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We investigate the three-dimensional surface pattern and nonlinear dynamics of a
condensing liquid layer suspended from a cooled substrate and in contact with a mixture
of its vapour and an inert gas below. A vapour boundary layer (VBL) is introduced, to
which the changes in gaseous composition and temperature are assumed to be confined.
An interfacial transport equation is derived, which incorporates the physical effects of
convection and diffusion of vapour within the VBL, coupled with a long-wave evolution
equation for the location of the free surface. This work extends the study of Kanatani
(J. Fluid Mech., vol. 732, 2013, pp. 128–149) on a sessile evaporating film to the
Rayleigh–Taylor unstable condensing/evaporating case with nonlinear analyses which also
accounts for the effect of vapour recoil due to mass transfer on interfacial evolution and
that of gravity combined with buoyancy on the internal convection of pendent drops
in a condensate layer. The coupled nonlinear evolutionary system is referred to as a
1.5-sided model. It can be reduced to the conventional one-sided model when phase
change is limited by processes in the liquid. An extended basic state is obtained, whose
stability is investigated with pseudo-steady linear theory and time-dependent nonlinear
simulations. With the one-sided model, the influences of vapour recoil and Marangoni
effects are illustrated with three representative cases. In the one-sided simulations with
a random perturbation, the interface is prone to finite-time rupture and the surface
patterns feature isolated droplets when vapour recoil is significant, while it becomes more
regular and even without rupture as vapour recoil is weakened relative to the Marangoni
effect. This suggests that, in the absence of the convection and diffusion of vapour, the
destabilizations of vapour recoil and negative gravity could prevail over the stabilizations
of thermocapillarity, capillarity, viscous dissipation and mass gain. With an unsaturated
initial interface concentration, x̃A,I0, the 1.5-sided model indicates that the liquid layer
can be stabilized to a quasi-hexagon pattern and the Rayleigh–Taylor-driven rupture can
be suppressed with the effects of vapour convection and diffusion near the interface.
However, the initial dynamics is in contrast to the case with a saturated x̃A,I0, where
transition from weak evaporation to a condensation-dominated regime is seen in the
later stage. The viewpoint of stability competition offers vital evidence for an induced
Marangoni stabilization, which is a quintessential characteristic of the 1.5-sided model.

† Email address for correspondence: mpeweit@nus.edu.sg
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Comparisons of the theory and simulations with available experiments are included
throughout.

Key words: condensation/evaporation, nonlinear instability

1. Introduction

1.1. Instabilities of Rayleigh–Taylor condensing layers
When a pure liquid layer of condensable species is hanging on a cooled horizontal
substrate and in contact with its own vapour below, condensation can occur under the
difference in vapour pressure (or chemical potential) between the gas side of the interface
and its adjacent ambient if the substrate temperature remains below the saturation value.
The pre-existing planar interface between the pendent liquid layer and the gas phase
(with surface tension σ0 and density ρ > ρ(g)) is inherently unstable to infinitesimal
deformations with gravity g directing to the lighter fluid (Fermigier et al. 1992; Oron
& Rosenau 1992; Burgess et al. 2001), known as the Rayleigh–Taylor instability (RTI)
(Chandrasekhar 1981, Chapter X). The situation with a heavier, semi-infinite fluid on top
of an immiscible, viscous film (Yiantsios & Higgins 1989) is a counterpart. Independent of
the initial thickness of the liquid layer and flow regime, the critical (shortest) wavelength
of the RTI of a finite-thickness viscous layer is λ̃RT,c = 2πlc with the capillary length
lc = √

σ0/[(ρ − ρ(g))|g|], below which the interface is stable according to the linear
stability analysis. In the presence of phase change, the unstable film condensation of
fundamental interest (Gerstmann & Griffith 1967; Bestehorn & Merkt 2006; Som et al.
2007) is also one of the most important factors in heat exchangers of nuclear power plant
and that of electric devices with high power density. For instance, in the gravity-assisted
heat pipe studied by Yanadori et al. (1985), the condensate falls as drops from a ceiling to
complete a cooling cycle.

Contrarily, there are several different ways to inhibit the RTI. The purely dissipative
RTI could be inhibited dynamically with an imposed harmonic oscillation upon the
liquid, perpendicularly to the horizontal equilibrium state of the gas–liquid interface,
as demonstrated experimentally by Wolf (1970). It could also be suppressed thermally
with a sufficient cooling by the bounding substrate because the Marangoni effect can
act as a stabilization of the gas–liquid interface provided its surface tension increases
as the temperature decreases, as predicted numerically (Deissler & Oron 1992; Oron
& Rosenau 1992; Alexeev & Oron 2007) and verified experimentally by applying a
vertical temperature gradient to a gas–liquid system (Burgess et al. 2001). However, the
effect of thermocapillary flow is generally negligible for an evaporating or condensing
layer in contact with its pure vapour (Guo & Narayanan 2010; Kimball, Hermanson &
Allen 2012) since phase change tends to drive the interfacial temperature towards an
equilibrium value under the large enthalpy difference between the two phases (Kanatani
2010), see also Chauvet, Dehaeck & Colinet (2012) for a concise theoretical explanation
on phase-change-induced thermal spreading mechanism on an interface. Therefore,
neglecting the Marangoni effects for a thermodynamic (quasi-)equilibrium interface is
a reasonable simplification in pure-component systems (Haut & Colinet 2005; Kanatani
2010; Wei & Duan 2016). Moreover, Hsieh (1972) earlier proposed that RTI can be
stabilized by the effects of heat and mass transfer associated with evaporation using
linear stability analysis (LSA). Bestehorn & Merkt (2006) theoretically showed that a
Rayleigh–Taylor unstable liquid layer could also be stabilized by localized evaporation
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and condensation with large enough mass fluxes and that the Rayleigh–Taylor-driven
rupture could be avoided even without the stabilizing Marangoni effect provided the initial
interface is in equilibrium with the vapour below.

Film condensation creates different temperature gradients at the gas and liquid sides
of an interface as a consequence of the combined effects of the deposited latent heat
at the interface, the convective/conductive heat fluxes in a vapour boundary layer and
the heat conduction through the condensate layer (Fujii 1991). The temperature gradients
are sustained by continuous removal of the heat via the cooled substrate. A mechanical
perturbation on the interface will be weakened: as the liquid-side temperature gradient at
a trough (closer to the cold substrate) becomes stronger while the gas-side temperature
gradient gets weaker, the local condensation flux will increase since it is proportional
to the difference in the interfacial heat fluxes. The opposite situation appears in a
crest (more evaporative). This physical argument for the stabilizing effect of phase
change applies to both positive and negative gravity cases regardless of surface-tension
gradients. Accordingly, a significant temperature difference can be established across
the liquid, especially in the relatively thicker region of a Rayleigh–Taylor unstable
layer or in a hanging droplet (Savino, Paterna & Favaloro 2002), which could be
sufficient for buoyancy effect in the liquid to destabilize the conductive motionless
state besides the Marangoni effect. The resulting convection, in turn, can affect the
evaporation/condensation rate. As concluded by Savino et al. (2002), the numerical
solutions for evaporation rates of both a pendent water and octane drop compared
most favourably with experimental results when the buoyancy effect was included in
simulations. In addition, it has also been shown that under positive gravity the thermal
buoyancy can play a significant role in the evaporative convection of liquid layers with
not-very-thin thicknesses, e.g. h ≤ 1 mm trichlorotrifluoroethane (R-113) (Zhang 2006)
and 2 mm water (Guo & Narayanan 2010).

The striking phenomena of evaporative convection in pure liquid layers were observed
by Berg, Boudart & Acrivos (1966) who exploratively explained the patterns with
simultaneous effects of thermocapillarity and buoyancy. In this study, we show the
influence of buoyancy on the convection in pendent drops of a Rayleigh–Taylor unstable
condensing layer. On the other hand, according to the interface mass balance, a rapidly
approaching vapour ‘particle’ impinging on the interface must decelerate substantially as
it becomes liquefied, which can produce a vapour recoil. The interfacial convection and
heat-transfer characteristics associated with the vapour recoil instability have been studied
experimentally by Hickman (1952) and Palmer & Maheshri (1981). With pseudo-steady
LSA, Palmer (1976) showed that the vapour recoil stemming from interfacial mass transfer
acted as an important destabilizing effect of evaporation that caused interfacial convection
at low ambient pressure. Further, Kliakhandler, Davis & Bankoff (2002) showed that the
vapour recoil played a crucial stabilizing role in a falling film as it increased the critical
Reynolds number from zero in isothermal cases to a positive value in condensing cases.
Accordingly, we also account for the mechanisms of gravity combined with buoyancy
in the liquid, vapour recoil on the interface and heat flux via the vapour in a general
framework (in order to unify various cases in a consistent way, see Wei & Duan (2018)),
the major concern of this work shall be the nonlinear effects of the interfacial convection
and diffusion of vapour on pattern formation.

1.2. Nonlinear stability analysis: one-, two- and 1.5-sided models
The first comprehensive nonlinear analysis on evaporating and condensing liquid layers
was performed by Burelbach, Bankoff & Davis (1988), who developed a long-wave (LW)
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evolution equation describing the dynamics of the gas–liquid interface of an ultra-thin
film subject to the effects of thermodynamic non-equilibrium, disjoining pressure, mass
loss/gain, vapour recoil, capillarity and thermocapillarity. By numerically integrating the
evolution equation, they investigated the influences of these effects on rupture instability
in (1 + 1)-dimension ((1 + 1)-D). Here and in the following (1 + 1) and (2 + 1) denote
the numbers of independent spatial plus temporal variables in evolution equation(s).
Particularly, it was shown that an interfacial perturbation could enhance the condensation
flux at a thinner region (as just mentioned) and thus locally normal stresses associated with
vapour thrust (Burelbach et al. 1988). Adopting a special potential for the intermolecular
forces between an ultra-thin film and a coated substrate, Oron (2000b) numerically
studied the (2 + 1)-D pattern formation in a horizontal evaporating film. Later, with the
same potential function, Oron & Bankoff (2001) examined the interfacial and heat-flux
evolution of a (1 + 1)-D condensing film on a horizontal or slightly inclined surface in
different condensation paradigms. The last two works incorporate attractive–repulsive
molecular forces, surface tension and mass loss/gain without hydrostatic effect owing
to its vanishing influence in horizontal cases within the thickness range of interest,
but including a gravity-driven effect in inclined cases in the latter. In these studies,
the film dynamics is described by a nonlinear LW equation in the framework of a
one-sided model, in which the dynamics of the vapour are decoupled from that of the
liquid.

Some researchers used a two-sided model (e.g. Guo & Narayanan 2010; Kanatani &
Oron 2011; Pillai & Narayanan 2018) to account for the mass, heat and/or viscous coupling
between the two phases, which are numerically demanding for fully nonlinear (2 + 1)-D
cases. Recent work by Pillai & Narayanan (2018) considered a binary volatile-liquid
mixture lying above its vapour, confined between two plates and subjected to RTI and
solutal Marangoni instability. Under thermodynamic equilibrium and LW approximation,
the (1 + 1)-D dynamics was studied using the weighted-residual integral boundary layer
method, which yielded a set of coupled nonlinear equations for the interface position and
the flow rates of both phases. The simulation suggested that the stabilizing effect of mass
transfer by phase change could overcome the destabilizing concentration gradients and
RTI. Specifically, the solutal Marangoni effect was insufficient to result in a touching
down of the interface on the hot vapour-side wall, because a reversed liquid flow along
the interface could be driven by vapour convection associated with increasingly intense
phase change in the stability competition. We neglect this effect to simplify the problem.
A posteriori justification is supported by the results shown in figures 9(d), 11(d) and 12(d)
( just not close to the final time in the last one), where the spatial variations of interfacial
concentration are not too large, typically within O(0.01).

Our model does not take into account the full dynamics in the gas phase but it
does take into account convection and diffusion of vapour as well as heat transfer in
the vicinity of the interface, and is thus referred to as a 1.5-sided model. It can also
be reduced to a conventional one-sided model (Burelbach et al. 1988) if the vapour
transport on the interface owing to concentration variations can be disregarded (see
§ 2.3.3). Our research aims to employ the 1.5-sided model to understand the dynamics
of the Rayleigh–Taylor unstable condensing layers, by characterizing in detail the pattern
formation and comparing to the relevant results of the one-sided model. This is also the
novelty of the work. As can be seen later, the one-sided simulations for the condensing
layer reveal that the interface can evolve into local rupture, while the 1.5-sided model
shows that the mechanisms of convection and diffusion of vapour play a significantly
stabilizing role in suppressing the potential rupture.
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1.3. Motivations
Most of the previous theoretical studies on interfacial instability and evaporative
convection considered that a volatile liquid layer was in contact only with its own vapour
(Palmer 1976; Burelbach et al. 1988; Kliakhandler et al. 2002; Guo & Narayanan 2010;
Kanatani 2010; Kanatani & Oron 2011) and that the atmosphere has a constant vapour
pressure (Bestehorn & Merkt 2006). Later, some numerical investigations have considered
ambient gas as a mixture of the vapour and an inert (non-condensable) gas in the presence
of vapour diffusion by linear or weakly nonlinear analysis (Haut & Colinet 2005; Margerit,
Dondlinger & Dauby 2005; Sultan, Boudaoud & Amar 2005). However, vapour convection
has usually been either neglected or ignored, except for the LSA by Kanatani (2010,
2013), the simulations by Kanatani & Oron (2011) and Pillai & Narayanan (2018) and
the experimental and numerical studies in Savino et al. (2002) and Dehaeck, Rednikov
& Colinet (2014). As suggested by Kanatani (2013) and Pillai & Narayanan (2018), to
predict what actual patterns emerge from an evaporating film or whether instabilities lead
to its rupture, a nonlinear computation is required, because of the time and thickness
dependence of the maximum growth mode in the LSA. To our knowledge, there are
relatively few works (Kanatani & Oron 2011; Pillai & Narayanan 2018) focusing on the
nonlinear effects of vapour transport on the interface stability of a liquid layer with phase
change, among which Kanatani & Oron (2011) investigated a (1 + 1)-D liquid–vapour
system but neglected net mass flux and vapour recoil based on a model derived earlier
(Kanatani 2010).

Although the amount of research in this field is growing recently, the majority of the
theoretical works on evaporating/condensing layers is based on the (1 + 1)-D computation
of a one-sided model, which could provide a qualitative prediction of the interfacial
dynamics (Oron 2000b) under proper conditions. Moreover, there are few investigations of
the nonlinear evolution of liquid layers with phase change incorporating both the effects
of convection and diffusion of vapour among others, as introduced above, since it is still
difficult to develop and/or solve a fully nonlinear, unsteady two-sided model, especially
for (2 + 1)-D cases. Therefore, an appropriately reduced model awaits its realization.

The nonlinear dynamics and stabilities of the gas–liquid interface of a liquid layer with
phase change are by no means fully understood because of, for instance, the complexity in
the thermodynamic condition and the frequent coexistence of diffusion and convection of
vapour near the interface. The essential factors that influence the vapour convection along
the interface can be (i) phase-change-induced gas bulk flow within an open or confined
geometry (Kanatani 2013; Pillai & Narayanan 2018); (ii) phase-change-induced lateral
variations of vapour pressure near the interface (Kanatani & Oron 2011); (iii) interfacial
thermal Marangoni flow in the liquid (Savino et al. 2002; Dehaeck et al. 2014); and
(iv) thermal and/or solutal buoyancy effects in the gas phase (Savino et al. 2002; Som
et al. 2007; Guo & Narayanan 2010; Dehaeck et al. 2014). In the condensing case, a
concentration boundary layer can be built up with a minimum (maximum) concentration
for condensable (non-condensable) species at the interface because of the bulk condensing
flow of ambient towards the interface (see figure 1). Also, the increases in mean (due to
mass gain) and local (due to instabilities) thicknesses make non-trivial effects of heat
transfer in the gas phase possible if the latent heat (L̃) of a liquid is not too large,
e.g. L̃R-113 ≈ 150 kJ kg−1 and L̃ethanol = 878 kJ kg−1 at 300 K. For film condensation
on the underside of a horizontal surface, these considerations motivate us to introduce
a concentration–thermal vapour boundary layer (VBL) to model the convection and
diffusion of vapour as well as heat transfer near the interface. This is similar to that
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Cold wall,  θw

z = δ + hav

Bulk vapour–inert gas, pA∞= p0 x̃A∞

z = hav

Condensate layer

x̃A∞

x̃A

x̃B∞z

x̃B

x̃i

Vapour boundary layer

θI

x̃A+x̃B = 1

Crest

Trough

θ = θ∞

θ(g)

θ

FIGURE 1. Schematic of film condensation on the underside of a cooled horizontal substrate
(θw < θ∞) in the presence of a vapour boundary layer of thickness δ. The molar fractions of
the vapour and the non-condensable gas are denoted as x̃A and x̃B. The wavelength of a typical
interfacial disturbance λ̃ is the horizontal characteristic length, much larger than the average
liquid thickness hav . A smaller dot in the bulge of the liquid layer represents a lighter fluid
particle (not in scale), allowing for the buoyancy effect.

proposed by Haut & Colinet (2005) (they incorporated also a viscous boundary layer)
and that applied by Kanatani (2013) and Dehaeck et al. (2014) (the latter considered
a concentration–viscous boundary layer). With pseudo-steady LSA, Haut & Colinet
(2005) studied the influence of an inert gas on evaporation-induced Bénard–Marangoni
convection; Kanatani (2013) considered a concentration boundary layer without heat flux
in the gas and focused on the linear stability of an evaporating interface. Particularly, the
latter predicted that the stabilizing effect of the rate of change of the interfacial vapour
concentration could be significant for rapidly growing perturbations and thicker regions
in a film. This motivates a full nonlinear simulation in the context of a Rayleigh–Taylor
unstable condensing layer.

Extensive experimental and theoretical studies have been conducted on condensation
heat transfer in vertical falling and horizontal hanging condensate films of pure or
multi-component vapour in the presence or absence of an inert gas (Kroger & Rohsenow
1968; Yanadori et al. 1985; Fujii 1991; Kliakhandler et al. 2002; Som et al. 2007). The
earliest attempts at predicting the interfacial characteristic dimensions and heat-transfer
rates of a film condensation of pure vapour on the underside of horizontal and inclined
plates were made by Gerstmann & Griffith (1967, referred to herein as GG). They
assumed the flow to be steady and periodic (in the longitudinal direction of the slope).
The calculated average Nusselt number agreed well with their experiments of horizontal
and slightly inclined cases. However, their assumptions caused an approximately 25 %
underestimation on the wavelength of the instabilities. Later, Yanadori et al. (1985)
considered a similar problem using much smaller circular surfaces to correlate the
optimum heat-transfer performance with RTI wavelength, and explained the results with a
ratio of the thin-film area to the total condensing area. By varying vapour pressure and wall
temperature, Som et al. (2007) made an experimental study on the stability and heat flux
of a cyclically condensing–evaporating layer of n-pentane on the underside of a horizontal
wall. The common feature of these investigations is that the heat-transfer characteristics
are altered greatly by RTI. Nevertheless, theoretical studies addressing the problem of
interfacial stability in Rayleigh–Taylor unstable evaporating/condensing layers, especially
the (2 + 1)-D dynamics in the presence of non-condensable species, are still limited in
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the literature. Thus a fundamental research is crucial to understand how the complicated
interfacial phenomena are affected by the relevant mechanisms involved in the heat and
mass transfer processes. The overall objective of the current research is to examine the
dynamics in such a case, especially under the influences of convection and diffusion of
the vapour.

We will improve the model of an evaporating layer in the same spirit as the heuristic
works (Haut & Colinet 2005; Kanatani 2013), where LSA were carried out to investigate
the short-wave convective instability with an undeformable flat surface (Haut & Colinet
2005) and the LW interfacial instability with an deformable surface (Kanatani 2013).
In this study, we shall concentrate on the pattern formation and interfacial stability
of a Rayleigh–Taylor unstable filmwise condensation, where the stabilizations of liquid
viscosity, surface tension and the Marangoni effect compete with the destabilizing
mechanisms of vapour recoil and gravity combined with buoyancy. We consider that the
ambient consists of the vapour of a volatile liquid and an inert gas, because not only can the
presence of an inert component strongly stimulate the thermal Marangoni effect but also
it is the general case in experiments. Under this circumstance, the fluctuation of vapour
pressure can give rise to temperature variations along the gas–liquid interface, even though
it is in local equilibrium with adjacent ambient, see Haut & Colinet (2005) for example.
In addition, the effects of vapour convection near the interface allow higher mass fluxes
(Savino et al. 2002; Kanatani 2013; Dehaeck et al. 2014) as compared to that of pure
diffusion-limited cases, e.g. in Haut & Colinet (2005) and Sultan et al. (2005), since a
lower limitation of mass flux can be set by the pure diffusion of vapour through an inert
gas. This also provides a justification for retaining the effect of vapour recoil in the present
study.

The organization of this paper is as follows. In § 2, we derive the 1.5-sided model along
with the reduced one-sided model. In § 3, we formulate an extended basic state, which is
studied with pseudo-steady approximation. In § 4, we investigate the linear stability of the
basic state with frozen-time approach and explain the relevant stabilizing mechanisms with
a simplified case. In § 5, we summarize the models to be solved and outline the numerical
methods. In § 6, the numerical results of both models in representative cases are presented,
which are compared with each other and with experiments from the literature. The effects
of VBL thickness and initial interface concentration are also briefly discussed with a
time-dependent basic state. In § 7, we examine the competition between the stabilizing
effect of thermocapillarity and the destabilizing effect of gravity. This section ends with
the discussion of a disturbance thermal energy equation. Finally, concluding remarks are
summarized in § 8.

2. Mathematical formulation

2.1. Physical description and governing equations
We consider a laterally unbounded condensing layer of species A on the underside of a
horizontal, uniformly cooled solid substrate at a constant temperature, θw. As depicted in
figure 1, the liquid layer, subject to RTI in a gravitational field, is bounded from below
by a binary mixture of its vapour A and a non-condensable inert gas of species B. It is
assumed that the system is completely wetting and the inert gas B is not absorbed into the
condensate A. The gas is considered to be ideal and incompressible. The liquid is colder
than its semi-infinite surrounding that condensation occurs on the gas–liquid interface.
The Marangoni stresses due to interfacial temperature gradients (through fluctuations of
local liquid thickness and vapour concentration) and the buoyancy forces due to adverse
density gradients (energized by vertical temperature differences) could simultaneously
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affect the convection of the liquid. However, the effects of buoyancy are negligible in
the nearby gas with small density variations, provided the concentration and temperature
differences are not too large and the molar masses of vapour and inert species are of the
same order, as in the studied system.

In a typical binary gas–liquid system, the Lewis number, Le(g) = α(g)/DAB = O(1),
with α(g) and DAB being the thermal and binary diffusivities of the gas mixture. This
permits an asymptotic characterization of interfacial heat and mass transfer by introducing
a concentration–thermal vapour boundary layer of a thickness δ between the pure liquid
layer and the perfectly mixed bulk gas, as mentioned in § 1.3. That is, on the outer
boundary of the VBL the temperature, pressure and vapour concentration are taken to
be the uniform bulk values, θ∞(> θw), p0 and x̃A∞ with x̃i denoting the molar fraction
of species i = {A,B} and subscript ‘∞’ for the bulk quantities. For simplicity we adopt
Cartesian coordinates (x, z) to formulate the liquid–VBL bilayer system without loss of
generality, provided forces and perturbations are isotropic in the horizontal directions,
x = (x, y) (the y-coordinate lying in the substrate and normal to x). The gas–liquid
interface is located at z = h(x, t), which evolves in time t from an initially average
thickness, h0 ≡ hav(t = 0). The unit vector normal to the interface and directed towards
the gas phase is given by n = (−∂x h, 1)[1 + (∂x h)2]−1/2, and t = (1, ∂x h)[1 + (∂x h)2]−1/2

is the unit tangent vector to the interface.
As shown in figure 1, the total gas pressure p0 is supposed to be constant (Haut &

Colinet 2005), and pA is the local value of partial pressure of vapour which reaches a
uniform value, pA∞ = p0 x̃A∞, at the outer boundary of VBL. Let θA,s( p) be the saturation
temperature, at which the liquid and its vapour coexist when both are at a common pressure
p. The coexistence pressure ps(θ) is defined as the partial pressure of the vapour required
for the liquid to coexist with its vapour at the temperature θ . Precisely, θA,s and ps are
linked by the Clausius–Clapeyron law,

ps(θ) = p0 exp[L̄R−1(θ−1
A,s ( p0) − θ−1)]. (2.1)

Here, L̄ = MAL̃, in which L̃ and L̄ are the specific and molar latent heats of species A
with MA being its molar mass; the universal gas constant R = 8.3145 J mol−1 K−1; p0 is
chosen as the reference pressure of a thermodynamic equilibrium. If the interface is in
equilibrium, the actual partial pressure at the interface is equal to the saturation pressure at
the interfacial temperature; that is, pA,I = ps(θI), with the subscript ‘I’ denoting quantities
evaluated on the interface. The saturated molar fraction at the interface is given by x̃A,I,eq =
ps(θI)/p0, with the subscript ‘eq’ denoting the local equilibrium value.

