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The design of vortex promoters in a heated-wall duct is often limited by the
considerations of practicality, especially in complex systems such as fusion blankets.
The present study investigates the use of current injection to invoke a street of vortices
in quasi-two-dimensional high transverse magnetic field magnetohydrodynamic duct
flows to enhance instability behind a cylinder. The intent is to generate intensive flow
vorticity parallel to a magnetic field downstream of a field-aligned cylinder. Electric
current enters the flow through an electrode embedded in one of the Hartmann
walls, radiates outward, imparting a rotational forcing around the electrode due to
the Lorentz force. The quasi-two-dimensional nature of these flows then promotes a
vortical rotation across the interior of the duct with axis aligned to the magnetic field.
The hot and cold walls are parallel to the magnetic field. Electric current amplitude
and pulse width, excitation frequency and electrode position are systematically
varied to explore their influences on the convective heat transport phenomenon.
This investigation builds on a recommendation from previous work of Bühler (J.
Fluid Mech., vol. 326, 1996, pp. 125–150) dedicated to understanding of the flow
stability in a similar configuration. This study provides supportive evidence for the
use of current injection as an alternative to the conventional mechanically actuated
turbuliser, with heat transfer almost doubled for negligible additional pumping power
requirements.

Key words: high-Hartmann-number flows, magnetohydrodynamics, vortex shedding

1. Introduction
Magnetohydrodynamic (MHD) flows in rectangular ducts, amongst many other

geometries, have received significant attention in the past due to their wide application
(Shercliff 1953; Hunt 1965), especially in the cooling system of poloidal self-cooled
blankets (Molokov 1994). It is known that magnetohydrodynamic effects serve to
reduce the thermal hydraulic performance of these duct flows by greatly increasing
the pressure drop and reducing the heat transfer coefficient through laminarisation of
the flow (Hartmann & Lazarus 1937). An experimental investigation revealed that the
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transition to a laminar state occurs at Re/Ha ≈ 225 (Brouillette & Lykoudis 1967),
where Ha= Ba

√
σ/ρν is the Hartmann number and Re is the typical hydrodynamic

Reynolds number. Here, B is the imposed magnetic field, a is the out-of-plane duct
depth (in the magnetic field direction), while σ , ρ and ν are the electrical conductivity,
density and kinematic viscosity of the liquid metal, respectively. The stabilizing effect
derives from the additional damping in the form of Hartmann braking. In the limit
of high magnetic field strength, a very thin boundary layer on the wall perpendicular
to the magnetic field direction (known as the Hartmann layer) dominates the friction
in an MHD duct flow (Krasnov, Zikanov & Boeck 2012) and the flow becomes
quasi-two-dimensional (with 2-D core flow and 3-D flow confined in the boundary
layers). In this regime, the induced currents predominantly reside in the Hartmann
layer, and hence Joule dissipation is only important in this layer (Pothérat, Sommeria
& Moreau 2000). Furthermore, in the context of fusion applications, liquid metals
have a very high electrical conductivity (σ = O(106) �−1 m−1; Lyon 1952), thus
Joule dissipation becomes insignificant when compared to the high heat flux at
the plasma-facing wall (Burr et al. 2000). In this case, Hartmann damping plays
a greater role in the damping of the 2-D vortices (Mück et al. 2000). Substantial
progress has been made using both experiments and modelling to understand these
physical phenomena in various geometries relevant to the cooling ducts of liquid
metal fusion blanket. Analytic solutions have been obtained in a number of simple
geometries for both conducting and insulating ducts (Müller & Bühler 2001).

The cooling process can be assisted either by mixing of the flow via turbulence or
vortical structures, or by the acceleration of a near-wall flow. The latter is encountered
in MHD duct flows where the Hartmann walls are perfectly electrically conducting
and the Shercliff walls are electrically insulating (known as Hunt’s flow; Hunt 1965).
In this configuration, high velocity jet flows near the sidewalls give rise to an
M-shaped profile. It has been shown previously that an increase in magnetic field
intensity generally leads to an improved heat transfer near the walls (Miyazaki et al.
1986; Cuevas et al. 1997; Takahashi et al. 1998).

In contrast, when all walls are insulating, the flow presents a flat velocity profile in
the core region, monotonically decreasing to zero through the side layers. The flow
in this configuration generally features a lower heat transfer from the heated sidewall
as compared to the conducting Hartmann wall counterpart (Cuevas et al. 1997).
It has been reported that the transverse magnetic field tends to inhibit the convective
mechanism of heat transfer in an insulated duct flow by as much as 70 % (Gardner
& Lykoudis 1971). Despite the low heat transfer characteristic, insulated ducts offer
promising application to fusion blankets due to their low pressure drop (Cuevas et al.
1997). Hence it has become a particular interest of researchers to enhance the heat
transfer in this flow configuration. Several methods have been proposed to improve
the convective heat transfer, but generally the mechanism is the same: either by
promoting turbulence or by generating vortical velocity fields in the flow in order
to enhance transverse fluid mixing and to reduce thermal boundary layer thickness
(Sukoriansky et al. 1989). Suggested methods to generate these vortices include
placement of an obstacle such as a cylinder in the duct (Malang & Tillack 1995;
Hussam & Sheard 2013), grid bars (Sukoriansky et al. 1989; Branover, Eidelman
& Nagorny 1995) or a wall protrusion (Kolesnikov & Andreev 1997). However, the
level of turbulence is dependent on the flow conditions. For example, high magnetic
fields result in a low bulk flow velocity upstream of the obstacle, which then leads
to a complete suppression of wake shedding downstream of the cylinder (Lahjomri,
Capéran & Alemany 1993) or turbulence (Shatrov & Gerbeth 2010). In the case
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of a cylinder obstacle, the kinematics of the wake vortices can be enhanced via an
active excitation. Hussam, Thompson & Sheard (2012b) reported that the optimum
perturbations leading to Kármán vortex shedding are localized in the near-wake
region around the cylinder, which can be excited by a cylinder oscillation. Studies
have examined cylinder rotation about its own axis (Beskok et al. 2012; Hussam,
Thompson & Sheard 2012a), or oscillated in either a transverse direction (Yang
2003; Fu & Tong 2004; Celik, Raisee & Beskok 2010) or in line with the incident
flow (Griffin & Ramberg 1976). The resulting vorticity field in all cases are similar,
despite the different oscillation mechanisms (Beskok et al. 2012). It has been found
that increasing oscillation amplitude leads to a higher convective heat transfer from
a hot wall (Yang 2003; Beskok et al. 2012), though the gains become more modest
at larger amplitudes (Hussam et al. 2012a). Furthermore, substantial improvement
in Nusselt number has been observed when the cylinder oscillates with a frequency
within the lock-in regime (Fu & Tong 2004), a region over which the cylinder motion
governs the wake shedding frequency. An oscillation frequency beyond this lock-in
regime leads to a lower convective heat transport (Yang 2003; Celik et al. 2010;
Beskok et al. 2012). It is also found that higher oscillation amplitude leads to a
lower optimum oscillation frequency (Hussam et al. 2012a) and broader primary
lock-in regime (Mahfouz & Badr 2000).

In general, a remarkable heat transfer enhancement associated with active excitation
has been reported. However, studies relevant to duct heat transfer enhancement in
MHD flows are rather scarce. Furthermore, employing a mechanical actuator for such
turbulisers in a duct faces significant technical obstacles to a practical implementation.
An alternative vorticity generation mechanism is by the use of inhomogeneous wall
conductivity, as has been explored by Bühler (1996). The smoothly transitioned wall
conductance inhomogeneity leads to the formation of a quasi-2-D shear layer in the
duct. Above a critical Reynolds number, which depends on Hartmann number, this
shear layer is strong enough to trigger Kelvin–Helmoltz instabilities (Smolentsev,
Vetcha & Moreau 2012), which result in the wake resembling that of Kármán vortex
street. However, this mechanism acts passively on the flow and lacks a means to
control the ensuing vorticity.

Alternatively, one can take advantage of the MHD flow characteristics, i.e. the
presence of an imposed magnetic field in an electrically conducting flow, to intensify
vortical structures by means of electric current injection from an electrode mounted
flush with one of the Hartmann walls. The design and implementation of such a
system would avoid the complexity of a mechanically actuated turbulence promoter
system. Furthermore, the amount and rate of current injection can be actively
controlled based on feedback from the flow conditions. Electrical generation of
vortices has already been used to generate vortices parallel to the imposed magnetic
field by Sommeria (1988), Pothérat, Sommeria & Moreau (2005), Pothérat & Klein
(2014) in the study of decaying vortices, flow stability and MHD turbulence, but not
yet in a duct arrangement with sidewall heating.

