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Abstract  Algebraic limit cycles in quadratic polynomial differential systems started to be studied in
1958, and a few years later the following conjecture appeared: quadratic polynomial differential systems
have at most one algebraic limit cycle. We prove that a quadratic polynomial differential system having
an invariant algebraic curve with at most one pair of diametrically opposite singular points at infinity
has at most one algebraic limit cycle. Our result provides a partial positive answer to this conjecture.
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1. Introduction

Let R[x, y] be the ring of all real polynomials in the variables x and y. Differential systems
of the form
dx dy
—_— =7 = P —_— =
g —i=Py, 5
where P,Q € R[z,y| with t real are called real polynomial differential systems. We say
that system (1) has degree m if the maximum degree of the polynomials P and @ is m.
When m = 2, system (1) is called a quadratic system.
The polynomial vector field associated with system (1) is

Y= Q(‘Tay)v (1)
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Let g = g(,y) € Rz, y]. The algebraic curve g(z,y) = 0 of R? is an invariant algebraic
curve of the polynomial vector field X" if for some polynomial K € R[z,y], called the
cofactor, we have

99 0y

ax+Qay =Kg. 3)
Note that g = 0 is invariant under the flow defined by X.

An invariant algebraic curve g = 0 where ¢ is irreducible in R[x, y] is called irreducible.
A limit cycle of a real polynomial vector field X is an isolated periodic orbit in the set
of all periodic orbits of X. An algebraic limit cycle of degree n of X' is an oval of a real
irreducible invariant algebraic curve g = 0 of degree n which is a limit cycle of X

A point (x,y) of an algebraic curve g =0 is called a singular point of the curve if
g9(x,y) = g:(x,y) = gy(x,y) = 0. In order to avoid confusion, in this paper we will distin-
guish between a singular point of a curve and an equilibrium point of the system, i.e. a
point such that P(z,y) = Q(z,y) = 0. It is well known that a singular point of an invari-
ant algebraic curve must be an equilibrium point of the system. The converse in general
does not hold.

The following problem is a simpler version of the second part of Hilbert’s 16th problem
(see [14]). Let X,, be the set of all real polynomial vector fields (2) of degree m having
invariant algebraic curves. Is there a uniform upper bound on the number of algebraic
limit cycles of any polynomial vector field of ¥,,?

In [19], the authors give a positive answer to this question when all the invariant
algebraic curves g; = 0 of a vector field in X, satisfy the following assumptions: g; = 0
is a non-singular algebraic curve, the highest-order homogeneous terms of g; have no
repeated factors, if two curves intersect at a point in the affine plane they are transversal
at this point, there are no more than two curves g; = 0 meeting at any point in the affine
plane, and there are no two curves having a common factor in the highest-order homoge-
neous terms. For related papers concerning this problem, see [20, 24]. It remains to know
whether the invariant algebraic curves of a quadratic polynomial differential systems also
have at most one algebraic limit cycle when they do not satisfy these generic conditions.

In [22], it was proved that quadratic polynomial vector fields can have algebraic limit
cycles of degree 2, and that they are unique whenever they exist. In [10-12], the author
proved that quadratic vector fields do not have algebraic limit cycles of degree 3 (see also
[3,15] for different and shorter proofs). In [21], the first class of algebraic limit cycles of
degree 4 inside the quadratic vector fields was found. The second class was found in [13].
More recently, two new classes have been found, and in [6] the authors proved that there
are no other algebraic limit cycles of degree 4 for quadratic vector fields. The uniqueness
of these limit cycles was proved in [2]. It is known that there are quadratic polynomial
differential systems having algebraic limit cycles of degrees 5 and 6, see [6], and that this
limit cycle is the unique one for these differential systems.

It turns out that the problem mentioned above is too hard to deal with, which is why a
simpler version of this problem has kept the attention of the researchers for many years.
Tt is the following conjecture which appears explicitly in [16,20], but was known many
years before among the mathematicians working in this subject.

