module of finite type endowed with an

integrable connexion (e.g., see the beginning of [18, 3]). We suppose M solvable (e.g.,

see Definition [18, 8.7]). We get the differential slope decomposition M =
⊕

Mβ , where

Mβ is purely of differential slope β (see Theorem [16, 2.4-1]). By definition Irr(M) :=∑
β>0 β · rk(Mβ) (see both definitions in [4, 2.3.1] and the formula [4, 2.3.2.2] which

compare both definitions). Hence, we get that

Irr(M) 6 rk(M)+ Irr(M]1,∞[), (2.2.5.1)

where M]1,∞[ :=
⊕

β∈]1,∞[ Mβ .

Theorem 2.2.6. Suppose k is algebraically closed. Let (Xa)16a6n be projective, smooth and

connected curves, X =
∏n

a=1 Xa, E ∈ F-D60(X/K ) (see the notation of [3, 1.2]). There
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exists a constant c(E) such that, for any finite étale morphism of degree da of the form

αa : X̃a → Xa with X̃a connected, by putting X̃ =
∏n

a=1 X̃a, α : X̃ → X and Ẽ := α+(E),
we have

(1) For any integer r , dimK H r pX̃+(Ẽ) 6 c(E)
∏n

a=1 da.

(2) For any integer r > 1, dimK H r pX̃+(Ẽ) 6 c(E)max{
∏

a∈A da | A ⊂ {1, . . . , n} and

|A| = n− r}.

Proof. We proceed by induction on n ∈ N. The case n = 1 has already been checked

in Proposition 2.1.7. Suppose n > 2. Let αa : X̃a → Xa be some finite étale morphism

of degree da with X̃a connected, X̃ =
∏n

a=1 X̃a , α : X̃ → X and Ẽ := α+(E). We put

Y :=
∏

a 6=1 Xa , Ỹ :=
∏

a 6=1 X̃a , β : Ỹ → Y . Let pr : Y → Spec k and p̃r : Ỹ → Spec k be the

projections (recall that from the convention of this paper, for instance, p̃r means also

the projection p̃r : X̃ = X̃1× Ỹ → X̃1 etc.). From Lemma 1.4.2 (recall also that from [39,

III.6.10], since X i and X̃ i are smooth curves, there exist some smooth proper formal

V-schemes Xi and X̃i which lift them, which reduce us to the geometrical situation of

Lemma 1.4.2) there exists an affine open dense subvariety U1 (independent of the choice

of αi ) of X1 such that pr+(α+Ẽ)|U1 ∈ Db
isoc(U1/K ) (use [13, 2.2.12] to check this latter

property). Let Z1 be the closed subvariety X1 \U1, Ũ1 := α
−1
1 (U1), Z̃1 := α

−1
1 (Z1). Let

j : U1 ↪→ X1 i : Z1 ↪→ X1 be the inclusions.

Step (0) We have j !p̃r+(Ẽ) = p̃r+(Ẽ)|Ũ1 ∈ F-Db
isoc(Ũ1/K ). Indeed, from Lemma 1.4.1,

this is equivalent to prove α1+(p̃r+(Ẽ))|U1 ∈ Db
isoc(U1/K ). Then, we get the desired

property from the isomorphism α1+(p̃r+(Ẽ))
∼
−→ pr+(α+Ẽ) (checked by transitivity of

the push-forwards).

Step (I) With the notation 2.1.4, we check that there exists a constant c (only depending

on E) such that

• For any integer s, rkHs p̃r+(Ẽ) 6 c
∏n

b=2 db.

• For any integer s > 1, rkHs p̃r+(Ẽ) 6 c max{
∏

b∈B db | B ⊂ {2, . . . , n} and |B| =
n− 1− s}.

Proof. Let t be a closed point of U1, t̃ be a closed point of Ũ1 such that α1(̃t) = t .
Let it : t ↪→ X1, ĩt : t̃ ↪→ X̃1, ι̃t : t̃ ↪→ Ũ1 be the closed immersions. Since the functor ι!t̃ [1]

is acyclic on F-Db
isoc(Ũ1/K ), since i !t̃ [1]

∼
−→ (ι!t̃ [1]) ◦ j !, we obtain i !t̃ [1](H

s p̃r+(Ẽ))
∼
−→

Hs(i !t̃ p̃r+(Ẽ[1])). Moreover, for such t̃ , we have rk(Hs p̃r+(Ẽ)) = dimK i !t̃ [1]H
s p̃r+(Ẽ).

