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We investigate the stability properties of Muth’s model of price movements when agents
choose a production level using replicator dynamic learning. It turns out that when there is
a discrete set of possible production levels, possible stable states and stability conditions
differ between adaptive learning and replicator dynamic learning.
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1. INTRODUCTION

Over the past several decades, macroeconomists have spent considerable effort
exploring the conditions under which a rational expectations equilibrium (REE)
can be learned. This line of research is motivated by the observation that successful
identification of the REE in any particular system often requires more information
than even an accomplished analyst would have access to. Because it is not likely
that a typical population of agents would immediately coordinate on such an
equilibrium, it is of interest to determine whether they would eventually settle on
it if, over time, they learned about their environment and adjusted their behavior
to reflect this learning. If an REE cannot be learned, one cannot feel confident that
it will ever be realized.

During this same period, game theorists have constructed an extensive literature
that models learning and equilibrium selection in simple strategic environments.1

However, despite a close conceptual connection to its macroeconomic counterpart,
the game-theoretic literature has developed largely in isolation from it. This paper
attempts to connect the game-theoretic literature to its macroeconomic counterpart,
under a specific model, by comparing the conditions that macroeconomists identify
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as necessary for a REE to be learnable with those that are required when learning
is modeled as game theorists often do (replicator dynamics).

Because replicator dynamics inherently involves a population of heterogeneous
agents, the game-theoretic model of learning generalizes the approach of most
macroeconomic analyses, which typically assume a representative agent or a pop-
ulation of agents that act identically.2 Thus, this paper contributes to the existing
literature on the stability of REEs under learning by checking the robustness of
established stability conditions. Of particular interest throughout our analysis is
the question of whether stability under replicator dynamic learning is governed
by the so-called E-stability condition [Marcet and Sargent (1989); Evans and
Honkapohja (1994, 2001)], which is a necessary condition for convergence under
simple econometric learning.

So far, the use of replicator dynamics in the field of macroeconomics has mainly
focused on predictor selection. Sethi and Franke (1995) consider a model where
agents have the choice to pay a resource cost to use rational expectations (RE) or
use a costless adaptive rule. They find that under certain conditions, the replicator
dynamics will converge to where all agents use RE. Brock and Hommes (1998)
and Branch and McGough (2008) use replicator dynamics in a different setting to
show the possibility of complex dynamics. Finally, Guse (2010) studies stability
properties (under adaptive learning) when agents have the choice of one of two
learning rules and predictor selection is dictated by the replicator dynamics. He
discovers a result similar to that shown in Sethi and Franke (1995), where only
one learning mechanism can exist in the limit.

Our approach is different from those of these papers, as we use the replicator
dynamics to model production choice rather than predictor selection. We analyze
a game-theoretic version of Muth’s “cobweb” model of price movements [Muth
(1961)] in which agents choose how much to produce in each period, and replicator
dynamics is used to model how agents are learning how much to produce. The
cobweb model is appealing for a number of reasons. Its relative simplicity makes
its strategic structure easy to describe and analyze. In addition to its simplicity, this
model has already been the subject of a number of theoretical studies that examine
when its REE will be learnable.3 Thus, once the requirements for learnability under
replicator dynamics have been identified, they can be compared immediately to
the E-stability conditions for the cobweb model.

We present a game-theoretic model in which there is a continuum of agents
who choose a production level from a discrete choice set. It turns out that the
Nash solution corresponding to the REE under the standard Muth model is always
locally stable under replicator dynamic learning. This stability condition differs
from that under other types of learning for which the REE can be locally unstable
under certain conditions. Further to this, we discover a disparity of global stability
conditions under adaptive learning4 and replicator dynamic learning. We also show
that for a certain parameter set, under replicator dynamic learning, multiple stable
Nash equilibria exist, given a discrete choice set. However, if the discrete choice
set is expanded so that the distance between adjacent strategies is very small, then
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the only possible stable strategies become the REE strategy and the two extreme
strategies.

2. LEARNING THE RATIONAL EXPECTATIONS EQUILIBRIUM IN
MUTH’S MODEL

In his seminal paper on the role of rational expectations, Muth modeled prices
in a perfectly competitive market where, at the time when production decisions
are made, firms are unsure about the price they will receive for their goods. The
original Muth model can be expressed in a reduced form in which the price level
is determined by expected prices. In our presentation of Muth’s model, we present
the alternative reduced form of the model where output is determined by expected
output. This alternative presentation will motivate the strategic version of Muth’s
model, presented in the next section, where all agents must choose a level of output
contained in a discrete choice set.

In this model, there is a continuum of firms, and market demand is assumed to
be linear. Letting f (q) denote the probability distribution of firms across available
production levels, q ∈ (0,∞), the equilibrium price level will satisfy

P D
t = A − B

∫ ∞

0
qf (q) dq. (1)

Each firm (indexed by i) is assumed to face the same quadratic cost function:

ci,t =
(α

2

)
q2

i,t ; α > 0. (2)

Given their anticipated level of aggregate output for period t , Ei,tqt , each firm
maximizes expected profit by producing an amount5 equal to A−BEi,t qt

α
. Thus, the

path that equilibrium output actually follows is determined by the expectations of
firms. Letting gt (q

e); qe ∈ (0,∞) represent the probability distribution of firms
across expected output levels, the equilibrium output equation can be rewritten as

qt = A

α
− B

α
q̄e

t , (3)

where q̄e
t = ∫∞

0 qegt (q
e) dqe. If we also assume that output expectations are

homogeneous across firms, (3) reduces to6

qt = A

α
− B

α
qe

t , (4)

where qe
t is the level of output that all firms expect to prevail at time t . In his paper,

Muth used a representative firm, effectively making this assumption.
With the equilibrium level of output described by (4), there is a unique level

of output, qREE, that can be correctly anticipated by firms. This is the rational
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expectations equilibrium level of output for the model.7 Specifically,8

qREE = A

α + B
. (5)

When all firms expect the REE output to prevail, the resulting REE price will be

P REE = Aα

α + B
. (6)

In the rational expectations equilibrium, all firms expect to be able to sell their
goods at P REE, and all firms produce the quantity that is optimal given their
expectation, qREE.