The bulk properties of the ambient are calculated with the ideal gas model (appendix A).
Considering δ � h, we can assume that δ does not change appreciably with the evolution
of h over the length and time scales in the LW limit. Moreover, a reference body force
F rb = −∇φ, with a gravitational potential φ = ρgz, is defined to incorporate the buoyancy
effect in the condensate layer, where ∇ = (∂x , ∂z), ρ is the liquid density at the reference
temperature θw and g is the negative gravitational acceleration.

The liquid layer consists of a pure Newtonian fluid of constant physical properties except
for the temperature dependence of the saturation conditions (as mentioned earlier), surface
tension and density. The gas–liquid interfacial tension is represented as σ = σ0 − γ (θ −
θw) with the reference value σ0 at θw and γ = −(dσ/dθ)θw > 0. With the Boussinesq
approximation and the other non-Boussinesq effects neglected (Velarde, Nepomnyashchy
& Hennenberg 2001), the continuity, momentum and energy equations for the liquid layer
read
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Rayleigh–Taylor unstable condensing layers 904 A1-9

∇ · v = 0, (2.2)

ρ(∂tv + v · ∇v) = −∇p + μ∇2v − ρ[1 − β(θ − θw)]gez, (2.3)

ρcp(∂tθ + v · ∇θ) = k(l)∇2θ, (2.4)

where ∇2 = ∇ · ∇ is the Laplacian; v = (u,w), p and θ are the velocity, pressure and
temperature of the liquid, and ez is the unit vector in the z-direction. The physical properties
of the liquid, μ, β, cp and k(l), are, respectively, dynamic viscosity, thermal expansion
coefficient (assuming β > 0), specific heat capacity and thermal conductivity, taken at
θw. The last term on the right-hand side of (2.3) incorporates the variation in density
with temperature, responsible for buoyancy-driven convection in the non-isothermal liquid
layer. The mass conservation for the incompressible gas mixture and species conservation
of the volatile component in the VBL can be written as

∇ · v(g) = 0, (2.5)

∂t x̃A + v(g) · ∇x̃A = DAB∇2 x̃A. (2.6)

Here, v(g) = (u(g),w(g)) is the mass-average velocity of the gas mixture and the species flux
due to thermal diffusion has been neglected in (2.6). We do not need momentum equations
for the gas phase since a viscous boundary layer is not our concern. The molar fraction, x̃i,
is related to the total and partial molar concentrations of the gas mixture, C and C(g)

i , by
x̃i = C(g)

i /C = C(g)
i /

∑
i C(g)

i . In addition, the simple form of (2.5) and (2.6) implies that
the total mass and molar concentrations, ρ(g) and C, of the gas mixture are assumed to
be constant, consistent with the neglect of buoyancy convection in the VBL (appendix E).
Thereafter, superscripts ‘l’ and ‘g’ are used to distinguish the liquid and gas quantities if
necessary. We have expressed the gas concentration in molar units (e.g. mol m−3) and
employed the molar fraction in (2.6) instead of the mass fraction, because problems
involving a mixture of chemical species are handled more easily with molar quantities
(see e.g. Dehaeck et al. 2014). For instance, it is more convenient to calculate the partial
pressure with the molar fraction. The properties of a typical ethanol–nitrogen system are
listed in table 1 and assumed to be constant. This is reasonable for an isobaric ambient
with MA/MB = O(1) and small-to-moderate variations in concentration and temperature.

At the liquid–solid interface, z = 0, we apply the no-slip, no-penetration and constant
temperature conditions: u = w = 0 and θ = θw. The balance of mass and molar fluxes of
the volatile component at the interface, z = h(x, t), read

j(x, t) = ρ(vI − v) · n = ρ(g)(vI − v(g)) · n, (2.7)

N(g)
An (h, t) = J (M)

A,I · n + C(g)
A v(g,M) · n = −CDAB∇x̃A,I · n + x̃A,IN

(g)
An (h, t), (2.8)

where j is the local mass flux normal to the interface ( j > 0 for condensation); vI is the
interface velocity; as N i represents the molar flux of species i, N(g)

An is its normal component
of species A in gas phase; J (M)

i is the molar diffusional flux relative to the molar-average
velocity v(g,M) = ∑

i x̃iv
(g)
i , where v

(g)
i = N (g)

i /C(g)
i is the velocity of species i relative to a

fixed origin. The one-component conservation law (2.8) has been expressed in molar units
with the diffusional reference frame v(g,M), which follows the preferred form of Fick’s law
since for a gas mixture at uniform pressure, it is more usual to have a constant C rather than
ρ(g), especially when the difference between the molar mass of A and B is large (see e.g.
the supporting information of Dehaeck et al. 2014). Equation (2.8) thus is a more accurate
counterpart to the flux balance in mass units (see (2.13) in Kanatani 2013). Here, the flux
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904 A1-10 T. Wei and M. Zhang

ρ 789 kg m−3 σ0 22.8 × 10−3 N m−1 a ρ(g) 1.16 kg m−3 b

γ 8.4 × 10−5 N m−1 K−1 C 36.81 mol m−3 b β 1.0822 × 10−3 K−1 c

k(l) 0.182 W m−1 K−1 DAB 10−5 m2 s−1 L̃ 878 × 103 J kg−1

cp 2453 J kg−1 K−1 c(g)pA 1424 J kg−1 K−1 μ 10−3 Pa s

kB(θ∞) 0.028 W m−1 K−1 c k(g)A 0.026 W m−1 K−1 c θA,s( p0) 351.31 K c

θA,s( pA∞) 315.37 K c Pr 16.5 c x̃A,w 0.0936 d

ps(θ∞) 40 875 Pa c ps(θw) 9456.06 Pa e MA 46.07 g mol−1

MB 28.01 g mol−1 μ
(g)
A 0.7 × 10−5 Pa s μB 1.8 × 10−5 Pa s

TABLE 1. Physical properties for the ethanol–nitrogen system at θw = 300 K or θ∞ = 330 K
and p0 = 101 kPa. All unannotated data are adopted from Haut & Colinet (2005).

aDittmar et al. (2003).
bEstimated using (A 2) and (A 3) with x̃A∞ = 0.2. pA∞ = x̃A∞p0 = 20.2 kPa and the relative

humidity of ambient, ϕ∞ = pA∞/ps(θ∞) = 0.494. This is an unsaturated gas, whose saturated molar
fraction, x̃A∞,eq = 0.409, can be calculated by (2.1).

cNIST Standard Database 23, Version 8.0.
dEquilibrium value obtained with (2.1) at θw.

eEstimated with the Dalton’s law of partial pressure for ideal gas, ps(θw) = p0 x̃A,w.

of species B is negligible and N(g)
An < 0 for condensation, which will be clarified in § 3.1.

Accordingly, the mass and molar fluxes are related through j = −MAN(g)
An . It should be

mentioned that the two terms on the right-hand side of (2.8) account for the diffusion
and convection of the condensable species normal to the interface, respectively. The latter,
induced by the condensing bulk flow, has been neglected in most studies, which is similar
to but different from that used by Kanatani (2013), because exactly how much of the flux is
attributed to convection and to diffusion depends upon the choice of the reference velocity.
Henceforth, the subscript ‘n’ refers to quantities projected in the normal direction of the
interface. Furthermore, in the presence of mass transfer the interface satisfies the kinematic
condition,

j = ρ[1 + (∂x h)2]−1/2(∂th + u∂x h − w). (2.9)

The interfacial balance relations for energy and stresses and the continuity of tangential
velocities read,

jL̃ + hth(θ∞ − θ) = k(l)∇θ · n, (2.10)

j(v(g) − v) + ( p − p0)n − 2μΓ · n + 2κσn + ∇sσ = 0, (2.11)

(v(g) − v) · t = 0, (2.12)

where Γ = 1
2 [∇v + (∇v)T] represents the rate-of-strain tensor evaluated on liquid side of

the interface and the mean curvature κ of the interface is given by 2κ = −∇s · n with
the surface gradient operator ∇s. Formally, we have taken the partial ‘one-sided’ limit
(appendix A): ρ(g)/ρ → 0 and μ(g)/μ → 0, but never apply k(g)/k(l) → 0, as considered
by Kliakhandler et al. (2002), Haut & Colinet (2005), Zhang (2006) and Doumenc et al.
(2010) in either condensation or evaporation cases. For a small (dimensionless) thickness
(Δ = δ/h0) of a similar VBL (Haut & Colinet 2005), it has been shown that as the
mean thickness of a liquid layer changes (e.g. hav thickens by condensation) the heat and
mass transfer through the VBL can have a considerable impact on heat conduction in the
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Rayleigh–Taylor unstable condensing layers 904 A1-11

liquid even when DAB = O(10−5) m2 s−1 and k(g)/k(l) = O(0.1), provided Le(g) = O(1).
Specifically, in an evaporating ethanol–nitrogen system, Haut & Colinet (2005) showed
that with Δ = O(0.1) a decrease in Δ (i.e. the resistance of VBL to heat and concentration
diffusion, R(g)

d ) can diminish the resistance to heat conduction through the liquid, R(l)
c . The

kinetic energy of vapour particle and viscous dissipation have been neglected in (2.10).
The viscous stress resulting from gas motion is negligible in (2.11). These effects were
studied by Palmer (1976) for a rapidly evaporating interface. As simplified by Doumenc
et al. (2010) for an evaporating case, the second left-hand side term of (2.10) represents
the conductive/convective heat fluxes through gas with a heat-transfer coefficient hth since
our major concern is the interfacial dynamics instead of a detailed description of the heat
transfer in the gas phase. The vapour-recoil effect is preserved in (2.11), proportional to the
first left-hand side term. However, vapour recoil and heat flux in the gas were neglected
in Kanatani (2013) under the assumption of slow evaporation without a thermal boundary
layer. The normal and tangent components of (2.11) then become

−j2/ρ(g) + p − p0 − 2μn · Γ · n + 2κσ = 0, (2.13a)

−2μn · Γ · t + ∇sσ · t = 0, (2.13b)

where ρ(g)/ρ → 0 and (2.12) have been substituted.
Finally, the Hertz–Knudsen–Schrage equation (Schrage 1953)

j = â
√

MA/(2πRθI)[pA,I − ps(θI)], (2.14)

is used as a constitutive relationship to close the system. Here, â = 2a/(2 − a) with
a being the accommodation coefficient (0 < a ≤ 1). For a 	 1, (2.14) reduces to the
classical Hertz–Knudsen equation with â ≈ a, which is the physical situation of concern
in this work. The standard constitutive equation is further linearized about θw and x̃A,w ≡
x̃A(θw, p0) of thermodynamic equilibrium (Kanatani 2013). Again, we use molar units
(cf. appendix B) and then substitute (B 1) and (B 2) into (2.14) to obtain

j = â
[

p0(x̃A,I − x̃A,w) − ps(θw)L̄
Rθ 2

w

(θI − θw)

]√
MA

2πRθw
, (2.15)

where the square-root term is evaluated at θw as |θI − θw|/θI 	 1 in practice. The effect
of deviation from local equilibrium at the gas–liquid interface is related to θI and x̃A,I
through the local variations in ps and pA, respectively, if the mass flux is modelled with
this linearized expression (2.15). For weak or moderate mass flux (0 < E 	 1, see table 2)
as consistent with the linearization, the possibility of temperature discontinuities across
the interface is negligible (Ward & Stanga 2001). It is therefore reasonable to assume
temperature continuity at the interface, i.e. θ(l)

I = θ
(g)
I (≡ θI).

2.2. Model for vapour concentration at the interface
According to the mass and molar flux balances, (2.7) and (2.8), the condensation velocity
of gas, vcond, and the normal component of ∇x̃A,I may be written as

vcond ≡ j/ρ(g) ≈ −v(g) · n, (2.16)

∇x̃A,I · n = −(1 − x̃A,I)N
(g)
An /(CDAB). (2.17)

In (2.16) it has been assumed that |vIn| 	 |v(g)
n | for estimation of vapour convection. This

is also consistent with the consideration of vapour recoil. Assuming the variation of x̃A
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904 A1-12 T. Wei and M. Zhang

Dimensionless group Definition Value

Molar mass ratio M̂ MA/M(g) 1.457

Marangoni number Ma
γρ(g)M̂1/2DABL̃h0

2k(l)μα
15 136.3

Capillary-like number Ca
γρ(g)M̂1/2DABL̃

σ0k(l)
0.25

Surface-tension number S σ0h0/(3ρν2) 2998.2

Galileo number G gh3
0/(3ν

2) −254.2

Rayleigh number Ra
gh3

0βρ
(g)M̂1/2DABL̃
ανk(l)

−753.9

Bond number Bo |G|/S 0.08

Dynamic Bond number Bod |Ra|/Ma 0.05

Grashof number Gr Ra/Pr −45.7

Condensation number E ρ(g)M̂1/2DAB/μ 0.014

Density ratio D 3ρ(g)/(2ρ) 0.002

Dimensionless latent heat L 8h2
0L̃/(9ν2) 1.2 × 1011

Non-volatile Biot number Bi h0hth/k(l) 0.06 a

Non-equilibrium parameter KAB
k(l)Rθ2

w

âh0MAps(θw)L̃2

√
2πRθw

MA
0.047 b

Dimensionless slope of coexistence curve Γ
p0k(l)Rθ2

w

ρ(g)M̂1/2DABps(θw)MAL̃2
2.915

Interface Schmidt number Ω ν/DAB 0.127

TABLE 2. Relevant dimensionless groups evaluated using the properties in table 1 with
h0 = 0.5 mm, x̃A∞ = 0.2 and g = −9.8 m s−2.

aEstimated by Bi = k(g)h�/(k(l)δ) (see discussion following (3.18a,b)) with δ = 5 mm (see figure 3
in Dehaeck et al. 2014), h� being taken as the capillary length lc ≈ 2 mm, and

k(g) = 0.027 W m−1 K−1 (appendix A). Alternatively, Bi = 0.011 is applicable to the heat-transfer
coefficient of hth = 0.85 W m−2 K−1 measured within a thin vapour layer of constant temperature

gradient above a 1 mm evaporating ethanol or R-113 (Zhang 2006).
bEstimated with â ≈ a = 0.01 (Haut & Colinet 2005).

due to interfacial deformation is localized on the vapour side of the interface (Kanatani
2013), we can take the limit z → h+ of (2.6), then substitute (2.12), (2.16) and (2.17) to
obtain

∂t x̃A,I + uI∂x x̃A,I − (1 − x̃A,I)j2

ρ(g)CDABMA
= DAB(∂

2
x x̃A,I + ∂2

z x̃A|z=h+), (2.18)

in which the assumption of |∂x h| 	 1 has been used, which is valid in the long-wave
regime (Oron, Davis & Bankoff 1997), and the horizontal velocity on the liquid side of the
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Rayleigh–Taylor unstable condensing layers 904 A1-13

interface, uI , will be calculated later. Here, the vertical diffusion term on the vapour side
of the interface can be approximated via a basic-state VBL concentration profile (using
(3.14) and (3.16)),

∂2
z
¯̃xA|z=h̄ = −(1 − ¯̃xA,I)CMA/ρ

(g)(δ−1 ln η̄)2, (2.19)

where the overbar denotes basic-state variables (cf. § 3), η = (1 − x̃A∞)/(1 − x̃A,I) and η̄ is
evaluated with ¯̃xA,I . It is also valid for a deformed interface provided (i) the long-scale limit
∂x u(g) 	 1 holds; and (ii) the ratio of characteristic velocity variations Δw(g)/Δu(g) 	 1,
a consequence of the geometric condition of δ/λ̃	 1, as revealed by the continuity (2.5).
Using (2.19) to model ∂2

z x̃A|z=h+ , (2.18) becomes

∂t x̃A,I + uI∂x x̃A,I

DAB
− ∂2

x x̃A,I = 1 − x̃A,I

ρ(g)

[
j2

CD2
ABMA

− CMA

(
1
δ

ln η

)2
]
. (2.20)

Equation (2.20) is the surface convection–diffusion equation for vapour concentration and
is expected to hold for a deformed interface in the first approximation. The second and
third left-hand side-terms are associated with the convective and diffusive transport in the
x-direction, while the two terms on the right-hand side represent those in the z-direction,
respectively.

2.3. Non-dimensionalization and evolution equations

2.3.1. Dimensionless equations and parameters
We introduce the scalings for dimensionless variables,

(X,Z,H,Δ) = h−1
0 (x, z, h, δ), T = νh−2

0 t, (P, Φ) = h2
0ρ

−1ν−2( p − p0, φ),

V = (U,W) = h0ν
−1(u,w), (J,Θ) = (ρ(g)

√
M̂DAB)

−1(h0 j, k(l)(θ − θw)L̃−1),

}

(2.21)

where α = k(l)/(ρcp), ν = μ/ρ and Pr = ν/α are the thermal diffusivity, kinematic
viscosity and Prandtl number of the liquid. The resulting non-dimensional groups and
their values are listed in table 2. Substitution of the scalings into the governing system
(2.2)–(2.4) of the liquid layer yields

∇XZ · V = 0, (2.22)

∂TU + V · ∇XZU = −∂XP + ∇2
XZU, (2.23)

∂TW + V · ∇XZW = −∂Z(P + Φ) + ∇2
XZW + Gr Θ, (2.24)

Pr(∂TΘ + V · ∇XZΘ) = ∇2
XZΘ, (2.25)

where the reference potential Φ = 3GZ and ∇2
XZ = ∇XZ · ∇XZ with ∇XZ = (∂X, ∂Z). At

Z = 0, the boundary conditions (BCs) are U = W = Θ = 0. At Z = H(X,T), (2.9),
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904 A1-14 T. Wei and M. Zhang

(2.10), (2.12) and (2.13) are scaled as

EJ = (∂TH + U∂XH − W)[1 + (∂XH)2]−1/2, (2.26)

J + Bi(Θ∞ − Θ) = (∂ZΘ − ∂XΘ∂XH)[1 + (∂XH)2]−1/2, (2.27)

U(g) + W(g)∂XH = U + W∂XH, (2.28)

3
2

E2J2

D
+ 2{∂XU[(∂XH)2 − 1] − ∂XH(∂ZU + ∂XW)}

1 + (∂XH)2
− P = 3S∂2

XH(1 − CaΘ)

[1 + (∂XH)2]3/2
, (2.29a)

4∂XH∂XU − (∂ZU + ∂XW)[1 − (∂XH)2] = 2 Ma Pr−1[1 + (∂XH)2]1/2(∂XΘ + ∂XH∂ZΘ).
(2.29b)

The linearized constitutive equation (2.15) is scaled as

KABJ = Γ (x̃A,I − x̃A,w) − ΘI, (2.30)

which relates the mass flux to the local temperature and concentration of the interface
and thus is fundamentally different from a phenomenological equation accounting for
an inert gas (see, e.g. (16) in Haut & Colinet 2005). The non-equilibrium parameter,
KAB, represents the interfacial resistance to phase change of A in the presence of an
inert gas B; and Γ characterizes the dimensionless slope of the coexistence curve with
respect to concentration and temperature (in dimensional variables, Γ̃ = dθA,s/dx̃A =
(dθA,s/dpA)(dpA/dx̃A) = p0 dθA,s/dpA). Note also that the definition of KAB (see table 2)
differs from that used by Burelbach et al. (1988) and Kliakhandler et al. (2002), whereas
it will reduce to a non-equilibrium parameter K in the one-sided model (cf. (2.50)). The
definition of non-volatile Biot number, Bi, will be clarified further in § 3.1.

In addition, the dimensionless version of the interfacial transport equation (2.20) reads

Ω(∂T x̃A,I + UI∂X x̃A,I) − ∂2
X x̃A,I = (1 − x̃A,I)[J2 − M̂(Δ−1 ln η)2]. (2.31)

Here, Ω is the ratio between the transfer rate of liquid viscous momentum (ν) and the gas
species diffusivity (DAB), measuring the convective derivative of x̃A,I perceived by a liquid
particle moving along the interface, which we refer to as the ‘interface Schmidt number’;
and M̂ denotes the molar mass ratio between species A and the gas mixture. It is worth
noting that Kanatani (2013, characteristic equation (4.3)) has shown that the influence of
Ωω becomes more significant for a larger linear growth rate, ω(t), in a relatively thicker
evaporating layer using frozen-time LSA. Therefore, the effect of Ω on a condensing liquid
layer deserves further investigation, which is expected to be much clearer in the cases of
RTI.

2.3.2. Long-wave asymptotics: liquid layer
To simplify the governing system (2.22)–(2.30) for the liquid layer, we assume that

the dependent variables change slowly in time and space to justify the lubrication
approximation (Burelbach et al. 1988). We consider the periodic long-wave λ̃ in the
x-direction and rescale the system with the lubrication-type variables: ξ = kX, ζ = Z and
τ = kT . Then, the variables are expanded with a small wavenumber k = 2πh0/λ̃,

(U,W, J,Θ,P) = (U0, kW0, J0,Θ0, k−1P0) + k(U1, kW1, J1,Θ1, k−1P1) + · · · , (2.32)

in which the quantities with subscript ‘0’ are all O(1), while H(ξ, τ ) and x̃A,I(ξ, τ ) are two
undetermined O(1) functions. This procedure is similar to that proposed by Benney (1966)
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for a falling film and that employed by Burelbach et al. (1988) for evaporating/condensing
films. We then introduce the asymptotic transformation

(D,E,G,Ma,Ra, S) = (D̄k3, Ēk, Ḡk−1, M̄k−1, R̄k−1, S̄k−3) (2.33)

to retain the physical effects of vapour recoil, mass transfer, gravity accompanied by
buoyancy, thermocapillarity and capillarity at the leading order, where the quantities
with overbar are O(1) as k → 0. We emphasize that the parameter set should satisfy the
constraint |Gr| 	 3|G| for the validity of the Boussinesq approximation (Velarde et al.
2001; Wei & Duan 2018). Moreover, KAB, Pr, Bi and Γ are taken to be O(1) to make the
effects of non-equilibrium, momentum and heat diffusion in liquid, heat flux in VBL and
fluctuations of x̃A,I enter the analysis.

We thus obtain the following leading-order problem,

∂ξU0 + ∂ζW0 = 0, (2.34)

0 = −∂ξP0 + ∂2
ζ U0, (2.35)

0 = −∂ζP0 + R̄ Pr−1Θ0 − 3Ḡ, (2.36)

0 = ∂2
ζ Θ0, (2.37)

subject to the BCs: at ζ = 0, U0 = W0 = Θ0 = 0; and at ζ = H(ξ, τ ),

ĒJ0 = ∂τH + U0∂ξH − W0, (2.38)

J0 + Bi(Θ∞ − Θ0) = ∂ζΘ0, (2.39)

U(g)
0 = U0, (2.40)

3
2 Ē2J2

0D̄−1 − P0 = 3S̄∂2
ξ H, (2.41)

∂ζU0 = −2M̄ Pr−1(∂ξΘ0 + ∂ξH∂ζΘ0). (2.42)

The constitutive equation (2.30) becomes

KABJ0 = Γ (x̃A,I − x̃A,w) − ΘI0. (2.43)

Finally, to obtain an evolution equation for the gas–liquid interface, (2.34) is transformed
as the conservation form of kinematics by integrating over the liquid thickness,

∂τH + ∂ξ

∫ H

0
U0 dζ − ĒJ0 = 0, (2.44)

where the boundary conditions W0(ξ, 0, τ ) = 0 and (2.38) have been used.