We put E1 := i !t (E)[1] and Ẽ1 := β
+(E1). Since t × Y is a smooth divisor of X , then i !t [1] is

right exact. Hence E1 ∈ F-D60(Y/K ) (we identify Y with t × Y ). To simplify the notation,

we avoid to mention the isomorphism t̃
∼
−→ t induced by α1 in other words, we identify t

and t̃ via this isomorphism). We get it = α1 ◦ ĩt and then α ◦ ĩt = it ◦β : t̃ × Ỹ → X . Since

β+ = β !, we get by transitivity of the extraordinary inverse image the isomorphism

i !t̃ Ẽ[1] = i !t̃α
+(E)[1] ∼−→ β+i !t (E)[1] = β+(E1) = Ẽ1. (2.2.6.1)

Hence,

i !t̃ p̃r+(Ẽ)[1]
∼
−→
[3,1.3.10]

p̃r+i !t̃ (Ẽ)[1]
∼
−→
(2.2.6.1)

p̃r+(Ẽ1) = pỸ+(Ẽ1), (2.2.6.2)
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where we have identified Ỹ with t̃ × Ỹ in the last equality. By composition, we obtain

i !t̃ [1](H
s p̃r+(Ẽ))

∼
−→ Hs(i !t̃ p̃r+(Ẽ[1]))

∼
−→
(2.2.6.2)

Hs pỸ+(Ẽ1)

and then rk(Hs p̃r+(Ẽ)) = dimK Hs pỸ+(Ẽ1). We conclude by applying the induction

hypothesis to E1 (notice that we do need Theorem 1.4.2: since U1 is independent of

the choice of αi then so is t and then E1).

Step (II)

(1) By considering the exact triangle j! j !(E)→ E → i+i+(E)→+1 (see [3, 1.1.8(ii)]) we

reduce to check the proposition for E = j! j !(E) or E = i+i+(E) (and because the functors

j! j ! and i+i+ preserve D60).

(2) Suppose E = i+i+(E). We can suppose that Z1 is irreducible (i.e., since k is

algebraically closed, Z1
∼
−→ Spec k). Consider the diagram with Cartesian squares:

Z̃1× Ỹ
α1 //

�

� _

i
��

Z1× Ỹ
β //

� _

i
��

�

Z1× Y
pr //

� _

i
��

�

Z1� _

i
��

X̃
α1 // X1× Ỹ

β // X
pr // X1.

We put G := i+(E), G̃ := β+(G). Since Z̃1 is d1 copies of Z1, then we get α1+α
+

1 G̃ ∼
−→

(G̃)d1 . This implies

pX̃+(Ẽ) = pX̃+(α
+(i+G))

∼
−→
[3,1.3.10]

pX̃+(i+α
+

1 β
+G) ∼−→ pỸ+α1+α

+

1 (G̃)
∼
−→ (pỸ+(G̃))

d1 ,

(2.2.6.3)

where in the second isomorphism we have identified Ỹ with Z1× Ỹ . We conclude by

applying the induction hypothesis to G.

(3) Suppose now E = j! j !(E).
(a) We check that there exists a constant c (only depending on E) such that

• For any s, dimK H1 pX̃1+
(Hs p̃r+(Ẽ)) 6 c

∏n
b=2 db.

• For any s > 1, dimK H1 pX̃1+
(Hs p̃r+(Ẽ)) 6 c max{

∏
b∈B db | B ⊂ {2, . . . , n} and |B| =

n− 1− s}.

Proof. We put F = j !(E), F̃ := α+(F). By transitivity of the extraordinary push-forward,

we get the first isomorphism

j! p̃r+(F̃)
∼
−→ p̃r+ j!(F̃)

∼
−→
[3,1.3.10]

p̃r+(Ẽ). (2.2.6.4)

Moreover, since j ! j!
∼
−→ Id, we get the first isomorphism p̃r+(F̃)

∼
−→ j ! j! p̃r+(F̃)

∼
−→
(2.2.6.4)

j ! p̃r+(Ẽ). Hence, from the Step 0, this implies p̃r+(F̃) ∈ Db
isoc(Ũ1/K ).