The aim of the present work is to enhance heat transfer from the heated sidewall
of an MHD duct by utilizing a passive cylinder wake mechanism augmented with
a current injection forcing. Influences of vortex dynamics on heat transfer, pressure
drop and efficiency enhancement are examined over a wide range of current injection
amplitudes, frequencies and pulse width, magnetic field strength, cylinder gap ratios
and electrode positions. We focus on a flow with Reynolds number 200 6 Re 6 3000
and friction parameter 200 6 H = n(L/a)2Ha 6 5000 in a duct with a blockage ratio
β = d/2L = 0.2, where n is the number of Hartmann walls (n = 1 in the case with
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FIGURE 1. Schematic diagram of the system under investigation. The cylinder spans the
duct, with diameter d and axis parallel to z-direction, and the small circle indicates a point
electrode embedded in one of the Hartmann walls.

a free surface and n= 2 for a flow between two Hartmann walls), L is half of the duct
width and d is cylinder diameter. These parameters are chosen as they produce time
periodic flows at each gap ratio, permitting investigation of the interaction between the
forcing current injection and the natural vortex shedding behind the cylinder. Owing
to the fact that there is a limited number of studies on actively excited cylinder wake
vortices in an MHD duct flow in the literature, the present investigation will furnish
valuable information for the design of efficient heat transport systems in high magnetic
field applications.

This paper is organized as follows: the problem set-up and relevant equations are
presented in § 2.1–2.3. A sensitivity study on numerical parameters concerning the
grid independence and domain length are presented in § 2.4. In § 3, the results related
to heat transfer enhancement are presented. Section 4 is dedicated to the analysis of
pressure loss and overall efficiency of the system, followed by conclusions in § 5.

2. Methodology
2.1. Computational set-up

In this investigation a flow of electrically conducting fluid passing over a circular
cylinder in a rectangular duct is considered (as depicted in figure 1). The bottom wall
of the duct (grey shaded region in figure 1) is maintained at a constant hot temperature
of θw, while the top wall and inflow have a constant cold temperature of θ0. The
cylinder is thermally insulated, while the duct sidewalls and the cylinder are each
electrically insulated. On the duct walls and the cylinder surface, a no-slip condition
is imposed. A fully developed quasi-2-D MHD duct flow is applied at the duct inlet
(Pothérat 2007), defined by

u(y)= cosh
√

H

cosh
√

H − 1

(
1− cosh(

√
Hy)

cosh
√

H

)
, (2.1)

while at the outlet, a constant reference pressure is imposed and a zero streamwise
gradient of velocity is weakly imposed. The transverse distance between the cylinder
and the heated wall is characterised by the gap ratio G/d. This study considers gap
ratios G/d = 0.5, 1 and 2, with G/d = 2 corresponding to the duct centreline. The
wake flow is modified by means of current injection through an electrode embedded
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at various locations in the otherwise electrically insulating out-of-plane duct wall. The
ratio of cylinder diameter to the duct width (i.e. blockage ratio, β = d/2L) is fixed at
0.2 throughout this study. A uniform magnetic field B is imposed in the axial direction
(z-axis).

In the present context, the magnetic Reynolds number Rm is low and hence the
Lorentz force is diffusive in nature due to the typical low-velocity liquid metal
and relatively small length scale (Davidson 2001). The fluctuating induced magnetic
field around the externally applied field is negligible, and therefore, the quasi-static
approximation is invoked (Roberts 1967). However, Alfvén waves might be generated
when either the Hartmann number is sufficiently high or strong current pulses are
injected into the flow. Their propagation along the magnetic field is governed by the
Lundquist number S=Ha Pr1/2

m (Lundquist 1949), where Prm is the magnetic Prandtl
number. For liquid metals, the quasi-static approximation holds when Ha 6 O(103)

(Pothérat & Kornet 2015). Taking this constraint into consideration, the magnetic
field intensity was limited to H = 5000 (which corresponds to Ha = 104 for n = 2
and α = 1). It should be noted that the bulk of the present numerical simulations
was based on the flow at H = 500. Here, α = a/2L is the aspect ratio of the duct. It
is therefore anticipated that the Alfvén waves, if present, will produce rather limited
effects due to strong dissipation. Moreover, current pulses have been used previously
to drive quasi-2-D flows (Sommeria 1988) and no such effect was reported.

For large interaction parameter, the flow tends towards two-dimensionality
(Sommeria & Moreau 1982). Recent evidence of the quasi-two-dimensionality of
MHD flows can be found in Krasnov et al. (2012), Kanaris, Albets, Grigoriadis
& Kassinos (2013), Rhoads, Edlund & Ji (2014). A typical quasi-two-dimensional
velocity profile is shown in figure 1, characterised by a flat profile in the core with
velocity U0 and high gradients in the vicinity of the lateral walls (Pothérat 2007).

2.2. Governing equations
In the present investigation, the flow is described by a theoretical model proposed
by Sommeria & Moreau (1982) based on a quasi-2-D assumption where the flow
quantities in the 2-D core flow and in the Hartmann layers are averaged along the
magnetic field direction to give a modified two-dimensional Navier–Stokes equation
augmented by a linear braking term representing friction in the Hartmann layers. This
averaging is possible when the so-called two-dimensionalisation time τ̂2D = ρλ2/σ B̂2,
where λ= l‖/l⊥ is the ratio of the scales parallel and perpendicular to the magnetic
field, i.e. the time for the Lorenz force to act to diffuse momentum of a fluid
structure along magnetic field lines (Sommeria & Moreau 1982), is much shorter
than any other time scales so that quasi-two-dimensionality is achieved within the
flow. The relevant time scales include the time scales for viscous diffusion in both
perpendicular and parallel planes, and the inertia time scale. These conditions are
attained when both Hartmann number Ha� 1 and interaction parameter N � 1, in
which any velocity variations along the magnetic field direction is suppressed almost
instantaneously (Pothérat et al. 2000), and the Hartmann layer is laminar (Pothérat &
Schweitzer 2011). Here, the interaction parameter is defined as N =Ha2/ReL.

Hartmann number and Reynolds number were varied with 200 6 H 6 5000 and
15006Re63000. These parameter ranges correspond to 50.N .67 000 for n=2 and
α = 1, which justifies the employment of the SM82 model. Theoretically, the SM82
model is accurate to order max(Ha−1, N−1) (Pothérat et al. 2005). In the case of
rectangular duct flows, the SM82 model has been verified against three-dimensional
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analytical solutions, where the local error in the velocity profile in the sidewall
boundary layer is less than 10 % (Pothérat et al. 2000). Furthermore, 3-D simulations
of MHD wakes behind a cylinder by Mück et al. (2000) verified the accuracy of
the quasi-2-D model at high N and Ha. This result is further supported by more
recent 3-D simulations by Kanaris et al. (2013), where at the highest Ha investigated,
they found maximum errors of the averaged parameters between the quasi-2-D
model and the 3-D DNS of 6 % and 8 % for the steady and time-dependent flows,
respectively. The model has also been found to predict the rate of decay of cylinder
wake vortices very well within the high-N regime (Hamid et al. 2015). It is also
worth mentioning that a quasi-2-D model proposed by Smolentsev & Moreau (2007)
for MHD turbulence based on SM82 has been found to be in excellent agreement
with previous experimental results.

Introducing the non-dimensional variables and coordinates which are defined from
physical variables as

p= 1
ρU0

2 p̂, x= 1
L

x̂, θ = θ̂ − θ̂0

θ̂w − θ̂0

,

u= 1
U0

û, t= U0

L
t̂,

 (2.2)

the non-dimensional MHD equations of continuity, momentum and energy are

∇ · u= 0, (2.3)
∂u
∂t
=−(u · ∇)u−∇p+ 1

ReL
∇2u+ L2

a2

Ha
ReL

(u0 − nu), (2.4)

and

∂θ

∂t
+ (u · ∇)θ = 1

Pe
∇2θ, (2.5)

respectively, where u, p, θ and u0 are the velocity, pressure, temperature and forcing
velocity field (which in the context of the present study, is a transverse electric current
density imposed at the sidewalls), respectively, projected onto a plane orthogonal to
the magnetic field, U0 is peak inlet velocity and ∇ is the gradient operator. The
dimensionless parameters Reynolds number ReL, Hartmann number Ha and Peclet
number Pe are defined as

ReL =U0L/ν,

Ha= Ba
√
σ/ρν,

Pe=U0L/κT = ReLPr,

 (2.6)

where κT is the thermal diffusivity of the fluid. Prandtl number Pr= ν/κT characterizes
the ratio of viscous to thermal diffusion in the fluid and Pr=0.022 is used throughout,
representative of the eutectic alloy GaInSn. This liquid metal has been employed
widely in MHD laboratory experiments, e.g. Frank, Barleon & Müller (2001), Morley
et al. (2008), Klein, Pothérat & Alferenok (2009). In this paper, Hartmann number is
expressed in term of a friction parameter H = n(L/a)2Ha, following Pothérat (2007).

The electric current is injected in alternating-sign pulses with amplitude I and
angular frequency ωf = 2πff , where ff is the forcing frequency, and pulse width,
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–1.0

–0.5
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0.5

1.0

0 0.5 1.0

FIGURE 2. Typical electric current injection profile, represented by a modified square
waveform with pulse width 0<τ/T < 0.5. In the limit of τ/T = 0.5, the current injection
profile takes a square waveform. The amplitude of current is normalized by its peak
amplitude, Ip, and the time is normalized by signal period, T .

