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One can define the independence polynomial of a graph G as follows. Let ik(G) denote the number
of independent sets of size k of G, where i0(G) = 1. Then the independence polynomial of G is
I(G, x) =

∑n
k=0(−1)kik(G)xk. In this paper we give a new proof of the fact that the root of I(G, x)

having the smallest modulus is unique and is real.
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1. Introduction

Throughout the paper G is a graph without multiple edges and loops. The independence poly-
nomial of the graph G is defined as follows. Let ik(G) denote the number of independent sets of
size k of G, where i0(G) = 1. Then the independence polynomial of G is

I(G, x) =

n∑
k=0

(−1)kik(G)xk.

We note that I(G,−x) is usually called the independence polynomial in the literature. We will
see that it is much more convenient to work with I(G, x). Since the connection between the
two forms is very simple, it will not cause any confusion. We also mention that several authors
consider the clique polynomial of the graph G, which is I(G, x) in our notation. Surprisingly,
it is slightly more convenient to work with the independence polynomial than with the clique
polynomial.
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2 P. Csikvári

Let β(G) be the smallest real root of the independence polynomial. It is known that it exists
and it is in the interval (0, 1] (see [5]). It is also well known that if ρ is another root of the
independence polynomial, then |ρ| � β(G) [5]. It was only proved much later by Goldwurm
and Santini [7] that, in fact, the stronger statement |ρ| > β(G) holds too. On the other hand,
their proof relies heavily on the theory of formal languages. However, this was not the aim of
Goldwurm and Santini: their theorem had an important application, namely, it filled a gap in a
proof of Fisher [3] on the minimal number of triangles of a graph with prescribed number of
edges (see Remark 3.3).

In this short note we give a considerably simpler proof for this theorem.

Theorem 1.1. Let ρ be a root of the independence polynomial I(G, z) different from β(G). Then
|ρ| > β(G).

The paper is organized as follows. We end this Introduction by presenting our notation. In
Section 2 we collect the required tools from complex function theory. In Section 3 we prove
Theorem 1.1. We end the paper with some concluding remarks on the weighted version of
Theorem 1.1.

Notation. Throughout the paper we will consider only simple graphs. As usual G = (V , E) will
denote a graph with vertex set V (G) and edge set E(G). Let e(G) be the number of edges, i.e.,
e(G) = |E(G)|. The set of neighbours of the vertex v will be denoted by NG(v); if there is no
confusion we will simply write N(v) instead of NG(v). The closed neighbourhood of the vertex
v is NG[v] = NG(v) ∪ {v}. The degree of the vertex v will be denoted by d(v) = |NG(v)|.

For S ⊂ V (G) the graph G − S denotes the subgraph of G induced by the vertex set V (G)\S .
If e ∈ E(G) then G − e denotes the graph with vertex set V (G) and edge set E(G)\{e}.

2. Lemmas from complex analysis

In this part we collect the required background from complex analysis. We use only two theorems
from complex analysis. Both theorems are well known and they can be found in [6].

Lemma 2.1 (Pringsheim’s theorem [6]). If f(z) is representable at the origin by a series
expansion that has non-negative coefficients and radius of convergence R, then the point z = R

is a singularity of f(z).

Let

f(z) =

∞∑
n=0

fnz
n

be analytic in |z| < R, and assume that fn � 0 for n � 0. Then for any |s| < R we have

|f(s)| =

∣∣∣∣∣
∞∑
n=0

fns
n

∣∣∣∣∣ �
∞∑
n=0

|fn||s|n =

∞∑
n=0

fn|s|n = f(|s|).

By investigating the case of equality we obtain Lemma 2.2. To prepare it, we need some termin-
ology.
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Definition. Let

f(z) =

∞∑
n=0

fnz
n.

Let Supp(f) = {k| fk �= 0}. The sequence (fn) as well as f(z) admits span d if, for some r, we
have

Supp(f) ⊆ r + dZ�0 = {r, r + d, r + 2d, . . .}.

The largest span, p, is the period, all other spans being divisors of p. If the period is equal to 1,
then the sequence (fn) and f(z) are said to be aperiodic.