Much of the literature about learning in macroeconomic rational expectations
models has centered on whether agents using econometric learning rules will
eventually be led to an REE.9 These papers typically posit a representative agent
who uses ordinary least squares (OLS) to estimate an incomplete econometric
model of the law of motion (often called the perceived law of motion) for a
variable or vector of variables he is trying to anticipate. The question of interest is
whether OLS will give parameter estimates for the perceived law of motion that
converge over time to the parameters of the actual law of motion (the relationship
between the estimated parameters of the perceived law of motion and the state
variables).

The condition for an equilibrium to be locally stable under a simple learning rule
such as OLS is known as expectational stability, or E-stability. It is well known
[Marcet and Sargent (1989); Evans and Honkapohja (2001)] that, under fairly
general conditions, local convergence of OLS learning and fairly related learning
rules in linear models is governed by the so-called E-stability condition presented
by Evans (1989). Letting φ denote the vector of parameters in the perceived law of
motion that the agent estimates and T (φ) denote the vector of parameters in the
actual law of motion when expectations are based on φ, the E-stability condition
for any linear system is met when the REE is locally asymptotically stable under
the differential equation

dφ

dτ
= T (φ) − φ. (7)

For the nonstochastic version of Muth’s model considered in this paper, the
analysis is particularly simple. We suppose that firms incorrectly assume that
production is constant. Thus, firms base their expectations on a perceived law of
motion given by

qt = ψ . (8)

In view of (8), each firm will expect the period-t level of output to equal its
estimate of ψ based on the history of output through period t − 1, which we will
denote by ψ̂t−1. This makes the actual law of motion follow

qt = T (ψ̂t−1) = A

α
− B

α
ψ̂t−1.
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Under the actual law of motion, output will coincide with firm forecasts when firms
expect output to equal its REE level, A

α+B
. From (7), the E-stability condition will

be met whenever the differential equation dψ̂/dτ = A/B − (
1 + B

α

)
ψ̂ is locally

asymptotically stable at ψ̂ = qREE. For the cobweb model, it turns out10 that
the REE is globally E-stable if B/α > −1 and E-unstable for B/α < −1. This
means that if B

α
> −1, then no matter what the initial beliefs of agents concerning

the expected level of output, agents will coordinate through time to the REE. In
the following, we show that the stability condition of the cobweb model will be
different under replicator dynamic learning: learning where firms tend to imitate
the production decisions of the firms receiving higher-than-average profits.

3. A STRATEGIC VERSION OF MUTH’S MODEL

To study the cobweb model under evolutionary learning, we first present the
cobweb model as a game of production choice. In this section, we formulate a
strategic version of Muth’s model in which evolutionary learning can be applied.
The REE quantity is shown to be a symmetric Nash equilibrium strategy of this
game. We then model evolutionary learning using replicator dynamics (sometimes
referred to as imitation dynamics) in which agents tend to “evolve” or “replicate”
to strategies with higher-than-average payoffs.

To enable meaningful comparison between the stability requirements of a strate-
gic version of Muth’s model and the stability requirements of the dynamic formu-
lation in (1), (2), and (3), we have retained virtually all of the structure from (1),
(2), and (3) in the strategic formulation. The game consists of an infinite number
of firms that select production levels. All firms face quadratic costs as in (2). In
addition, the market demand curve continues to be linear, so that market-clearing
prices satisfy (1).

The game that we analyze does differ from the Muth model in one important
respect. In the game we study, firms select from a finite list of production levels in
the neighborhood of the REE quantity. In the model presented earlier, firms can
produce any positive amount; however, we assume a finite strategy set to enable a
tractable application of replicator dynamics to the game.

We set up a cobweb game that will be expressed in normal form as G =
(I, S, π), where I is the set of players, S is its pure-strategy space, and π is the
pure-strategy payoff function. Assume that there exists a continuum of firms, i.e.,
I = [0, 1]. Each firm chooses a level of production under a common strategy set
consisting of n strategies, where

s = {
s1,s2,..., sn

}
,

s1 ≥ 0, the kth element is the REE quantity, so that11 sk = s∗ = A
B+α

,

sj = s∗ + (j − k) ε,
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and

ε = s∗ − s1

k − 1
.

We will assume that k /∈ {1, n} so that each agent has the opportunity to produce
more than or less than the REE quantity.12 The pure strategy profile, x ∈ S (S
defined later), denotes the distribution of players across the available strategies.
Therefore, the pure strategy space is the unit simplex

S = � =
{

x ∈ Rn
+ :

n∑
h=1

xh = 1

}
.

We also denote the interior of the unit simplex as follows:

int (�) = {x ∈ � : xh > 0 ∀h} .

For a given x, the payoff function for using strategy h, πh : S → R, is defined by

π (sh, x) = [A − B (s • x)] sh − α

2
s2
h.