(a)

(b)

FIGURE 3. (Colour online) Contour plots of the difference in electrical potential field
calculated from the analytical solution and the field that is solved numerically in the
presence of the electrically insulating cylinder. In (a), current is injected from the base
of the cylinder and contour levels range between −0.001 and 0.001, and in (b), current
is injected from an electrode placed at lx = 1 and ly = 0.7 (indicated by the arrow), and
contour levels range between −0.04 and 0.06. Light and dark contours represent positive
and negative difference in electrical potential, respectively.

τ/T , where T = 2π/ωf is the period of the current oscillation (ref. figure 2). For the
analytical derivation of the forcing velocity fields, see appendix A. It is noted that
these solutions are obtained for a duct with no cylinder present. While the cylinder
diameter is small relative to the duct width, it is not negligible, and so this forcing
solution inexactly approximates the true forcing field. In order to justify the validity
of our solutions, we have evaluated the errors associated with the approximation by
comparing the electrical potential field calculated from the analytical solution with the
field that is solved numerically in the presence of the electrically insulating cylinder.

The results (as shown in figure 3) revealed that the errors are isolated to the
vicinity of the cylinder. For a case where the electrode is coincident with the
cylinder, the largest discrepancies were three orders of magnitude below the overall
variations in the electrical potential field within the domain. When the electrode was
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positioned downstream of the cylinder, errors were again isolated to the vicinity of the
cylinder, and were at least an order of magnitude below the overall field variations.
It is therefore expected that the resulting electrically generated vortices will closely
resemble the true vortices.

It is important to ensure that the time scale at which the current forcing is imposed
is much larger than the two-dimensionalisation time so that the induced vortex
shedding is quasi-two-dimensional and satisfies the SM82 model assumptions. The
condition for the forcing time scale is justified as follows: in the present study,
the forcing frequency is varied between ωf = 0.5 and 10, which corresponds to a
non-dimensional forcing time scale between τf = 2π/ωf ≈ 13 and 0.6, respectively.
Following the scalings used in this study, the non-dimensional two-dimensionalisation
time is expressed as τ2D= τ̂2DU0/L= ρUoλ

2/σLB̂2. For H= 500 (a friction parameter
at which the highest forcing frequency is simulated in this study; low friction
parameter and high forcing frequency impose demanding requirements for the time
scales), and taking n = 2, α = 1, and the properties of low melting point eutectic
alloy Ga68In20Sn12 at 20 ◦C (density ρ = 6.3632× 103 kg m−3, electrical conductivity
σ = 3.30737× 106 �−1 m−1 and kinematic viscosity ν = 3.4809× 10−7 m2 s−1; Lyon
1952), the imposed magnetic field is B=Ha/a

√
ρν/σ = 4Hα2√ρν/σ/(na)≈ 0.26 T.

Taking the typical bulk flow velocity in the blanket U0 = 0.015 m s−1 (Smolentsev
et al. 2010), l⊥ = L and l‖ = a so that λ = 2, along with the typical length
scale for the fusion blanket application a = 0.1 m (Smolentsev et al. 2010),
the two-dimensionalisation time is then τ2D ≈ 0.03. This time scale is at least
an order of magnitude smaller than the forcing time scale, which justifies the
quasi-two-dimensionality assumption.

While the most demanding forcing case considered in this study has a time period
approximately 20 times the two-dimensionalisation time, the square or modified square
forcing current waveforms introduce higher frequencies that may not be resolvable
under the SM82 model. For instance, a modified square waveform with τ/T = 0.25
may be described by a Fourier series with coefficients of the form

∞∑
n=1

2
nπ

[
cos
(nπ

4

)
− cos

(
3nπ

4

)]
. (2.7)

Even-numbered coefficients are identically zero, and it can be seen that the odd-
numbered harmonic coefficients scale with 1/n. It would be expected therefore that
the SM82 model will resolve at least up to the 19th harmonic in the aforementioned
most demanding current forcing case, or components of the pulse waveform with
magnitudes down to approximately 5 % of the first Fourier mode. In order to
evaluate the sensitivity of the resulting flow to the number of included modes in
the Fourier series representation of the ideal modified square waveform, simulations
were performed at H = 500, ReL = 1500, I = 60, ωf = 10 and τ/T = 0.25. The
effect is quantified by the deviations of the flow parameters (time-averaged Nusselt
number Nu, total drag coefficient CD and integral of velocity magnitude throughout
the domain L 2) obtained with pulses represented by the truncated Fourier series from
the ideal square waveform. The results are presented in table 1, which shows that the
deviations are small (<1 %) even for a sinusoidal (single harmonic) approximation
to the square wave, quickly becoming insignificant (<0.005 %) when including the
first three or more non-zero harmonics (frequencies that are well within the valid
range of the SM82 model). We therefore expect that no artefacts will be present in
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Included εNu εCD εL 2

harmonic

1st 0.0389 0.5790 0.0909
3rd 0.0031 0.0761 0.0087
5th 0.0031 0.0016 0.0027
7th 0.0024 0.0003 0.0016
9th 0.0023 0.0027 0.0017
11th 0.0024 0.0046 0.0015
13th 0.0029 0.0009 0.0015

TABLE 1. Percent absolute deviations as a function of number of the harmonic in the
Fourier representation of the imposed current pulses. The deviations were calculated
relative to the ideal modified square waveform with τ/T = 0.25. 1st harmonic represents
a perfect sinusoidal waveform, where all the energy in the current signal is contained at
the fundamental frequency.

our solutions due to high-frequency components of the modified square wave current
forcing violating the SM82 model.

It is also important to ensure that the electrically driven vortices are well resolved
by the SM82 model, particularly their scale in the perpendicular plane, i.e. the vortex
core. Here, the scale is defined as the radius of the electrode (Hunt & Malcolm 1968).
The smallest quasi-2-D structure that can be satisfactorily resolved by the model arises
from the condition that τ2D∼ τν⊥, which yields l⊥∼ a/

√
Ha. The bulk of the present

numerical simulations were based on the flow at H = 500, which corresponds to
Ha = 1000 for n = 2 and α = 1. This then yields the smallest resolved scale of
l⊥ ∼ a/30. For a typical duct length scale a = O(10−1 m), the electrode size must
be at least in the order of millimetres, which is typical in MHD experiments (Hunt
& Malcolm 1968; Sommeria 1988). Furthermore, a recent finding by (Hamid et al.
2015) demonstrates the capability of the SM82 model in predicting the evolution
of quasi-2-D vortices even at rather moderate interaction parameters (i.e. N ≈ 31).
For the sake of comparison, the interaction parameter is varied between N = 50 and
67 000 in the present investigation, and hence justifies the implementation of the
SM82 model. We may therefore assert that the present results are representative of
the actual physical behaviour, at least within the correct order of magnitude.

2.3. Quantification of duct flows thermal hydraulic performance
The instantaneous Nusselt number variation along the heated duct walls is quantified
by

Nuw(x, t)= 2L
θf − θw

∂θ

∂y

∣∣∣∣
wall

, (2.8)

where θf is the bulk fluid temperature, which is calculated using the velocity and
temperature distribution as

θf (x, t)=
∫ L

−L
uθ dy

/∫ L

−L
u dy. (2.9)

For a periodic flow, the instantaneous wall Nusselt number calculated from equation
(2.8) is also periodic. The time-averaged local Nusselt number at each x-station is
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represented by Nux(x). Integrating over the length of the heated bottom wall, Lw, gives
the time-averaged Nusselt number

Nu= 1
Lw

∫ Lw

0
Nux(x) dx. (2.10)

To quantify the efficiency of the current injection on the heat transfer, the efficiency
index is adopted (Walsh & Weinstein 1979), defined as

η= HR
PR

, (2.11)

where HR and PR are the heat transfer enhancement ratio and pressure penalty ratio,
given respectively by HR = Nu/Nu0 and PR = 1P/1P0. Nu0 is the time-averaged
Nusselt number of the heated region of the duct without any current injection and
1P and 1P0 are the time-averaged pressure drop across the duct, with and without
current injection, respectively (with the cylinder present).

2.4. Solver validation and grid independence study
The governing equations were solved using a high-order in-house solver employing a
spectral element method for spatial discretisation and a third-order scheme based on
backwards differentiation for time integration (Sheard 2011). The numerical system
has previously been employed to study confined hydrodynamic flows (Neild et al.
2010), as well as the heat transfer of stationary and oscillating cylinders in a duct
(Hussam & Sheard 2013; Hussam et al. 2012a; Cassells, Hussam & Sheard 2016).
The implementation of the SM82 model within the solver was also validated in
Hamid et al. (2015), where the spatial history of peak vorticity in a wake behind a
cylinder computed using the present solver and published 3-D MHD simulation data
were compared, and remarkable consistency were demonstrated.