2.3.3. Model equations
The solution to the O(1) governing system (2.34)–(2.43) is outlined in appendix C

because the procedure is standard (see, e.g. Oron et al. 1997). We substitute (C 1) and
(C 5a) into (2.44), and use the transformation (2.33) and the variables (X,T) to obtain the
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(1 + 1)-D evolution equation for the liquid thickness H

∂TH = EJ0 + G∂X(H3∂XH) − S∂X(H3∂3
XH)

− 1
2 Gr ∂X{ 1

3 H4f1[Γ H∂X x̃A,I + f2(KAB + f −1
1 )∂XH] − 3

20 H5∂X f2}
+ ∂X{H2f1[Ma Pr−1(Γ H∂X x̃A,I + KAB f2∂XH)

+ E2D−1J0H(Γ (1 + Bi H)∂X x̃A,I − f2∂XH)]}, (2.45)

which is a strongly nonlinear, fourth-order partial differential equation (PDE) with

f1[H] = [H + KAB(1 + Bi H)]−1, f2[x̃A,I,H] = [Γ (x̃A,I − x̃A,w) + KABBiΘ∞] f1.
(2.46a,b)

Taking J = J0 and UI = UI0 in (2.31) and using (C 1) and (C 7), what follows is the
rescaled O(1) evolution equation for interfacial vapour concentration. This equation, along
with (2.45), represents a tightly coupled (1 + 1)-D evolutionary system for H and x̃A,I ,
referred to as a nonlinear 1.5-sided model. If the effects of vapour recoil on the interface,
buoyancy in the liquid and heat flux in VBL are all neglected, the set of equations will
be analogous to that derived by Kanatani (2013) but with the main differences originating
from our adopting of molar quantities (e.g. different temperature and mass flux scales)
and the distinct definition of Ma. The sign of mass balance condition is also reversed
(see (2.7)), that is, j > 0 and j < 0 for mass gain and loss, respectively, which is more
straightforward to compare with experiments (Som et al. 2007).

Assuming that all forces and perturbations are isotropic in the horizontal dimensions and
that ∂X and ∂Y are comparable, the 1.5-sided model can be easily extended to a (2 + 1)-D
version

∂TH − EJ0 − G∇1 · (H3∇1H) + S∇1 · [H3∇1(∇2
1 H)]

+ 1
2 Gr ∇1 · { 1

3 H4f1[Γ H∇1 x̃A,I + f2(KAB + f −1
1 )∇1H] − 3

20 H5∇1 f2}
−∇1 · {H2f1[Ma Pr−1(Γ H∇1 x̃A,I + KABf2∇1H)

+E2D−1J0H(Γ (1 + Bi H)∇1 x̃A,I − f2∇1H)]} = 0, (2.47a)

Ω(∂T x̃A,I + U I · ∇1 x̃A,I) − ∇2
1 x̃A,I = (1 − x̃A,I)[J2

0 − M̂(Δ−1 ln η)2], (2.47b)

where ∇1 = (∂X, ∂Y) and ∇2
1 = ∇1 · ∇1. A straightforward generalization of (C 7) gives

the horizontal liquid velocity on the interface

U I = − 1
2 H2{3∇1(GH − S∇2

1 H) + 3E2D−1J0 f1[Γ (1 + Bi H)∇1 x̃A,I − f2∇1H]

− 1
2 Gr Hf1[Γ H∇1 x̃A,I + f2(KAB + f −1

1 )∇1H]} − 1
8 Gr H4∇1 f2

− 2 Ma Pr−1Hf1(Γ H∇1 x̃A,I + KABf2∇1H). (2.48)

The continuity (2.40) of velocity at the interface gives U I = U (g)
I . Equation (2.47) should

be a necessary generalization of the (1 + 1)-D system since (i) (2 + 1)-D behaviour
can be qualitatively different from that of the (1 + 1)-D case (Oron 2000a), and (ii)
even in pure RTI, the experiments of Fermigier et al. (1992) have exhibited various
(2 + 1)-D isothermal patterns in the absence of phase change, which can be complicated
by the effects of heat and mass transfer. Furthermore, the model is also applicable to
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both condensation and evaporation with either positive or negative gravity, although only
condensing layers subject to RTI will be analysed in the current study, as explained at the
end of § 2.3.1.

Basically, the nature of solutions to the 1.5-sided model can be substantially different
from that of a one-sided model, which accounts for the gas phase merely with a heat
transfer coefficient and/or a normal stress in the form of vapour thrust in boundary
conditions (Wei & Duan 2018). Both the models can be better understood when their
results of nonlinear simulations are compared. There are three major differences between
the one- and 1.5-sided models. (i) The former is restricted to the case where the VBL is
not too thick such that the concentration (or partial pressure) difference to push vapour
to the interface through VBL (take condensation as an example) can be negligible as
compared to x̃A∞ (or pA∞) and that x̃A,I ≈ x̃A∞, so the composition of VBL is basically
uniform (see the asymptotic state in § 6.3). In fact, the one-sided model falls within a limit
of R(g)

d 	 R(l)
c in Haut & Colinet (2005) (also recalling the relevant discussion after (2.12))

and thus applies to the cases in which phase change is limited by processes in liquid and
only liquid dynamics is involved. (ii) In the absence of vapour diffusion the temperature
and mass flux should be scaled as follows (Burelbach et al. 1988):

Θ∗ = Δθ−1(θ − θw), J∗ = h0L̃(k(l)Δθ)−1j, (2.49a,b)

where the temperature scale is the subcooling Δθ = θA,s( p0) − θw rather than that of the
last expression in (2.21). (iii) Instead of the linearized equation (2.15) the mass flux is
related only to interface temperature by the modified Hertz–Knudsen law (Palmer 1976),
K̃j = θA,s − θI , with the non-equilibrium parameter K̃ = θA,s(âρ(g)L̃)−1

√
2πRθA,s/MA

(Oron et al. 1997). Then, the constitutive equation (2.30) is replaced by

KJ∗ = 1 − Θ∗
I , (2.50)

with K = k(l)K̃/(h0L̃). A standard long-wave approximation, similar to that presented in
§ 2.3.2, yields a reduced version of (2.47a)

∂TH − E∗J∗
0 − G∇1 · (H3∇1H) + S∇1 · [H3∇1(∇2

1 H)]

− 1
3 Gr∗∇1 · [H3∇1H − 1

2 H3∇1(H2f ∗
2 ) + 9

40 H5∇1 f ∗
2 ]

− ∇1 · [H2f ∗
2 J∗

0(K Ma∗Pr−1 − E∗2D−1J∗
0 H)∇1H] = 0, (2.51)

where superscript ‘∗’ distinguishes the parameters and functions for the one-sided model

E∗ = k(l)Δθ

μL̃
, Ma∗ = γΔθh0

2μα
, Ra∗ = gh3

0βΔθ

αν
, Gr∗ = Ra∗

Pr
, (2.52a–d)

where f2 and J0 have reduced to f ∗
2 = (1 + K Bi)J∗

0 and J∗
0 = [H + K(1 + Bi H)]−1. Then

(2.50) gives the interface temperature Θ∗
I = H(1 + Bi K)J∗

0 . For the condensation case, E∗

and Ma∗ are again defined to be positive, and Gr∗ to be negative with g < 0. Comparing
the buoyancy, thermocapillary and vapour-recoil terms in (2.47a) with those in (2.51),
it is found that in the formers each first term is associated with the concentration
gradient, ∇1 x̃A,I , which modifies the respective mechanism and hence the dynamics of
the 1.5-sided model. Especially, ∇1 x̃A,I allows the emergence of thermocapillary effect
through variations in pA,I even under (quasi-)equilibrium as KAB → 0, however, this effect
is absent in the one-sided model as K → 0 (cf. (C 3) and (2.50)). As a result, the one-sided
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model can be in connection with experiments free of non-condensable gases. Before
proceeding to numerical investigations of the interfacial stabilities with the two models,
we study the basic solution of the 1.5-sided model, based on which LSA can be used to
predict the growth rate and wavelength of the most unstable mode.

3. Basic state: extension of one-sided model

We consider the basic-state dynamics of the VBL plus a no-flow condensate
layer with a planar gas–liquid interface (no dependence on x-coordinate). With L̃ =
O(102–103) kJ kg−1, the phase-change time scale for a variation in liquid thickness h̄(t)
(denoting basic-state functions with overbars) is usually much larger than the time scale of
heat diffusion in the liquid as well as those of thermal (τ (g)

th,d) and vapour (τA,d) diffusion in
the VBL (the latter two having the same order of magnitude in view of Le(g) = τA,d/τ

(g)
th,d =

O(1) for a typical gas mixture). We thus can expect a pseudo-steady regime of the basic
state to be established for the instantaneous h̄, which responds quickly to the slowly
changing liquid thickness. The basic state thus admits a pseudo-steady analysis for the
temperature in the liquid and gas phases as well as the concentration in the VBL. This
assumption will be justified later. The time dependence of h̄(t) is introduced through a
kinematic condition of the interface. Leaving the one-sided basic state to appendix D, we
now extend it to the basic state of a two-phase system with heat and mass transfer.

3.1. Basic state for VBL
The basic-state species conservation equations in VBL are as follows:

w̄(g)∂z
¯̃xA = DAB∂

2
z
¯̃xA, ∂zN̄

(g)
iz = 0, (3.1a,b)

in which (3.1a) is the one-dimensional (1-D) pseudo-steady version of (2.6). The
multi-component energy equation for the gas mixture simply reads

∂zē(g)
z = 0. (3.2)

Here, the multi-component energy flux, e, and the molar flux, N i, relative to the fixed
coordinates are related by e(·) ≡ −k(·)∇θ(·) +∑(·)

i N iH̄i with H̄i being a partial molar
enthalpy and superscript ‘(·)’ for the gas (g) or liquid (l) phase. Both N i and e have only
vertical components in the flat-interface state, i.e. N̄(g)

iz and ē(g)
z in (3.1b) and (3.2).

The boundary conditions for (3.1a) are

¯̃xA(h̄, t) = ¯̃xA,I, ¯̃xA(h̄ + δ, t) = x̃A∞. (3.3a,b)

The BCs for (3.1b) and (3.2) at z = h̄(t), describing the conservation of species and energy
across the moving interface of velocity, v̄I = dh̄/dt, are given by

[N̄iz − Civ̄I]
g
l = 0,

[
ēz −

∑
i

CiH̄iv̄I

]g

l

= 0, (3.4a,b)

where [ f ]g
l = f (g) − f (l) for a general function f .
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With (3.3a,b) the solution to the homogeneous convection–diffusion equation (3.1a),
applicable to both condensation and evaporation, is given by

¯̃xA(z, t) = x̃A∞ − (x̃A∞ − ¯̃xA,I)
1 − exp[−w̄(g)(h̄ + δ − z)/DAB]

1 − exp(−w̄(g)δ/DAB)
for h̄ ≤ z ≤ h̄ + δ,

(3.5)
which is a molar-fraction counterpart of (2.22) in Kanatani (2013). Despite numerous
theoretical studies on evaporating/condensing layers, few experiments have been carried
out. At ambient conditions, Dehaeck et al. (2014) measured vapour concentration around
an evaporating, pendent droplet of HFE-7000 with holographic interferometry, from
which the local and global evaporation rates as well as the interfacial temperature were
extracted. In their experiment, the essential convective influence in gas side was studied,
including that caused by Marangoni flow in the liquid and by buoyancy flow in the
gas. The convection effects are found to considerably enhance the evaporation rates as
compared to the pure-diffusion scheme (Dehaeck et al. 2014). It should be stressed that
in our basic state, evaporation sets the velocity scale in VBL rather than buoyancy in
the gas and that the geometry of a droplet is also different from a flat liquid layer, thus
only a semi-quantitative comparison is possible (appendix E). Here, we are interested in
contrasting the basic profiles of ¯̃xA for evaporation and condensation, not expecting an
excellent agreement with the very limited experimental results. Given that we are dealing
with a volatile liquid with a molar mass comparable to the inert component (MA/MB =
O(1)), Gr(g)sol (∝ MA − MB) (see (E 2a)) is not large enough for solutal buoyancy convection
in the gas phase. Thus, (3.5) can achieve a reasonable prediction in the basic-state VBL.

On the other hand, from (3.1b) it follows that

N̄(g)
iz (z, t) = N̄(g)

iz (h̄, t) for h̄ ≤ z ≤ h̄ + δ. (3.6)

Applying it to the non-condensable species B gives

N̄(g)
Bz (z, t) = N̄(g)

Bz (h̄, t) = 0 for h̄ ≤ z ≤ h̄ + δ, (3.7)

which means the flux of species B is negligible within the VBL. When imposing (3.4a)
upon both species, additional insights will be gained: (i) since the liquid is stationary and
contains (almost) pure condensable A, the liquid-sided fluxes of both species, N̄(l)

iz (h̄, t),
can be neglected; (ii) the concentration of liquid C(l) ≈ C(l)

A due to the negligible solubility
of B since normally C(l)

B /C(l) = O(10−5); (iii) a low vapour–liquid density ratio indicates
that C(g)

A,I/C(l) = ρ
(g)
A,I/ρ

(l) = O(10−3) even for x̃A,I as large as unity; and (iv) similarly,
C(g)

B,I/C(l) = ρ
(g)
B,IMA/(ρ

(l)MB) = O(10−3) if MA/MB = O(1). Thereby, it is found that

N̄(g)
Az (h̄, t) = [CA,I]

g
l v̄I ≈ −C(l)v̄I, (3.8a)

N̄(g)
Bz (h̄, t) = [CB,I]

g
l v̄I ⇒ |N̄(g)

Bz (h̄, t)| 	 C(l) |v̄I| ≈ |N̄(g)
Az (h̄, t)|. (3.8b)

Expression (3.8b) indicates that the interfacial flux of species B is indeed negligible
in comparison with that of A. Evaluating the species fluxes with the above insights,
and taking ∂zθ̄

(l)(h̄, t) = (θ̄I − θw)/h̄ since the basic temperature θ̄ (l) is given by a linear
function of z, (3.4b) becomes

∂zθ̄
(g)(h̄, t) = [θ̄I(t) − θw]/(k̂h̄) + L̄N̄(g)

Az (h̄, t)/k(g), (3.9)

where k̂ = k(g)/k(l) and the molar latent heat L̄ ≡ H̄(g)
A − H̄(l)

A .
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z–h̄ (mm)

Experimental data
(Ward & Stanga 2001):

Analytical expressions:
Temperature profile, θ̄ (g)(z–h̄)
Temperature gradient at interface

Interface: z = h-

25.4 µm TC; 81.3 µm TC

        = 0.474 °C mm–1
z = h̄

θ̄
(g

)  (
°C

)

(g)dθ-

dz—

}

Linear

FIGURE 2. Comparison of gas temperature near the interface measured along the centreline
of a test chamber in a condensation experiment (run C1 in Ward & Stanga 2001) with the
VBL temperature (3.12) in terms of the experimental conditions: θ̄I = 26 ◦C, N̄(g)

Az = −j/MA =
−0.315 g m−2 s−1/18.02 g mol−1 = −1.75 × 10−2 mol m−2 s−1, θ∞ = 298.21 + 5 = 303.21 K
estimated using the NIST Database by calculating the saturation temperature corresponding to
the measured vapour pressure pA = 3181 Pa with a small increment of 5 K accounting for the
superheated vapour (Ward & Stanga 2001), δ = 10 mm estimated by polynomial extrapolation
of the data up to θ∞, c(g)pA = 1.92 J g−1 K−1 and k(g)A = 0.019 W m−1 K−1 taken at θ∞ = 303.21
K from the NIST Database. Error bars on the markers indicate the uncertainty of ±0.05 ◦C in
the reported data.

Alternatively, evaluating the multi-component energy flux in VBL by definition yields

ē(g)
z (z, t) = −k(g)∂zθ̄

(g) + N̄(g)
Az H̄(g)

A = −k(g)∂zθ̄
(g) + N̄(g)

Az (z, t)[c̄(g)
pA (θ̄

(g) − θw) + H̄w
A ]

= −k(g)∂zθ̄
(g) + N̄(g)

Az (h̄, t)c̄(g)
pA θ̄

(g), (3.10)

where H̄(g)
A has been expressed by molar heat capacity, c̄(g)

pA = c(g)
pA MA, and the enthalpy H̄w

A
at θw; the third equality follows from (3.6). Substituting (3.10) into (3.2) gives

k(g)∂2
z θ̄

(g) − N̄(g)
Az (h̄, t)c̄(g)

pA∂zθ̄
(g) = 0, (3.11)

subject to the BCs θ̄
(g)
I = θ̄I and θ̄ (g)(h̄ + δ, t) = θ∞. The solution to (3.11) determines a

nonlinear temperature distribution in VBL,

θ̄ (g)(z, t) = θ∞{exp[(z − h̄)FI] − 1} + θ̄I(t){exp(δFI) − exp[(z − h̄)FI]}
exp(δFI) − 1

, (3.12)

with the reduced flux function FI ≡ N̄(g)
Az (h̄, t)c̄(g)

pA/k(g) for conciseness. It follows that the
temperature gradient at the gas side of the interface is

∂zθ̄
(g)(h̄, t) = [θ∞ − θ̄I(t)]FI/[exp(δFI) − 1]. (3.13)

Figure 2 compares the vapour temperature profile obtained from the analytical
expression (3.12) with a set of data in Ward & Stanga (2001), who performed
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phase-change experiments with water under steady state and measured intrusively the local
temperature in both phases near the gas–liquid interface with two micro-thermocouples
(TCs) of different sizes. These results show a reasonable agreement. The differences
presumably arise from the fact that our temperature profile is predicted from a
continuum formulation, which does not correlate the equilibrium properties of an interface
with evaporation/condensation flux. Although a non-equilibrium effect is possible in
non-classical cases, as revealed by a discontinuity in temperature across the interface
(Ward & Stanga 2001), it is not necessary to consider this here. The other reason
contributing to the deviation is the interfacial curvature in their experiment, which could
induce a convection, as suggested by a thin uniform temperature layer immediately below
the curved interface (Ward & Stanga 2001). The curvature effect, however, is irrelevant in
the flat basic state. We would also like to remark that the vapour temperature above the
liquid layer is linear only in close vicinity to the interface.

Still to be determined is the molar flux of vapour at the interface. Generally, N̄(g)
Az (z, t)

can be written as

N̄(g)
Az (z, t) = ¯̃xAN̄(g)

Az − CDAB∂z
¯̃xA for h̄ ≤ z ≤ h̄ + δ, (3.14)

in which N̄(g)
Bz = 0 has been used. Rearranging (3.14) leads to N̄(g)

Az = −CDAB∂z
¯̃xA/(1 − ¯̃xA).

Combining it with (3.6), integration from z = h̄ to h̄ + δ gives

N̄(g)
Az (h̄, t) = CDABδ

−1 ln η̄. (3.15)

One can then relate θ̄ (g)(z, t) with ¯̃xA,I(t) by substituting (3.15) into (3.12). It follows
from (2.16) and (3.15) that w̄(g) throughout the VBL, determined by phase change, can
be approximated as

w̄(g)(t) ≈ CDABMA ln η̄/(ρ(g)δ), (3.16)

where j̄ = −MAN̄(g)
Az (h̄, t) has been inserted. Note that N̄(g)

Az and w̄(g) will be negative
(positive) for condensation (evaporation) since ln η̄ < 0 (> 0) with x̃A ∝ θ at constant
pressure. Naturally, for condensation vapour moves upward in the −z-direction (figure 1).

Now two expressions for the gas-side temperature gradient at the interface have been
obtained: (3.9) from energy balance and (3.13) from multi-component energy transport in
VBL. Equating them and using (3.15), we implicitly relate θ̄I(t) with ¯̃xA,I(t)

(η̄1/Le� − 1)[(θ̄I(t) − θw)/Bi(t) + L̄/(c̄(g)
pA Le�) ln η̄] = Le�−1[θ∞ − θ̄I(t)] ln η̄, (3.17)

where the conductive (or non-volatile) Biot number and a modified Lewis number arise,

Bi(t) = k(g)h̄(t)
k(l)δ

, Le� = k(g)

CDABc̄(g)
pA

. (3.18a,b)

The solution of (3.17) describes the basic state of the gas–liquid interface at a given
liquid thickness h̄ with simultaneous heat and mass transfer. Equation (3.17) generalizes
(4) in Bestehorn & Merkt (2006) to a binary-species VBL with the nonlinear dependence
of ¯̃xA and θ̄ (g) on z (see (3.5) and (3.12)) which is generally possible, because a linear
approximation of the gas temperature could be questionable (Ward & Stanga 2001) unless
the gas layer is really thin or the liquid is in equilibrium with a VBL of constant vapour
pressure. We can also estimate Le� = 1.135 using the data in table 1. As a final note, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

57
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.572


904 A1-22 T. Wei and M. Zhang

well-defined Bi represents an integral heat-transfer characteristic at the interface. Here,
it describes the influences of conductive/convective heat flux through VBL. For slow
evolution, a characteristic thickness h� can be chosen to replace h̄(t) such that Bi = k̂h�/δ,
as in Ehrhard & Davis (1991) a constant thickness scale was used in the spreading model
of a viscous droplet.

3.2. Basic state for gas–liquid interface
In the quasi-equilibrium limit of KAB → 0, there is no resistance to phase change at the
gas–liquid interface, which is in thermal (θI = θA,s( pA,I)) and chemical (see (2.30) or
(C 3)) equilibria with the VBL. The latter condition gives

Θ̄I,eq = Γ ΔX̃eq, (3.19)

where ΔX̃eq = ¯̃xA,I,eq − x̃A,w. Equation (3.19) is exact even with a deformed interface
and dictates the variation of interfacial saturation temperature due to concentration
fluctuations. On the other hand, when KAB → ∞, then N̄(g)

Az (h̄, t) → 0, which invalidates
(3.17) because (3.12) becomes indefinite. At equilibrium, we have J̄0 = 0. Solving (C 1)
for H yields a ‘stationary thickness’ of the liquid layer

H̄st = Γ ΔX̃st/[Bi(Θ∞ − Γ ΔX̃st)], (3.20)

where ΔX̃st = ¯̃xA,I,st − x̃A,w and the subscript ‘st’ means that the interface is stationary.
However, the equilibrium for H̄st can be unstable to LW disturbances subjected to RTI and
(3.20) holds only for the flat basic state (cf. §§ 6.3 and 6.5).