Xg=P

Conjecture 1. Quadratic polynomial differential systems have at most one algebraic
limit cycle.
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In this paper, we will prove this conjecture for the case in which the invariant algebraic
curve has at most one pair of diametrically opposite singular points at infinity. We note
that if an invariant algebraic curve has one singular point at infinity, then its diametrically
opposite point at infinity is also singular. In [18] the authors proved the conjecture in the
case in which the quadratic polynomial differential systems have two pairs of equilibrium
points at infinity (which may not be singular). In the following result, we restrict ourselves
to the case in which the system has three pairs of singular points at infinity.

Theorem 2. A quadratic polynomial differential system with three pairs of equilib-
rium points at infinity having an invariant algebraic curve with no singular points at
infinity has at most one algebraic limit cycle.

Theorem 3. A quadratic polynomial differential system with three pairs of equilib-
rium points at infinity having an invariant algebraic curve with at most one pair of
diametrically opposite singular points at infinity, these being the endpoints of the y-axis,
has at most one algebraic limit cycle.

We recall that an invariant algebraic curve g = 0 of a quadratic system may have at most
four finite singular points, and at most three pairs of infinite singular points (owing to the
fact that the singular points must be equilibrium points of the system). The known cases
with algebraic limit cycles that are realized with invariant algebraic curves of degrees 5 or
6 are curves with singular points: they have one finite singular point (which is the origin)
and one pair of infinite singular points. In the example of degree 6, the pair of infinite
singular points are the endpoints of the y-axis. See [6] for the explicit expressions of the
known algebraic limit cycles of degrees 5 and 6.

In view of Theorem 3, it remains to prove the conjecture in the case where the system
has three pairs of equilibrium points at infinity, and some of its invariant algebraic curves
have either a pair of diametrically opposite singular points which are not the endpoints
of the z-axis or more than one pair of diametrically opposite singular points at infinity.

The proof of Theorem 2 is given in §2, and the proof of Theorem 3 is given in §3. In
§2 we also state some known facts about quadratic polynomial differential systems that
we shall need.

2. Quadratic systems: preliminary results
The following theorems are well known. For a proof of the first one, see [3, 8].

Theorem 4. Quadratic polynomial differential systems having an algebraic limit cycle
of degree two or four have at most one limit cycle.

In view of Theorem 4, from now on we will consider algebraic limit cycles of degree
n > 5.
The next result is proved in [1,9].
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Theorem 5. Quadratic polynomial differential systems having an invariant algebraic
straight line have at most one limit cycle.

Two results were proved in [17]. Proposition 8 of [17] states the following.

Proposition 6. All the equilibrium points of the quadratic polynomial differential
system (4) and all points satisfying dg/0x = 0g/dy = 0 of an invariant algebraic curve
g =0 are contained in the union of {K =0} and {g = 0}, where K is the cofactor of
g=0.

From Theorem 4 of [17] and its proof, and Theorem 2 of [18], we have the following
theorem.

Theorem 7. If a quadratic polynomial differential system has an algebraic limit cycle
of degree n, then it can be transformed, through an affine change of variables and a
scaling of the time, into one of the following two systems. First,

&= &x —y+ ax® + bay,
§=1x— &y +da® +exy + [y’ W
with d # 0 and, second,
& = —y + azx® + bzy + cy?,
§=a+exy+ fy’.

The cofactor of g = 0 in both cases is ny.

It is pointed out in [17] that in system (4) the limit cycle, if it exists, surrounds the
origin.

Proposition 8. Let P, and Q3 be the homogeneous components of P and (@,
respectively. If yP, — xQ2 = 0, then the quadratic system has no limit cycles.

The following result is Lemma 11 in [17].

Proposition 9. The invariant algebraic curve g = 0 must intersect the infinity at least
in one point, eventually complex. All the intersection points must be equilibrium points
of the extended vector field in the projective space.

The following proposition, from Christopher [5], provides a result about the higher-
degree terms of an invariant algebraic curve g = 0 of a polynomial differential system (1).