Since j! is exact, we get from (2.2.6.4) the isomorphism j!Hs p̃r+(F̃)
∼
−→ Hs p̃r+(Ẽ).

By applying the functor pX̃1+
to this last isomorphism, we get by transitivity of the

extraordinary push-forward

pŨ1!
(Hs p̃r+(F̃))

∼
−→ pX̃1+

(Hs p̃r+(Ẽ)). (2.2.6.5)
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Applying H1 to (2.2.6.5), we get the first equality:

dimK H1 pX̃1+
(Hs p̃r+(Ẽ)) = dimK H1 pŨ1!

(Hs p̃r+(F̃)) 6 rkHs p̃r+(F̃) = rkHs p̃r+(Ẽ),

the inequality in the middle is a consequence of (2.1.5.2). From the step (I), we get the

desired estimate.

(b) We have the spectral sequence

Er,s
2 = H r pX̃1+

Hs p̃r+(Ẽ)⇒ H r+s pX̃+(Ẽ).

Since Ũ1 is affine of dimension 1, using the isomorphism (2.2.6.5), we get Er,s
2 = 0 when

r 6∈ {0, 1} (use also Lemma 2.1.1 and the respective case of [3, 1.3.13(i)]). Hence, by using

the step (a) (still valid if we vary the order of X1, . . . , Xn), it remains to check that there

exists a constant c(E) such that

• For any s, |χ(X̃1,Hs p̃r+(Ẽ))| 6 c(E)
∏n

a=1 da .

• For any s > 1, |χ(X̃1,Hs p̃r+(Ẽ))| 6 c(E)max{
∏

a∈A da | A ⊂ {1, . . . , n} and |A| =
n− s}.

(i) In this step, we reduce to the case where α1 is the identity. For this purpose, consider

the following diagram

X̃1× Ỹ
α1 //

p̃r
��

�

X1× Ỹ
β //

p̃r
��

X

pr
||

X̃1
α1 // X1.

We have χ(X̃1,Hs p̃r+(Ẽ)) = χ(X1, α1+Hs p̃r+(Ẽ)). By using the transitivity of the

pull-back, we get the first isomorphism: α1+ p̃r+(Ẽ)
∼
−→ α1+ p̃r+α

+

1 (β
+(E)) ∼

−→
[3,1.3.10]

α1+α
+

1 p̃r+(β
+(E)). Since α1+ and α+1 are exact, this implies the isomorphism α1+Hs

p̃r+(Ẽ)
∼
−→ α1+α

+

1 Hs p̃r+(β
+(E)). Hence,

χ(X1, α1+Hs p̃r+(Ẽ)) = χ(X1, α1+α
+

1 Hs p̃r+(β
+(E))).

From Lemma 1.2.9 (recall also that from [39, III.6.10], there exist some

smooth proper formal V-scheme X1 which is a lifting of X1), we have

χ(X1, α1+α
+

1 Hs p̃r+(β
+(E))) = d1χ(X1,Hs p̃r+(β

+(E))). Hence, we have checked that

χ(X̃1,Hs p̃r+(Ẽ)) = d1χ(X1,Hs p̃r+(β
+(E))), which yields the desired result.

(ii) We suppose from now that α1 is the identity. We prove that we can reduce to the case

where X1 = P1
k and U1 = A1

k . Indeed, from Kedlaya’s main theorem of [31], by shrinking

U1 is necessary, there exists a finite morphism f : X1 → P1
k such that U1 = f −1(A1

k) and

the induced morphism g : U1 → A1
k is etale. We get the Cartesian squares:

X̃

�

α
//̃

pr
**

f

��

X

f

��
�

pr
// X1

f
��

�

U1

g

��

j
oo

P1
k × Ỹ α //

p̃r

44P1
k × Y

pr // P1
k A1

k .
joo

(2.2.6.6)
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Set E ′ := f+(E) = f+ j! j !(E)
∼
−→ j!g+ j !(E) ∼

−→
[3,1.3.10]

j! j ! f+(E) = j! j !(E ′). Set Ẽ ′ := α+(E ′).