Meshes were constructed consisting of four regions: two regions near the transverse
walls, a core region and a region in the vicinity of the cylinder. Elements are
concentrated near the walls and the cylinder (as shown in figure 4a) to resolve
the expected high gradients in MHD flows (Pothérat, Sommeria & Moreau 2002)
and to capture the crucial characteristics of the boundary layer (e.g. boundary layer
separation) (Ali, Doolan & Wheatley 2009). The grid is also compressed in the
horizontal direction towards the cylinder.

To test the domain independence of the meshes constructed for this study, the
dependence of Nusselt number on downstream domain length was investigated.
A case with H = 500, ReL = 1500, I = 60, ωf = 1.75 and τ/T = 0.25 was considered.
The results are summarised in table 2, and the variation of time-averaged Nusselt
number along the duct is given in figure 4(b). The result reveals that truncating
the downstream length from 16L to 8L or 12L causes errors of less than 0.09 % or
0.08 %, respectively, in the time-averaged Nusselt number calculated up to Ld = 8L.
Hence, the M1 mesh sizing was used hereafter.

A grid independence study was performed by varying the element polynomial
degree, while keeping the macro-element distribution unchanged. The time-averaged
Strouhal number St = fd/U0, total drag coefficient CD = 2FD/ρU0

2d, where FD is
the drag force exerted by the fluid per unit length of the cylinder, the integral of
velocity magnitude throughout the domain (L 2 norm) and Nusselt number (Nu)
were monitored, as they are known to be sensitive to the domain size and resolution.
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FIGURE 4. (a) Macro-element distribution of the computational domain, and magnified
mesh in the vicinity of the cylinder, with the upper right quadrant representing the
distribution of collocation points within elements with Np = 8. The mesh extends 3.2L
upstream and 8L downstream. (b) Time-averaged local Nusselt number in the downstream
of cylinder for H= 500, ReL= 1500, I= 60, ωf = 1.75 and τ/T = 0.25. Solid, dashed and
dotted lines represent domains with respective downstream lengths Ld = 8L, 12L and 16L.

Mesh M1 M2 M3

Ld/L 8 12 16
Nel 1292 1425 1558
εNu 0.0822 0.0712 0

TABLE 2. Domain length Ld/L and number of elements Nel of different meshes. εNu =
|1−NuMi/NuM3| is the error in time-averaged Nusselt number relative to the case with
longest domain for H = 500, ReL = 1500, I = 60, ωf = 1.75 and τ/T = 0.25.

Np εSt εCD εL 2 εNu

3 0.2813 4.4134 0.5788 5.0943
4 0.4048 0.2138 0.0296 3.4334
5 0.3903 0.6136 0.1104 2.5580
6 0.2714 1.1087 0.1812 1.9540
7 0.2624 1.0248 0.1763 1.5904
8 0.1884 0.5990 0.1040 0.8984
9 0.1698 0.9263 0.1095 0.5187

10 0.0882 0.8289 0.0446 0.2656

TABLE 3. Percent uncertainties as a function of element polynomial degree arising from
the grid independence study at H = 500, ReL = 1500, I = 60, ωf = 4 and τ/T = 0.25.

Errors relative to the case with highest resolution, εP= |1− PNi/PN=11| × 100 %, were
defined as a monitor for each case, where P is the monitored parameter. A demanding
MHD case with H = 500, ReL = 1500, I = 60, ωf = 4 and τ/T = 0.25 was chosen
for the test. The results are presented in table 3, and show rapid convergence with
increasing polynomial order. The case with polynomial degree 8 achieved at worst a
0.9 % error, and is used hereafter.
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FIGURE 5. (Colour online) (a–d) Instantaneous vorticity contour plots and (e) time-
averaged local Nusselt number in the downstream of cylinder. In (a–d), contour levels
ranges between −2 and 2, with light and dark contours represent positive and negative
vorticity, respectively. (a) Shows the case without a cylinder, while (b–d) respectively show
cases G/d= 2, 1 and 0.5.

3. Results
3.1. Base cases

Three base cases, each having ReL = 1500, H = 500 and β = 0.2, are constructed,
with cylinder gap heights G/d = 0.5, 1 and 2, as well as a fourth case comprising
the same duct but with the cylinder removed at the same flow conditions. The
instantaneous vorticity contours for these cases are shown in figure 5, along with a
plot of the streamwise distribution of the local time-averaged Nusselt number. With
no cylinder, the flow is steady (see figure 5a) and the local Nusselt number decreases
monotonically as the thermal boundary layer grows with distance from the inlet
towards the fully developed value (see figure 5e). Figure 5(b–d) shows that the wall
proximity affects the dynamics of the cylinder wake. Figure 5(b,c) illustrate a typical
Kármán vortex shedding, whereas figure 5(d) shows a vortex pairing pattern in the
wake. A strong entrainment of vorticity into the wake in the near-wake region occurs
as the cylinder gap ratio is decreased, and this increases the local thermal boundary
layer thickness (while temperature fields are not shown, they may be inferred from
the vorticity field since they are correlated; Celik et al. 2010). This explains the
abrupt decrease in local Nusselt number immediately downstream of the cylinder
for the small gap ratio case, as shown in figure 5(e). This is then followed by an
appreciable increase in Nusselt number due to the vortex shedding at the end of
the formation region (2 . x . 3). Furthermore, when the cylinder is positioned at
the centre of the duct, it was observed from figure 5(b) that the interaction between
the wake and the walls is relatively weak, thus the trend of local Nusselt number
resembles that of the empty duct case. The results of time-averaged Nusselt number
along the heated wall reveal that cylinder placement with gap ratio G/d= 1 performed
best, achieving heat transfer increment HI = (Nu − Nue)/Nue = 8.6 %, where Nue is
the Nusselt number of an empty duct. This is is followed by the case with G/d = 2
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FIGURE 6. (Colour online) (a) Time-averaged heat transfer enhancement plotted against
forcing frequency ωf at non-dimensional current amplitudes I as indicated for τ/T = 0.25
and G/d = 2. The current is injected from the cylinder. Error bars represent standard
deviations of the mean Nusselt number within a shedding cycle evaluated at various
shedding phases. (b) Limits of the lock-in regime as a function of forcing amplitude and
normalized forcing frequency F = ff /f0. Regime to the left (right) of the lower (upper)
bound represent wakes with odd harmonics (inharmonic) in cylinder lift force. The dotted
line represent F = ff /f0 = 1, and the shaded region highlights the zone where HR is
maximum.

G/d Nu 1P η f0

Empty duct 1.647 7.467 — —
2 1.711 7.805 0.994 0.743
1 1.789 7.817 1.037 0.717
0.5 1.630 7.833 0.944 0.798

TABLE 4. Time-averaged flow quantities at β = 0.2, H = 500, ReL = 1500 for the
base cases.

(HI = 3.9 %), and the poorest performance being the cylinder placed nearest to the
wall with G/d= 0.5 (HI=−1 %). A similar trend is observed for the efficiency index
(ref. table 4). This finding confirms a previous observation (Hussam & Sheard 2013),
whereby an optimal gap between the cylinder and the heated wall for maximising the
rate of heat transfer was found to lie within 0.8.G/d . 1.4. The trend of increasing
pressure drop with increased gap ratio is also in agreement with the findings from
that study.

3.2. Effects of the current injection frequency and amplitude on heat transfer
In this section, overall enhancement in heat transfer for various forcing frequency
ωf and forcing amplitude I are presented. The current is injected from the cylinder,
and ωf is varied between 0.5 and 10 for I = 12, 30 and 60. For all cases, H = 500,
τ/T = 0.25 and G/d= 2. The results are presented in figure 6(a). It can be observed
that higher current amplitude leads to a higher peak heat transfer. Furthermore,
HR reaches its maximum value at 1.3 . ωf . 1.7, which corresponds to normalized
forcing frequencies 0.28 . F= ff /f0 . 0.36 within the investigated current amplitudes,
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where f0 is the natural shedding frequency. Spectral analysis of the cylinder lift
coefficient CL = 2FL/ρU0

2d, where FL is the lift force exerted by the fluid per unit
length of the cylinder, reveals that this frequency range is appreciably lower than the
lock-in frequency range (a state where the vortex shedding is synchronised with the
forcing frequency), as shown in figure 6(b). There are three distinct regimes of wake
response, and further discussion on the frequency response analysis is presented in
§ 3.2.1. This observation contrasts previous studies of heat transfer from a heated
channel wall in the presence of a cylinder oscillating either rotationally (Beskok et al.
2012) or transversely (Celik et al. 2010), where maximum heat transfer was observed
at the lower range of the lock-in frequency. The observed discrepancy between the
present results and the previous observations is attributed to the different mechanism
of vorticity supply in both cases. In the oscillating cylinder case, the wake vortices
are derived (or enhanced) through the relative motion between the cylinder and the
free stream. This type of flow is governed by the relative size of the time scales of
vortex dynamics and of cylinder oscillation. When the time scale of oscillation is
comparable to that of vorticity, the vortex shedding is synchronised with the cylinder
oscillation (the oscillation frequency is said to be in the lock-in regime). This leads
to a generation of high intensity vortices and a substantial interaction between the
vortices and the channel walls (Beskok et al. 2012). On the other hand, if the time
scale of the oscillation is much smaller or much larger than the vortex dynamics
(i.e. forcing frequencies outside the lock-in regime), the rate at which vorticity is
shed into a wake is governed by the natural frequency irrespective of the oscillation
frequency. The downstream wake in this state is similar to that for a fixed cylinder
(Mahfouz & Badr 2000), and therefore inherit its poorer heat transfer characteristic.