Proposition 10. Suppose that a polynomial differential system (1) of degree 2 has
the invariant algebraic curve g = 0 of degree n. Let P, Q2 and g, be the homogeneous
components of P,Q and g of degree 2 and n, respectively. Then the irreducible factors of
gn must be factors of yPs — xQs.

The proof of the next theorem can be found in [5] (see also Theorem A2 in [2]).
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Theorem 11 (Christopher [5]). The system
&= —y+ a1z + ax?, g =x(l4 azx + aqsy)
has at most one limit cycle surrounding the origin.
The proof of the next theorem can be found in [18] (see Theorem 2).

Theorem 12. A quadratic polynomial differential system with at most one pair of
equilibrium points at infinity has at most one limit cycle.

In view of Theorem 12, in order to prove Theorem 3 we can restrict ourselves to the case
in which the quadratic polynomial differential system has at least two pairs of equilibrium
points at infinity.

The proof of the next theorem can be found in [18] (see Theorem 2).

Theorem 13. A quadratic polynomial differential system with two pairs of equilibrium
points at infinity has at most one limit cycle.

In view of Theorem 13, in order to prove Theorem 3 we can restrict ourselves to the
case in which the quadratic polynomial differential system has three pairs of equilibrium
points at infinity.

2.1. Proof of Theorem 2

Let g = 0 be an invariant algebraic curve of degree n > 5 of the quadratic polynomial
differential system (4). Then we can write g = (31~ gn—iiz" 'y") + -+, 0 < m < n with
In—m.m 7 0, where the dot denotes terms of order n — 1 and lower. From Proposition 10,
we have

m
S guiia iy = 2 (@ — 21y (@ — way) ™, (6)
i=0

where

a—e+ VA
2d

are the roots of the polynomial dz? — (a — e)z — (b — f) = 0. The case in which A <0

was proved in [18], because in that case there are at most two pairs of equilibrium points

at infinity. Therefore, x1 # xo and x; # 0 for i = 1,2. Note that in order that system (4)

has no singular points at infinity, we must have

with A= (a—e)>+4d(b—f) >0 (7)

T12 =

n—-—m<LELI,m—k<1 thatis m<k+1<2, n<m+1<3

which is not possible because n > 5. Hence this case is not possible.

Let ¢ =0 be an invariant algebraic curve of degree n > 5 of the quadratic poly-
nomial differential system (5). Then we can write g = (Y%, gn—iiy" " ‘@®) + -+ with
In—m,m 7 0, where the dots indicate terms of degree n — 1 and lower. By Propositions 8
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and 10, we have that Y/ ) gn_iy" 'z’ = y" ™ (y — 12)*(y — 222)™F with 0 < k < m,

where

b—fE VAL
2d
are the roots of the polynomial c¢y? + (b — f)y + (a —e) = 0. The case in which A <0
was proved in [18], because in that case there are at most two pairs of equilibrium points
at infinity. Therefore y; # yo and y; # 0 for ¢ = 1,2. Note that in order that system (5)
has no singular points at infinity, we must have

Y12 = with A; = (b— f)*> +4cla—e) =0

n—-m<Lk<1l,m—k<1 thatis, m<k+1<2, n<m+1<3

which is not possible because n > 5. Hence this case is not possible. This completes the
proof.

3. Proof of Theorem 3

Let g =0 be an invariant algebraic curve of degree n > 5 of the quadratic polynomial
differential system (4). We write it as g = (Y1~ gn—i 2™ 'y") + -+, 0 < m < n with
In—m,m 7 0, where the dot denotes terms of order n — 1 and lower. The coefficient of the
term 2™ ™y™+! in the expression of § = nyg is equal to

gnfm,m((n - m)b + mf — n) =0.
Therefore
b=(mn—-mf)/(n—m)ifm#n and f=1ifm=n.