In the general non-equilibrium cases, by dropping the ∂X terms in (2.31) and (2.45) we
obtain the dynamical system that governs the basic-state variables, (H̄, ¯̃xA,I):

d ¯̃xA,I

dT
= 1 − ¯̃xA,I

Ω
{J2

0[ ¯̃xA,I, H̄] − M̂(Δ−1 ln η̄)2}, dH̄
dT

= EJ0[ ¯̃xA,I, H̄]. (3.21a,b)

This system could be solved numerically with appropriate initial conditions (see § 6.3).
Nevertheless, for an analytical study the pseudo-steady approximation allows us to neglect
the time derivative in (3.21a), which means the vertical convection and diffusion effects of
vapour balancing at the interface, while the time dependence is reserved in (3.21b), acting
as a kinematic condition. The validity condition for the pseudo-steady assumption will be
given at the end of this section. It follows that

H̄ = ΔΓ ΔX̃ + KABM̂1/2 ln η̄

ΔBi(Θ∞ − Γ�X̃) − M̂1/2(1 + KABBi) ln η̄
≡ f3[ ¯̃xA,I], (3.22)

with ΔX̃ = ¯̃xA,I − x̃A,w, which can be regarded as a functional of ¯̃xA,I and is valid for both
condensation and evaporation. Substitution of (3.22) into (3.21b) yields

dH̄
dT

= E[Γ ΔX̃ − (Θ∞ − Γ ΔX̃)Bi f3]
KAB + (1 + KABBi) f3

. (3.23)
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Differentiating (3.22) and inserting (3.23) gives an ordinary differential equation (ODE)
for ¯̃xA,I:

d ¯̃xA,I

dT
=

EM̂(1 + KABBi)2 ln η̄

[
ln η̄ + ΔBi(Γ ΔX̃ − Θ∞)

(1 + KABBi)M̂1/2

]2

Δ2Γ

[
ln η̄ − ΔX̃

1 − ¯̃xA,I

− BiΘ∞

(
KAB

Γ (1 − ¯̃xA,I)
+ Δ

M̂1/2

)] . (3.24)

Comparison with (3.21a) shows that the pseudo-steady approximation decouples ¯̃xA,I

from H̄. This simplification is crucial in that H̄ can be solved sequentially from (3.23).
Moreover, if ΔX̃ is small enough, linearizing (3.22) and (3.23) around x̃A,w yields,

H̄ =
ΔBiΘ∞

(
ΔΓ + KABM̂1/2

1 − x̃A,w

)
ΔX̃ −

[
Δ(Γ ΔX̃ − KABBiΘ∞)

M̂1/2
+ KAB(1 + KABBi) ln X̃

]
M̂ ln X̃

[ΔBiΘ∞ − (1 + KABBi)M̂1/2 ln X̃]2
,

(3.25)

dH̄/dT = −EM̂1/2Δ−1[ln X̃ + ΔX̃/(1 − x̃A,w)], (3.26)

with the concentration ratio X̃ ≡ (1 − x̃A∞)/(1 − x̃A,w) and X̃ ∈ (X̃l, 1) for condensation,
where the lower limit X̃l depends upon the properties of species A and ambient conditions.
Elimination of ΔX̃ in (3.26) with (3.25) decouples H̄ from ¯̃xA,I completely. The resulting
ODE is integrable and H̄ is given by

H̄(T) = (Σ − Π)
[
1 − exp(ΞT)

]+ H̄(0) exp(ΞT), (3.27)

in which the parameter groups are

(Σ,Π) = ln X̃([ΔΓ M̂1/2(1− x̃A,w) − KABM̂(1+KABBi)] ln X̃,Δ2BiΘ∞Γ (1− x̃A,w))

[(1 + KABBi)M̂1/2 ln X̃ − ΔBiΘ∞]2
,

Ξ = E[(1 + KABBi)M̂1/2 ln X̃ − ΔBiΘ∞]2

Δ2[Γ (1 − x̃A,w)(ln X̃ − ΔM̂−1/2BiΘ∞) − KABBiΘ∞]
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.28)

Introducing a composite parameter and a new temporal variable: X̃′ = Σ − Π and T ′ =
ΞT , (3.27) reduces to

H̄(T ′) = X̃′(1 − eT ′
) + H̄(0) eT ′

. (3.29)

Here, the use of symbol X̃′ for the composite parameter implies that, just as with X̃,
it depends upon θw because both Σ and Π essentially are functions of θw. For an
ethanol–nitrogen system of h0 = 0.5 mm, δ = 5 mm, θ∞ = 330 K and x̃A∞ = 0.2, the
parameter X̃′ ≈ 7.8, obtained with the data in tables 1 and 2. Note also that Σ , Π and
Ξ show relatively weak dependences upon KAB (e.g. with variations in â); for example,
the relative variations are less than 4 %, 2 % and 1 %, respectively, as KAB is increased
by 10 times. Figure 3 shows the temporal evolution of H̄ and ¯̃xA,I with the linearized,
pseudo-steady expressions (3.29) and (3.22) in terms of X̃′ and T ′. These curves are built
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FIGURE 3. Temporal evolution of the basic state for a condensing layer with different values of
the parameter X̃′. (a) H̄(T ′) obtained from the linearized expression (3.29). The inset represents
the parametric relation between X̃′ and X̃ in terms of θw. (b) ¯̃xA,I(T ′) obtained from the
pseudo-steady approximation (3.22).

by propagating time backwards (negative T ′) due to Ξ < 0 for condensation. Each curve is
a concave function, suggesting a decreasing condensation rate with increasing thickness.
This is reasonable because the concentration difference between ambient and interface
becomes smaller with thickening (in the absence of instabilities). In the inset of figure 3(a),
the relation between X̃′ and X̃ is plotted as a parametric curve, which is monotonically
decreasing with an increase in θw. It is found that an increase in θw raises x̃A,w and thus X̃.
The corresponding decrease in X̃′ then results in a lower condensation rate, as indicated
by the arrows.

In closing this subsection, the criterion for neglecting the time derivative in (3.21a) is
revealed by the comparison with (3.24), that is,

EΩ(1 + KABBi)2

Γ ln η̄

[ln η̄ + Bi(1 + KABBi)−1ΔM̂−1/2(Γ ΔX̃ − Θ∞)]2

(1 − ¯̃xA,I) ln η̄ − ΔX̃ − BiΘ∞[KABΓ −1 + ΔM̂−1/2(1 − ¯̃xA,I)]
	 1.

(3.30)

It can be satisfied easily with any fixed x̃A∞ because usually E, Ω 	 1 and Γ = O(1),
e.g. using the properties and parameters in tables 1 and 2, the left-hand side has a value of
0.0018.

4. Linear stability: modal analysis

Having formulated the basic state, we conduct a temporal normal-mode analysis for the
instantaneous growth rate of the interfacial basic state (H̄, ¯̃xA,I) by writing the solutions of
(2.45) and (2.31) as follows,

H(X,T) = H̄(T) + A exp(ikX + ωT), (4.1a)

x̃A,I(X,T) = ¯̃xA,I(T) + B exp(ikX + ωT), (4.1b)

with the initial amplitudes of disturbances |A| 	 H̄ and |B| 	 ¯̃xA,I . The linear
growth rate ω is actually a time-dependent function since the basic solutions are
unsteady, which can be represented as a time integral of a certain function of the
basic state (see e.g. Burelbach et al. 1988; Wei & Duan 2018). Here, the basic
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state can be considered to vary slowly compared with the growth of the most
unstable disturbance that one can freeze it at an instant Tps so as to examine the
pseudo-steady linear stability. A characteristic equation coupling H̄ and ¯̃xA,I , that entails
ω[k; H̄, ¯̃xA,I; G, S,E,Ma,D,Pr,KAB,Gr,Bi,Ω, Γ, M̂,Δ,Θ∞] = 0, can be obtained in a
straightforward manner (appendix F), which is a quadratic equation for ω. Here, we restrict
our attention to two-dimensional disturbances because it was shown that the stability for
three-dimensional disturbances can be related to that for two-dimensional ones by an
extended form of Squire’s transformation (Yih 1955).

The dispersion relation (F 1) is too complicated to distinguish the essential effects of
certain physical mechanisms. Thus we first neglect the effects of mass flux, interfacial
non-equilibrium, heat flux in VBL and buoyancy in the liquid with E = KAB = Bi = Gr =
0. In the simplified case, an explicit expression of ω for Ω /= 0 can be found

ω = − 1
2Ω

{
k2 − k2

0 + ΩH̄3(G + Sk2)k2 +
√

[k2 − k2
0 − ΩH̄3(G + Sk2)k2]2 + 8ΩMk2

}
,

(4.2)

with M = Ma Pr−1Γ 3(1 − ¯̃xA,I)ΔX̃2H̄−1, and

k2
0 = 2Γ 2(1 − ¯̃xA,I)ΔX̃

H̄2
− 2M̂

Δ2
ln η̄ = 2M̂ ln η̄

Δ2

[
(1 − ¯̃xA,I) ln η̄

ΔX̃
− 1

]
. (4.3)

On the right-hand side of (4.2), the first k2-term in the curly brace and the first one under
the radical sign both result from the horizontal diffusion term in the interfacial transport
equation (2.31). The basic-state thickness (3.22) has been used in the second equality
of (4.3) and the exponent ‘2’ in k2

0 just reminds us that k2
0 > 0. Here, we have chosen

the solution to the quadratic equation (F 1) with a minus sign before the square root
based on the physical consideration: the horizontal diffusion of vapour in itself and the
thermocapillarity have stabilizing effects for the condensing layers. Note also that ω → 0
as k → 0, which means that a well-known fictitious non-zero growth rate, originating from
the pseudo-steady approach (Burelbach et al. 1988), disappears and thus (4.2) remains
valid as k → 0.

Consider a mechanical disturbance at a location of the condensing interface of the basic
state such that the layer begins to thicken locally, where less heat is transferred from the
interface to the liquid; then the condensing flux and the molar fraction of non-condensable
gas x̃B,I will decrease at the bulge relative to those of its neighbouring regions. Assuming
locally thermodynamic quasi-equilibrium on the interface, valid for low phase-change
rates, pA,I will increase at the bulge since the total pressure p0 remains constant and
the partial pressure pi ∝ x̃i. This, in turn, raises the local ΘI at which vapour would
condense or evaporate, and hence the local surface tension will be diminished. Similarly,
an opposite process occurs in a trough. The resulting Marangoni stresses contribute to the
convection of interfacial liquid away from crests (see the later nonlinear simulation with
an equilibrium initial concentration in figure 14), and thus reduce the growth rate of the
interfacial perturbations (figure 4a). Therefore, the presence of a non-condensable gas has
an indirect stabilizing effect through the induced enhancement of the thermal Marangoni
effect, which arises from the fluctuation of pA,I apart from temperature variations due to
fluctuations of liquid thickness. This mechanism is encoded in the 8ΩMk2 term in (4.2),
which also depends upon the physical properties of the binary system.

Physically, diffusive transport of vapour along the interface tends to diminish the
above-mentioned concentration gradient. If pA,I > ps, the local condensation rate tends
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FIGURE 4. Linear growth rate ω as a function of wavenumber k for the Rayleigh–Taylor
unstable ethanol–nitrogen condensing system (table 1) with h0 = 0.5 mm, H̄(0) = 1, δ = 5 mm,
x̃A∞ = 0.409, θ∞ = 330 K and â = 0.01. (a) Interaction between Ma and Ω , as calculated from
(4.2) for Ma = 16014.2 (lower family: red) with kc = 0.255 and for Ma = 1600 (upper family:
black) with kc = 0.287. (b) Influence of a single effect discerned by separately suppressing:
condensation, vapour convection along interface, heat flux in the gas or negative gravity, as
calculated from (F 1). The relevant critical wavenumbers: kc = 0.242 with all effects or with
Ω = 0; kc = 0.254 with Bi = 0, and kc = 0.278 without phase change.

to increase (decrease) in a thin (thick) region as j ∝ x̃A,I for a fixed θI (2.15). From an
inspection of (4.2), it is obvious that this stabilizing effect of the ensuing differential mass
fluxes should be more appreciable for a shorter wavelength (or larger k) and that capillarity
suppresses short-wave (SW) disturbances otherwise. On the other hand, vapour diffusion
along the interface tends to weaken the stabilization of the thermal Marangoni effect since
∇1ΘI ∝ ∇1 x̃A,I; again, the diffusion has only SW effects, as found from our nonlinear
simulations later (see panels b,d of figures 11 and 12). Note also that the two terms in the
square brackets of (4.3) result from the vertical convection and diffusion terms in (2.31).
Normally, the latter is much slower since ΔX̃ 	 1 (e.g. for the ethanol–nitrogen system
ΔX̃ = 0.0169). An order-of-magnitude analysis (see Kanatani 2013, (1.8) and (1.9)) can
justify that the characteristic velocity of condensation, vcond, (associated with vertical
convection, see (2.16)) is usually much larger than that of vapour diffusion along the
interface, and that vcond also sets an upper limit for the vertical diffusion velocity near the
interface regardless of the condensation rate and liquid thickness. Therefore, the influence
of vapour diffusion on the Marangoni effect should be relatively weak in the LW regime.
We shall return to the issue of the vertical convection and diffusion of vapour in § 6.3
when we consider a non-stationary base state.

With Ω = 0 additionally, Kanatani (2013) derived a dispersion relation that allows an
investigation of the influence of vertical convection of vapour on the LW Marangoni
effect. The effect of Ω has also been discussed briefly by Kanatani (2013) for evaporating
films with G > 0. In our dispersion relation (4.2) for Ω /= 0, the pertinent term 8ΩMk2

is related to the Marangoni effect. Here, we further investigate the stabilization of the
interface Schmidt number (Ω) and its interaction with Ma for the Rayleigh–Taylor
unstable condensing layers.

It is the presence of the vapour convection along the interface, entrained by interfacial
fluids under the initial RTI, that enhances ∇1 x̃A,I against the relatively slow diffusion
of vapour along the interface (manifested by ΩGH̄3k2 and k2, respectively, in (4.2), i.e.
Ω|G|H̄3 � 1 for H̄ = O(1)) until the interface convection is mitigated concurrently by
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the induced Marangoni effect, as will be elucidated further in § 6.4 (cf. figures 9d, f, 10
and 11d) and § 7. For the ethanol–nitrogen system, figure 4(a) presents the effects of the
interaction between Ma and Ω on the initial growth rate of a flat film using the physical
properties listed in table 1. It is seen that the stabilization offered by the convective
derivative of x̃A,I along interface, measured by Ω , is more evident for a weaker Marangoni
effect over the full unstable spectra in the sense that the reduction in ω by increasing Ω is
more significant for a smaller Ma. This can be explained physically. With less Marangoni
stabilization, the initial growth rate will be greater and the interfacial convection will be
stronger at the very beginning of RTI. Consequently, for a more rapid temporal variation
in x̃A,I , a larger ‘stability gap’ needs to be compensated by the induced Marangoni effect
through the resulting ∇1 x̃A,I . Moreover, Ω has no effect on the cutoff wavenumber, kc,
because it is multiplied by ω in (F 1). Both the most unstable wavenumber, km, and the
maximum growth rate, ωm, increase as Ω decreases. These behaviours can also be found
in figure 4(b) by comparing the dashed (Ω = 0) and solid (Ω /= 0) lines. For a fixed
Ma, the dispersion curves for different values of Ω converge rapidly nearby kc due to
the increasingly dominant O(k4) capillary effect, while the first derivative (dω/dk)kc is
determined by both Ω and Ma. As a result, there is a broad ‘plateau’ of slight slope on
each curve, which is more evident with a smaller Ma and an adequate Ω . Therefore, it
can be concluded that the stabilizing effect of Ω is more significant for the modes with
relatively larger growth rates.

The two dispersion curves in figure 4(a) with Ω = 0.01 are similar to that of the pure
RTI in Pillai & Narayanan (2018) (solid line in their figure 2a for an ethanol bilayer) in
terms of unstable spectra, while the growth-rate magnitudes decrease by several orders.
This is mainly because, in our ethanol–nitrogen system, the vapour convection along
the interface (even to a weak degree of Ω = O(10−2)) in the presence of an inert gas
can enhance the thermal Marangoni effect, which plays a stabilizing role. The stability
mechanism, however, is absent in that pure-component isothermal case.

Figure 4(b) shows the initial growth rate of disturbances for the ethanol–nitrogen
system, calculated with either all the physical effects presented or one of them suppressed.
When all the effects are included with realistic parameters, km = 0.122 corresponds to a
relatively long wavelength of λm ≈ 16.4π, where λ = λ̃/h0 = 2π/k is the dimensionless
wavelength. It is found that the stabilizing effect of Ω is significant for this system with
G < 0 since the initial RTI contributes to a rapid vapour convection along the interface.
This is in contrast to the evaporation case with G > 0 in Kanatani (2013) (see figure 10
there), where the effect of Ω is weak; and our growth rates are larger by O(102). The reason
is that, for the heated evaporating layer with G > 0, the initial thermocapillary instability
can only give rise to a slow interfacial convection of vapour under the stabilization of
gravity, then the vapour convection relaxes the thermocapillarity and thus the convection
itself.

Since x̃A,I and ΘI are related to J through (2.30), diffusion and convection of vapour
at the interface do affect local mass fluxes through the thermodynamic condition. The
existence of an inert gas makes the influence of mass fluxes on ω wavenumber dependent.
This is in contrast to the case without an inert gas, where the mass-flux effect is
independent of k and only vertical translation of the dispersion curve relative to that
of E = 0 without changing its shape will be seen in the pseudo-steady analysis. For
example, the dispersion curve for condensation/evaporation appears as downward/upward
shifting of that of E = 0 in figure 19 of Burelbach et al. (1988), which also causes a
spurious stabilizing/destabilizing effect as k → 0. Comparing the dispersion curve for
the non-condensing case (dash-dot-dotted) with that involving full effects (solid line) in
figure 4(b), it can be seen that the stabilizing effect of mass gain is more evident for larger
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k (or shorter λ). Furthermore, the variation in E disproportionately changes the shape of
the curve as well as km and kc with ω(k = 0) remaining zero. These have to do with the
fact that the vapour diffusion along the interface is stronger for SW disturbances. Another
reason for the features of the mass-gain effect is that the characteristic velocity of phase
change is much larger than that of the vapour diffusion (Kanatani 2013).

In addition, there is no instability if g = 0 in the long-wave regime. A comparison of the
dotted (Bi = 0) and solid (Bi /= 0) lines reveals that the ambient heating has a secondary
stabilizing effect on the condensing layer. We also find that the four lower curves in
figure 4(b) are insensitive to KAB with respect to the variation in â within the range of
0.01 � â ≤ 1. For an initial flat interface, both the vapour recoil and buoyancy effects are
relatively weak in the long-wave regime, so are not investigated here with LSA.

In addition, for the one-sided model there is an explicit cutoff wavenumber

k∗
c (Tps) = [S−1(E∗ 2D−1 f̄ ∗

2 J̄∗ 2
0 − KMa∗Pr−1H̄−1 f̄ ∗

2 J̄∗
0 − G − 11

120 Gr∗

− 3
20 Gr∗KH̄f̄ ∗

2 J̄∗
0 − 29

120 Gr∗K2J̄∗ 2
0 )]1/2, (4.4)

which is obtained by letting the effective growth rate ωeff = 0 in (F 2). Above k∗
c ,

ωeff < 0 and no instability is present. The maximum pseudo-steady growth rate ωeff ,m

corresponds to k∗
m = k∗

c/
√

2. The wavelength of the most dangerous mode (λ∗
m = 2π/k∗

m)
is approximately 9.7π at Tps = 0 with E∗ = 0.0032, Ma∗ = 3432.4, Gr∗ = −10.4 and
K = 0.0076, evaluated using the parameters in tables 1 and 2.

5. Numerical implementation

Having explored the pseudo-steady linear stability, we now study the nonlinear
stability numerically with both the one- and 1.5-sided models. This allows us to follow
the spatio-temporal evolution from a perturbed initial state to distinct regimes where
local rupture may emerge, or, conversely, a pseudo-steady continuous interface with a
quasi-hexagon pattern is possible.

5.1. Problem summary: rescaled evolutionary systems
To make the presentation of numerical results more concise, we introduce the rescaling to
convert the evolution equations, (2.47) and (2.51), into canonical forms,

x̂ =
√

Bo(X,Y) = l̂−1
c x, t̂ = G2S−1T, (5.1a,b)

where l̂c = √
σ0/(ρ|g|). Then the parameters G and S are absorbed into the new groups

E = ES
G2

, D = E2

GD
, M = Ma

G Pr
, G = Gr

G
, N = ΩG2

S
, L = Δ

M̂1/2
.

(5.2a–f )

Here, the modified condensation and Grashof numbers, E and G , quantify the extent of
mass flux and buoyancy effect. The vapour-recoil number, D , indicates the interfacial
pressure caused by vapour thrust. The modified Marangoni number, M , measures the
importance of thermocapillarity relative to hydrostatic effect. The modified interface
Schmidt number, N , measures the convective derivative of vapour along the interface.
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The thickness of VBL is characterized by L . We then recast the general evolutionary
system (2.47) into

∂t̂H − E J0 + ∇̂1 · (H3∇̂1H) + ∇̂1 · [H3∇̂1(∇̂2
1 H)]

− 1
2G ∇̂1 · { 1

3 H4f1[Γ H∇̂1 x̃A,I + f2(KAB + f −1
1 )∇̂1H] − 3

20 H5∇̂1 f2}
+∇̂1 · {H2f1[M (Γ H∇̂1 x̃A,I + KABf2∇̂1H)

+DJ0H(Γ (1 + Bi H)∇̂1 x̃A,I − f2∇̂1H)]} = 0, (5.3a)

N (∂t̂ x̃A,I + Û I · ∇̂1 x̃A,I) − Bo∇̂2
1 x̃A,I = (1 − x̃A,I)[J2

0 − (L −1 ln η)2], (5.3b)

with ∇̂1 = (∂x̂ , ∂ŷ) and

Û I = 1
2 H2{3∇̂1(H + ∇̂2

1 H) + 3DJ0 f1[Γ (1 + Bi H)∇̂1 x̃A,I − f2∇̂1H]

− 1
2G Hf1[Γ H∇̂1 x̃A,I + f2(KAB + f −1

1 )∇̂1H]} + 1
8G H4∇̂1 f2

+ 2M Hf1(Γ H∇̂1 x̃A,I + KABf2∇̂1H). (5.4)

For the subsequent canonical forms and the rescaled independent variables, ‘ˆ’ will be
suppressed. To reconstruct the velocity field with the solution of the canonical equations,
we define a rescaled streamfunction according to (C 8)

Ψ (x, z, t) ≡ Bo1/2E−1ψ = Λ̂
(

1
6 z3 − 1

2 Hz2)− E −1[ 1
12G ∂x f2

(
1
10 z3 − H3)

− M f1(Γ H∂x x̃A,I + KABf2∂x H)]z2, (5.5)

where z = Z and

Λ̂(x, t) = Bo1/2E−1Λ = −E −1(3DJ0[Γ (1 + Bi H)∂x x̃A,I − f2∂x H] f1 + 3(∂x H + ∂3
x H)

− 1
2G Hf1{Γ H∂x x̃A,I + f2[H + KAB(2 + Bi H)]∂x H}). (5.6)

Accordingly, the canonical form of the one-sided model (2.51) reads

∂tH − E ∗J∗
0 + ∇1 · (H3∇1H) + ∇1 · [H3∇1(∇2

1 H)] + 1
3G

∗∇1 · [H3∇1H

− 1
2 H3∇1(H2f ∗

2 ) + 9
40 H5∇1 f ∗

2 ] + ∇1 · [H2∇1Hf ∗
2 J∗

0(KM ∗ − D∗HJ∗
0)] = 0, (5.7)

where E ∗, D∗, M ∗ and G ∗ can be defined by (5.2a–d) with the one-sided parameters in
(2.52a–d). In the present case, E (∗), G (∗), N , L > 0 and M (∗), D (∗) < 0.