In the present case, the wake vortices are governed by the forcing current injection,
which is indicated by the presence of strong narrow peaks at the forcing frequency
and its harmonics in the spectra of lift coefficient (which will be discussed further in
§ 3.2.1). For a low forcing frequency, the amount of vorticity supplied to each shed
vortex is large, which leads to large wake vortical structure (as shown in figure 7).
This in turn would generally enhance the wake–boundary layer interaction, and thus
the heat transfer from the sidewall. However, a lower forcing frequency also means
fewer shed vortices for a given time duration, which may not be beneficial for heat
transfer enhancement. The competition between the size and number of shed vortices
results in a non-monotonic trend in the HR–ωf relation.

It is also interesting to observe that at higher forcing frequencies, the Nusselt
number tends to asymptote towards the value obtained for the non-forced case
(i.e. without current injection). Similar observations have been reported previously for
a rotationally oscillating circular cylinder (Hussam et al. 2012a) and a transversely
oscillating square cylinder (Yang 2003). This observation is attributed to the fact
that for a high forcing frequency, the amount of vorticity feeding into the wake per
shedding cycle decreases. This leads to a more coherent and smaller wake structure,
resembling the unperturbed Kármán vortex shedding. The vortices therefore align
closer to the duct centreline, which diminishes the interaction between wake vortices
and thermal boundary layers (as can be seen in figure 7). Figure 6(a) shows for I= 12
a noticeable enhancement in heat transfer at higher forcing frequencies (6 . ωf . 9).
The local Nusselt number variation along the duct was found to exhibit a relatively
higher convective heat transfer further downstream of the cylinder at higher forcing
frequency. This is generated by the enhanced wake–boundary layer interaction due to
the development of vortex splitting in the downstream wake, as depicted in figure 8.
The mechanism of this phenomenon is as follows: as an attached shear layer rolls
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

FIGURE 7. (Colour online) Contour plots of vorticity (a,c,e,g,i) and temperature (b,d, f,h,j)
for current injection amplitude I= 30 and forcing frequencies 0.56ωf 6 6. Vorticity fields:
contour levels are as per figure 5. Temperature fields: dark and light contours show cold
and hot fluid, respectively. (a,b) ωf = 0.5, (c,d) 1.5, (e, f ) 2, (g,h) 4, (i,j) 6.

K4b K1b K1aK4a

FIGURE 8. (Colour online) Instantaneous vorticity contour plots for I = 12 and ωf = 6.
The dashed line represents the duct centreline. Contour levels ranges between −1 and 1,
with light and dark contours represent positive and negative vorticity, respectively.

up halfway from the cylinder in the formation region, an incipient eddy of opposite
sign crosses the wake centreline, causing the shear layer to stretch and finally split
into two (i.e. vortices K1a and K1b) at approximately four diameters downstream of
the cylinder. This process is repeated in the third successive phases (which results in
the birth of vortices K4a and K4b), and the vortex sheds in the form of a regular
Kármán vortex shedding between these two phases.

It is also worth mentioning that the fluctuations in the trend in Nusselt number
for a higher forcing amplitude are due to the different modes of response of the
wake at different forcing frequencies. For example, at ωf = 3.375, HR is 13 % higher
than at ωf = 3.3125 for I = 60, despite the frequencies differing by less than 2 %.
Vorticity and temperature contours for ωf = 3.375 (as shown in figure 9a,b) reveal
that there is a substantial interaction between wake vortices and the heated wall due
to the broadening of the width of the wake. There is clear evidence of boundary layer
entrainment from the heated wall into the wake, as well as strong mixing between the
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(a) (b)

(c) (d)

FIGURE 9. (Colour online) Instantaneous vorticity and temperature contour plots for I =
60 and (a,b) ωf = 3.375 and (c,d) ωf = 3.3125. Contour levels are as per figure 5.
(a,c) Vorticity fields, (b,d) temperature fields.

high-temperature fluid near the heated region with the low-temperature core flow. In
the case with ωf = 3.3125, however, almost no boundary layer entrainment from the
heated wall into the wake was observed (as can be seen in figure 9c,d). This results
in poor mixing between the hot fluid near the boundary and cold fluid in the core
flow, which explains the abrupt increase in Nusselt number at this particular forcing
frequency.

Inspection of instantaneous vorticity fields for these two frequencies reveals that
the wakes are almost perfectly reflectively symmetric about the wake centreline. It
has been shown previously that similar deflections of wake vortex shedding from the
centreline is triggered by introducing local disturbances into the boundary layer on the
cylinder by either heating the cylinder (Kieft et al. 2003) or rotating the cylinder (Lam
2009). In the present case, however, the current injection perturbation is in a modified
square waveform with an alternating polarity, and therefore the boundary and forcing
conditions are symmetrical about the duct centreline. To test the robustness of this
bi-stable behaviour to asymmetry in the system, simulations were conducted with the
cylinder shifted transversely by 5 % of the duct width, corresponding to G/d = 2.25
and G/d=1.75. No clear trend concerning the cylinder position and the mode of wake
response was found. The wake was biased upwards, downwards or was symmetric
with respect to the duct centreline. The resulting heat transfer enhancement ratio data
are presented in figure 10. For a given forcing frequency, HR was found to vary within
a narrow range, indicated by the shaded region, due to the aforementioned uncertainty
in the mode of wake response. Nevertheless, the overall trend remains: increasing
forcing frequency leads to a lower heat transfer enhancement.

3.2.1. Shedding frequency analysis
In this section, Fourier analysis of the lift coefficient time histories and the vorticity

time series are presented in order to investigate the response in the wake of the
circular cylinder to the current injection. The analysis was conducted on data recorded
after the transient start-up phase of the simulations had completed. The peaks in the
resulting spectra are interpreted in terms of the natural shedding frequency, forcing
frequency and their harmonics. The analysis reveals three distinct regimes of wake
response: the odd harmonics regime, lock-in regime and inharmonic regime.

In the lock-in regime, the wake shedding frequency is governed only by the forcing
current. In general, the synchronisation of vortex shedding (lock-in state) occurred
over 0.8 < F < 2 within the investigated forcing amplitude (ref. figure 6b). This
compares quite well with the range of synchronisation 1.2 < F < 2.5 for a circular
cylinder oscillating in line with an incident flow of air observed by Griffin & Ramberg
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FIGURE 10. Time-averaged heat transfer enhancement plotted against forcing frequency
for I = 60, τ/T = 0.25, and ωf and G/d as indicated. The current is injected from
the cylinder. The shaded region highlights the zone bounded by max(HR + σHR) and
min(HR− σHR), where σHR is the standard deviation of mean HR.

(1976). It should be noted that in the case of a transversely oscillating cylinder,
a synchronisation range of 0.75 < F < 1.25 was reported by Koopmann (1967).
Despite these observed disparities, the qualitative trend is consistent: the domain of
the lock-in regime increases with increasing forcing amplitude.

In the present cases, a distinct spectrum was observed outside the lock-in regime
compared to the oscillating and vibrating cylinder cases. The typical lift force
history is shown in figure 11(a), where the inharmonic case with ωf = 1 resembles
a distorted waveform. When the forcing frequency is below the lock-in frequency
threshold (i.e. in the region to the left of the lower bound shown in figure 6b), the
spectrum is composed of the forcing frequency and its odd harmonics (as shown
in figure 11(c) for ωf = 1), which corresponds to the forcing response. Beyond the
lock-in regime (i.e. the inharmonic regime shown in figure 6b), the forcing frequency,
its harmonic(s) and fraction of the natural shedding frequency (i.e. f = nf0/4, where
n are odd integers) are present in the spectrum (as shown in figure 11(c) for ωf = 6).
The presence of multiple peaks may be the result of nonlinear interaction between
the electrically generated vortices and the naturally shed vortices. Similar nonlinear
interactions were reported by Karniadakis & Triantafyllou (1989) for a cylinder
vibrating beyond the lock-in regime. Furthermore, the observed spectral peaks at
frequencies lower than the forcing frequency can be explained by the aforementioned
split vortex that misses the measurement ‘probe’ located at the duct centreline. It has
previously been shown that only the natural shedding frequency or forcing frequency
are dominant outside the lock-in regime for an oscillating cylinder (Celik et al. 2008),
while only the natural shedding frequency is dominant outside the lock-in regime
for a vibrating cylinder (Karniadakis & Triantafyllou 1989), although the presence
of several other frequencies have been reported for some of these cases. Here, the
spectrum in the lock-in regime is typical; the lift force fluctuation synchronises with
the forcing frequency (shown by the strong narrow peak at f /ff = 1 in figure 11(c)
for ωf = 3.5) and with nearly uniform amplitude (as shown in figure 11b).