From Proposition 10, it can be written as in (6) and (7), i.e.
m
Zgnﬂ',il”"_lyl _ xn—m(l_ o xly)k(x _ ny)m—k.
i=0

Note that the endpoint of y = 0 is never a singular point of system (4) at infinity, and so
system (4) cannot have any singular point at infinity; thus, this case is not possible.
So, we must assume that we have system (5). We will prove the following theorem.

Theorem 14. Let g =0 be an invariant algebraic curve with at most one singular
point at infinity of the quadratic polynomial differential system (5). Then system (5) has
at most one limit cycle.

Proof. Let g = (ZZO gn_i,iyn_il“i) + -+ with gp—m,m # 0, where the dots indicate
terms of degree n — 1 and lower. The coefficient of the term y”~™z™*! in the expression
g —nyg is equal to am + e(n — m) = 0. Therefore,

am
e =

ifm#mn, and a=0ifm=n.
m-—n

By Propositions 8 and 10 (we are assuming that the line at infinity is not formed
by equilibrium points, otherwise the system cannot have a limit cycle), we have that
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S Gn—iiy" "l =y (y — y12)* (y — zex)™F with 0 < k < m, where y1, yo are the
roots of cy®> + (b — f)y + (a —e) = 0.
We now consider two different cases: m = n and m < n.

Case 1: m = n. In this case a = 0. Proceeding as in [17], there are three reasons for having
the condition m = n. First, we simply have chosen the wrong system of coordinates, and
there is some other real singular point of the system at infinity through which g =0
passes. In that case, the system can be transformed into system (4) with m < n.

The second reason for having m = n is that all the branches of ¢ = 0 go through non-
real equilibrium points of the system at infinity. This means that y; = 72 ¢ R. In that
case, system (5) would have only a pair of equilibrium points at infinity, and in view of
Theorem 12 it is proved that in this case the system has at most one limit cycle.

The third reason for having m = n is that ¢ = 0. Then system (5) becomes

T = —y+ bxy, y:x+ezy+fy2.

If b # 0, system (5) has the invariant straight line 2z = 1/b and, in view of Proposition 5,
has at most one limit cycle. So, b = 0. Moreover, if f = 0, then either the system has no
equilibrium points at infinity (if e # 0) or the line at infinity is formed by equilibrium
points (if e = 0). In both cases it follows, respectively, from Propositions 9 and 8 that
system (5) has no limit cycles.

In short, b =0 and f # 0. In this case, g, = (y — (¢/f)x)". Imposing that

(exy + fyz)% — nygn =0,
we get
n—1
y(@/ - ;w> (e(f;r 1)x+ (f - 1)y> =0,
and so

f=1 and e=0.

Tt follows from Proposition 11 (making the change x — y and y — x) that system (5) has
at most one limit cycle.

Case 2: m < n.If a = 0 then e = 0, and it follows from Proposition 11 (making the change
z — y and y — z) that system (5) has at most one limit cycle.

We can thus assume that a # 0 and so e = am/(m — n). We distinguish between the
casesm = 0 (and then k = 0), m =1 (with k =0or k = 1) and m = 2 (with k = 1). Note
that if ¢ = 0 then we only have the cases m = k =0 and m = 1 with k£ = 0.

Subcase 2.1: m = 0. In this case, g, = y™ and imposing that g,, satisfies

dg am dg
2 2\ Y9n 2) 2
(a2 +bay +cy”) 5~ + (m_nnyrfy ) oy = "W (8)

with m =0 we get f = 1. We write g in powers of = as g = E?:o g;(y)z? where gi # 0
(otherwise g = 0, which is not possible). We obtain that the coefficient of 2**! satisfies
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kagy(y) = 0. Since a # 0 then k = 0, and so g = go(y) and satisfies

dgo
(v + y2)d7y = nygo-

The coefficient of z satisfies dgo/dy = 0 and so go is constant, which is not possible
because it is an invariant algebraic curve. Therefore, this case is not possible.

Subcase 2.2: m = 1. We consider two different subcases, ¢ = 0 and ¢ # 0.