This is the profit for producing sh given that total supply is equal to s • x. The
pure-strategy payoff of the game π : S → Rn is thus the following:

π(x) = [π(s1, x), π(s2, x), . . . , π(sn, x)].

In a cobweb game, a firm’s best strategy depends upon how its competitors
behave. Thus, aggregate production and the price level implicitly depend upon
firm expectations. However, because expectations do not formally enter into the
game, there is no REE per se. Instead, the game’s equilibria must be characterized
in terms of the Nash equilibrium concept and refinements of it. It turns out that,
in the cobweb game, the REE quantity in the corresponding cobweb model, qREE,
is always a strict symmetric Nash equilibrium strategy.

PROPOSITION 1. In any cobweb game, s∗ = A
B+α

is a strict symmetric Nash
equilibrium strategy.

Proof. In a cobweb game, players share a best response function that varies with
the distribution of strategies across the population, x. Specifically, this function
is given by R(x) = arg max{sh∈s}{[A − B(s • x)]sh − α

2 s2
h}. If s included all

positive real numbers, R (x) would be A−B(s•x)
α

, which we will refer to as the
ideal response. Because s may not contain the ideal response and the payoff
function is symmetric around the ideal response, R (x) is instead the strategy in
s that is closest in magnitude to A−B(s•x)

α
. By definition, a strict symmetric Nash

equilibrium is a population distribution that places all probability on some strategy
z and to which the unique best response is z. In a cobweb game, when all players
choose z, (s • x) = z. Thus, a strict symmetric Nash equilibrium strategy in a
cobweb game is a strategy z, which is closer to A−Bz

α
than any other strategy
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in s. Because s∗ satisfies s∗ = A−Bs∗
α

, it is a strict symmetric Nash equilibrium
strategy.

4. STABILITY RESULTS

Our model of learning will focus on firms attempting to learn which strategy will
maximize their profits. We could model this in terms of learning expected prices
or learning quantity. From equation (3), if an agent chooses strategy si , then the
agent’s expectation of output is the following:

Eiq = A

B
−
(

B

α

)−1

si .

Therefore, it follows that the expected price from using strategy si is

EiP = αEiq.

As the transformation from a production strategy set to a strategy set of expected
prices is one-to-one, the stability properties of the game will be the same under
either strategy set. We choose to model learning through output rather than ex-
pected price, as we assume that firms may choose not to reveal expectations, but
they cannot avoid revealing their production choices.

To determine if firms will settle on the REE quantity over time, we examine
its stability properties in a dynamic system in which the population density for
each strategy is continuously adjusted to reflect how well that strategy performs
relative to other available strategies. This population dynamics is the well-known
replicator dynamics [Taylor and Jonker (1978)], sometimes referred to as the
imitation dynamics. We define replicator dynamic learning as follows:13

DEFINITION 1. Under replicator dynamic learning, population proportions
evolve in continuous time according to

ẋh = xh

⎡
⎣π (sh, x) −

⎛
⎝ n∑

j=1

xjπ(sj , x)

⎞
⎠
⎤
⎦ , (9)

where h = 1, 2, . . . , n.

Applied to a cobweb game, replicator dynamics models a scenario in which
firms play the game repeatedly and, from time to time, compare the relative
profitability of their production level to other levels. Relatively unprofitable firms
are assumed to gradually change their production levels to mimic the relatively
profitable firms. Thus, over time, the proportion of the population that produces at
levels generating less than average profit will decline, whereas the proportion of
the population that selects the relatively profitable production levels will increase.
Replicator dynamic learning is different from adaptive learning, as firms are not
concerned with prices but with relative profits.
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Before we proceed, it should be noted that under replicator dynamics the pop-
ulation distributions are attractive (or not), rather than the strategies themselves.
Thus, precisely put, the question throughout our analysis is to what extent the
population distribution that places all probability on a particular strategy (such as
s∗) is dynamically stable.

DEFINITION 2. In a given cobweb game, the REE population distribution, x∗,
will be the vector in � satisfying x∗

k = 1 and x∗
h = 0 ∀h �= k.

For the sake of convenience, however, we will continue to refer to strategies
as being stable or unstable. Hereafter, we will follow the convention of calling a
strategy “stable” or “attractive” when the distribution that places all probability on
this strategy is asymptotically stable under the replicator dynamics. We will discuss
situations in which a strategy is locally or globally stable under the replicator
dynamics.14

DEFINITION 3. A strict symmetric Nash population distribution, x∗
j ∈ �,

where xj = 1 and xi = 0 ∀i �= j , is locally stable under the replicator dynamic
if there exists some �̃ ⊂ �, where �̃ is a neighborhood of x∗

j within �, such
that x → x∗

j under the replicator dynamics for any x ∈ �̃. x∗
j is said to be

globally stable if x → x∗
j under the replicator dynamics for any x ∈ D where

D = {x ∈ Rn
+ :

∑n
h=1 xh = 1, xj �= 0}.

Note that only Nash population distributions can be stable under replicator
dynamics, as they are optimal against themselves. All non-Nash population dis-
tributions are not optimal against themselves, so that some other strategy would
return higher profits. Therefore, the replicator dynamic would always direct the
population away from all non-Nash population distributions.

Based on the stability results in other models of learning, one might expect
that for some range of parameters, the REE quantity, s∗, is a locally unstable
equilibrium strategy under the replicator dynamics. In particular, you might expect
this to be true when B/α < −1, which violates the E-stability condition.15 As it
turns out, however, s∗ will be locally stable under replicator dynamic learning for
any B ∈ (−∞,∞) and α > 0.