We have the isomorphisms j !pr+α+(Ẽ ′)
∼
−→
[3,1.3.10]

j !pr+α+ f+(Ẽ)
∼
−→ j ! f+pr+α+(Ẽ)

∼
−→
[3,1.3.10]

g+ j !pr+α+(Ẽ). Since j !pr+α+(Ẽ) ∈ Db
isoc(U1/K ), since g is finite and etale, using

Lemma 1.4.1, this yields that j !pr+α+(Ẽ ′) ∈ Db
isoc(A

1
k/K ).

To finish this step (ii), it remains to compare the Euler–Poincare characteristic. Since

f+ j!
∼
−→ j!g+, since g+ (because g is finite and etale) and j! are exact, then we get

Hs f+ p̃r+(Ẽ)
∼
−→
(2.2.6.4)

Hs f+ j! p̃r+(F̃)
∼
−→ j!g+Hs p̃r+(F̃)

∼
−→ f+ j!Hs p̃r+(F̃)

∼
−→
(2.2.6.4)

f+Hs p̃r+(Ẽ). (2.2.6.7)

This yields Hs p̃r+(Ẽ ′)
∼
−→
[3,1.3.10]

Hs f+ p̃r+(Ẽ)
∼
−→
2.2.6.7

f+Hs p̃r+(Ẽ) and then we get the last

equality

χ(X1,Hs p̃r+(Ẽ)) = χ(P1
k, f+Hs p̃r+(Ẽ)) = χ(P1

k,H
s p̃r+(Ẽ ′)).

(iii) We suppose from now X1 = P1
k and U1 = A1

k . Recall that α1 = id and that we have

checked in Step II.3(a) that p̃r+(F̃) ∈ Db
isoc(U1/K ). Hence we can apply Lemma 2.1.6:

for any m ∈ {0, 1} we have the inequality

Hm(i ! j!Hs p̃r+(F̃)) 6 rk(Hs p̃r+(F̃)) =
(2.2.6.4)

rk(Hs p̃r+(Ẽ)).

From the step (I), this latter is well estimated. This implies that χ(X1, i+i ! j!Hs p̃r+(F̃))
is well estimated.

From (2.2.6.4), we obtain χ(X1,Hs p̃r+(Ẽ)) = χ(X1, j!Hs p̃r+(F̃)). Moreover, by using

the exact triangle i+i !→ id→ j+ j !→+1 for j!Hs p̃r+(F̃) (see [3, 1.1.8(ii)]), since

j ! j! = id, we get the equality χ(X1, j!Hs p̃r+(F̃)) = χ(X1, i+i ! j!Hs p̃r+(F̃))+χ(X1, j+Hs

p̃r+(F̃)). Hence, we reduce to estimate χ(X1, j+Hs p̃r+(F̃)).
From Christol–Mebkhout’s theorem [17, 5.0-10] (as described in the introduction), we

have the following p-adic Euler–Poincare formula:

χ(X1, j+Hs p̃r+(F̃)) = χ(U1,Hs p̃r+(F̃)) = rk (Hs p̃r+(F̃))χ(U1)− Irr∞(Hs p̃r+(F̃)),

where ∞ is the complement of U1 in X1, i.e., of A1
k in P1

k .

To simplify notation, we put F := Fψ [1] (see the notation 2.2.2) and then from 2.2.3

the image by F of a module is a module. Since Gs
:= Hs p̃r+(F̃) ∈ F-Isoc(U1/K ), then

it has no singular points (see Definition [4, 2.4.2]). Hence, Abe–Marmora’s formula [4,

4.1.6(i)] can be formulated of the form (see also the notation [4, 2.4.1, 4.1.1]):

−rk(F (Gs)) = rk((Gs
|η∞)]1,∞[)− Irr((Gs

|η∞)]1,∞[). (2.2.6.8)

With [4, 2.3.2.2] (respectively (2.2.5.1)), we get the equality (respectively inequality):

Irr∞(Gs) = Irr(Gs
|η∞) 6 rk(Gs

|η∞)+ Irr((Gs
|η∞)]1,∞[). (2.2.6.9)
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Since rk(Gs) = rk(Gs
|η∞) and rk((Gs

|η∞)]1,∞[) 6 rk(Gs), we get from (2.2.6.8)

and (2.2.6.9) the inequality:

Irr∞(Hs p̃r+(F̃)) 6 rk(F (Hs p̃r+(F̃)))+ 2rk(Hs p̃r+(F̃)).