5.2. Numerical method
We consider spatially periodic solutions of (5.3) and (5.7), each of which will be
solved numerically as an initial-value problem with periodic BCs on a square domain
[0, l) × [0, l). The diagonal length of the domain corresponds to a wavelength λ. The
wavenumber, k = ‖k‖ = (k2

x + k2
y)

1/2, is the norm of a wave vector, k = (kx , ky), on
the (x, y)-plane. The ‘method of lines’ (Hammond 1983) is employed to handle the
stiff nonlinear PDEs, in which the spatial derivatives in the coupled system (5.3) are
approximated by sixth-order centred differences, while those in (5.7) are calculated by
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the pseudo-spectral method, both on a uniform mesh with spatial points Rj × Rj ( j =
0, 1, . . . ,N). With the temporal derivative retained, the PDEs are decomposed into sets of
semi-discrete ODEs. The LSODE solver (Radhakrishnan & Hindmarsh 1993), based on
a well established type-insensitive method, is then used to integrate the resulting system
of ODEs at each mesh point over the time interval [0, t(1), t(2), . . . , t(n), . . .]. This solver
can respond efficiently to the stiffness of the systems with an adaptive time step, which
is reduced continually to resolve time scales of different physics until the local solution
cannot satisfy the relative spatial error. The initial condition (IC) for H is a small-amplitude
random or axisymmetric Gaussian disturbance,

H(x, 0) = 1 + mh + ε Rand(x), (5.8a)

H(x, 0) = 1 + mh + εA exp

[
−(x − x0)

2

2σ 2
xy

− ( y − y0)
2

2σ 2
xy

]
, (5.8b)

where ε is the amplitude of the random disturbance and εA is that of the Gaussian at the
domain centre (x0, y0) with |ε|, |εA| 	 1, both fixed at −0.05; Rand(·) is a pseudo-random
function in (−1, 1); σxy is the standard deviation of the Gaussian distribution, taken as 2
here; and the constant mh is used to match the initial average thickness with unity. In
view of the dependence of (2 + 1)-D pattern formation on ICs, the random disturbance
(5.8a) should make the simulation more realistic in the sense that it possesses components
at various wavelengths, which thus will be used in most of what follows. In 1.5-sided
simulations, the initial interface concentration, x̃A,I0 ≡ x̃A,I(x, 0), is assumed to be uniform
and not affected by the initial perturbation in H. It will be prescribed as either the
stationary equilibrium value of an unperturbed interface, ¯̃xA,I,st, using (3.20) or a value
slightly lower than that.

As found later in the one-sided simulations, the pseudo-spectral approximation is
efficient in capturing the rupture event because of its sufficient resolution with high
accuracy. Consider the initial thickness h0 of order 1 mm corresponding to H = 1, the
numerical integration should be terminated once the global minimum, HMin , is less than
a threshold of O(10−4). This is an indication of the local thickness approaching the
upper limit of the range of 10–100 nm, where van der Waals forces become dominant
and will lead to an instantaneous rupture (Burelbach et al. 1988). The intermolecular
forces thus have been neglected over the thickness scale of interest in the present study
(Panzarella, Davis & Bankoff 2000). This instant is then defined as the rupture time, tr.
The convergence of tr is identified with the relative error of (t(n) − t(n−1))/t(1) = O(10−8)

in the (2 + 1)-D cases. On the other hand, when the Marangoni stabilization overrides the
destabilization due to vapour recoil, non-ruptured pseudo-steady state is also possible (see
§ 6.6).

For the 1.5-sided model, it turns out that the free surface may not touch the
substrate in finite time and the minimum thickness may not change significantly after
a transition, which means that the system could converge to a non-ruptured stable
pattern. The integration will be stopped when either of the following criteria is satisfied,
|H(n)

Min − H(n−1)
Min |/(t(n) − t(n−1)) � 10−3 and the pattern will be considered asymptotically

stable after a transition time, ts, or the global maximal concentration approaches the bulk
value, i.e. (x̃A∞ − x̃A,I,Max)/x̃A∞ ≤ 5 %, where the 1.5-sided model could be inappropriate,
while the long-scale variation of ∂x x̃A,I 	 1 still holds to neglect horizontal vapour
diffusion in the VBL. The main reasons are as follows. (i) The validity of the mass transfer
(2.20), by taking the limit z → h+, will be violated since it is based on the assumption
that concentration variations due to the interfacial deformation should be localized on the
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vapour side of the interface. (ii) The vertical diffusion in (2.20) has been approximated
with the pseudo-steady concentration of the basic-state VBL, whose thickness may be
changed considerably and even disappear as x̃A,I → x̃A∞. This seems to be inherent to
the system (see the 1-D solution in § 6.3). (iii) The linearization (B 2) that leads to the
closure (2.15) will cease to be valid with the increase in local x̃A,I . In general, the validity
range of this model could be identified by comparing with a full-scale direct numerical
simulation of Navier–Stokes, energy and mass transport equations of the two-phase system
with appropriate free boundary and thermodynamic conditions, which is beyond the scope
of the present work.

The grid independency is checked by repeating the computation with increased
resolution N until tr or HMin (for rupture or non-ruptured cases) has converged to the
desired relative errors of O(10−5) and O(10−6), respectively. In reality, for the 1.5-sided
simulation it is found that the size of the set of algebraic equations to be solved with
λm ≈ 16.4π has frequently gone beyond the computing capabilities available to us in
reliably handling such a large spatial domain for the grid-independency test. Hence, we
consider a disturbance wavenumber between km and kc instead by setting the diagonal
length of the domain to be approximately 0.87λ(∗)m , which also makes the results obtained
from the two models comparable. In other words, in the one- and 1.5-sided models l = 6π
and 10π will be chosen as the side length of the computational domain, respectively.

Moreover, in order to distinguish various mechanisms and their interactions, we may set
the values of relevant parameters not necessarily physically realistic just as the modelling
strategies in Burelbach et al. (1988). Otherwise, the values can be satisfied by choosing
appropriate experimental conditions, such as liquid/gas properties, initial liquid thickness,
substrate temperature and strength of gravity. Specifically, to make the thermocapillary
effect significant (Kanatani & Oron 2011), we take K(AB) = 0.1, which corresponds to the
cases far from equilibrium and is feasible for â ≈ 0.01.

6. Results and discussion

6.1. One-sided model: reference simulations
We first examine the (2 + 1)-D dynamics of a condensing layer subject to RTI by solving
the one-sided model (5.7) with the random initialization (5.8a) in two cases: Case I
for strong vapour thrust and Marangoni effect; and Case II for moderate vapour thrust
and weak Marangoni effect. In addition, since the one-sided model is most relevant to
experiments free of inert gases, we will turn to a quantitative comparison with GG’s
experiment in § 6.6 (Case III). As mentioned in § 5.2, we take l = 6π as the side length of
the domain, whose diagonal fits the disturbances with λ = 3λnv

m , where λnv
m = 2

√
2π is the

fastest growth wavelength of a non-volatile (designated by the superscript ‘nv’) isothermal
layer subject to pure RTI from linear theory (Yiantsios & Higgins 1989; Fermigier et al.
1992). A uniform mesh of 171 × 171 is employed, based on the grid-independency test.

The time series of interface evolution for Case I are presented in figure 5 with K = 0.1,
E ∗ = 0.05, G ∗ = 0.2, M ∗ = D∗ = −1 and Bi = 0.5. The interface starts with a general
relaxation and the self-organization of random perturbations; several crests and troughs
emerge as the initially linear instability is amplified (figure 5a). The local depressions
and peaks experience the stages of deepening/elevating (due mainly to the RTI and strong
vapour recoil) and of broadening and coalescing (due mainly to the strong thermocapillary
and capillary effects). The dynamics unfolds two pairs of competitions between: (i) vapour
recoil (tends to rupture the interface) and the capillary force (tends to coalesce bulges and
smooth the interface) in the regions of thin film, where condensing fluxes and viscous
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FIGURE 5. Evolution of a Rayleigh–Taylor unstable Case I condensing layer, obtained by
solving (5.7) with IC (5.8a) for K = 0.1, E ∗ = 0.05, G ∗ = 0.2, M ∗ = −1, D∗ = −1 and
Bi = 0.5 on a 171 × 171 mesh. The side length of the periodic domain is l = 6π. The successive
snapshots of interface contours with the global minimum and maximum thicknesses (HMin ,
HMax ): (a) t = 2.0, (1.0452, 1.1316); (b) t = 5.0, (0.9169, 1.5832); (c) t = 7.0, (0.5170, 3.3498);
and (d) tr = 9.246, (0.20 × 10−4, 14.8632). The bright (dark) shades correspond to thick (thin)
regions. Each contour has its own brightness scale and thus different images cannot be compared
directly (as well in figure 7). (e) Surface plot at rupture. ( f,g) Evolution of representative profiles:
x = 7.9 and x = 10.5.

forces are much larger than those in the thick regions; (ii) RTI (forming elongated drops
as condensate drains) and stabilizing thermocapillarity (tending to broaden bulges) in
the thick regions. The expansion of the drained regions results in an irregular polygonal
network of liquid ridges (figure 5c). Further opening of the drained regions gives rise
to breakup of the ridge network as well as the emergence of isolated droplets at the
moment of rupture, as shown in figure 5(d,e). The interaction among drops and ridges (e.g.
coalescence) during the late stage is responsible for the breakup of this polygonal structure.
The primary and secondary droplets become gradually axisymmetric with the growth in
amplitude (cf. figure 5f ) due to the attenuating interaction with adjacent drops/ridges and
the increasing capillary forces (see the transition from figures 5c to 5d).

With one order-of-magnitude weaker Marangoni effect of M ∗ = −0.1 (along with
K = 0.01) and a significant but not dominant vapour recoil at D∗ = −0.5, Case II evolves
into a more regular pattern of pendent droplets with more uniform amplitudes relative to
Case I (comparing figures 5e and 6a). In this case, the free surface has the appearance
of long-wave quasi-hexagons at tr = 9.374 (figure 6b), while an irregular pattern is seen
in Case I. The representative x-cross-sections plotted in figure 6(d) show the occurrence
of rupture on x = 0 and the global maximum elevation HMax = 6.5827 along x = 2.107.
The heights of the droplets decrease significantly as compared with that of the primary
drop in Case I. Furthermore, as suggested by figure 6(a), the interfacial temperature is
close to the saturation value with small variations over the interface, consistent with
the weak Marangoni effect. This is evidently because of the small degree of interface
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FIGURE 6. (a) Case II condensing layer subject to RTI at tr = 9.374, obtained by solving (5.7)
with IC (5.8a) for K = 0.01, E ∗ = 0.05, G ∗ = 0.2, M ∗ = −0.1, D∗ = −0.5, Bi = 0.5 and
l = 6π on a 171 × 171 mesh. The surface is coloured by normalized Θ∗

I . (b) Upward view
plotted on an extended domain of [0, 3l/2) × [0, 3l/2) to accommodate an evident pattern and
compare with the film imaged by Som et al. (2007). (c) Shadowgraph image of the interface at the
occurrence of complete coverage of pendent drops with the highest subcooling in an experiment.
Copyright ©2006 Elsevier Ltd. Reprint of figure 8(c) with the permission of Elsevier from
Som et al. (2007). (d) Rupture patterns of the representative profiles at x = 0 and x = 2.107
as highlighted in (a) along with the condensing fluxes at 0.98tr. The red dots in (b) and (d)
denote the global minimum (HMin = 0.45 × 10−4) and maximum thicknesses (HMax = 6.5827)
at the positions of (0 ± ml, 9.267 ± ml) and (2.107 ± ml, 11.975 ± ml), respectively, where
m = 0, 1, 2, . . ..

non-equilibrium (K = 0.01), just as the experimental condition of Som et al. (2007). For
that reason, we will present a comparison of the Case II with their experiment.

In both Cases I and II, it is found that the finite-time rupture always occurs due to
the vapour recoil and Rayleigh–Taylor instabilities. The rupture is nearby the ‘contact
line’ of the highest droplet, where both the Marangoni stresses and localized vapour
recoil are expected to be greatest. The one-sided model thus predicts that a moderate
or strong vapour recoil together with RTI can prevail over the Marangoni and capillary
stabilizations even if the bulk of mass gain occurs in the thin-film regions. For later
reference, a significant Marangoni stabilization, however, can overcome a weak vapour
thrust and leads to a non-rupture state despite the destabilization by gravity (see § 6.6).

6.2. One-sided model: comparison with experiments
It is instructive to compare the surface patterns of the one-sided simulations with those
observed in the relevant RTI experiments: (i) the non-condensing silicone-oil layer by
Fermigier et al. (1992) to infer how the condensation effects and the ICs influence the
interfacial stability, and (ii) the condensing n-pentane by Som et al. (2007) to demonstrate
the applicability of the one-sided model.
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FIGURE 7. Evolution of a Rayleigh–Taylor unstable Case II condensing layer, obtained by
solving (5.7) with IC (5.8b) for the same values of parameters and mesh as in figure 6. The
snapshots of interface contours with the global minimum and maximum thicknesses (HMin ,
HMax ) at (a) t = 6.0, (0.8235, 1.4728) and (b) t = 9.0, (0.3461, 3.5234). (c) A photograph of a
silicone-oil layer hanging on a horizontal substrate, growing from an axisymmetric perturbation
in an experiment without phase change. Copyright ©1992 Cambridge University Press. Reprint
of figure 5(e) with the permission of Cambridge University Press from Fermigier et al. (1992).
(d) Surface plot at tr = 9.592 with HMin = 0.43 × 10−4 and HMax = 4.4867, coloured by
normalized Θ∗

I . (e) Rupture patterns of the representative profiles, those highlighted in (d) are
x = 5.332 and x = 11.096. The red dots denote the global minimum and maximum thicknesses
at the positions of (11.096, 7.275) and (0, 0/6π), respectively, and two local maxima, Hmax =
4.0388/4.0390 at (5.332, 5.433/13.416). ( f ) The corresponding condensing fluxes at 0.98tr.

First, we compare the dynamics of a Rayleigh–Taylor unstable Case II condensing layer
with an experiment by Fermigier et al. (1992), in which the instability was initiated by an
axisymmetric disturbance of dust specks on the interface. Figure 7 displays the solution of
(5.7) for the identical set of parameters as in figure 6, but now we use the axisymmetric
IC (5.8b). As can be seen, the initial dimple deepens and expands into a ring (figure 7a),
which then evolves into peaks with a fourfold symmetry (figure 7b), in the centre of which
a small isolated drop appears; and four larger ones emerge from the corners. The evolution
is almost in accord with the experiment in the early stage (see their figure 5), where the
axisymmetric structure is revealed by the distortion of a ruled screen observed through the
gas–liquid interface. Note that a small drop does form in the centre of the oil layer, whose
image, however, dims out (figure 7c) due to large interface curvatures. This is a typical
issue in the deflectometry technique (Fermigier et al. 1992).

The simulation with the axisymmetric IC predicts a regular interface with enhanced
condensing fluxes on the troughs (figure 7d–f ), where the vapour thrust gives rise to local
rupture due to the kinetic energy it produces. The rupture time tr = 9.592 is slightly larger
than that of the Case II evolved from a random IC, while the heights of the primary droplets
decrease at rupture, see figures 6(d) and 7(e). The distance between two adjacent peaks on
the ring is λp ≈ 8.08 at tr, being close to the average distance of neighbouring peaks in the
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quasi-hexagon of the Case II from a random IC (λp ≈ 9.40 in figure 6b). A comparison
between the two Case II solutions demonstrates that the development of this nonlinear
instability does depend on the choice of ICs. Here, the fourfold rotational symmetry of
the interface is inherited from the axial symmetry of the initial Gaussian and the square
symmetry of the periodic domain. However, a random disturbance breaks the symmetry
of the solution since it does not possess any kind of symmetry.

Next, our Case II simulation with random perturbations yields a quasi-hexagonal array
of drops (figure 6b), which qualitatively agrees with the experimental observations of
the gravitational instability in a silicone-oil layer at a later stage (see Fermigier et al.’s
figure 6 and the symmetric structures designated by ‘A6’ and ‘H’ in their figure 3 for
similarity). However, there is a pronounced difference between the pathway of evolution
in our simulation (cf. figure 5a–d, qualitatively similar in Case II but not shown) and that
in the experiment, but this should not be of surprise because the Case II result has been
obtained from a random perturbation. Moreover, it should be noted that, in addition to
condensation, in their experimental and theoretical studies the Marangoni and buoyancy
effects were also eliminated with an isothermal thin film (see their lubrication model
(3.4)). Therefore, according to the experimental observations and the Case II simulation
using a random IC, the tendency to a hexagonal symmetry from the distinct ICs, in turn,
suggests that the preferred pattern to be selected should be the hexagon one, independent
of condensation, Marangoni and buoyancy effects.

Another noticeable feature is that, with the common effects of negative gravity,
capillarity and viscosity, there was no rupture observed within the time scale of RTI
(τM ≈ 350 s from LSA, subscript ‘M’ representing the fastest growing mode) in their
experiment and simulation (Fermigier et al. 1992). However, in Cases I and II with
random and/or axisymmetric IC, finite-time rupture occurs at tr = 9.246, 9.374 and 9.592,
respectively. All of the rupture times are conspicuously longer than the dimensionless time
constant tM = τMh3

0g2ρ2/(3σ0μ) = 4 and that of the instability in their experiment, e.g.
texp ≈ 2.3–3.4 for axisymmetric perturbations. The slower development of the instabilities
in our simulations can be attributed to the stabilizing effect of thermocapillarity and the
mass addition at troughs (Som et al. 2007) by condensation. The finite-time rupture in our
non-isothermal condensing layers indicates that the combined stabilizations of capillarity,
thermocapillarity and mass gain together with viscous effects lose the competition with
the localized intensifying vapour recoil during the RTI process. The physical explanation
is that the local temperature gradient and thus momentum transfer associated with vapour
thrust at an interfacial trough become greater as a trough gets closer to the cooled plate,
where the heat and mass fluxes are locally highest (cf. condensing fluxes near tr in
figures 6d and 7f ).

Meanwhile, gravitational potential energy drives the condensate from the thin regions
into the bulges where the pressure is reduced and the resulting pressure gradient
further collects liquids into the lower lying droplets. It implies that the stabilization
of thermocapillarity (to a weak or significant degree) and capillarity could not afford
the continuous mass gain and the moderate-to-strong vapour recoil. Moreover, it is
worth noticing that both the ratios of vertical to horizontal length scales in the two
Case II results, HMax/λp ≈ 0.7 (figure 6) and Hmax/λp ≈ 0.5 (figure 7), are much larger
than a corresponding ratio in the final stage of the experiment, (e∗/h0)/(λ̃p/l̂c) = 0.155
(Fermigier et al. 1992), where the typical thickness h0 = 0.2 mm, the capillary length
l̂c = 1.49 mm, the critical thickness for dripping instability e∗ = 0.31 mm and λ̃p =
14.9 mm (for hexagonal patterns). Also, λp ≈ 9.40 in the Case II quasi-hexagon is in
good agreement with the experiment, λp = 10. Therefore, if condensation occurs in a
Rayleigh–Taylor unstable layer, it could be deduced that the Marangoni and condensation
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FIGURE 8. Temporal evolutions of the basic solutions for L = 5 (dotted), 10 (dashed) and
20 (solid), obtained by solving (6.1a,b) with ICs H̄(0) = H̄st = 1 and ¯̃xA,I0 = 0.1 (a,b,c) or
¯̃xA,I0 = ¯̃xA,I,st = 0.34 (d,e, f ) for KAB = 0, E = 0.05, Bi = Γ = N = 1, Θ∞ = 0.5, x̃A∞ =
0.2, x̃A,w = 0.09, tMax = 106. (a,d) Thickness H̄; (b,e) interfacial concentration ¯̃xA,I ; (c, f ) mass
flux J̄0. In the inset of panel (b), the three curves are indistinguishable within line width.

effects enhance the instability in amplitude, while its growth rate is greatly lowered by the
Marangoni effect and mass gain in thin regions, which accords with LSA of the 1.5-sided
model (figure 4).

By comparing the Case II result in figure 6(b) with the observations of Som et al.
(2007) (figure 6c), it is expected that for the particular Rayleigh–Taylor unstable film
condensation (during the rise of pressure in an enclosed chamber), the one-sided model
is applicable to reproduce the instability of the vapour–liquid interface with properly
chosen control parameters. In their experiment, the gas is pure saturated vapour of
n-pentane and condensation occurs near equilibrium condition. Particularly, they did not
attribute the stability characteristics to thermocapillary flows and thus tacitly assumed a
weak Marangoni effect. These are consistent with the parameter values of K = 0.01 and
M ∗ = −0.1 in our Case II and the usual simplification (see § 1.1). Additionally, we shall
present an illustrative computation for possible applications of this model in § 6.6.

6.3. Effects of VBL and initial concentration: vertical convection and diffusion
An understanding of the new mechanisms involved in the 1.5-sided model can serve as a
basis for discussing its results later and for comparing with the one-sided model. In this
subsection, the effect of VBL thickness, quantified by L , is probed. It is also instructive
to look at the influence of the initial vapour concentration at interface on the vapour
convection and diffusion in the gas phase. We briefly discuss the two issues using an
unsteady basic state with an evaporating flat interface, in which the vapour transport in
the vertical direction is separated from that along the interface and the resistance to phase
change will be neglected (KAB = 0) for the sake of clarity. In terms of the rescaled variables
in (5.1a,b) and (5.2a–f ), the canonical form of (3.21a,b) reads

N d ¯̃xA,I/dt = (1 − ¯̃xA,I)[J̄2
0 − (L −1 ln η̄)2], dH̄/dt = E J̄0, (6.1a,b)
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where the dynamics of ¯̃xA,I is governed by the vertical convection (via evaporation flow)
and diffusion of vapour through VBL, described by the two right-hand side terms of (6.1a).

Figure 8 compares the temporal evolutions of H̄, ¯̃xA,I and J̄0, obtained from a long
time integration of (6.1a,b) with the imposition of either an initially unsaturated or
saturated interfacial concentration (cf. (3.20)), shown in the upper and lower panels,
respectively, for different L . With an unsaturated initial concentration ¯̃xA,I0, evaporation
occurs immediately (see figure 8c), ¯̃xA,I first increases to a peak and then decreases to
ambient value (x̃A∞ = 0.2) as a result of the slowly vertical diffusion of vapour through
VBL, while J̄0 approaches zero monotonically. Moreover, ¯̃xA,I reaches a higher peak at a
later time as L increases. In contrast, as can be seen in the lower panels, with a saturated
¯̃xA,I0 the basic state sustains the initial equilibrium for t = O(1) by weak evaporation and
then ¯̃xA,I monotonically decays to x̃A∞ without ‘overshooting’ under the effect of vapour
diffusion. Meanwhile, significant evaporation starts only from t = O(1); |J̄0| reaches
its maximum during the transition of ¯̃xA,I to compensate for the vapour diffusion then
vanishes as ¯̃xA,I → x̃A∞. Note also that the maxima of |J̄0| are at least one order of
magnitude less than the initial value (maximum) of |J̄0| with the unsaturated ¯̃xA,I0.

The reasons for the ‘overshoot’ of ¯̃xA,I in the case of an unsaturated initial concentration
are twofold: (i) in the beginning evaporative flux is strongest which is in favour of vapour
build-up on the interface, and (ii) the speed of vertical diffusion of vapour is smaller
than that of vertical convection by evaporation flow near the interface (Kanatani 2013),
which is appreciable in this result. It is also obvious that the transient processes of H̄
and ¯̃xA,I are very slow with a transition time of ts = O(104–105) for both values of ¯̃xA,I0.
It is found that the increase in L will reduce the instantaneous mass flux, slow down
the vertical diffusion and consequently prolong the relaxation time to equilibrium. With
the distinct ¯̃xA,I0, the basic states reach the same equilibrium state for different values of
L . More precisely, H̄ approaches the asymptotic solution (3.20) and ¯̃xA,I → x̃A∞ with
ΔX̃st = x̃A∞ − x̃A,w. For this set of parameters, H̄ → 11/39 as t → ∞. Meanwhile, both
the diffusive and convective fluxes of the vapour vanish. This means that the composition
of the vapour phase becomes uniform and the VBL itself disappears.

Finally, the initial ‘plateau’ in ¯̃xA,I suggests that for an initial concentration not too far
from the saturated value the time derivative of ¯̃xA,I in (6.1a) or (3.21a) is indeed negligible
for the prediction of initial growth rates of infinitesimal perturbations. In the slow-variation
intervals of H̄ and ¯̃xA,I , the basic state can be regarded as pseudo-steady, and thus the linear
analysis in § 4 with the frozen-time approach is warranted.