Figure 1 depicts a projection of the phase space for a three-strategy game such
that the REE is not E-stable. In the game depicted, A = −0.28, B = −0.04,
and α = 0.032. Firms select production levels from {34, 35, 36}, where the REE
quantity, 35, is represented by the origin. In this example, although the REE is
locally unstable under adaptive learning, the REE strategy, s∗, is attractive within
a large local neighborhood under replicator dynamic learning. Note that the other
strategies are locally stable as well. This result is consistent with our findings in
the following.

Ultimately, the robust local stability of s∗ derives from the fact that s∗ is always
a strict symmetric Nash equilibrium. As shown later, local asymptotic stability is
a general feature of strict symmetric Nash equilibria in cobweb games. Because
x∗ is always a strict symmetric Nash equilibrium, it will always be locally stable.
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FIGURE 1. Phase diagram for a cobweb game that fails the E-stability condition.

PROPOSITION 2. Any strict symmetric Nash equilibrium in a cobweb game
will be locally asymptotically stable under replicator dynamic learning.16

The proof is given in Appendix A. Although the local stability of s∗ under all
possible choices of B and α seems at first surprising, upon reflection it has a simple
intuitive explanation.17 Suppose B/α < −1, so that the E-stability condition is not
met in the Muth model. Suppose, in addition, that a proportion of firms (1 − μ)

are producing some si ∈ S such that si = s∗ + ω > s∗, whereas the remaining
firms produce s∗, so that the the average production level (s∗ + (1 − μ) ω) initially
exceeds s∗. In Muth’s model, this will generate a divergent price path when
firms use least-squares learning. Above-equilibrium production corresponds to
above-equilibrium expected prices. But this leads to even higher actual prices,
which increases expected prices and production levels and ultimately leads to
divergence.

Under the replicator dynamics, as we are only discussing two different strategies
in this example, we will find that s∗ is asymptotically stable if the payoff from
using the REE strategy is larger than the payoff for producing si . The difference
in payoffs from the two strategies can be expressed in the following function:

π(s∗, x) − π (si, x) =
[α

2
+ (1 − μ)B

]
ω2.

As α > 0, we can see that this expression is always greater than zero when
B/α > −0.5. Further to this, there exists some μ ∈ (0, 1) such that the expression
is greater than zero for any B/α ∈ (−∞,−0.5). This means that as long as the
proportion of firms using s∗ is large enough, it will still be in each firm’s best
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interest to choose the Nash production level, s∗. The size of ω and the location of
s∗ (determined by k) do not affect this result.

According to Proposition 2, the REE distribution in a cobweb game, x∗, will
be a limit state under replicator dynamics learning whenever the initial popula-
tion composition is sufficiently close to the equilibrium composition. As long as
production levels are initially in the neighborhood of the REE level, all firms will
eventually learn to produce the REE quantity. Of course, that does not rule out
the possibility that firms initially select a wide variety of production levels and
ultimately learn to produce something other than s∗.

In what follows, we show that in many cobweb games, s∗ will be the unique
limit state. Specifically, in any cobweb game for which B/α > −0.5, replicator
dynamics learning will eventually lead all firms to produce the REE quantity, as
long as a positive fraction of firms are initially producing it.

PROPOSITION 3. The REE distribution, x∗, is globally stable under replicator
dynamics in any cobweb game for which α,B >0 or B <0<α and B/α>−0.5.18

The proof is given in Appendix B. Under the standard setup in which B/α > 0,
Proposition 3 reveals a close link between the stability condition under replicator
dynamic learning and the E-stability condition. In Muth’s model, the (global) E-
stability condition is always met when demand is downward sloping and supply
is upward sloping. According to Proposition 3, replicator dynamic learning in
a cobweb game will also lead to a state in which all firms produce the REE
quantity, given the initial xk ∈ (0, 1], when demand slopes down and supply
slopes up. Among cobweb models with upward-sloping demand19 (B < 0), those
in which B/α > −1 will satisfy the (global) E-stability condition. Similarly, the
REE distribution in a cobweb game remains attractive, within D, under replicator
dynamic learning for a range of (α, B)-pairs when B is allowed to be negative,
though in cobweb games the range is smaller. In the next section, we show that
the reason s∗ is locally stable for B/α ∈ (−1,−0.5) rather than globally stable is
that there may exist other locally stable strict symmetric Nash equilibria for this
range of B/α.

5. MULTIPLE LOCALLY ATTRACTIVE OUTCOMES

Proposition 3 establishes that in cobweb games satisfying B/α > −0.5, firms will
invariably end up producing the REE quantity of the associated cobweb model. As
long as B/α > −0.5 and x ∈ D, s∗ will be attractive under replicator dynamics
learning. In this section, we consider cobweb games in which B/α < −0.5, and
show that, in such games, replicator dynamics learning will not generally lead all
firms to produce s∗. Note that although such games can be interpreted as cobweb
models in which demand is upward-sloping, they can also be shown to model
more economically palatable scenarios.20

For B/α < −0.5, as s∗ is not asymptotically stable for some x ∈ D, we
consider other limit points for the replicator dynamics when the initial population
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distribution is outside the neighborhood of local stability for s∗. It turns out that a
cobweb game can have a number of locally attractive strategies when B/α < −0.5,
as we show hereafter.