Subcase 2.2.1: ¢ = 0. We have that g, = y" 1 (y + (an/(n — 1)(b — f))z). Imposing that
gn satisfies (8) we get

(f =Dn
(b—f)n—1)

which yields, in particular, that a = 0; this is not possible.

y"(anz + (f —b-+bn — fn)y) =0

Subcase 2.2.2: ¢ # 0. We consider two different subcases: k = 0 and k& = 1. In both cases
e =a/(1 —n) and system (5) becomes

& = —y + azx® + bzy + cy?,

9)

y=x+ zy + fy°.

1—n

We have g, = y" " *(y + (b — f) £ /b — dac — 2bf + f2 + dac/(1 — n)/2c)z) (+ for k =
0 and — for k£ = 1). Imposing that g,, satisfies (8) we get

ﬁ_ny”((ﬂn — Db~ f—n+ fn)/b? —dac—20f + f2 + dac/(1 - n)

— b2 4+ 2bf — f2+bn+b*n — 2acn — fn—3bfn+ 2f%*n — bn? + fn?
+bfn? — f2n?)x + c(n — 1)(\/b2 — dac — 2bf + f2 + 4ac/(1 —n) +b
—f—2n+2fn)y) =0

and so either c=0, or a=0,b=f+n—fn,orc=(f-1)(1—n)(b—f—n+ fn)/a.
Since ac # 0, we must have ¢ = (f — 1)(1 = n)(b— f —n+ fn)/a.
Assume system (9) has a Darboux polynomial g with cofactor K = ny. Then writing

g in powers of z as g = Z?:o g;(y)x? we obtain that the coefficient of 2%+ satisfies
a dgk
kagi() + (14 T=50) Gy =
ag(y) + (1+ 17— ay
and so
gk(y) = cx(1 = n+ay) =Y.
Therefore

g=cpzt(1—n+ay)*" Y 4 1ot
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where [.0.t means terms of lower order in the variable x. Since the degree of g is n, we
must have that

k+k(n—1)<n, whichimplies k <1.
Then
)n—l

g =2g1(y) + go(v), a(y) =ci(l—n+ay)" -, c1 €R

Moreover, computing the terms of z and the independent term, we get that go(y) must

satisfy

bygr + fy° g1 (y) + (1 + ﬁ@ 90(y) = nyg1(y),

<(f ab)lCh n)(s SEELES O v)91(v) + Fy29h(y) = nygo(y).
We have

goy) = co+ %(1 — 4 ay)" "2 (=b(—2 + n)(—1 +n — ay)

X (I+ay)+ (=2+n)n(=1+n—ay)(1+ay) + f(—1+n)
x (—=2(1+ ay)2 +n(2 4 2ay + a2y2))).

From the third relation, we get

— cony + pe a y(1 —n+ ay)"3(—2a* 4+ 2b — 2f — 2n + 5a*n — Thn

a2(2—n)
+8fn + n? — 4a®n? 4+ 9bn® — 12fn? — In® + a®>n3 — 50> + 8fn> + 5nt
+bnt —2fn* —nd + (—4a® + 4ab — 4af + 2abf — 2af* — 10abn + 9afn
— 7Tabfn + 9af?n + 10an? — 2a®n? + 8abn® — afn® + 9abfn® — 16af>n>
— 8an® — 2abn® — 1lafn® — sabfn® + 14af*n? 4+ 2an® + 9afn* + abfn*
—6af?n* —2afn® + af?n®)y + (—2a* + 2a%b — 2a* f 4 2a*bf — 4a*f?
—2a®n + a*n — 3a®bn + a®fn — 5abfn + 14a® f?n + 3a%n? — 4a*n?
+ a?bn® 4 662 fn® + 4a®bfn® — 184 f*n? — a*n® — Ta® fn® — a®bfn’
+10a” f2n® 4 2a% fn* — 2a® f2n*)y?) = 0.
Solving it we obtain that either a=0,b= (n?+2fn—2n—2f)/(n—2), or a=
+vb—n —bn+n2, f =0. The first case is not possible. For the second and third cases,
we have that f = 0 and so, since e # 0 (because a # 0), y = —1/e is an invariant straight

line and, in view of Proposition 5, system (5) has at most one limit cycle. This completes
the proof in this case.
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Subcase 2.3: m = 2 and k = 1. We recall that ¢ # 0 and g,, = y"2(y? + (anz?/c(n — 2))z
y + 4?2). Imposing that g,, satisfies (8), we get

(b—f—n+fn)y"!