6.4. The 1.5-sided model: (2 + 1)-D regular non-ruptured pattern
The investigations of Sultan et al. (2005) and Kanatani (2013) motivated the study of a
more complicated situation when both non-equilibrium effect (resistance to advection of
vapour molecules across the interface) and convection/diffusion of vapour are important in
the nonlinear regime. We thus proceed to the fully nonlinear time-dependent simulations
of Rayleigh–Taylor unstable condensing layers with the 1.5-sided model to verify the
LSA for various physical mechanisms based on the dispersion relations (4.2) and (F 1)
and to provide quantitative results for finite-amplitude evolutions of the instability in the
presence of vapour convection and diffusion. The results will be compared with those of
the one-sided model. These are the important subjects in the current study. We consider the
VBL thickness to be sufficiently large that the vertical diffusion of vapour and heat (recall
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(2.19), (3.18a) and § 6.3) are slow and consequently the mass transfer and ambient heating
are expected to be weakened. The relevant parameters KAB = 0.1, E = 0.05, D = −0.1,
Bi = 0.1 and L = 10, are appropriate for this situation. The other parameters (see the
caption of figure 9) should be valid for the ethanol–nitrogen system (tables 1 and 2)
under proper conditions, allowing direct comparison with experiments. In the (2 + 1)-D
simulation, a uniform mesh of 131 × 131 is employed for the 1.5-sided model, which is
close to exhausting the capabilities of the available computer.

With the random interface disturbance (5.8a), nonlinearities rapidly take effect, as
illustrated by the numerical results in figures 9 and 11. It is found that, in contrast to the
Case I result of the one-sided model, there is no elongated droplet after a longer evolution
and the pendent droplets are organized into a regular non-ruptured stable pattern in the
form of LW quasi-hexagons (figure 9a–c). The surface pattern has a well-defined lateral
length scale and the typical wavelength of the instability is comparable to the amplitudes
of the droplets. These are similar to the experimental observations of GG for R-113
filmwise condensation (see their figure 4b,c). Figure 9(c) illustrates the transitions of 4
local minimal thicknesses (Hmin), from which the liquid layer appears to asymptotically
approach a steady state. Actually, the system could achieve a dynamic equilibrium after
a transition time, here ts ≈ 26.5, since then evaporation and condensation occur at nearly
the same rate on the whole (further explained later), analogous to the chemical kinetics
of reversible reaction. As shown in figure 9(d), in the intervening thin regions the
interfacial concentration, x̃A,I , remains closer to the equilibrium value x̃A,w = 0.09 of the
wall temperature with x̃A,I − x̃A,w = O(0.01). In light of the quasi-equilibrium dependence
of interfacial temperature on concentration (3.19) and the value of Γ = 3, it is reasonable
to infer that on those regions the gas immediately above the free surface is nearly saturated
with vapour since a typical temperature of ΘI ≈ 0.03 indeed prevails in the intervening
regions (figure 9e). Thus the asymptotic state is close to the diffusion-limited phase change
with relatively weak mass fluxes (cf. figures 6d and 11b).

The interfacial liquid flows radially from the thin regions to the crests of the pendent
droplets (figure 9b, f ) due mainly to the local evaporation/condensation and the RTI (see
figures 11b and 17c later) and secondarily to the local buoyancy in the droplets (Savino
et al. 2002). The magnitudes of the horizontal velocity on the interface, U I , are relatively
small on the whole, except for the very limited regions within two drops (‖U I(ts)‖Max ≈
0.8). Note that the legend range in figure 9( f ) is for [0, ts] to recognize the substantial
decrease in ‖U I‖ as it approaches a pseudo-steady state (see also figure 10). The interfacial
velocities are relatively larger on the lateral surface of the droplets, consistent with the
typical relation ‖U I‖ ∝ ‖∇1H‖ of the lubrication approximation. Also, U I essentially
vanishes on the crests and the intervening films as ∇1H → 0 there, from where the
stagnation points emerge, corresponding to the local maximal or minimal thicknesses (red
dots in figure 9b). This interfacial convection allows the formation of pendent droplets
and accumulates x̃A,I at the crests, toward where the interfacial flow entrains vapour, and
thus ΘI increases around the crests (figure 9d,e). It should be mentioned that the radially
outward arrow pattern in figure 3(b) of Burgess et al. (2001) never represents the motion
direction of fluid along the gas–liquid interface but manifests the variations of locally
interfacial slopes (see also Fermigier et al. 1992) since it is an accumulated displacement
field of a reference grid (imaged through an oil layer with a ruled screen) and a region with
diverging arrows simply indicates a growing droplet.

Figure 10 presents the evolution of the horizontal velocity on the interface U I at
y = 22. At each instant the velocity field takes a different normalization in figure 10(a)
so that the maximal norms (in orange) have the same length. Thus, different snapshots
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FIGURE 9. Rayleigh–Taylor unstable condensing layer with the effects of convection and
diffusion of vapour, which approaches a pseudo-steady state at ts ≈ 26.5, obtained by solving
(5.3) with IC (5.8a) and x̃A,I0 = 0.1 for KAB = 0.1, E = 0.05, G = 0.2, M = −1, D =
−0.1, Bi = 0.1, Γ = 3, N = 3, Bo = 0.08, L = 10, Θ∞ = 0.5, x̃A∞ = 0.2 and x̃A,w =
0.09 on a 131 × 131 mesh. The side length of the periodic domain is l = 10π. (a) Surface
plot showing the regular pattern of pendent droplets. (b) Interfacial height H contours.
The red dots indicate several local minimal/maximal thicknesses: Hmin at p1(31.42, 5.86),
p2(25.43, 13.20), p3(14.13, 26.18) and p4(11.36, 11.58), and Hmax (not show labels) at
P1(1.41, 22.40), P2(8.21, 14.23), P3(17.58, 7.26) and P4(23.71, 29.57), where p1 (P1) is also
the global minimum (maximum). (c) Evolution of Hmin . (d) Interfacial molar fraction x̃A,I . To
expose features of the distribution, a small region containing the maximum 0.128 at (0.40, 6.13)
beyond the plot range has been clipped. (e) Interfacial temperature ΘI contours. ( f ) Interfacial
horizontal velocity U I , also superimposed on the contours in (b,d,e).
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FIGURE 10. (a) Evolution of horizontal interfacial velocity U I(x, 22, t) in the Rayleigh–Taylor
unstable condensing layer. At t = 26.5, |J| peaks in figure 11(b) are marked with red/blue curly
braces for evaporation/condensation (sink/source-like) in the dashed box. (b) Temporal evolution
of ‖U I‖ between consecutive moments at each x-position (red dots in (a) with Δx = 1).
Accelerating and decelerating locations are marked as ‘+’ and ‘−’, respectively. Non-accelerated
locations are grey. Separations between time levels are not to scale.

should not be compared directly. To illustrate the variation of the interfacial velocity
magnitude, figure 10(b) compares ‖U I(x, 22, t)‖ between the consecutive moments for
each x-position (see red dots in figure 10a). If the absolute value of ‖U I[t(n+1)]‖ −
‖U I[t(n)]‖ is less than a small criterion of 0.002, the velocity magnitude is considered
unchanged and the x-position is marked as ‘=’ at t(n+1) level; if ‖U I[t(n+1)]‖ > ‖U I[t(n)]‖,
the x-position is marked as ‘+’ for acceleration; if ‖U I[t(n+1)]‖ < ‖U I[t(n)]‖, marked
as ‘−’ for deceleration. The most evident fact seen in figure 10 is that, following an
initial acceleration due to the RTI, the interfacial velocity decreases significantly in most
positions as it approaches a pseudo-steady state. This phenomenon can be ascribed to
an induced Marangoni stabilization by interfacial convection in the presence of an inert
component, besides the well-known stabilizing effects of viscous dissipation and surface
tension.

The spatio-temporal evolutions of the representative profiles are presented for y = 22 in
figure 11, supplementing the results in figures 9 and 10. From figure 11(a), a coalescence
of two bulges as a pendent drop can be observed at t = 24. The mass flux shown in
figure 11(b) suggests that the entire surface undergoes evaporation (J < 0) in the early
stage of the instability. It becomes understandable when recalling the initial mass flux J̄0
in figure 8(c). The essential reason of this phenomenon is that the initial concentration,
x̃A,I0 = 0.1, is less than the value, ¯̃xA,I,st ≈ 0.1052, for stationary equilibrium of the basic
state (H̄st = 1), as given by (3.20). Naturally, x̃A,I tends to increase initially via evaporation
(figure 11d before t ≈ 16) with the inhomogeneity owing its origin to the interfacial
convection (figure 10a). The mass-flux profile at ts ≈ 26.5 is also consistent with the
local interfacial velocity (see the dashed box in figure 10a). The evaporation (J < 0) and
condensation (J > 0), respectively, at the crests and troughs contribute to suppressing the
increase in interfacial deformation and to avoiding rupture.

The mechanism for the avoidance of interface rupture is as follows. On the one
hand, the resulting concentration gradient, ∇1 x̃A,I , gives rise to the diffusion of vapour
from warmer, higher-concentration regions towards cooler, lower-concentration regions
along the interface over short scales compared to the LW interface instability (cf. § 4).
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FIGURE 11. Evolution of the representative profiles of y = 22 in the Rayleigh–Taylor unstable
condensing layer: (a–d) H, J, ΘI and x̃A,I . The y-cross-section is near to that involving HMax
in figure 9(b). The consecutive curves are taken at t = 0, 10, 16, 20, 23.5, 24, 24.5, 25
and ts ≈ 26.5.

Thus x̃A,I tends to diffuse from the relatively thicker regions to the thinner ones with SW
variations, as will pA,I (see (B 2)) that allows differential mass fluxes. This is most clearly
demonstrated in figure 11(c,d) after t = 20. The SW variations in x̃A,I also justify the
linear analysis of Kanatani (2013). As a result, the vapour diffusion along interface plays
a stabilizing role through the differential mass fluxes. As seen in figure 11(a,b,d), two
local maxima of x̃A,I arise in two local Hmin after t = 20 due to the continuous diffusion,
corresponding to the (annular) valleys (at x ≈ 11 and 19) around the central droplet, which
results in gradual increase of the local condensation fluxes. In addition, the convection
velocity associated with phase change is typically larger than those of vapour diffusion
(cf. Kanatani (2013) and § 6.3) such that evaporation on the crests near x ≈ 1.5 and 15
suffices to compensate the ‘vapour dimples’ (see figure 11d), caused by the interfacial
diffusion. On the other hand, the vapour convection along the interface, entrained by
interfacial fluid under the initial instability, will enhance ∇1 x̃A,I (figure 11d) until the
interfacial convection is alleviated by the induced Marangoni effect that is reinforced just
by the resulting concentration gradient (cf. § 4). Such a phenomenon manifests itself in
figures 9( f ) and 10(b). Thus the vapour convection offers a stabilization by enhancing the
Marangoni effect, measured by the interface Schmidt number, N .

Considering that the interface is initially unsaturated with vapour, there are two
main scenarios to approach locally thermodynamic equilibrium with time. In respect to
chemical equilibrium, during the initial evaporating stage (t � 16 in figure 11), in most
regions x̃A,I increases as vapour is transported towards the interface by evaporating flow
(convection) and by diffusion through the VBL (cf. figure 8b). Meanwhile, vapour will
diffuse along the interface that x̃A,I naturally tends to local equilibrium, as described above.
For thermal equilibrium, the temperature dependency (B 1) of coexistence pressure, ps(θI),
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indicates that any transient thermal variation in the interfacial liquid will alter the local
ps. As the local θI increases, for instance, due to the growth of a droplet under RTI into
the hotter region below, the local ps will rise accordingly. Thus, if originally pA,I < ps
at a droplet apex, more evaporation can occur that evaporative cooling counteracts the
temperature rise there (see ‘thermal dimples’ on the two apexes in figure 11c). A reverse
situation occurs at a trough, i.e. enhanced condensation suppressing θI decrease. At the
troughs around the central droplet, the mass and heat fluxes become locally highest, where
the increase in ΘI can be identified in the late stage (figure 11c). Eventually, the RTI would
be suppressed by the stabilization of differential mass fluxes as well as the mechanical
equilibria of interfacial to viscous forces in thin regions and interfacial to gravitational
forces in thick regions (see also § 7).

On suppression of the RTI of a volatile layer suspended from a cooled surface and
heated from below, there are similarities between the 1.5-sided result and those obtained
from a one-sided and a simplified Cahn–Hilliard model by Bestehorn & Merkt (2006).
Both the self-organized pattern formations result in regular surfaces without rupture,
while coarsening and elongating do not occur. The stabilizing mechanism in Bestehorn
& Merkt (2006) is a balance of local evaporation and condensation determined only by
heat conduction in the liquid when an initial interface is in equilibrium with its vapour.
However, it is intrinsically due to the convection and diffusion of vapour in our model.
Without thermal Marangoni effect in their pure-component case, its stabilization can never
be enhanced by the interfacial convection of vapour (see also figures 4a and 18a).

Furthermore, by making comparisons of figures 9(a–c) and 11(a) with figures 5(e, f )
and 6(b,d), we found that, with a moderate-to-strong vapour recoil, the one-sided model
predicts either an elongated solitary drop or a quasi-hexagonal pattern, but finite-time
rupture appears to be inevitable under RTI. However, for the 1.5-sided model the
interfacial instability takes a longer duration to develop and can converge asymptotically
to a non-ruptured quasi-hexagonal pattern, where the pendent droplets advance less into
the hot vapour under the equivalent physical and initial conditions. The implication of
this result is that when a pure liquid layer with phase change is subjected to RTI, even
the solutal Marangoni effect being ignored, the effect of an inert component in the
gas phase cannot be neglected owing to the local concentration variation of the volatile
component, which has been taken into account in the 1.5-sided model with the convection
and diffusion of vapour near the interface.

Stabilization of the RTI has also been demonstrated in Kanatani & Oron (2011). It is
appropriate at this point to briefly discuss the similarities and differences between the two
models. A similar thermodynamic relation at the interface, derived previously by Kanatani
(2010), was used in their model, where both the fluctuations of interfacial temperature
and vapour pressure were connected to the mass flux (cf. (2.15)). On the other hand, in
our 1.5-sided model, the effect of the viscous stress of vapour is neglected (see (2.11)).
However, they considered the interfacial shear stresses imparted by lateral vapour flow,
arising from the confined geometry. Thus, they established a two-sided model, which
incorporated viscous coupling between the liquid and vapour, but in the absence of an inert
gas. Furthermore, in our model, the essential factor that influences the vapour convection
near the interface is the phase-change-induced gas bulk flow, similar to that in Pillai &
Narayanan (2018), instead of the lateral variations of vapour pressure near the interface in
their model. In the confined, thin, bilayer system, the vapour pressure variation served
as a direct stabilizing mechanism for RTI: the vapour pressure becomes higher/lower
where liquid evaporates/vapour condenses; the higher pressure pushes the interface where
approaching the heated vapour-side wall, while the lower one pulls it where approaching
the cooled liquid-side wall. The other major distinction is that they neglected the mass
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FIGURE 12. Evolution of the Rayleigh–Taylor unstable condensing layer, obtained by solving
the (1 + 1)-D version of (5.3) with l = 10

√
2π, IC (5.8a) and x̃A,I0 ≈ 0.1052. The other

parameters are the same as those in figure 9. (a–d) H, J, ΘI and x̃A,I . The consecutive curves are
taken at t = 0, 5, 10, 15, 20, 25 and tmax = 28.2. The insets show the early stages with Δt = 5.

loss/gain term for the liquid layer so that the liquid mass was conserved (contrasting their
(1a) with (2.44)). A corollary of the assumption is that the total interfacial flux over a
period must always vanish (see (17) there). As indicated in their conclusion, the solutions
for Rayleigh–Taylor unstable cases could be modified as the steady states were approached
by including the mass-loss/gain effect.

6.5. The 1.5-sided model: (1 + 1)-D dynamics with equilibrium initial concentration
In this section we present the numerical results for a (1 + 1)-D case by integrating
the 1.5-sided model (5.3) on [0, l) with a random perturbation superimposed on the
basic state H̄st = 1 and an initial equilibrium concentration stipulated by (3.20), i.e.
x̃A,I0 = ¯̃xA,I,st ≈ 0.1052. To quantify the intensity of phase change, it is useful to define a
global mass flux, Jg = E

∫ l
0 J(x, t) dx , which has been scaled by E and thus is independent

of the temperature scale (see the last expression in (2.21)). The results are presented in
figures 12 and 13 for G = 0.2 (those with G = 0 are similar), in which the values of the
other parameters are the same as those of § 6.4. In order to shed light on the influence of
buoyancy on internal convection, we switch it by setting G = 0 or 0.2 in figure 14.

Here, we do not follow the evolution of the film for a longer time but terminate the
computation when the maximal concentration (x̃A,I,Max ) approaches the bulk value of
x̃A∞ = 0.2, while ∂x x̃A,I 	 1 still holds. As can be seen in figure 12(d), x̃A,I,Max ≈ 0.1911
at x ≈ 2.57 and max[∂x x̃A,I] ≈ 0.03 when tmax = 28.2, after which the 1.5-sided model
could be inappropriate (cf. § 5.2) with the increase in x̃A,I,Max (figure 13b). Therefore,
only the results involving a transition from the early stage of weak evaporation to
a condensation-dominated regime have been presented to focus on the effects of the
interfacial convection and diffusion of vapour on the instability.

The transient interface in figure 12(a) shows that the film is Rayleigh–Taylor unstable.
For t � 15, the troughs and crests basically develop at the same exponential rate with
respect to the initially extended perturbations before nonlinear effects become important,
after which the profile takes a regular LW form of 4 pendent droplets. This can be
attributed to the fact that with the initially equilibrium x̃A,I0, evaporating and condensing
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FIGURE 13. Temporal evolutions of (a) the global mass flux Jg and (b) the global maximal x̃A,I ,
extracted from the (1 + 1)-D results in figure 12(b,d). The inset of (a) shows the transition from
weak evaporation to the condensation-dominated regime at a critical time tc.
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FIGURE 14. Flow fields of the Rayleigh–Taylor unstable condensing layer at two representative
moments, obtained by solving the (1 + 1)-D version of (5.3) with l = 10

√
2π, IC (5.8a) and

x̃A,I0 ≈ 0.1052. The other parameters are the same as those in figure 9 but G = 0 and 0.2
in the upper and lower panels, respectively. (a,c) t = 15 before which Jg ≈ 0. Temperature
contours (dashed) are separated by ΔΘ = 4.1 × 10−3, labelled with dashed frame. (b,d) t = 25
in condensation-dominated regime, where ΔΘ = 4.8 × 10−3 and interfacial stagnation regions
are indicated by curly braces. The streamlines (solid) are separated by ΔΨ = 3.2 × 10−4 and
4 × 10−3 in (a) and (b), and by ΔΨ = 3.4 × 10−4 and 5 × 10−3 in (c) and (d), respectively.
Labels for streamlines at t = 15 and t = 25 have been multiplied by 104 and 103, respectively.
In (b) the red dots highlight intersections of the connecting streamlines (Ψ = 8 × 10−3) and the
free surface, although they appear to be tangent owing to the influences of RTI on the interfacial
slope and velocity under weak mass fluxes.

fluxes nearly balance out up to t ≈ 15 (see the inset of figures 12b and 13a), after
which condensation dominates and the drops increase in amplitude under a balance of
gravitational and surface forces (including the Marangoni and capillary stresses). As
shown in figure 12(b,c), after t = 20 the bulk of condensation and thus heat transfer mainly
occur in the troughs, where ΘI starts rising, as also found in figure 11(c).

As can be seen in the inset of figure 12(d), even within the global weak-evaporation
stage of t � 15 (precisely 0 < t < tc, see figure 13a) the overall vapour concentration still
decreases due to the vertical diffusion from the interface, according with the basic solution
with a saturated initial concentration (see figure 8e,f ); x̃A,I attains its local maxima in the
crests of the interface at t = 15 because of the vapour replenished by continuously local
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evaporation. Again, vapour diffusion along the interface is clearly reflected in the insets
of figure 12(c,d). It is also important to recognize from the inset of figure 12(d) that the
lateral diffusion of vapour causes concentration accumulation around the troughs (such
as x = 21.25 at t = 15) with SW variations. The SW variation in x̃A,I is responsible for
the enhanced condensation at the depressions, which plays a stabilizing role. In addition,
the vapour convection along the interface, entrained by interfacial fluid under the initial
Marangoni effect (figure 14a), also contributes to the x̃A,I variations. Although the local
condensation contributes to decrease x̃A,I at a trough, it appears to be insufficient to
consume the vapour diffused and convected from its two adjacent crests during the initially
global evaporation stage. The interfacial temperature (figure 12c) decreases in the most
regions in the weak evaporation stage due to the effects of evaporative and substrate
cooling. It is also interesting to observe the transitions of ΘI and x̃A,I from t = 15 to
t = 25: there is a delay in the increase of ΘI compared to that of x̃A,I at the depressions
due to thermal inertia, while weak evaporative cooling at the elevations cannot override
the heating effect in the condensation-dominated regime. The initial behaviours are in
contrast to those of the case with an initially unsaturated concentration in § 6.4, where
evaporation prevails over the entire profile of y = 22 until t ≈ 16, and both ΘI and x̃A,I
increase in the most regions (figure 11). Both the initial dynamics of x̃A,I and J (or Jg)
in the two previously mentioned results with the different x̃A,I0 are consistent with the
pertinent basic solutions during the initial transition (see § 6.3), which owe their origins to
the competition between vertical convection and diffusion through the VBL.

Figure 14 depicts the streamlines/isotherms for G = 0 and 0.2 in the upper and lower
panels, respectively, at two representative moments. With G = 0, at t = 15 the convective
cells are encompassed by the substrate z = 0, the interface z = H, and the dividing
streamlines Ψ = 0, which do not cross the free surface. Each bulge comprises 2 symmetric
cells of the same flow rate. As the troughs deepen, the increasing capillary pressure
gradients along with the favourable Marangoni stresses drive liquid against the viscous
resistance under the valley, where the capillary ridges emerge between the droplets at
t = 25. The convection cells become somewhat asymmetric in each drop, which are
encompassed by z = 0 and Ψ = 0 on the right and by z = H and ‘connecting’ streamlines
(Ψ = 8 × 10−3) on the left. The connecting streamlines do cross the free surface (see red
dots on the interface in figure 14b). At t = 25, the flow rates of the two recirculating cells
are equal in the first and third drops, however, in the two slightly smaller drops the flow
rates are higher on the left. In addition, the temperature field tends to be more distorted,
especially near the lateral sides of the drops. The interfacial stagnation regions emerge
from one side of the drops, reflected by the reversal of the connecting streamlines, which
are close to the local minima of ΘI (see figure 12c).

Ordinarily, a film lying on a horizontal wall is very thin, so that it is a
good approximation to treat the liquid density as constant. For typical liquids β =
O(10−3–10−2) K−1; if θ − θw � 10 K, then |Δρ/ρ| = β(θ − θw) 	 1 with Δρ for density
variation within the Boussinesq approximation. Nevertheless, when pendent drops emerge
from the surface of a Rayleigh–Taylor unstable liquid layer, there would be significant
temperature differences across the locally thick regions in the presence of phase change,
then buoyancy in the drops could be comparable to viscous stresses there, and so could
not be negligible (Savino et al. 2002). Now, it would be of interest to look at the effect
of buoyancy on the convection in the pendent drops. The lower panels of figure 14 for
G = 0.2 are similar to the upper ones in terms of interfacial profile and temperature field.
However, at t = 15 the cell flow rate on the left/right of each drop is larger/smaller than its
counterpart with G = 0 due to the presence of convection between the droplets. At t = 25
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FIGURE 15. Rayleigh–Taylor unstable R-113 condensing layer (Case III), obtained by solving
(5.7) with IC (5.8a) and tmax = 1000 for K = 9.63 × 10−3, E ∗ = 5.58 × 10−5, G ∗ = 0.168,
M ∗ = −1.59, D∗ = −7.09 × 10−5, Bi = 0 and l = 6π on a 171 × 171 mesh. (a) Surface plot
and (b) the representative y-profiles through the apex of each drop at the ultimate moment. In
(a) the red lines illustrate the x- and y-profiles through the apex of droplet-3, the red dots denote
the apex and local minimum thicknesses around it. (c) HMin evolution.

the two recirculating cells inside each drop become highly asymmetric due to the distinct
pressures on either side, in contrast to the case without buoyancy. The flow rates of the
cells on both sides become smaller in comparison with those of G = 0, which is the source
where the liquid for the stronger inter-drop convection comes from. The convection also
contributes to avoid the possibility of rupture (Oron & Rosenau 1992).