Lemma 2.2 ([6]). Let f(z) be analytic in |z| < R and have non-negative coefficients at 0.
Assume that f does not reduce to a monomial, and that for some non-zero s with |s| < R we
have

|f(s)| = f(|s|).

Then the following holds: (i) the argument of s must be commensurate to 2π, i.e., s = |s|eiθ with
θ/2π = r

p
∈ Q (an irreducible fraction) and 0 < r < p, and (ii) f admits p as a span.

In fact, we will only need that if the sequence (fn) is aperiodic, then |f(s)| �= f(|s|) if s is
non-zero and non-positive.

3. Generator functions of the independence polynomial

Throughout this section we will use the following simple recursive formulas for the independence
polynomial.

Lemma 3.1 ([9]).

(a) If G is a disconnected graph with connected components H1, . . . , Hk, then

I(G, z) =

k∏
j=1

I(Hj, z).

(b) Let v be an arbitrary vertex of the graph G. Then

I(G, z) = I(G − v, z) − zI(G − N[v], z).

(c) If e = (u, v) ∈ E(G), then we have

I(G, z) = I(G − e, z) − z2I(G − N[u] − N[v], z).

The next lemma is the main tool to prove Theorem 1.1.

Lemma 3.2. Let G and H be graphs and set

I(H, z)

I(G, z)
=

∞∑
k=0

rk(H,G)zk.
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4 P. Csikvári

Then:

(a) if H is a proper induced subgraph of G, then rk(H,G) > 0 for k � 0,
(b) if H is a proper subgraph of G, then rk(H,G) > 0 for k � 2.

Proof. (a) We prove the statement by induction on the number of vertices of G. If |V (G)| = 1,
then |V (H)| = 0 and

I(H, z)

I(G, z)
=

1

1 − z
=

∞∑
j=0

zj .

It is enough to prove the statement for H = G − u, where u is an arbitrary vertex of G. Indeed,
if H = G − S for some S = {u1, . . . , uk} ⊆ V (G), then

I(H, z)

I(G, z)
=

I(G − u1, z)

I(G, z)

I(G − {u1, u2}, z)
I(G − u1, z)

· · · I(G − {u1, . . . , uk}, z)
I(G − {u1, . . . , uk−1}, z) .

By induction we already know that all terms except the first one have a power series expansion
of positive coefficients. Hence it is enough to prove that rk(G − u, G) > 0 for all k � 0.

Now we use the recursive formula

I(G, z) = I(G − u, z) − zI(G − N[u], z).

We have

I(G − u, z)

I(G, z)
=

I(G − u, z)

I(G − u, z) − zI(G − N[u], z)

=
1

1 − z I(G−N[u],z)
I(G−u,z)

=

∞∑
k=0

(
z
I(G − N[u], z)

I(G − u, z)

)k

.

If G − N[u] is a proper subgraph of G − u, then by induction all the coefficients of the power
series

I(G − N[u], z)

I(G − u, z)

are positive and so all the coefficients of

I(G − u, z)

I(G, z)

are positive. If G − N[u] = G − u, then

I(G − u, z)

I(G, z)
=

1

1 − z
,

and we are done again.

(b) We prove the claim by induction on the number of edges of G. If e(G) = 0 and |V (G)| =

n, |V (H)| = k, where k < n, then

I(H, z)

I(G, z)
=

(1 − z)k

(1 − z)n
=

∞∑
j=0

(
n − k − 1 + j

n − k − 1

)
zj .
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Thus the statement is true in this case. Just as in the case of the proof of part (a) it is enough to
prove that rk(G − e, G) > 0 for all k � 2. Indeed, if E(H) = E(G) − {e1, . . . , ek} and |V (G)| −
|V (H)| = s, then

I(H, z)

I(G, z)
=

I(G − e1, z)

I(G, z)

I(G − {e1, e2}, z)
I(G − e1, z)

· · · I(G − {e1, . . . , ek}, z)
I(G − {e1, . . . , ek−1}, z)

1

(1 − z)s
.

By induction we already know that all terms except the first one have a power series expansion
of the required form. Hence it is enough to prove that rk(G − e, G) > 0 for all k � 2. Now we
use the second recursive formula. If e = (u, v) ∈ E(G), then we have

I(G, z) = I(G − e, z) − z2I(G − N[u] − N[v], z).