The wake response was further assessed via spectral analysis of the vorticity
time series recorded at the duct centreline and at different streamwise positions
(five, ten and fifteen diameters downstream of the cylinder, corresponding to x = 2,
4 and 6, respectively). It was found that, irrespective of the position where the
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FIGURE 11. (Colour online) A typical time variation of the cylinder lift coefficient for I=
12 and ωf as indicated within (a) unlock-in regimes and (b) lock-in regimes. (c) Respective
Fourier spectra of the lift coefficient signals in (a) and (b).

signal was acquired, the wake exhibits a similar response (i.e. the spectrum peak is
located at the same dominant frequency) for a given forcing amplitude and frequency.
It was also observed that these signals have a similar response to the cylinder lift
coefficient, except in the lock-in regime, where the frequency spectra exhibit peaks at
odd harmonics. The appearance of these odd harmonic peaks in the spectrum is due
to the absence of vorticity between two consecutive vortices of opposite sign, which
results in an imperfect sinusoidal but symmetric waveform of vorticity time series (as
shown in figure 12). For comparison, the corresponding cylinder lift coefficient time
histories are shown in figure 11(b).

3.3. Effects of the current injection amplitude and gap ratio on heat transfer
This section examines the variation of HR with various forcing amplitude and
at different transverse cylinder position. A typical plot is shown in figure 13. In
general, HR increases with increasing forcing amplitude, with HRmax ≈ 1.9 across
the computed parameters. The increment is relatively substantial compared to the
gain observed for oscillating cylinder cases, e.g. in Hussam et al. (2012a), where
HRmax≈ 1.2 was reported for a case with maximum oscillation amplitude (i.e. A= 3),
at optimum frequency, ReL ≈ 1800 and H ≈ 210. It is noted that at a lower range of
I (i.e. I . 30), the forcing current injection has a more profound effect on the heat
transfer enhancement when the cylinder is placed closest to the heated side of the duct
wall (i.e. G/d = 0.5) as compared to the other positions investigated. The reason for
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FIGURE 12. Time history of vorticity signal taken at (x, y)= (0, 5d) for I = 12 and ωf
as indicated.
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FIGURE 13. (Colour online) Heat transfer enhancement ratio plotted against current
injection amplitude I at gap ratios G/d as indicated for H=500, τ/T=0.25 and ωf =1.75.
The current is injected from the cylinder.

this is that when the cylinder is placed close to the wall, the shed vortices interact
strongly with the thermal boundary layer in the vicinity of the cylinder, reducing
its thickness and therefore increasing the local Nusselt number abruptly within the
formation region (as shown by the sharp peak of the time-averaged local Nusselt
number for the case of G/d= 0.5 and I = 18 in figure 14a). On the other hand, the
interaction between the wake and the thermal boundary layer becomes weaker as
the cylinder is placed further away from the wall, which results in relatively lower
HR and more consistent local Nu along the duct (as shown by the almost uniform
local Nu profile for the case of G/d= 2 and I = 18 in figure 14a).

However, for a large forcing amplitude, the duct with a cylinder placed on the
centreline exhibits the highest enhancement in heat transfer. This occurs because
for increasing I, the vortex becomes larger (as seen in figure 15a–c) and there is a
consistently strong interaction between the heated wall and the cylinder wake along
the duct. Furthermore, the local Nu is progressively increased over a downstream
region up to I = 54 (as shown in figure 14b). Beyond I = 54, the local Nu exhibits
a wavy pattern due to the complex interactions between the wake vortices and the
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FIGURE 14. Normalized time-averaged local Nusselt number along the downstream of the
heated wall for τ/T = 0.25, ωf = 1.75 and (a) I and G/d as indicated, and (b) G/d = 2
and I as indicated.

(a)

(c)
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(d )

FIGURE 15. (Colour online) Instantaneous vorticity contour plots for (a) I = 30 and
G/d= 2, (c) I = 54 and G/d= 2, (b) I = 78 and G/d= 2 and (d) I = 84 and G/d= 0.5.
Contour levels are as per figure 5.

thermal boundary layer (as shown in figure 15b). Nevertheless, Nu increases steadily
with I, as shown by the almost linear trend in the HR–I plot. For the asymmetric
cases, on the other hand, the strong wake–boundary layer interaction remains only
in the vicinity of the cylinder even for high I, which spans only approximately 20 %
of the duct length, whereby a rapid decrease in local Nu downstream of the local
maxima was observed (as shown in figure 14(a) for cases with I = 84). The reason
for this observation is that the paired vortices are deflected away from the heated
wall toward the opposite wall as they advect downstream (as shown in figure 15d).

Note also that the HR for cases with G/d = 1 tend to level off for 54 . I . 78.
A similar tendency was also observed for G/d = 0.5 cases, except that for I > 60,
there is another relatively smaller peak of local Nusselt number downstream of the
first one, as shown in figure 14(a) for I = 84. This second peak emerges due to
the strong wall vorticity entrainment into the wake, induced by the paired vortices
that have effectively shed (refer vorticity contours in figure 15d), and is attributed to
the increase of HR with increasing I at a high forcing amplitude range. A similar
observation was reported for transversely (Celik et al. 2010) and rotationally (Beskok
et al. 2012) oscillating cylinders in duct arrangements, whereby the second peak of a
local wall Nusselt number has a significant contribution to the spatial averaged heat
transfer. It was also observed that as I increases, the magnitude of the second peak
was increased and its distance from the cylinder was decreased.
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FIGURE 16. (Colour online) Heat transfer enhancement ratio plotted against current
injection pulse width τ/T at frequencies ωf as indicated for H= 500, I= 30 and G/d= 2.
The current is injected from the cylinder.

(a) (b)

(c) (d)

FIGURE 17. (Colour online) Instantaneous vorticity contour plots for I= 30 and (a) ωf =
1.75 and (b) ωf = 3.5. Contour levels are as per figure 5. (a,c) τ/T = 0.05, (b,d) 0.5.

3.4. Effects of the current injection pulse width and frequency on heat transfer
Here the variation of Nusselt number with different forcing pulse width and frequency
is examined. Figure 16 reveals that the heat transfer enhancement ratio increases
monotonically with increasing forcing pulse width. This may be explained as for a
given forcing frequency, the wake vortex size is larger for a longer forcing pulse
width (as shown in figure 17). As a result, the wake–boundary layer interaction is
enhanced, thinning the thermal boundary layer at the heated wall and thus improving
the convective heat transport.

Furthermore, cases with ωf = 1.75 show a better heat transfer enhancement than the
cases with ωf = 3.5. This observation is in agreement with the findings presented in
§ 3.2, where the Nusselt number reaches its maximum value at 1 . ωf . 2 for I =
30. However, at the lowest forcing pulse width (i.e. τ/T = 0.05), the enhancement in
heat transfer is almost similar for both forcing frequencies. This is due to the fact
that for low τ/T , the resultant wake vortices are relatively small, regardless of the
forcing frequency. This in turn results in almost no interaction between the wake and
the boundary layer (as shown in figure 17 for τ/T = 0.05), which results in only an
approximately 6 % enhancement in heat transfer.

For cases with τ/T = 0.5, although the forcing current injection is in the form of
a square wave (as shown in figure 2), the resulting wake resembles that of a Kármán
vortex shedding, where there is a finite spacing between two consecutive shed vortices
of opposite sign. This may be understood as follows: as the vortex rolls up, it is
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FIGURE 18. (Colour online) Heat transfer enhancement ratio plotted against horizontal
distance lx at vertical distance ly as indicated for I = 12, ωf = 1.75, τ/T = 0.25 and
G/d= 2.

advected downstream and is effectively ‘shed’ before the forcing current switches to
the opposite sign, forming a long tail that connects to the succeeding shed vortex of
opposite sign (as can be seen in figure 17b,d). From these figures, it was also observed
that the tail of the counter-clockwise (positive) vortices have a greater influence on
thinning the thermal boundary layer than do the clockwise vortices. It is therefore
anticipated that for a given pulse duty cycle D, the efficiency index may be further
increased by injecting current which produces positive vorticity that has a longer pulse
width relative to the negative vorticity. Here, D= 2τ/T for a modified square wave,
which represents a fraction of one period in which the signal is active. This would be
an interesting avenue for future study.

3.5. Effects of the electrode position relative to the cylinder on heat transfer
The effect of electrode position on the heat transfer enhancement ratio is demonstrated
in figure 18. The electrode was placed at 18 different positions in the vicinity of the
cylinder and the heated wall, in order to investigate the effect of complex interactions
between the shear layers on the global heat transfer. Other parameters are fixed
at H = 500, I = 12, ωf = 1.75, τ/T = 0.25 and G/d = 2. The figure reveals that
the enhancement in heat transfer is almost independent of the streamwise electrode
position. The reason for this observation is due to the counterbalancing effect of the
relative ‘surplus’ and ‘deficit’ in the local Nu (as depicted by the shaded regions in
figure 19a); increased heat transfer downstream of the electrode as it is placed further
downstream is offset by the larger region upstream of the electrode exhibiting low
heat transfer. This happens because the heat transfer enhancement was observed to
occur only at the downstream of the electrode (i.e. there was almost no enhancement
at x . lx), and due to the variations in the magnitude and/or location of the local
Nu peaks with lx.