=) (anz® + (2f — 2b+bn — fn)zy + c(n — 2)y*) =0

which yields b = f(1 —n) 4+ n because ac # 0.
Thene =2a/(2—n),b=n+ (1 —n)f, f # 0 (because m # 0) and system (5) becomes

i=—y+ar’+ (n+ f(1-n))zy + cy®,
(10)

. 2a
j=x+ zy + fy’.
2—n

Assume system (10) has a Darboux polynomial g with cofactor K = ny. Then writing g

in powers of x as g = Z?:o g;(y)z7 we obtain that the coefficient of 2%+ satisfies
2a dgy.
kagk(y) + (1 + 5 _ y)d—y =
and so
2a k(n—2)/2
gk(y)zck(l‘i‘Qiny) :
Therefore

+ Lot

2a k(n—2)/2
9= ckx’“<1+ o y)

Since the degree of g is n, we must have that

k(n —2)

k
T

< n, which implies k < 2.

Then
g=2292(y) + 2191 (y) + 9o(v)

with g2(y) = e2(1 + (2a/2 — n)y)" 2, where ¢y € R. Moreover, computing the terms of

22, x and the independent term, we get that f; and fy must satisfy

2a )dgl + fy 2 92 —n

9 _ ny dy y Yygz,
2a dgo 2d91

)y I

agi(y) +2(n+ (1 —n)f)yga(y) + (1 +

(n+ (1 =) N)ygr () + 2ey® = y)g2 + (1+ =nygr,  (11)

dgo
(cv® —y)gily) + fy2 qy = "o

Solving the first equation in (11), we get

ca(n —2)
a?(n—4)

—n)(n—2) +a(d+2f(n—3) = n)(n — 4y — 2a*(f = 1)(n — 4)y*),

ay)=ca2-n+ Qay)"/2_1 + (2 —n+2ay)" (4 +2f(n —3)
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with ¢; € R, and solving the second equation in (11), we obtain

go = % (Zl (7{(1471 —8—-3n?) +2(n— 4)) (2= n+ 2ay)"/?

+ f(n—2)3(2 = n+2ay)"?72 = 2(f — Dn(n —4)(2 —n + 2ay)”/21>
n 02(2ac+ (f=D(f(n=1) =n)(n=2)(n—4)

8a? n

20— 3)(n - 2)° 2(n— 2)(8f — 3(f + n +n?)
n—4 n—3

(2 —n+2ay)" "% + (—4a*(n — 4) + 2ac(8 + n(n — 6)) — (n — 2)(—(n — 4)n?

+ f(8 +n(n(15 —2n) — 34)) + 2f%(6 + n(n(n — 5) +5))))(2 — n + 2ay)" >

(2 —n+2ay)"

(2 —n+ 2ay)"* +

_ %(2&2 _ 2ac(n _ 2) _ (f — 1)(f—|— 1— n)(n — 2)n)(2 —n+ 2ay)n1)
=+ co,
with ¢y € R.

We write the last relation in (11) as

d
Aly) = (cy® =y (y) + nydi; —nygo = 0.

Note that A(y) is a polynomial in the variable y. Computing in A(y) = 0 the coefficient
of the highest-order term in y (which is y"*1), we get

2" 30" ey (f — 1)%(n —2)*((n —1)f —n) = 0.
Since a(n — 2) # 0, we have three possibilities: co =0, or f =1 or f=n/(n—1). We
consider the three subcases separately.