Hence, we reduce to check the step (iv).

(iv) In this step, we estimate rk(F (Hs p̃r+(F̃))). Since β = α, we get the diagram

X̃

�

α
//

p̃r
))

X

�

pr
// X1

Ũ

j

OO

α //

p̃r

55U

j

OO

pr // U1,

j

OO

(2.2.6.10)

where U = A1
Y , Ũ = A1

Ỹ
. Set M := j+F ( j !E), where F := Fψ [1] : F-D60

ovhol(A
1
Y )→

F-D60
ovhol(A

1
Y ) (see the notation 2.2.2 and 2.2.3 for the acyclicity). From the step (I)

applied to M, there exists a constant c (only depending on E) such that

• For any s, rk(Hs p̃r+(α
+M)) 6 c

∏n
b=2 db.

• For any s> 1, rk(Hs p̃r+(α
+M)) 6 c max{

∏
b∈B db | B ⊂ {2, . . . , n} and |B| = n− 1− s}.

It remains to check that rk(F (Hs p̃r+(F̃))) = rk(Hs p̃r+(α
+M)). By base change (recall

that α! = α+) and next by using 2.2.4, we have

p̃r+(α
+M) = p̃r+(α

+ j+F (F)) ∼
−→ p̃r+ j+α+(F (F)) ∼−→ j+ p̃r+α

+(F (F))
∼
−→ j+ p̃r+(F (F̃)) ∼−→ j+(F ( p̃r+F̃)),

where F := Fψ [1] : F-Db
ovhol(A

1
S)→ F-Db

ovhol(A
1
S) is the shifted Fourier transform for

respectively S = Y , S = Ỹ or S = Spec k. Since F and j+ are acyclic (see 2.2.3), then we

get Hs p̃r+(α
+M)

∼
−→ j+(F (Hs p̃r+F̃)). Since rk(F (Hs p̃r+F̃)) = rk( j+(F (Hs p̃r+F̃)))

(recall the notation of 2.1.4), we can conclude.

From Theorem 2.2.6, the reader can check the p-adic analogues of corollaries [5, 4.5.2–5]

by copying the proofs. Moreover, from [3], we have a theory of weight in the framework

of arithmetic D-modules. For instance, we have checked the stability of the weight under

Grothendieck six operations (i.e., the p-adic analogue of Deligne famous work in [21]),

which is also explained in [5, 5.1.14]. In [5, 5.2.1], a reverse implication was proved.

The reader can check that we can copy the proof without further problems (i.e., we only

have to check that we have nothing new to check, e.g., we have already Lemma 2.1.5

or the purity of the middle extension of some pure unipotent F-isocrystal as given

in [3, 3.6.3]). For the reader, let us write this p-adic version and its important corollary

[5, 5.3.1] (this corollary is proved in [3] in another way, but Theorem 2.2.7 below is a
new result).
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Theorem 2.2.7 [5, 5.2.1]. We suppose k = Fps is finite and that F means the sth power

of Frobenius. Choose an isomorphism of the form ι : Qp
∼
−→ C. Let X be a k-variety

and E ∈ F-Ovhol(X/K ). We suppose that, for any etale morphism α : U → X with U
affine, the K -vector space H0(pU+(α

+(E)) is ι-mixed of weight > w. Then E is ι-mixed of

weight > w.

Corollary 2.2.8 [5, 5.3.1]. With the notation 2.2.7, if E is ι-mixed of weight > w
(respectively 6 w), then any subquotient of E is ι-mixed of weight > w (respectively 6 w).

Finally, except [5, 5.4.7–8], the reader can check easily the other results of the Chapter 5
of [5] by translating the proofs in our p-adic context.
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des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (24) (1965), 231.
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