Figure 18 also reveals that the heat transfer is significantly more sensitive to
transverse electrode position. Inspection of the normalized local Nusselt number
reveals that, for a given lx, the peaks for cases with ly = 0.4 are consistently higher
than for the cases with ly = 0.6 (as shown in figure 19b). The magnitude, however,
decreased abruptly downstream of the electrode, due to the aforementioned deflection
of shed vortices away from the heated wall toward the opposite wall for the offset
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FIGURE 19. Normalized time-averaged local Nusselt number along the downstream of
the heated wall. (a) The electrode is placed at ly = 0.6 and at lx as indicated. The dark
(lighter) region correspond to a deficit (surplus) in heat transfer enhancement of case with
lx = 2 relative to the case with lx = 0.4. (b) The electrode is placed at lx = 2 and at ly as
indicated.

cylinder cases. This leads to a lower overall heat transfer enhancement than for cases
with electrode placed at ly = 0.6.

For a given ly, the magnitude of the peaks were almost invariant with respect to
lx (with the coefficient of variation, 0.015 6 CV 6 0.046 for all lx), indicating that
the magnitude of the peaks is governed by the electrode–wall proximity. However, at
ly= 0.6, the peak of time-averaged Nux/Nux,0 for lx= 0 is significantly lower than the
peaks for other lx (as can be seen in figure 19a), which results in HR lower than the
case for ly= 0.4 for the same lx (as shown in figure 18). This observation is consistent
with the results presented in figure 13, where at a lower range of I, HR is higher when
the cylinder is placed closest to the heated wall.

For the cases with electrode placed at the duct centreline, the wake–boundary layer
interaction is weak throughout the duct, and there were no strong peaks observed in
the local Nu-x plot. The peaks are consistently lower than for the offset electrode
counterparts, which leads to a lower HR for any given lx.

3.6. Effects of friction parameter and Reynolds number on heat transfer
This section reports the influence of magnetic field strength (quantified by friction
parameter H) and Reynolds number. Other parameters are fixed at I = 30, ωf = 1.75,
τ/T = 0.25, G/d = 2. The results are shown in figure 20 for 200 6 H 6 5000 and
ReL = 1500 and 3000. The figure shows that for a given Reynolds number, the
enhancement in heat transfer due to the imposed current exhibits a non-monotonic
relation with friction parameter. At low H, HR increases with increasing H and
reaches a peak, before decreasing steadily with further increases in H and eventually
reaching an asymptotic value.

This observation is attributed to the competition between inertia and Hartmann
damping, i.e. (a2/nL2)ReL/Ha (Sommeria 1986). In the low-H regime, the inertially
shed and electrically driven vortices dominate over the damping force, which results in
shed vortices being sustained to greater downstream distances. There is a consistently
strong interaction between the heated wall and the cylinder wake along the duct,
visible in the vorticity field plot in figure 21(a). Consequently, the enhancement
in the local Nusselt number is nearly uniform throughout the domain (as shown
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FIGURE 20. (Colour online) (Primary vertical axis) heat transfer enhancement ratio and
(secondary vertical axis) base flows time-averaged Nusselt number plotted against friction
parameter H for Reynolds numbers ReL=1500 and 3000. Open symbols represent HR and
solid symbols represent Nu0. The dashed lines indicate a critical value of the friction
parameter, above which the cylinder vortex shedding is completely suppressed.
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FIGURE 21. (Colour online) (a,b) Instantaneous vorticity contour plots for ReL = 1500
and (a) H = 300 and (b) H = 1500. Contour levels are as per figure 5. (c) Normalized
time-averaged local Nusselt number along the downstream of the heated wall for ReL =
1500 and H as indicated.

by the almost horizontal curve for H = 200 in figure 21c). In the high-H regime,
however, Hartmann damping dominates over the driving force. The strength of the
shed vortices is relatively high in the near wake due to the strong interaction between
the magnetic field and the imposed current forcing, but is damped rapidly after they
are shed (as indicated in the plot of vorticity contour in figure 21b). As a result,
the strong wake–boundary layer interaction occurs only in the near-wake region,
which is reflected by the strong peak of local Nusselt number in the vicinity of the
cylinder, followed by a rapid decline further downstream (as shown in figure 21(b)
for friction parameters in the high-H regime). With H increasing further, the flow
field is dominated by the forcing current. However, due to very strong damping,
the shedding is completely suppressed and the heat transfer eventually becomes
asymptotically independent of H.
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FIGURE 22. (Colour online) Heat transfer enhancement ratio and plotted against H/ReL
for ReL as indicated. Circle and delta symbols represent ReL=1500 and 3000, respectively.

HR reaches its maximum value at a friction parameter close to the critical value Hc
at which a transition between time-dependent and steady state flows occurs in the base
flows. The Nusselt number for the base flows, however, reaches an asymptote beyond
the critical friction parameter due to laminarisation (as can be seen in figure 20).
This observation is in contrast to cases where the duct walls are conducting, where
Nu increased with increasing Ha due to high velocity gradient near the heated wall
(Cuevas et al. 1997; Takahashi et al. 1998). Furthermore, the flow with higher ReL
reached a higher asymptote in the steady state regime due to the increased level of
turbulence, which is favourable for effective heat dissipation (Sukoriansky et al. 1989).
The value of Hc was refined by means of a Stuart–Landau analysis, which while
primarily being a tool for analysing the nonlinear futures of an evolving instability, is
also convenient for recovering the exponential growth or decay rate for an instability
in its linear regime (further details concerning this analysis technique can be found
in Hussam, Thompson & Sheard (2011)). Noting the Hartmann friction term in (2.4),
the heat transfer enhancement ratio is plotted against H/ReL, as shown in figure 22.
The figure shows that the HR data for both Reynolds numbers nearly collapses into
a single curve, suggesting that the enhancement of heat transfer is governed by the
H/ReL. This observation is perhaps not surprising, given that the stability (Sommeria
1986) and the decay of vortices (Sommeria 1988; Hamid et al. 2015) in quasi-two-
dimensional MHD duct flows are controlled by the H/ReL parameter.

4. Power and efficiency analysis
In this section, the characteristics of pumping power requirement (expressed

in terms of pressure penalty ratio), overall system efficiency resulting from the
employment of current injection as a turbulence enhancer and the current injection
power input are reported. The pressure penalty ratio PR in this study is the ratio of
pressure drop across identical ducts with and without current injection. Inspection of
PR across all cases in this study (not shown for brevity) reveals that the pressure drop
induced by the imposed current injection is almost negligible, with the maximum
pressure increment of 13 % (i.e. PRmax = 1.13). It was also observed that the position
of the electrode and magnetic field strength have almost no effect on PR, where the
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mean (and standard deviation in parentheses) of PR for various investigated electrode
positions and Hartmann numbers are respectively 1.004 (0.0032) and 1.012 (0.0067).
Furthermore, it was found that cases with the cylinder at the duct centreline show a
relatively higher increment in pressure drop as compared to the cases with an offset
cylinder, and becomes more apparent at a higher current amplitude. In some cases,
the imposed current injection has a desirable effect by reducing the pressure drop
with respect to the base cases, with a maximum reduction of 4 % (i.e. PRmin = 0.96).
Since PR is almost unity for all cases, it follows then that the system efficiency
(quantified by the efficiency index η as in (2.11)) and the heat transfer enhancement
ratio HR have a similar dependency on all varying parameters (as presented in the
previous sections). The maximum efficiency index was found to be η = 1.91 for
the case with highest current amplitude, which produces the highest heat transfer
enhancement ratio of HR = 1.89. This enhancement in heat transfer is 55 % more
than what has been reported for rotationally oscillating cylinder rotating at maximum
amplitude and optimum frequency (i.e. HR ≈ 1.22) (Hussam et al. 2012a). In the
hydrodynamic counterpart, maximum enhancement of HR ≈ 1.55 has been reported
when the cylinder with β = 1/3 rotationally oscillates with maximum amplitude and
within the lock-in regime (Beskok et al. 2012).

It is important to mention that the effect of inertially driven recirculation in the
parallel planes on the heat transfer is assumed to be negligible in the present work.
Recent investigation by Baker, Pothérat & Davoust (2015) has shown that in the
limit of quasi-2-D base flow, the local fluid rotation above the Hartmann layer
induces secondary counter-rotating 3-D recirculations which correspond to Ekman
pumping. The emergence of these recirculations drives an inward radial flow within
the Hartmann layers, and thus can potentially transport a fraction of heat towards
the core flow and alter the heat transfer characteristics of the flow. However, it has
been reported (Alboussière, Uspenski & Moreau 1999) that the 3-D recirculation
is weakened under a strong magnetic field. It is then anticipated that this weak
recirculation becomes less effective in transferring heat relative to the primary vortex
flow, justifying the aforementioned assumption.