Subcase 2.3.1: ¢o = 0. In this case

_ - a
‘A(y)‘02=0 = —Cony CL2(’I’L — 4)

+8nf? — 4f% +8n’f — 20nf + 8f — 4n® + dac + 8n)y®
+2a%(n — 4) (= f*n® + 4fn® — 2n® + 5f*n* — 21 fn® + 10n°
—8f*n+ 2acn + 32fn — 12n + 24 + 4f* — dac — 12f)y?
—a(n— 2)(2fn4 —n* —24fn3 +12n3 + acn? + 92fn? — 44n>
+ 4a*n — 6acn — 128 fn + 48n — 16a” + 8ac + 48f)y

+ (n—2)*(=2fn® +n® +12fn® — 6n* + a®>n — 20fn + 8n
—4a® + 8f))

y(2 — n+ 2ay)"/?3 (—a®(n —4)(=3nf?
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Note that m must be even and n > 5, so n > 6. Then we compute the coefficients of
y?, 3,y ... for n > 6 and the coefficients of ¥, 42,43, y* when n = 6. Equating to zero
the set of these coefficients and using that f # 0 and ¢, a are real, we obtain that this
system has no solution. So this subcase is not possible.

Subcase 2.3.2: co # 0 and f = 1. In this case

ca(n—3)(n—2)"n
8a*(n — 4)2

ca(n —2)5n
4a*(n —4)(n — 3)

A(y)|j=1 = —cony — y(2—n+2a)""" +

con(n — 2)
8at(n —4)
+ 68n + 4a*n + 12acn — 42n* — 2acn® + 11n* — nM)y(2 — n + 2a)" 2

co(n —2)n(a + 2¢ — cn)
2a3(n—1)

(=84 6n —n?)y(2 —n+2a)""3 + (—40 — 16a* — 16ac

1 cea(n—2)
4a3

y(2—n+2a)" + (=1 +ey)y(2 —n+2a)"* 4+ e (n—2)(4(1 — n)

ca(n—2)(—=1+cy)
a?(n —4)

y(2—n+2a)""

+n%+ (2 —n)ay)y® (2 — n+ 2a)"/?*73 —
c1(n—2)
a’(n —4)
(16 — 20n + 8n? — n*)y + a®(8 — 6n + n?)y?)
c(n—2)
a2(n—4)

n—4)

(4(n —1) —n? + (6n — 8)ay — an’y)y(2 —n + 2a)" 3 +
(8 —12n + 6n* —n> +a(16

y(2 —n+2a)"/*72 4 (32(a® — 1) 4 80n — 40a*n — 80n>

Co
a
+ 16a®n? + 40n® — 2a°n® — 10n* + n® + (—80a + 644> — 32a°c
+ 176an — 48a>n + 40a%cn — 152an? + 8a®*n? — 16a%en? + 64an®
+ 2a%cn® — 13an* 4+ an®)y + 8a*(4a® — 8ac — a*n + 6acn — acn?)y?
+ 8atc(n — 4)y*)y (2 — n 4 2a)" 0.
Computing the coefficient of the highest power in y, which is y"”, we get

2" 2¢o(n — 2)(a + 4c(1 — n) + en?)a 4
n—1

=0.

Taking into account that ca(n — 2)a # 0, we must have
a=—c(n—2)%

Now, computing the coefficient of y”~!, we obtain

2l (n —2)" 4 (n — 5/2)
cA(n—3)

and this is not possible. So this case is not possible.

=0

Subcase 2.3.3: ca #0 and f=n/(n—1). In this case, A(y)|f=n/n-1) is very large.
We only write the coefficient of its highest power in y, which is y”, and we get
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27 2¢o(n — 3)(—1)"(n — 2)?"~7¢" =3, which is never zero. So this subcase is not possible.
This completes the proof of Case 2 and concludes the proof of Theorem 14. (I

The proof of Theorem 3 for system (5) follows directly from Theorem 14.
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