Let sj (B, α) denote the strategy s∗ (B, α) + (j − k) ε, j �= k, and consider
the ideal response to the population distribution that places all probability on sj .
Because the ideal response equals s∗ − B

α
(j − k) ε, it will approach sj as B/α

approaches −1. Although the ideal response will not equal sj , the best available
response may still be sj due to the discrete production choice set. In this case,
sj will be a strict symmetric Nash equilibrium strategy and, therefore, locally
attractive. We begin with the sufficient condition for a strategy sj (where j �= k)
to be locally asymptotically stable and then present the necessary conditions for
local stability. For the discussion that follows, we will define

ML
j = −1 − 1

2 |j − k| ,

MH
j = −1 + 1

2 |j − k| .

PROPOSITION 4. If
B

α
∈ (

ML
j ,MH

j

)
, (10)

then the strategy sj ∈ s (j �= k) will be locally asymptotically stable under
replicator dynamic learning.

The proof is given in Appendix C. Proposition 4 establishes the result advertised
at the beginning of this section. When B/α < −0.5, replicator dynamic learning
will not, in general, lead all firms to produce the REE quantity. Depending upon
the initial distribution of production levels, firms may end up producing more or
less than s∗.

Proposition 4 paints an incomplete picture of replicator dynamic learning when
B/α < −0.5. If x∗ is not the only possible outcome in this circumstance, one
would like to know the complete set of possible outcomes and be able to identify
the conditions under which each can occur. To complete the picture of replicator
dynamic learning in cobweb games, we need to know whether firms can learn to
produce sj if (10) is not satisfied, and if so under what conditions.21

As it turns out, these questions can be answered with relative ease. Except for
the extreme strategies, s1 and sn, it can be shown that the necessary condition
for local attractiveness is virtually identical to the sufficient condition described
by (10).

PROPOSITION 5. For all j /∈ {1, k, n}, local asymptotic stability of strategy
sj ∈ s requires that

B

α
∈ [

ML
j ,MH

j

]
.
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Extreme strategies, on the other hand, will continue to be locally attractive as
B/α → −∞, as shown in Proposition 6:

PROPOSITION 6. For j ∈ {1, n} local asymptotic stability of strategy sj ∈ s

requires that
B

α
∈ (−∞,MH

j

]
.

See Appendix D for proofs of both propositions. These propositions show that
every strategy may be locally attractive when B/α is contained in some subset
of (−1.5,−0.5); however, the set of locally attractive symmetric Nash equilibria
will be confined to {s1, s

∗, sn} when B/α < −1.5.
One final consequence of Propositions 5 and 6 is noteworthy. Consider the

effect of dividing up a strategy set more finely. Take a strategy set from any
cobweb game and create a new strategy set by including all production levels that
were available strategies in the first set plus all production levels that lie midway
between adjacent strategies in the first set. Repeating this procedure again and
again generates a sequence of strategy sets. Each set in the sequence contains
more strategies than its predecessor, which, moreover, lie closer to each other than
in its predecessor. Under this setup, any j th element of the original strategy set
can be defined as

sj = s∗ + (j − k) 2rεr ,

where r ∈ Z+ refers to the number of times the strategies have been split and

εr = (s∗ − s1)

(k − 1) 2r
.

Now the distance between a strategy and its adjacent strategies can be reduced
to any desired level to consider the effect a discrete set has on potential stable
strategies.

The purpose of this exercise is to show that the discrete strategy set is responsible
for results shown in Propositions 4–6 for B/α ∈ (−1.5,− 1

2 ]. We show in the fol-
lowing that if the distance between two adjacent strategies becomes infinitesimal,
then s∗ is the only strict Nash equilibrium for B/α ∈ (−1,− 1

2 ]. First, we show
that any pure strategy, other than the Nash solution (s∗) and the extreme strategies
(s1 and sn), is never stable for a sufficiently small εr (a large r).

PROPOSITION 7. For a sufficiently large r , any strategy sj ∈ s, where j /∈
{1, k, n}, is not locally asymptotically stable under replicator dynamics.

Proof. A population distribution can be locally asymptotically stable only if it
is a Nash equilibrium. We can show that for a sufficiently large r , any sj ∈ s,
where j /∈ {1, k, n}, will not be a Nash equilibrium and thus cannot be locally
asymptotically stable. The ideal best response to any sj is

s∗ − B

α
(j − k) 2rεr .
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Therefore, sj will be a Nash equilibrium if∣∣∣∣(j − k) 2r + B

α
(j − k) 2r

∣∣∣∣ <
1

2
.

This is true if and only if
B

α
∈ H,

where H = (−1 − 1
2r+1|j−k| ,−1 + 1

2r+1|j−k| ). Because

lim
r→∞ H = −1,

then,22 for a sufficiently large r , B/α /∈ H and sj , where j ∈ {1, k, n}, does not
represent a Nash equilibrium.

We have shown in the preceding that no pure strategy other than s∗ and the ex-
treme strategies can ever be a strict symmetric Nash equilibrium with a sufficiently
large r . This intuition can be extended to the cobweb game with a continuous strat-
egy set. Therefore, for a continuous strategy set, the only potential (pure strategy)
rest points will be the Nash solution, s∗, or the extreme strategies, s1 or sn. We
next show that if the strategy set is continuous, then the extreme points can only
be locally stable when demand is steeper than supply, i.e., B/α < −1.

PROPOSITION 8. For a sufficiently large r , a strategy sj ∈, where j ∈ {1, n},
is locally asymptotically stable under replicator dynamics only when B/α < −1.

Proof. Following the proof for Proposition 7, the extreme strategies are strict
symmetric Nash equilibria only if

B

α
< −1 + 1

2r+1 (j − k)
.