The average power supply due to current injection is proportional to I2
rms, where Irms

is the root mean square of injected current. Since the dimensional current amplitude

Î = IaU0
√
ρνσ = 2α

√
ρν3σ IReL, (4.1)

and taking the properties of a low melting point eutectic alloy Ga68In20Sn12 at 20 ◦C
(as presented in § 2.2) and α= 1, the dimensional current injection amplitude is given
by

Î ≈ 5.96× 10−5IReL A. (4.2)

In the present investigation, the bulk of the numerical simulations were based on the
flow Reynolds number ReL=1500, while the dimensionless current injection amplitude
was varied between 6 and 90, this then corresponds to a dimensional current of Î≈0.5
and 8 A, respectively. For the sake of comparison, this current supply is three orders
of magnitude lower than that required to induce the confining magnetic fields for
fusion blanket MHD research in the MEKKA experimental facility (Barleon, Mack &
Stieglitz 1996). The use of electrically generated quasi-two-dimensional vortices for
heat transfer augmentation therefore appears to be viable, at least in principle. There
are, however, significant technical challenges in realizing controlled current injection
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through electrodes that are embedded in a Hartmann wall. These include ensuring
good contact between the electrode surface and the liquid metal, as poor contact
can lead to overheating, and the effect on the fluid rotation above the electrode may
be significant. Furthermore, the electrode–liquid metal interface is also susceptible
to varying resistance, where erratic variation in contact resistance can lead to an
irregular electric current distribution over multiple electrodes. This effect can be
avoided by incorporating ohmic resistance of orders of magnitudes higher than any
other resistance in electric circuit of each electrode (Pothérat & Klein 2014). This
solution would, however, result in energy consumption significantly higher than
previously estimated. Furthermore, it has been shown previously that the electrical
resistance increases monotonically with increasing imposed magnetic field (Sommeria
1988). The technological challenges toward implementation of such system are outside
the scope of the present study.

5. Conclusions

The present study has investigated the characteristics of electrically generated
quasi-two-dimensional vortices to enhance sidewall heat transfer in MHD ducts
containing a circular cylinder vortex promoter under a strong transverse magnetic
field. A solution to the current injection forcing field was first derived for a domain
extending infinitely in streamwise direction and bounded by duct sidewalls, and was
imposed as a forcing field in simulations of the quasi-two-dimensional flows. It was
found that the heat transfer enhancement are closely associated with the resulting wake
dynamics and their interactions with the heated wall. The results indicate a maximum
Nusselt number improvement of about 90 % for ducts with current injection, and
is highly dependent on the imposed forcing current parameters. Non-monotonic
relationships between the heat transfer enhancement ratio HR and the forcing
frequency and magnetic field strength were observed. The HR, however, increased
almost linearly with forcing amplitude and pulse width. It is also significantly
influenced by the electrode position in the transverse direction.

An examination of the local Nusselt number variation along the duct revealed a
general trend wherein a sudden jump were followed by an abrupt decrease in the
local Nu, due to the deflection of the wake vortices away from the heated wall. In
some cases, the appearance of secondary peak in the local Nusselt number plots
has a significant contribution to the overall heat transfer enhancement. Despite the
different mechanism of vortex generation in the present MHD duct flow, the heat
transfer enhancement exhibits similar characteristics to the hydrodynamic counterpart,
whereby the local Nusselt number distribution is closely associated with the strength
of the wake–boundary layer interaction and the entrainment of fluid from the boundary
layer into the wake. The factors determining the interaction and entrainment are the
size, pattern/mode and frequency of shedding of the wake vortex.

Spectral analysis of the cylinder lift coefficient revealed broadening of lock-in
regime with increasing forcing amplitude. The analysis also revealed a distinct
spectrum of cylinder lift coefficient in the unlock-in regime. Nonlinear coupling of
the cylinder vortex shedding with the forcing current injection can account for distinct
spectral peaks beyond the lock-in regime.

The analysis of the pressure drop indicates that the employment of current injection
as turbuliser does not significantly alter the hydraulic losses. This yields an efficiency
index ranging between 97 % and 191 %.
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Appendix A

In (2.4), the non-dimensional forcing velocity field u0 is defined as

u0 = j × ez =∇ψ0 × ez, (A 1)

where j is the electric current density, ez is the unit vector in the z-direction and ψ0

is the electrical potential. The electric current density and the electrical potential are
scaled by σBU0/Ha = U0

√
ρνσ/a and aBU0, respectively. In a high magnetic field

application, the change in the field due to the currents induced by the flow can be
neglected. Under this condition, the equations governing continuity of electric current
and incompressibility are also linear, so they may be averaged to give ∇ · j = −jw,
j = Ha(E + u× ez) and ∇ · u= 0. Here jw is the current density injected at one or
both of the confining planes, and E is a dimensionless electrical field. The z-averaged
current can be expressed as the gradient of a scalar field ψ0 satisfying a Poisson
equation with the source term being jw, i.e. j = ∇ψ0, obtained from ∇2ψ0 = −jw

(Pothérat et al. 2005). This Poisson equation is first solved (Polyanin 2001) for a
source term at the current injection point that is a Dirac function located at (0, ly),
i.e. jw(x, y) = Iδ(x, y − ly), on a domain extending infinitely in streamwise direction
and bounded by duct sidewalls at y = ±1. Physically, the current circuit would be
completed far upstream and downstream of the electrode. Imposing zero Neumann
conditions on the electrical potential field at the boundaries due to the insulating
Shercliff walls (Pothérat et al. 2000), i.e. ∂ψ0/∂y= 0 at y=±1, leads to

ψ0(x, y) = I
4π

[
log
(

1
cosh(πx/2)− cos[π(y+ 1+ ly)/2]

)
+ log

(
1

cosh(πx/2)− cos[π(y+ 1− ly)/2]
)]

. (A 2)

I is the non-dimensional current amplitude, which is defined as

I = Î
aU0
√
ρνσ

. (A 3)

Substituting (A 2) into (A 1), the forcing velocity field becomes

u0 =∇ψ0 × ez =
〈
∂ψ0

∂x
,
∂ψ0

∂y
, 0
〉
× ez. (A 4)
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FIGURE 23. (Colour online) Contour plots of the horizontal (a,c) and vertical (b,d)
components of u0 for I = 60, H = 500, ReL = 1500 and electrode locations (a,b) (x, y)=
(0, 0) and (c,d) (x, y)= (0.4,−0.6). Contour levels range between −5 and 5, with light
and dark contours representing positive and negative velocity, respectively.

Evaluating (A 4) for electrode positioned at (lx, 1− ly) yields u0 components

u0 = I
8

(
sin[π(y+ 1+ ly)/2]

cos[π(y+ 1+ ly)/2] − cosh[π(x− lx)/2]
+ sin[π(y+ 1− ly)/2]

cos[π(y+ 1− ly)/2] − cosh[π(x− lx)/2]
)
, (A 5)

and

v0 = I
8

(
− sinh[π(x− lx)/2]

cos[π(y+ 1+ ly)/2] − cosh[π(x− lx)/2]
− sinh[π(x− lx)/2]

cos[π(y+ 1− ly)/2] − cosh[π(x− lx)/2]
)
. (A 6)

The contours of the resulting horizontal and vertical components of the forcing
velocity fields for I = 60, H = 500 and ReL = 1500 are depicted in figure 23. Unless
otherwise mentioned, the current injection amplitude is expressed non-dimensionally
throughout the paper as in (A 3).

In the present investigation, the current is either injected from the base of
the cylinder or from an electrode located away from the cylinder. In the former
arrangement, the physical realisation of this set-up is likely from a ring of electrodes
around the base of the cylinder (as depicted in figure 24). In the limit of high
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B

I I

z

x

FIGURE 24. Schematic representation of the electric current paths (dotted lines) from
a ring of electrodes around the base of the cylinder (the cylinder is represented by a
diagonal line shading) in the limit of high Hartmann number and interaction parameter.
The electrode is embedded into one of the Hartmann walls and made flush with the
surface to avoid disturbance of the flow. The Hartmann layers are shaded grey, which
contain most of the current paths in for quasi-2-D flow.

Hartmann number and high interaction parameter, most of the electric current flow
is through the Hartmann layers (Pothérat & Klein 2014). The currents are equally
divided into each Hartmann layer (i.e. It = Ib, where subscripts t and b correspond
to top and bottom, respectively), which results in an axisymmetric two-dimensional
vortex in the core flow. The current also interacts with the Shercliff layer only
within the very thin top and bottom Hartmann layers. It is anticipated that such an
interaction to be relatively insignificant to affect the core flow and thus neglected
in the present formulation. For a thorough description of electric current path in the
latter arrangement, the reader is referred to Pothérat & Klein (2014).
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