This convection is driven jointly by the gravity combined with buoyancy in the droplets,
the surface forces and the interfacial mass fluxes. When the interface is deflected toward
the cooled wall, the temperature in the liquid experiences a perturbation, which slightly
increases the local density. Then a fluid element of volume δV is driven by buoyancy
ΔρgδV . As shown in figure 14(d), a ‘plume’ of liquid, deflected by a background
recirculation, descends around the centre of a drop to its crest, where a part of fluid crosses
the interface due to evaporation loss. Under the continuous ambient heating, buoyant liquid
then rises from the crest, due to slight expansion, with the help of favourable Marangoni
stresses near the interface towards a trough, where the flow is dominated by viscous
stresses and transverse pressure gradients. The pressure gradients, caused by the curvature
variations of the secondary drops and the non-uniform mass fluxes (figure 12b), push the
flow to the adjacent drop along the isotherms of the secondary drops.

6.6. Comparisons with experiments and simulations
As mentioned in the end of § 2 that the one-sided model is most relevant to experiments
free of the effect of inert gases, it thus motivates us to simulate the instability observed by
GG with this model and then compare with their experiment and simplified model. The
parameters (see the caption of figure 15) are evaluated using the physical properties of
R-113 (table 3) with â = 0.01 and an initial thickness h0 = 0.5 mm. In figures 15(a) and
15(b), we present the pseudo-steady structure of the condensing surface after a transition.
The global minimum thickness, HMin , remains nearly constant after t ≈ 100, which is
two orders of magnitude less than the drop amplitudes (figure 15b,c). The drops are not
stationary, but move slowly due to the disturbances of neighbouring ones. As vapour is
primarily condensing on thin-film regions, where most of the heat transfer occurs, the
condensate is flowing radially into the droplets, whose amplitudes increase slowly with
time. We also evaluated the wavelengths of the drops by taking the geometric mean
of those in the x- and y-cross-sections through the apex of a droplet (see illustration
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ρ 1561 kg m−3 ρ(g)(θA,s) 7.38 kg m−3 a γ (θA,s) 1.1 × 10−4 N m−1 K−1 b

σ0(θA,s) 14.7 × 10−3 N m−1 c β 1.5354 × 10−3 K−1 c k(l) 0.0772 W m−1 K−1 b

L̃(θA,s) 144.3 × 103 J kg−1 c cp 903 J kg−1 K−1 μ 6.46 × 10−4 Pa s
θA,s( p0) 320.71 K MA 187.39 g mol−1 Pr 8.65 c

TABLE 3. Physical properties for the pure R-113 system at the reference temperature θw +
(θA,s − θw)/2 = 299.82 K and p0 = 1 atm according to Gerstmann & Griffith (1965). All
unannotated data are obtained from their appendix E.

aCalculated with the equation of state in appendix E of Gerstmann & Griffith (1965).
bExtrapolating the data at 20 ◦C and 25 ◦C in table 1 of Zhang (2006).

cNIST Standard Database 23, Version 8.0.

in figure 15a,b). For example, the wavelength of drop-3 is evaluated to be λ = √
λxλy ≈

8.09. These are in reasonable agreement with the results of GG’s drop model.
We emphasize that the foregoing case is yet another situation in § 6.1, which is referred

to as Case III and features vanishing vapour recoil and a significant Marangoni effect. In
contrast with the previous Cases I and II of the one-sided model, there is no evidence
that rupture could happen. The Case III result justifies two key assumptions of GG:
(i) the interfacial instability has axial symmetry about the axis of each drop; and (ii)
for weak phase change the pseudo-steady state is substantiated. In this result, a regular
non-ruptured pattern is seen, similar to their observations before drops have fallen from
the surface. As shown in figure 15(b), drop-1 is aligned with drop-2 with almost the same
wavelength, likewise drop-3 and drop-4; all drops have zero contact angle. This is what
occurs in a periodic hexagonal array of drops, as observed by Fermigier et al. (1992). It is
worth mentioning that, in GG’s experiment, the regular ‘close-packed’ pattern collapsed
after several droplets had fallen, originating from disturbances near the boundaries of the
condensing surface, which, however, is irrelevant in our simulation since the periodic
domain is free of any ‘boundary effect’. Moreover, the intervening regions now flatten
sufficiently due to the strong Marangoni effect and condensate flows into the drops for
a long time. The growth rate of the instability seems to be limited by the viscous and
Marangoni effects (see § 7).

To gain further insight into the physical relevance, we define a modified Rayleigh
number, Ramod = ρL̃σ0lc/(k(l)μΔθ) with the capillary length lc, as in GG. With Δθ =
θA,s − θw = 41.78 K in the one-sided simulation, Ramod ≈ 1.56 × 106, which is equivalent
to the reciprocal of the dimensionless temperature difference (T ) defined in Gerstmann &
Griffith (1965), i.e. T ≈ 6.40 × 10−7. For the 1.5-sided simulation of the ethanol–nitrogen
system (table 1), Ramod ≈ 9.70 × 106 with Δθ = θA,s( pA∞) − θw = 15.37 K. The heat
flux at the solid–liquid interface, |qw| = k(l)∂zθ |z=0 = h(l)

th (θI − θw), is an experimentally
measurable quantity, whence the local heat-transfer coefficient can be expressed as

h(l)
th = k(l) ∂zθ |z=0

θI − θw
= k(l) ∂zΘ|z=0

ΘI − Θw
, (6.2)

where Θw = 0. Note that a dimensional minimum thickness hMin has been used as the
characteristic thickness by GG. To compare with their data, (i) our dimensionless thickness
should be rescaled with Ȟ = H/HMin , and (ii) our parameter E ∗ should be related to their
control parameter Λ (measuring the temperature difference) via E ∗ �→ 3Λ ≈ 59.79 with
the transformations ρ3 �→ ρ(ρ − ρ(g))2 and h0 �→ HMinh0 (see (11) in GG). By definition,
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FIGURE 16. Comparison of the one- and 1.5-sided simulations with the experiment and
simplified theory of GG. The error bars (for water) and circles (for R-113) are measured
data. The solid lines (〈Nu〉 = 0.69Ra0.20

mod for 106 < Ramod < 108 and 〈Nu〉 = 0.81Ra0.193
mod for

108 < Ramod < 1010) represent the correlation for a horizontal surface and the dashed line
(〈Nu〉 = 0.90Ra1/6

mod/(1 + 1.1Ra−1/6
mod ) for Ramod > 106) for a slightly inclined surface, both

obtained from their two-dimensional, steady-state models.

the local Nusselt number is given by Nu ≡ h(l)
th hλ/k(l). Now, either the local maximum

thickness hmax , as used by GG, or the average thickness hav of the liquid layer could be
chosen as the characteristic thickness hλ, we then have

Num = ∂ŽΘ
∣∣
Ž=0 Ȟmax

ΘI − Θw
or Nuav = ∂ŽΘ

∣∣
Ž=0 〈Ȟ〉

ΘI − Θw
, (6.3a,b)

where Ž = z/hMin and 〈·〉 = l−2
∫ l

0

∫ l
0 dx dy(·). The average Nusselt number (or

heat-transfer coefficient) may be evaluated as

〈Nu〉m = l−2
n∑

i=1

Ȟ(i)
max

∫
Ωi

Ȟ−1 dx dy ≈ Hav
max〈H−1〉 or 〈Nu〉av = 〈H〉〈H−1〉, (6.4a,b)

both of which have a functional dependence on the thickness reciprocal of the liquid layer,
where Hav

max = n−1∑
i H(i)

max is the average amplitude of n drops in a square domain.
By integrating the numerical solution of H, (6.4a,b) can yield the corresponding

average Nusselt number. In figure 16, the results of the one- and 1.5-sided (§ 6.4) models
are compared with the experimental data and the theory of GG, given that both the
(2 + 1)-D simulations have quasi-hexagon non-ruptured patterns. Here, the results of the
one-sided model are 〈Nu〉m ≈ 55.5 and 〈Nu〉av ≈ 8.7. They could also be calculated with
an individual drop (GG), e.g. 〈Nu〉m ≈ 27.1 and 〈Nu〉av ≈ 7.1 for drop-3. The results of the
1.5-sided model are 〈Nu〉m ≈ 9.2 and 〈Nu〉av ≈ 1.9 (not shown), where Hav

max ≈ 4.859 for
the 9 drops in the square domain (see figure 9a,b). It is clear that 〈Nu〉m is always higher
than 〈Nu〉av. The one-sided model gives significantly higher values with 〈Nu〉m than the
experimental data and theoretical prediction, while using 〈Nu〉av on a large enough domain
gives a good prediction of the heat-transfer rate for film condensation, thus illustrating the
applicability of the one-sided model to a pure saturated vapour ambience. However, for the
1.5-sided model, both definitions give smaller values in comparison with their experiment
and theory due to the effect of an inert gas.
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FIGURE 17. The competition between stabilizing thermocapillarity and destabilizing gravity in
the condensing layer, extracted from the 1.5-sided result in figure 9. The ‘vector fields’ of (a)
Marangoni and (b) gravitational effects at t = 20, contoured for their norms. (c) Plot of lg(7.1b)
along with the ‘vector field’ of gravitational effect at t = 26.5. Each ‘vector field’ has its own
scale to demonstrate the spatial variation.

Furthermore, in experiments a sequence of pendent droplets forms, and the droplets
could increase in amplitude and eventually detach from the free surface. The formation
of dripping droplets is far outside the domain of validity of the long-wave models, which
could be investigated with the boundary integral method (Yiantsios & Higgins 1989).

7. Stability competition between thermocapillarity and gravity

In order to examine the competition between the stabilizing effect of thermocapillarity
and the destabilizing effect of gravity, the driving mechanism behind RTI, we analyse
the evolution of the relative ‘magnitudes’ of the mechanisms. For the one- and 1.5-sided
models, (5.7) and (5.3a), the ratio of the thermocapillary to gravity term is[

thermocap.
gravity

]
1,1.5

= K|M ∗|f ∗
2 J∗

0

H
,

‖M f1(Γ H∇1 x̃A,I + KABf2∇1H)‖
‖H∇1H‖ . (7.1a,b)

For the 1.5-sided result shown in figure 9, the respective influences of these two factors
at t = 20 are visualized in figure 17(a,b) coloured with the numerator and denominator
of (7.1b), respectively. The Marangoni effect is compared to gravity at t = 26.5 in
figure 17(c), where the ratio (7.1b) is coloured in logarithmic scale to expose more
features of the distribution. It is obvious that gravity tends to concentrate the liquid in
the drops where the pressure is lowered (see (C 4)), while the thermocapillarity moderates
the resulting growth. They compete with each other mainly in the growing drops of the
condensing layer. Afterwards, the two effects reach local equilibrium near the ‘contact
lines’ of the pendent drops and the thin regions (see figures 9b and 17c), where the value
of the ratio is approximately 1. Although gravity wins the competition in the drops, its
amplification effect has been moderated by the Marangoni and capillary effects (Fermigier
et al. 1992).

Since the maximum Marangoni stresses are expected to be attained near the
minimum thickness position and the liquid is accumulated in the pendent drops, the
minimum/maximum thickness of a liquid layer would be the most likely place for
the thermocapillary/gravity effect to dominate. Thus the stability competition could be
characterized by the evolutions of the ratios (7.1a,b) at HMin and HMax . The one- and
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FIGURE 18. (a,b) Evolutions of the ratios (7.1a,b) at HMin (dashed) and HMax (solid).
(a) Comparing the one-sided (Case III) and 1.5-sided models with the numerical results obtained
in figures 15 and 9: HMin at (16.823, 11.989) and (31.416, 5.859); HMax at (12.785, 11.956)
and (1.408, 22.398), respectively. (b) Comparison of the one-sided results, as obtained in
figures 5–7 and 15. Inset shows HMin evolutions. For Case I, HMin at (10.455, 9.227)
and HMax at (7.872, 7.429). For Case II, HMin at (0, 9.267)/(11.096, 7.275) and HMax at
(2.107, 11.975)/(0, 6π) for random (blue)/axisymmetric (red) IC. Note that the curves for the
two Case II solutions with different ICs are nearly indistinguishable. (c) The ratio (7.1a) as a
function of lg H with K = 0.1 and Bi = 0, for four different values of M ∗.

1.5-sided models are compared in figure 18(a) with the numerical results obtained in
figures 15 and 9, both of which approach non-ruptured pseudo-steady states. For the
various one-sided results, the ratio (7.1a) is plotted as a function of lg H in figure 18(b)
along with the HMin evolutions using the solutions obtained in Cases I, II and III. Also
unveiled in figure 18(a,b) is the thickness scale when a local balance of thermocapillarity
and gravity is crossed with decreasing HMin (see H-scale corresponding to intersections of
these curves with the horizontal dashed lines).

As vapour condenses and the interfacial instability evolves, it is seen that for both
models the local gravity at HMin becomes negligible (i.e. when the ratios are of O(10)) as
HMin decreases to O(0.1), while the local Marangoni stresses become progressively larger
there. On the other hand, the gravity term is initially important as compared with the
thermocapillary term because the layers start with a finite thickness (see intersections of
these curves with the vertical dashed lines); as HMax increases, the relative importance of
gravity enhances significantly. For the one-sided model, the Marangoni and gravity effects
become dominant at HMin and HMax , respectively, in a monotonic way. For Cases I and
II, rupture occurs due mainly to, respectively, strong vapour recoil and weak Marangoni
effect. On the contrary, the potentiality for rupture is avoided in Case III with a strong
Marangoni effect and a weak vapour recoil. Note that these curves for the one-sided
model are nearly linear in the log–log plots, however, they are highly nonlinear and
non-monotonic for the 1.5-sided model. It is the presence of an inert gas and vapour
convection along the interface that intensifies the thermal Marangoni effect, which then
offers a critical stabilization at both HMin and HMax and thus the RTI could be suppressed in
the 1.5-sided model. This induced stabilizing effect becomes appreciable after a transition
when perturbations grow sufficiently. It is found that the Marangoni effect even becomes
comparable to gravity at HMax as the pseudo-steady state is approached. Moreover,
distinctly different behaviours can be seen in HMin evolutions (inset of figure 18b): instead
of monotonically decreasing then approaching a constant in Case III, HMin increases before
rapidly decreases until rupture in Cases I and II. The phenomenon is explained by the
enhanced condensing flux with the orders of magnitude larger E ∗ in the latter cases.

To assess the thermocapillary effect, we simply plot (7.1a) with K = 0.1 and Bi = 0 for
a typical H range and various values of M ∗ in figure 18(c). The value of K corresponds
to a case far from thermodynamic equilibrium with a small accommodation coefficient
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(Kanatani & Oron 2011), so that the Marangoni effect can be significant. The curves shift
upward with constant local slope as |M ∗| increases, which is obvious due to the fact that
a stronger stabilization of the Marangoni effect is competing with gravity. A point that
can be inferred is that, even though such a large |M ∗| may exist in practice, there is not
a uniform time scale to neglect the overall effect of gravity because it plays an important
role everywhere from onset of the RTI and always contributes towards the instability over
the full time scale of the dynamics (e.g. at HMax ), although gravity is locally negligible
at HMin in the final stage. Nonetheless, the 1.5-sided model cannot be as easily evaluated
without a series of simulations for various values of M , since coupling between H and x̃A,I
as well as the gradient operators in (7.1b) make it impossible to characterize the stability
competition with such a ‘low-dimensional’ approach.

Our discussion up to this point has focused on the competition between
thermocapillarity and gravity. Moreover, the competition between vapour thrust, a driving
mechanism of rupture instability, and gravity as well as between capillarity and gravity
have been examined by Panzarella et al. (2000) and Wei & Duan (2016) with a similar
approach. The following questions may then be asked: By which mechanisms is energy
injected from the base flow into the disturbances? How much of the contribution of what is
promoting or suppressing the interfacial instability is attributed to each of the mechanisms,
although it is obvious that the base flow field is the energy source for any disturbance?
The answers can be found by using a disturbance energy analysis as summarized early on
by Boomkamp & Miesen (1996). They developed a classification scheme for instabilities
in parallel two-phase flows by proposing a general methodology based on mechanical
energy balance for an isothermal system without introducing a thermal energy budget.
A full energy budget analysis consists of performing a (pseudo-steady) linear stability
analysis and decomposing the kinetic and thermal energy of disturbances into energy
production and dissipation. Moreover, it would be remarkable to put the current case
in their theoretical framework. This work should deserve a separate investigation. The
disturbance kinetic energy equation has been shown in Boomkamp & Miesen (1996) (see
their (11)), where the physical meanings of each term have also been clearly discussed.
Here, it is necessary to stress on the thermal part of the analysis.

We perturb the basic state of the liquid layer at a frozen time Tps with infinitesimal
disturbances: V = V̄ + V p and Θ = Θ̄ + Θp, where V̄ = 0 and Θ̄ is linear in Z. The rate
of change of thermal energy of the disturbances can be derived by multiplying the equation
of energy (2.25) by temperature perturbation Θp and integrating over the volume (V ) of
the liquid layer of a wavelength λ. Applying the divergence theorem, one obtains

dEth

dT
= −

∫
V

(
Wp

dΘ̄
dZ

)
Θp dv + 1

Pr

∫
I
(n · ∇XZΘp)Θp ds − 1

Pr

∫
V
∇XZΘp · ∇XZΘp dv

≡ Iconv + Iint − D, (7.2)

where Eth = ∫
V(

1
2Θ

2
p ) dv represents the total thermal energy of the perturbation; Iconv

and Iint are responsible for the production of disturbance thermal energy; D measures
the rate of thermal energy dissipation. Specifically, Iconv stands for the transfer rate
of thermal energy from the base temperature gradient to the perturbation by vertical
convection; Iint describes the rate of thermal energy delivered to the disturbance via
a perturbation heat flux along the deformed interface, pertinent to the heating/cooling
effect of condensation/evaporation (cf. (2.27)). It is found that D ≥ 0, thus the thermal
dissipation always acts as a heat sink to oppose the instability. Likewise, viscous
dissipation has a negative contribution to the kinetic energy budget. Accordingly, for the
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non-isothermal system, each term in the mechanical and thermal energy balance (see (11)
in Boomkamp & Miesen (1996) and (7.2)) should be evaluated for values of the physical
parameters used in a relevant LSA (e.g. for the most unstable mode at Tps = 0 or near a
pseudo-steady state). The terms with the largest positive/negative contributions to each
budget should be the primary mechanisms for promotion/suppression of the instability.

Of particular significance in the kinetic energy budget is the contribution associated
with shear stresses at the interface, TAN = ∫ λ

0 [Up(∂ZUp + ∂XWp)]Z=H dX with negligible
gas viscosity (cf. (17) in Boomkamp & Miesen (1996)). As shown in § 3.1 there, TAN = 0
for a RTI without the Marangoni effect. In the present case of Rayleigh–Taylor unstable
condensing layers, the stabilizing thermocapillarity provides an additional restoring effect
driven by Marangoni stresses, so that TAN < 0. Hence, the RTI derives its energy from
the work done by the destabilizing gravity at the interface, which is used to overcome
the stabilizing effects of surface tension, viscous dissipation and thermocapillarity (as
discussed above), while the remainder is converted into the kinetic energy.

8. Concluding remarks

In order to develop a simple and accurate model for the flow of a liquid layer with phase
change, we introduced in this paper a vapour boundary layer of thickness δ between a
semi-infinite gas phase and the liquid layer of thickness h with h 	 δ 	 λ̃ based on the
long-wave asymptotics, a model which we called 1.5-sided nonlinear model was derived.
It consisted of two coupled (2 + 1)-D evolution equations, one for the (dimensionless)
thickness of the liquid, H, and the other for the interfacial vapour concentration, x̃A,I .
The significance of our work lay in that the interfacial mass exchange was determined
by convection and diffusion of vapour near the interface as well as by heat transfer
characteristics in both the liquid and VBL, rather than by heat conduction across the
liquid only. The 1.5-sided model could be reduced to the conventional one-sided model
(Burelbach et al. 1988; Oron et al. 1997) if the VBL thickness was not too large that phase
change was limited by the processes in liquid. To predict whether the instabilities lead
to interface rupture and which kind of surface pattern might be observed in experiments,
both models have been solved numerically for the dynamics of Rayleigh–Taylor unstable
condensing layers. We have obtained comprehensive results, shedding light on the effects
of convection and diffusion of vapour, which are particularly relevant to see the differences
in the behaviour of the one- and 1.5-sided models.

We first studied the extended basic state of the 1.5-sided model. The nonlinear
temperature (3.12) and concentration (3.5) profiles of the basic-state VBL were compared,
respectively, with the experimental results of Ward & Stanga (2001) and Dehaeck
et al. (2014) (see also appendix E), performed under the relevant conditions (though
with a different geometry). For chemical non-equilibrium cases, we have obtained a
novel equation (3.17) for the basic interface variables with simultaneous heat and mass
transfer, which related the interfacial temperature θ̄I with concentration ¯̃xA,I . The temporal
evolutions of the basic thickness H̄ and ¯̃xA,I have been studied with pseudo-steady
approximation, in which the vertical convection and diffusion of vapour balance at the
interface. The results provided further evidence that the condensation rate was decreased
with increasing H̄ or θw.

The linear stability of the basic state was then examined with the frozen-time approach.
We obtained an implicit dispersion relation (F 1), which is a quadratic equation for the
growth rate ω. The indirect stabilizing mechanism of a non-condensable gas has been
explained by the induced Marangoni effect due to pA,I fluctuations. The existence of an
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inert gas also made the stabilizing effect of mass fluxes wavenumber dependent. In a
simplified case, an explicit dispersion relation (4.2) was found, which predicted that:

(i) The stabilizing effect of the differential mass fluxes owes its origin to vapour
diffusion along the interface, even though the diffusion otherwise can weaken the
aforementioned Marangoni stabilization. These effects of lateral diffusion should be
significant in short-wave variations of x̃A,I .

(ii) The stabilization offered by vapour convection along the interface via the induced
Marangoni effect (measured by the ‘interface Schmidt number’ Ω) is more
significant for a weaker Marangoni effect, especially around the central modes with
larger growth rates. Both the most unstable wavenumber and the maximum growth
rate increase as Ω decreases, while Ω has no effect on the cutoff wavenumber. The
stabilizing effect is appreciable for the condensing layer with the realistic parameters
due to the rapid vapour convection along the interface under initial RTI. These
findings were in agreement with our nonlinear simulations and added substantially
to our understanding of the effects of an inert gas and of the interfacial convection
and diffusion of vapour on condensing/evaporating layers.

In contrast with the pseudo-steady analysis, asymptotic solutions corresponding to two
distinct initial concentrations, ¯̃xA,I0, were obtained by solving the time-dependent base
state of the 1.5-sided model (6.1a,b), which described a flat liquid layer with its thickness
decreasing to a constant. The results demonstrated the effects of VBL thickness (L )
and ¯̃xA,I0 according to the vertical convection and diffusion of vapour. Specifically, the
slowness of vertical diffusion was manifested by the ‘overshoot’ of ¯̃xA,I in the case of
an unsaturated ¯̃xA,I0. The vertical diffusion was, however, not negligible because the
mechanism could modify the local partial pressure in the vicinity of the interface enough
to influence the mass flux J̄0. An increase in L would reduce J̄0, slow down the vertical
diffusion and consequently prolong the transition time to the equilibrium state. With a
saturated ¯̃xA,I0, the diffusion-limited regime was observed in the initial dynamics. These
results implicated a non-ruptured pseudo-steady state for the 1.5-sided model.