Under normal conditions (i.e., B/α > 0), we have shown that s∗ is globally
stable for both OLS learning and replicator dynamic learning. However, for B/α ∈
(−∞,− 1

2 ], we have also shown that there exists a stability disparity in the cobweb
model between OLS adaptive learning and replicator dynamic learning. The first
difference is that the REE solution is globally E-stable for B/α > −1 and it is
globally stable under replicator dynamic learning for B/α > − 1

2 . The second
difference is that the REE strategy, s∗, remains locally stable under replicator
dynamic learning for any B/α ∈ (−∞,∞), whereas it is unstable (E-unstable)
under OLS learning for B/α < −1. It appears that the source of the stability
disparities may be the strategy set. In our analysis, we have assumed a discrete
strategy set, whereas it is commonly assumed in other papers that the strategy set
is continuous, usually the set of positive real numbers.
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We present these stability disparities, but do not attempt to reconcile them,
as this is beyond the scope of this paper. We have shown in this paper that, for
B/α ∈ (−1,− 1

2 ], the possibility of strict symmetric Nash solutions other than
s∗ exists because of the discrete strategy set. From this, we can conclude that
s∗ is the only possible pure Nash strategy for B/α ∈ (−1,− 1

2 ]. However, this
does not prove global stability of s∗ under replicator dynamics for this parameter
set, as it does not exclude other possibilities for the dynamics. Other possible
situations exists, such as a locally stable nonsymmetric Nash equilibrium in which
multiple quantities are produced, or some kind of cycle. In future work, we plan on
addressing both of these stability disparities in a cobweb game with a continuous
strategy set and considering the E-stability properties under a discrete production
choice set.

6. CONCLUSION

This paper considers a question, familiar to macroeconomists, with a tool ordinar-
ily used by game theorists. For many years, macroeconomists have inquired about
the conditions under which an REE could be learned by forward-looking agents
who act reasonably, but without perfect information. In typical treatments, agents
are assumed to have homogeneous expectations and, thus, to act identically. Often,
the answer depends on whether the E-stability condition is met.

In this paper, we ask the same question in a game-theoretic setting. Because
Muth’s rational expectations model of price movements can be recast as a game in
which the REE is a Nash equilibrium, we have chosen to study the requirements
for convergence to this equilibrium when learning is modeled using replicator
dynamics. In contrast to typical macroeconomic studies, this formulation of the
problem does not rely on the assumption that all agents act identically. In addition,
it is of general interest to determine how popular game-based models of learning
compare to those employed in macroeconomic modeling.

We show that, under regular conditions (i.e., B/α > 0), convergence to the
REE outcome under replicator dynamic learning is closely linked to the E-stability
condition, which has been proven elsewhere to govern the convergence of least-
squares learning to the REE in linear rational expectations models. In addition,
we show that, for B/α < − 1

2 , when the strategy set is restricted to a finite number
of options, replicator dynamic learning may differ substantially in its outcome
from other macroeconomic models of learning. In the case of a finite strategy
set, the REE quantity will be locally attractive under replicator dynamic learning
regardless of the demand and cost parameters. In addition, under a well-defined
set of parameters, the outcome of replicator dynamic learning may depend on
the initial production levels of firms, because many strategies may be locally
attractive. Finally, we discuss the possibility that the stability disparities presented
in the paper may result from the discrete choice set used in the game; however,
further investigation is required.

https://doi.org/10.1017/S136510051200051X Published online by Cambridge University Press

https://doi.org/10.1017/S136510051200051X


REPLICATOR DYNAMIC LEARNING IN MUTH’S MODEL 587

NOTES

1. Fudenberg and Levine (1998) provide a comprehensive overview of this literature.
2. Although the main focus has been on learning under homogeneous expectations, there are a

growing number of papers that study learning with heterogeneous expectations. A nonexhausting
list consists of Evans and Honkapohja (1997), Evans et al. (2001), Giannitsarou (2003), and Guse
(2005).

3. See, for example, Bray and Savin (1986); Fourgeaud et al. (1986); Guesnerie (1992); and
Arifovic (1994).

4. See Evans and Honkapohja (2001) for a extensive discussion of adaptive learning.
5. Note that this is equivalent to producing an amount equal to Ei,tPt /α. Our setup follows expected

quantity rather than expected price, as agents are going to learn quantity rather than price. As expected
quantity is just a monotonic transformation of expected prices, it follows that the E-stability properties
under this setup are equivalent to the setup focusing on expected prices. These conditions are given
hereafter.

6. The reduced form is usually presented as Pt = A − B
α
P e

t . It can be easily shown that these two

forms are identical, given that it is optimal for a firm to produce at qit = Ei,t Pt

α
= A−BEt,t qt

α
.

7. Because this version of Muth’s model is nonstochastic, the REE output is the perfect foresight
solution. In general, this will not be the case.

8. To ensure the existence of a REE, we will assume that A ≥ 0 if α + B > 0 and A < 0 if
α + B < 0.

9. See Evans and Honkapohja (2001) for a thorough discussion of this literature.
10. See Evans and Honkapohja (2001) for a discussion of the E-stability of the cobweb model.
11. If B/α = −1, then s∗ is undefined. We assume that B/α �= −1 throughout this paper to avoid

this issue.
12. Note that we make no assumption of the location of the REE quantity other than that it is

included in the stategy set and it is not an extreme strategy.
13. Note that there are several ways to present replicator dynamic learning. For more information

on replicator dynamics, see Weibull (1997).
14. We restrict our analysis to strict symmetric Nash equilibria. It turns out that nonsymmetric Nash

equilibria do exist when B/α < −0.5.
15. DeCanio’s model of adaptive learning (1979) and Guesnerie’s eductive learning (1992) would

also lead to divergence in this case.
16. This result parallels a more general property of strict Nash equilibria in finite player games.