Our work extended the linear analysis of Kanatani (2013) for an evaporating layer
lying on a substrate to the nonlinear dynamics of a (2 + 1)-D Rayleigh–Taylor unstable
condensing/evaporating layer by numerical simulations of the 1.5-sided model, which
accounted for the additional effects of vapour recoil, gravity combined with buoyancy
and heat flux in gas ambience. In particular, molar fraction and molar units have been
employed for the relevant variables of gas phase to facilitate the applications that involve a
non-dilute binary mixture of gas species. As for the one-sided model, spontaneous rupture
was found in the condensing layers under a moderate or strong vapour recoil, nevertheless,
a significant Marangoni stabilization could only overcome a weak vapour thrust and
lead to a non-ruptured regular pattern. This suggested that in the absence of vapour
convection and diffusion, the localized vapour recoil and negative gravity could normally
prevail over the stabilizing effects of thermocapillarity, capillarity, viscous dissipation
and mass gain in thin regions. Furthermore, in the presence of phase change and RTI,
the two Case II solutions with the disparate ICs corroborated the relevant conclusion
about the dependence of (2 + 1)-D pattern formation on the choice of initial data
(Oron 2000a).

As important cases of the 1.5-sided model, the instabilities have been studied for
two different values of the initial concentration, x̃A,I0. The situation could be inadequate
for the one-sided model based on the kinetically limited regime, in which any vapour
transport in the gas phase was neglected. With an initially unsaturated x̃A,I0, the 1.5-sided
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model indicated that the Rayleigh–Taylor unstable condensing layer could be essentially
stabilized after a transition with the effects of convection and diffusion of vapour near
the interface. Interestingly, the surface pattern took the form of LW quasi-hexagons with
a well-defined lateral scale. The SW variations in x̃A,I due to vapour diffusion along
the interface accounted for the generated stabilization of the differential mass fluxes.
The vapour convection along the interface, entrained by interfacial flow under the initial
instability, also provided a stabilization by the induced Marangoni effect. From the point
of view of stability competition, we have shown that the induced Marangoni effect was
a quintessential characteristic of the 1.5-sided model. These were the key mechanisms
to avoid rupture. The initial dynamics was in contrast to the case with an initially
saturated x̃A,I0, where transition from weak evaporation to condensation-dominated regime
was seen in the later stage. The results underlined that the dynamics was sensitive to
x̃A,I0. Neglecting other non-Boussinesq effects, it has been shown that buoyancy does
not have a significant influence on interfacial evolution but makes contribution to the
phase-change-driven convection and thus heat transfer in such a pendent layer.

Pseudo-steady states could be observed in both the one- and 1.5-sided simulations with
reasonable agreement with available experiments. The average heat-transfer rates were
calculated for the one-sided model and a good agreement was found if the Nusselt number
was defined with the average thickness of a liquid layer and evaluated on a sufficiently
large domain containing multiple drops. Taken the findings regarding the one-sided model
together, we have demonstrated that it was capable of simulating the instability under
a pure saturated vapour. The Nusselt numbers were also calculated with the alternative
definitions (6.4a,b) on the basis of the 1.5-sided simulation, which provided a reasonable
explanation for the lower heat-transfer coefficient due to the presence of an inert gas in the
VBL. Nevertheless, the comparisons were qualitative mainly because the VBL thickness
L was a rough estimate, which might be determined by measuring the heat flux on
the wall in a stable state (Kanatani 2013). To push the comparison further, elaborative
experiments on extended liquid layers as in GG and Som et al. (2007) but with an inert
gas in the vapour phase are needed to verify the nonlinear results of the 1.5-sided model
and to offer data that can be used to further test the theory.

Finally, the concepts of absolute/convective instability, used to describe open shear flows
by Huerre & Monkewitz (1990), could also be applied to the condensing/evaporating
liquid layers, which involve the ubiquitous interfacial instabilities. The RTI is a major
ingredient in the present physical setting, which is absolutely unstable since a perturbation
at a point, a single line, or two crossed lines will always propagate everywhere (Fermigier
et al. 1992). Our numerical results could shed some light on the nature of the instability of
the planar base state, subject to the additional effects of phase change, thermocapillarity
and/or interfacial convection and diffusion of vapour, among others. For instance, a
localized Gaussian disturbance ultimately destabilizes the entire interface (figure 7) and
random disturbances can gradually grow with time at any fixed spatial location, as
demonstrated by our simulations. According to the qualitative nature of the dynamical
behaviours, we conclude that the interfacial instability of the Rayleigh–Taylor condensing
layer is absolute in nature, which displays an intrinsic dynamics.
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Appendix A. Estimation of bulk gas properties and justification of
‘one-sided’ assumption

The well-mixed bulk of the gas phase is assumed to be perfect, whose compositions and
transport properties can be taken at p0, θ∞ and x̃A∞. By definition, the molar and mass
fractions, x̃A and ωA, are related by

ωA = MA x̃A

MB + (MA − MB)x̃A
, x̃A = MBωA

MBωA + MA(1 − ωA)
. (A 1a,b)

Applying (A 1b) to the gas density, one obtains

ρ(g) = MAMBp0

[MBωA∞ + MA(1 − ωA∞)]Rθ∞
. (A 2)

The total molar concentration of the bulk gas mixture reads

C = ρ(g)/M(g) = ρ(g)/[MA x̃A∞ + MB(1 − x̃A∞)] = p0/(Rθ∞), (A 3)

where M(g) is the molar mass of the bulk gas. For a given mass fraction, ωi, the thermal
conductivity of the gas mixture are determined using the mass-weighted average, k(g) =
k(g)

A ωA∞ + kB(1 − ωA∞), which is supposed to be constant within the temperature and
concentration ranges of concern.

While the concentration dependence is neglected in the thermophysical properties of
the gas mixture as above, we should examine the dependence of its dynamic viscosity μ(g)

on x̃A with the semi-empirical formula (Bird, Stewart & Lightfoot 2002, p. 27),

μ(g) = x̃Aμ
(g)
A

x̃A + (1 − x̃A)ΦAB
+ (1 − x̃A)μB

x̃AΦBA + 1 − x̃A
, (A 4)

where μ
(g)
A and μB are the viscosities of pure species A (gas state) and B (inert gas) at

θw = 300 K and p0 = 101 kPa (see table 1),

ΦAB = 1√
8
(1 + MA/MB)

−1/2 [1 + (μ
(g)
A /μB)

1/2 (MB/MA)
1/4]2, (A 5)

and ΦBA is defined by swapping MA ↔ MB and μ
(g)
A ↔ μB. The ratio μ(g)/μ is plotted

in figure 19 as a function of x̃A along with an indication of the typical bulk concentration
x̃A∞ = 0.2 used in the computations. It is seen that μ(g)/μ = O(10−2) in the entire range of
0 ≤ x̃A ≤ 1 and ρ(g)/ρ ≈ 1.5 × 10−3 (table 1). These are consistent with the ‘one-sided’
assumption (Burelbach et al. 1988). Therefore, it is reasonable to ignore the fluid dynamics
within the VBL in the present model, while the effect of conductive/convective heat fluxes
through the gas is retained (k(g)/k(l) ≈ 0.15). In addition, the x̃A-dependence of the mixture
viscosity is weakly nonlinear due to MA/MB = O(1), which can be extremely nonlinear for
mixtures of light and heavy gases.
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FIGURE 19. The x̃A-dependence of μ(g)/μ for the ethanol–nitrogen system in table 1.

Appendix B. Linearized saturation and partial pressures

The slope of coexistence curve on p − θ diagram is given by the Clausius–Clapeyron
approximation dps/dθ ≈ C(g)

A L̄/θ , where the molar volume of liquid is neglected relative
to that of gas phase, and the latter has been substituted by C(g)

A = ps(θ)/(Rθ) under
the ideal gas approximation. The saturated and partial pressures, ps and pA,I , are then
linearized about θw and x̃A,w, respectively, by the leading-order Taylor series

ps(θI) = ps(θw) + (dps/dθ)θw(θI − θw) = ps(θw) + ps(θw)L̄(θI − θw)/(Rθ 2
w), (B 1)

pA,I = p0 x̃A,w + (dpA/dx̃A)x̃A,w(x̃A,I − x̃A,w) = ps(θw) + p0(x̃A,I − x̃A,w), (B 2)

where pA = p0 x̃A(θ) has been used in (B 2).

Appendix C. The O(1) solution to the LW asymptotic problem of a liquid layer

The mass flux and liquid phase temperature are found by integrating (2.37) with the
conditions Θ0(ξ, 0, τ ) = 0, (2.39) and (2.43),

J0[x̃A,I,H] = [Γ (x̃A,I − x̃A,w)(1 + Bi H) − BiΘ∞H]f1, (C 1)

Θ0 = [Γ (x̃A,I − x̃A,w) + KABBiΘ∞]ζ f1. (C 2)

The mass flux (C 1) reflects the effect of variation in the partial pressure (vapour
concentration) and that of the interface deformation. From (C 2) the interface temperature
can be written as

ΘI = [Γ (x̃A,I − x̃A,w) + KABBiΘ∞]H
H + KAB(1 + Bi H)

. (C 3)

The effect of heat flux in gas phase (the second term in the numerator) results in a higher
interfacial temperature than that of a model with k(g)/k(l) → 0 owing to the heating effect
of ambience for condensation, which could increase the temperature difference across the
liquid and thus intensifies the local buoyancy effect in thick regions.

Integrating (2.36) along with BC (2.41) and the solutions (C 1) and (C 2), the pressure
profile is given by

P0 = 3
2 Ē2D̄−1J2

0 − 3S̄∂2
ξ H + 3Ḡ(H − ζ ) + 1

2 R̄ Pr−1f2(ζ
2 − H2), (C 4)

which is composed of vapour recoil and capillary pressure on the free surface, and
hydrostatic pressure and buoyancy effect in the bulk. Substituting (C 4) into (2.35) and
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integrating twice in ζ , then integrating (2.34) in ζ , U0 and W0 are found to be

U0 = Λ( 1
2ζ

2 − Hζ ) + 1
6 R̄ Pr−1∂ξ f2(

1
4ζ

4 − H3ζ )

− 2M̄ Pr−1f1(Γ H∂ξ x̃A,I + KABf2∂ξH)ζ, (C 5a)

W0 = −∂ξΛ( 1
6ζ

3 − 1
2 Hζ 2) + 1

2Λ∂ξHζ 2 − 1
12 R̄ Pr−1∂2

ξ f2(
1
10ζ

5 − H3ζ 2)

+ 1
4 R̄ Pr−1∂ξ f2∂ξHH2ζ 2 + M̄ Pr−1∂ξ [f1(Γ H∂ξ x̃A,I + KABf2∂ξH)]ζ 2, (C 5b)

with

Λ(ξ, τ ) = 3Ē2D̄−1J0[Γ (1 + Bi H)∂ξ x̃A,I − f2∂ξH]f1 + 3(Ḡ∂ξH − S̄∂3
ξ H)

− 1
2 R̄ Pr−1Hf1{Γ H∂ξ x̃A,I + f2 [H + KAB(2 + Bi H)] ∂ξH}, (C 6)

where the BCs U0(ξ, 0, τ ) = 0 and (2.42) and solution (C 2) have been applied. Taking
ζ = H in (C 5a), we obtain the horizontal liquid velocity on the interface, UI0(X,T); we
also present the streamfunction, ψ(X,Z,T), to visualize the velocity field

UI0 = − 1
2 H2{3∂X(GH − S∂2

XH) + 3E2D−1J0 f1[Γ (1 + Bi H)∂X x̃A,I − f2∂XH]

− 1
2 Gr Hf1[Γ H∂X x̃A,I + f2(KAB + f −1

1 )∂XH]} − 1
8 Gr H4∂Xf2

− 2 Ma Pr−1Hf1(Γ H∂X x̃A,I + KABf2∂XH), (C 7)

ψ = Λ( 1
6 Z3 − 1

2 HZ2) + 1
12 Gr ∂Xf2(

1
10 Z5 − H3Z2)

− Ma Pr−1f1(Γ H∂X x̃A,I + KABf2∂XH)Z2. (C 8)

Here, the transformation (2.33) and primitive variables (X,Z,T) have been used.

Appendix D. Time-dependent basic state of one-sided model

The time-dependent O(1) basic-state solutions, describing a thickening, no-flow layer
with a flat interface, to the system (2.22)–(2.29) and (2.50) read

H̄∗(T) = [−K +
√
(1 + K + Bi K)2 + 2(1 + Bi K)E∗T](1 + Bi K)−1, (D 1a)

J̄∗(T) = [(1 + K + Bi K)2 + 2(1 + Bi K)E∗T]−1/2, (D 1b)

Θ̄∗(Z,T) = (1 + Bi K)J̄∗Z, (D 1c)

P̄∗
d(Z,T) = 3

2 E∗ 2D−1J̄∗ 2 + 3GH̄∗ + 1
2 Gr∗(1 + Bi K)(Z2 − H̄∗ 2)J̄∗, (D 1d)

where superscript ‘∗’ distinguishes the parameters and functions for the one-sided
model, the dimensionless dynamic pressure P̄∗

d = P̄∗ + Φ. With G,Gr∗,Bi → 0, (D 1)
is equivalent to the basic-state solution (10.3) in Burelbach et al. (1988).

Appendix E. Concentration profile and justification for neglecting
buoyancy convection in the VBL

To comparison with the available experiment by Dehaeck et al. (2014), let us first
estimate w̄(g) in (3.5) using their experimental conditions: MA = 200 g mol−1, MB =
29 g mol−1, air viscosity νB = 1.58 × 10−5 m2 s−1, DAB = 8.11 × 10−6 m2 s−1, the Schmidt
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w(g)

u(g)

Evaporation experiment:
axisymmetric drop
with Gr(g) ∼ 103 (Dehaeck et al. 2014)

z– h̄(mm)

Evaporation

Condensation

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.6

0.4

0.2

0

x̄̃A

Interface: z = h̄

1D convection-diffusion
theory with ū(g) = 0 and Gr(g) = 0

w̄(g)

w̄(g)

sol

sol

FIGURE 20. Concentration profiles (3.5) of the VBL plotted against the normal distance z −
h̄ from the gas–liquid interface, together with the normal profile at r = 0.6 of an evaporating
HFE-7000 droplet, obtained from vapour-based interferometric measurement by Dehaeck et al.
(2014). Here, h̄ = z(r = 0.6) ≈ 0.47 mm is estimated using the polynomial z = ar4 + br2 + c
with r and z in pixels (1 pixel = 7.4 μm), and ¯̃xA,I = x̃A,I(r = 0.6) ≈ 0.40 is found from x̃A,I =
α + (0.61 − α) exp[β(rγ − 1)] using their fitting coefficients (a, b, c, α, β, γ ) for Rdrop = 1.81
mm (see table S1 in their supporting information). The VBL thickness is estimated to be the
local value of their concentration boundary layer, δ = 0.8Rdrop ≈ 1.45 mm, corresponding to
5 %x̃A,I (see their figures 3 and S8(right)). Thick arrows represent velocities near the interface:
evaporation with w̄(g) = 0.0137 m s−1 (see text for the estimation) and x̃A∞ = 5 %x̃A,I ≈ 0.02;
condensation with w̄(g) = −0.0137 m s−1 and x̃A∞,eq = 0.61.

number of gas Sc(g) = νB/DAB = 1.95, the contact radius Rdrop = 1.81 mm (their length
scale), p0 = 101.5 kPa, θ∞ = 297.15 K. According to the pertinent left-hand side term of
(20) in their supporting information, the pseudo-steady, mass-average, normal velocity at
the droplet interface can be expressed as

w(g)
I = νB

Rdrop

(
W(g,M) − 1

Sc(g)

MA/MB − 1
ρ̃(g)(x̃A,I)

∂Z x̃A

)
Z=H+

, (E 1)

where νB/Rdrop is the velocity scale in gas phase and the dimensionless density ρ̃(g)(x̃A) =
1 + (MA/MB − 1)x̃A. The measured local data at the radial position r = 0.6 (within the
valid range of 0.5 < r < 0.9, see § C in their supporting information): x̃A,I ≈ 0.40 (see
the caption of figure 20), ∂Z x̃A|Z=H+ = ∂z x̃A|z=h+Rdrop ≈ −0.990 (by linear least-square fit
to the normal distance of 0.2 mm from the interface) and j = 4.794 × 10−2 kg m−2 s−1

(following their sign convention). The last two quantities are extracted from figures 3
and 5 in Dehaeck et al. (2014), respectively. Given w̄(g) independent of z throughout
our VBL (see (3.16)), one could take w̄(g) = w(g)

I (r = 0.6) ≈ 0.0137 m s−1, in which the
molar-average velocity component has been evaluated using their expression (25), i.e.
W(g,M)|Z=H+ = jRθ∞Rdrop/( p0MAνB) ≈ 0.668.

The pseudo-steady concentration profiles, ¯̃xA, in the VBL are plotted in figure 20 using
(3.5) in both cases of evaporation and condensation together with a typical profile, x̃A(r =
0.6, z), extracted from the evaporating experiment of a pendent droplet (Dehaeck et al.
2014). For evaporation, one can see that the difference is significant within the boundary
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layer because the solutal buoyancy convection in the gas phase played an important role
in their experiment with MA/MB = O(10) and the fact that our species conservation (3.1a)
is a 1-D version of that used in their formulation (see (22) in the supporting information).
In the experiment, the liquid Marangoni flow and the buoyancy convection in gas phase
are in the same direction along the interface to substantially deform concentration profiles
towards the symmetric axis of the droplet (cf. their figure 2), both of which, however,
are irrelevant in the flat basic state. It is clear from the simulation in figure 2(b) of
Dehaeck et al. (2014) that the boundary layer flow, initiated at the contact line, was directed
towards the symmetric axis with |u(g)| � |w(g)| near the interface, whereas the tangential
velocity ū(g) = 0 in our basic state (schematized in figure 20), where u(g) and w(g) are
the tangential and normal velocities to the drop surface. The buoyancy-induced tangential
velocity in gas phase can be estimated from their pseudo-steady computation (see left
panel of figure S8), e.g. O(u(g)) = U(g)

I (r = 0.6)νB/Rdrop = 0.1 m s−1, which is indeed one
order larger than w(g)

I , in contrast with ū(g) = 0 in our basic state. As confirmed below,
the discrepancy between the concentration profile predicted by (3.5) and that measured in
the evaporating experiment is due mainly to MA/MB = O(1) in our system so that solutal
buoyancy convection in the gas phase is negligible.

We now do have to assess the solutal and thermal buoyancy due to the concentration
and temperature variations across the VBL. Recalling the second equality in (A 3), it can
give a concentration-dependent gas density ρ(g)(x̃A) = C[(MA − MB)x̃A + MB], where C is
taken as the constant concentration of the bulk gas. It is clear from ¯̃xA profiles in figure 20
that the concentration gradient tends to be stable for condensation case with ¯̃xA,I < x̃A∞
and unstable for evaporation case with ¯̃xA,I > x̃A∞ on account of MA > MB. To identify the
relative importance of the solutal and thermal buoyancy to viscous effect in the VBL, we
define two Grashof numbers (Dehaeck et al. 2014),

Gr(g)sol = Δρ(g) l̂3
c|g|/(νBμB), Gr(g)th = β(g)Δθ(g) l̂3

c|g|/ν2
B, (E 2a,b)

where Δρ(g) = ρ(g)
max − ρ

(g)
min is the scale of gas density variation with the vapour

concentration; the thermal expansion coefficient for an ideal gas β(g) = 1/θref with the
reference temperature θref = θw; Δθ(g) is the temperature scale; the length scale is capillary
length l̂c, different from that of Gr for the liquid layer in table 2.

For evaporation, ρ(g)
min = ρ(g)(x̃A∞ = 0) = CMB = ρB = 1.13 kg m−3, corresponding to

the density of pure inert gas under the same bulk conditions and ρ(g)
max = ρ(g)(x̃A,w) =

1.43 kg m−3 with θ∞ = 300 K and θw = 330 K. For condensation, ρ(g)
min = ρ(g)(x̃A,w) =

1.09 kg m−3 and ρ(g)
max = ρ(g)(x̃A∞,eq) = 1.30 kg m−3 with θ∞ = 330 K and θw = 300 K.

The saturation molar fraction x̃A,w, obtained at θw and p0, is a limit at the thinnest region of
the Rayleigh–Taylor unstable layer (e.g. the contact line of a pendent drop). The saturated
molar fractions are calculated with the Clausius–Clapeyron equation (2.1) (cf. table 1). It
is found that Δρ(g) = 0.30 and 0.21 kg m−3, several times smaller than the respective bulk
value. With l̂c = 1.72 mm and Δθ(g) = 30 K, it follows from (E 2) that Gr(g)sol ≈ 52 and 33,
while Gr(g)th ≈ 18 and 16 for the evaporating and condensing cases, respectively. Given that
viscous effect in the VBL has been neglected, the Grashof numbers are not large enough
for buoyancy effects to appear. If Δθ(g) is driven by latent heat only and phase change
is driven by concentration difference without an applied temperature gradient, Gr(g)th will
be much smaller, as in Dehaeck et al. (2014). Moreover, the solutal- and thermal-induced
density variations are counteracting due to the fact that ρ(g) decreases with increasing
θ(g) and the x̃A-dependence of ρ(g) in the present case (cf. figure 20). Therefore, in the
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parameter regime the effect of buoyancy convection in the VBL is negligible, which is
more satisfactory for the condensation case.

Appendix F. Linear dispersion relations

Substituting (4.1) into the system of (2.31) and (2.45) and then linearizing in the small
amplitudes of disturbances, A and B, we obtain the dispersion relation for the instantaneous
growth rate ω of the disturbances at Tps (corresponding to H̄(Tps) and ¯̃xA,I(Tps)), which has
an implicit functional dependence upon the wavenumber k

(ω + H̄3(G + Sk2)k2 + f̄1 f̄2{E + Ma Pr−1KABH̄2k2

− 1
120 Gr H̄4[40KAB + 29(1 + Bi KAB)H̄]k2 − E2D−1H̄3J̄0k2})

× [Ωω + k2 − 2Γ (1 − ¯̃xA,I)(1 + Bi H̄)f̄1J̄0 + 2M̂Δ−2 ln η̄]

= 2Γ f̄ 3
1 (1 − ¯̃xA,I)[E(1 + Bi H̄) − Ma Pr−1H̄3k2 + 11

120 Gr H̄5k2

− E2D−1(1 + Bi H̄)H̄3J̄0k2]{Γ ΔX̃ Bi[Γ ΔX̃(1 + Bi H̄) − (1 + 2 Bi H̄)Θ∞]

+ Bi2Θ2
∞H̄ − [Γ ΔX̃(1 + Bi H̄) − Bi H̄Θ∞](1 + Bi KAB)J̄0}, (F 1)

where the functionals with an overbar, f̄1, f̄2, J̄0 and η̄, are evaluated with the basic
solutions, and the pseudo-steady assumption for (3.21a) is employed to calculate ¯̃xA,I .

On the other hand, we substitute (4.1a) into the (1 + 1)-D version of the one-sided
model (2.51) and linearize in A to obtain ω∗ = ωev(Tps) + ωeff (Tps), where the two real
terms read ωev(Tps) = −E∗ f̄ ∗

2 J̄∗
0 , resulting from mass gain, and

ωeff (Tps) = {E∗ 2D−1(1 + Bi K)(H̄J̄∗
0)

3 − K Ma∗Pr−1(1 + Bi K)(H̄J̄∗
0)

2 − GH̄3

− 1
120 Gr∗H̄3[11 + K(29K + 18(1 + Bi K)H̄)J̄∗ 2

0 ] − k2SH̄3}k2, (F 2)

defined as an effective growth rate. The term ωev measures the initial disturbance
amplitude relative to the thickening basic state, and does not contribute to the exponential
variation of linear instability. In the case of a Rayleigh–Taylor unstable condensing layer,
the expression of ωeff shows the destabilizing effects of vapour thrust, hydrostatic pressure
(G < 0), and buoyancy (Gr∗ < 0) as well as the stabilizing effects of thermocapillarity
and surface tension. The unstable conditions are ω > 0 and ωeff > 0, respectively.
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