Among others, Weibull (1997) proves that strict Nash equilibria in finite player games are locally
asymptotically stable under a large class of selection dynamics.

17. We are not the first to show local stability of an equilibrium in the cobweb model when the
REE is E-unstable. Arifovic (1994) finds an expanded range for stability when agents use a genetic
algorithm. Granato et al. (2008) show possible stability when some agents are learning using OLS and
others are learning from the expectations from those using OLS.

18. We do not consider the case when α is negative, because a negative α means that firms no longer
maximize profits by producing P e

i,t /α, in which case (3), (4), (5), and (6) would no longer apply. In
their seminal analysis of least squares learning in the Muth model, Bray and Savin (1986) also ignore
this case.

19. In several variants of the Muth model, B < 0 does not suggest that demand is upward-sloping.
One version, presented by Evans and Guesnerie (1993), is discussed in Appendix E.

20. For example, we discuss a model presented in Appendix E, originally presented by Evans
and Guesnerie (1993). Along with the standard quadratic cost function, this model includes a postitive
externality causing a decreasing marginal cost with aggregate production. The appendix of Honkapohja
and Mitra (2003) also presents another variant of the Muth model with B/α < 0. This is a model with
two interrelated markets in which the supply of one of the goods is affected by a production lag and
the supply of the other good is not.
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21. One other possibility is that nonsymmetric Nash equilibria in which multiple quantities are
produced could be limit states. When B/α < −0.5, such equilibria can exist.

22. Recall that we have assumed for the paper that B/α �= −1, so that the REE is well defined.
23. The following is a linearization on the boundary of the simplex. We only need to consider initial

points in the interior of the simplex as the trajectories of the ordinary differential equation are naturally
constrained to remain in the simplex.

24. For a complete discussion of stability in homogeneous linear systems see Boyce and DiPrima
(1992).
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APPENDIX A: PROOF OF PROPOSITION 2

Because
∑n

h=1 xh = 1 by definition, the system of n differential equations given in (9) can
be regarded as an identity plus a system of n−1 differential equations that can be linearized
around any point in the simplex of Rn−1:

ẋh = xh

⎡
⎣π (sh, x) −

⎛
⎝ n∑

j=1

xjπ
(
sj , x

)⎞⎠
⎤
⎦ , h �= m (A.1)

ẋm = −
∑
h �=m

ẋh. (A.2)

For notational purposes, let e denote the index of some strict symmetric Nash equilibrium
strategy and x̂ denote the state vector when xe = 1 and xh = 0 ∀h �= e. Also, let

ϕh (x) = xh

⎡
⎣π (sh, x) −

⎛
⎝ n∑

j=1

xjπ
(
sj , x

)⎞⎠
⎤
⎦ .

Totally differentiating the equations of (A.1) and evaluating the results at x̂, we find that
for all ϕh (x) where h �= e,

∂ϕh (x̂)

∂xh

= [π (sh, x̂) − π (se, x̂)]

and
∂ϕh (x̂)

∂xj

= 0

∀j �= h; whereas
∂ϕe (x̂)

∂xe

= −π (se, x̂)

and
∂ϕe (x̂)

∂xj

= −π
(
sj , x̂

)
.

Along with the identity in (A.2), these partial derivatives imply that the linearized dynam-
ics23 satisfies

ẋh = xh [π (sh, x̂) − π (se, x̂)] (A.3)
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∀h �= e and
ẋe = −π (se, x̂) (xe − 1) −

∑
j �=e

π
(
sj , x̂

)
xj , (A.4)

or more succinctly,
ẏ = �y,

where y = x − x̂. Using standard results, x̂ is asymptotically stable under these dynamics
in case all eigenvalues of � are negative.24 From (A.3) and (A.4), it follows that the
eigenvalues of � are the solutions of (−π (se, x̂) − λ)

∏
[(π (sh, x̂) − π (se, x̂)) − λ] = 0,

which are all negative because π (se, x̂) > π (sh, x̂) ∀h �= e.

APPENDIX B: PROOF OF PROPOSITION 3

By Lyapunov’s second theorem, a point, x∗, will be asymptotically stable in some neigh-
borhood, D, under dynamics ẋ = ϕ (x) whenever there exists a function v : D → R+ that
satisfies

v (x∗) = 0 (B.1)

v (x) > 0, ∀x ∈ D; x �= x∗ (B.2)

dv [x (t)]

dt
< 0 ∀x ∈ D; x �= x∗. (B.3)

Let D = {x ∈ Rn
+ :

∑n
h=1 xh = 1, xk �= 0}, and let v (x) = log (1/xk). Note that (B.1) and

(B.2) are satisfied. Differentiating v (x) with respect to time gives

dv [x (t)]

dt
= −

[
π (s∗, x) −

n∑
h=1

xhπ (sh, x)

]
. (B.4)

Let δ denote the normalized strategy vector, δ = (s1 − s∗, s2 − s∗, . . . , sn − s∗), so that
(B.4) can be rewritten as

dv [x (t)]

dt
= −

[
B (x • δ)2 + α

2

(
x • δ2

)]
, (B.5)

where δ2 = (δ2
1, δ

2
2, . . . , δ

2
n). Because (x • δ)2 and x • δ2 are strictly positive, this will be

negative when B and α are positive. Because (x • δ)2 < x • δ2 for all x ∈ D, this will also
be negative when B < 0 < α and B/α > −0.5.

APPENDIX C: PROOF OF PROPOSITION 4

By Proposition 2, a population distribution will be locally asymptotically stable whenever
it is a strict symmetric Nash equilibrium. Consequently, we can ensure that it is locally
asymptotically stable by picking B/α to make sj the unique best response to a population
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distribution of xj . Because s∗ − B
α

(j − k) ε is the ideal response to xj , this will be the case
whenever ∣∣∣∣(j − k) +

(
B

α

)
(j − k)

∣∣∣∣ <
1

2
. (C.1)

But this can be true if and only if B/α ∈ (−1 − 1
2|j−k| , −1 + 1

2|j−k| ).

APPENDIX D: PROOFS OF PROPOSITIONS 5 AND 6

We begin by establishing that limit states of solution trajectories to (9) must be Nash
equilibrium population distributions, because this is required to establish the other results.
Let φ (t, x0) denote the solution path of the population distribution as a function of time
when the initial distribution is x0, and let φi (t, x0) denote the ith element of this vector.
Recall that for a game with n strategies, φ (t, x0) will be a vector in the unit simplex of
n-space, which we will denote by �. Define C (x) to satisfy C (x) ≡ {h|xh > 0}. Thus,
C (x) is the set of strategies that receive strictly positive probability in the distribution
described by x. Finally, let �NE denote the subset of points in � that are Nash equilibria in
the game under consideration.

LEMMA 1. If limt→∞ φ (t, x0) = x, then x ∈ �NE.

Proof. Suppose limt→∞ φ (t, x0) = x and x /∈ �NE. By definition of Nash equilibrium,
we know that one of the following must hold:

(i) ∃ (i, j) ∈ C (x) such that π (si, x) �= π
(
sj , x

)
.

(ii) ∃sh ∈ S, h /∈ C (x) such that π (sh, x) > π (si, x) ∀i ∈ C (x).

In case (i), x will not be a stationary point of (10). Plainly, in this case, it cannot be the
limit of a solution trajectory. Suppose instead that (ii) is true. From continuity of π ( ), it
follows that for some time T

(iii) π [sh, φ (t, x0)] > π [si , φ (t, x0)] ∀i ∈ C (x), ∀t > T .

But, given (iii), (10) implies that ẋh

xh
> ẋi

xi
∀i ∈ C (x) at all points in time beyond T .

Because this cannot be true if the population distribution eventually converges to x, the
proof is complete.

Proof of Proposition 5. Suppose j /∈ {1, k, n} and xj is locally asymptotically sta-
ble. By Lemma 1, we know that xj must be a symmetric Nash equilibrium. Follow-
ing the logic presented in the proof of Proposition 4, this will be true if and only if∣∣(j − k) + B

α
(j − k)

∣∣ ≤ 1
2 . It follows that xj will be a (possibly nonstrict) symmetric Nash

equilibrium if and only if

B

α
∈
[
−1 − 1

2 |j − k| , −1 + 1

2 |j − k|
]

.

Proof of Proposition 6. Suppose j ∈ {1, n} and xj is locally asymptotically stable.
Again, Lemma 1 ensures that xj is a symmetric Nash equilibrium. For j ∈ {1, n}, sj will be
the unique best response to xj whenever either |(j − k) + B/α (j − k)| ≤ 1

2 or B/α < −1.
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But this will be true if and only if

B

α
∈
[
−∞, −1 + 1

2 |j − k|
]

.

APPENDIX E: A PLAUSIBLE SETTING WITH
MULTIPLE STABLE STRATEGIES

As illustrated by Proposition 4, when the parametric conditions for global stability are not
met, cobweb games can have multiple strategies that are locally attractive under replicator
dynamic learning. Of course, how interesting this result is depends in large part upon
whether one can identify economically plausible scenarios that correspond to this class of
games. Based on the standard form of the cobweb model, one might be tempted to argue
that Proposition 4 is not a very interesting result, because the parametric requirements are
only satisfied in the presence of upward-sloping aggregate demand. The purpose here is
to provide an economically palatable example that satisfies the requirement for multiple,
locally attractive Nash equilibria.

Consider the generalization of Muth’s basic model discussed by Evans and Guesnerie
(1993). In their study, Evans and Guesnerie augment the structure of Muth’s model to
include a production externality. Specifically, they continue to model marginal cost as a
linearly increasing function of individual firm production, but include in the cost function a
term that makes marginal cost linearly decreasing in aggregate production. In this setting,
the cost function faced by each individual firm can be represented as

ci,t = β0qi,t + β1q
2
i,t − β2qi,t

∫ ∞

0
qf (q) dq. (E.1)

Assume, as in Section 3, that the set of firms is infinite and the set of production levels
from which firms can select is finite, and continue to assume that aggregate demand is
linear. Using the notation of Section 3, each firm selects its production level to maximize

π̃ (sh, x) = [A − B (s • x)] − [
β0sh + β1s

2
h − β2 (s • x) sh

]
(E.2)

when cost functions are given by (E.1). Notice that (E.2) can be rewritten in the form of
firm payoff functions in a cobweb game,

π̃ (sh, x) = [
Ã − B̃ (s • x)

]
sh − α̃

2
s2
h ,

where Ã = A − β0, B̃ = B − β2, and α̃ = 2β1. Then, because B̃ can be negative despite B

being positive, the requirements for multiple, locally attractive equilibria can be met with
downward-sloping demand. In case the production externality is strong enough, firms may
learn to produce levels other than the REE quantity.
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