We have

I(G − e, z)

I(G, z)
=

I(G − e, z)

I(G − e, z) − z2I(G − N[u] − N[v], z)

=
1

1 − z2 I(G−N[u]−N[v],z)
I(G−e,z)

=

∞∑
k=0

(
z2 I(G − N[u] − N[v], z)

I(G − e, z)

)k

.

Since G − N[u] − N[v] is a proper induced subgraph of G − e, we have by part (a) that all the
coefficients of the power series

I(G − N[u] − N[v], z)

I(G − e, z)

are positive, and rk(G − e, G) � 2 for k � 2.

Remark 3.3. From a theorem of Cartier and Foata [1] one can deduce that rk(∅, G) counts the
number of words of length k in a certain ‘semi-Abelian’ monoid. This deduction is explained in
[2], where Fisher also gave a direct proof of this combinatorial meaning. So it was known that
rk(∅, G) � 0. A similar interpretation of rk(H,G) can probably be given too.

We mention that Fisher [3] used the connection between the independence polynomial and
this counting problem to give a sharp lower bound for the number of triangles in a graph G

with n vertices and e edges if n2/4 � e � n2/3. His proof contained a small gap: he used |ρ| >
β(G) for ρ �= β(G), but he only proved |ρ| � β(G). We also note that the problem of giving
(asymptotically) sharp lower bounds for the number of cliques of size k in a graph with fixed
numbers of vertices and edges was resolved by Razborov [11] (k = 3), Nikiforov [10] (k = 3, 4)
and Reiher [12] (k � 3). They used a completely different approach to Fisher.

Corollary 3.4 ([4, 5]). Let β(G) be the radius of convergence of 1
I(G,z)

. Then β(G) is a root of
the independence polynomial I(G, z), and it has the smallest modulus among the roots of I(G, z).
Let H be a subgraph of G. Then β(G) � β(H).

Proof. Let

1

I(G, z)
=

∞∑
k=0

rk(G)zk.
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Clearly, rk(G) = rk(∅, G) > 0 for all k � 1. Hence Pringsheim’s theorem (Lemma 2.1) already
gives the first part of the claim.

Since

1

I(G, z)
=

I(H, z)

I(G, z)

1

I(H, z)
,

we obtain that rk(G) � rk(H) if H is a subgraph of G. Hence

β(G) = lim inf
k→∞

rk(G)−1/k � lim inf
k→∞

rk(H)−1/k = β(H).

Remark 3.5. A very simple proof of Corollary 3.4 can also be found in [8].
At this moment we do not exclude the possibility that some other root of the independence

polynomial has modulus β(G). We will exclude it later.

Our next aim is to prove that if H is a proper subgraph of the connected graph G then β(G) <

β(H) holds. This is the last step to prove the uniqueness of the root β(G).

Lemma 3.6. Let G be a connected graph and let H be a proper subgraph of G. Then β(G) <

β(H) and the multiplicity of the root β(G) is 1.

Proof. We prove the claim by induction on the number of edges of G. If e(G) = 0 or 1 then the
claim is trivial. Clearly, it is enough to prove that β(G) < β(G − e) for any edge e = (u, v). Since
β(G) � β(G − e), we only need to prove that β(G) �= β(G − e). Assume for a contradiction that
β(G) = β(G − e). Since

I(G, z) = I(G − e, z) − z2I(G − N[u] − N[v], z),

we obtain that β(G) = β(G − e) is also a root of I(G − N[u] − N[v], z). Hence β(G − N[u] −
N[v]) = β(G − e). If G − e is connected, then it is already a contradiction since G − N[u] −
N[v] is a proper subgraph of G − e, so β(G − N[u] − N[v]) > β(G − e). If G − e is not con-
nected, then G − e = H1 ∪ H2, where H1 and H2 are connected graphs. If u ∈ V (H1) and v ∈
V (H2), then

G − N[u] − N[v] = (H1 − N[u]) ∪ (H2 − N[v]).

Hence

β(G − e) = min(β(H1), β(H2)) < min(β(H1 − N[u]), β(H2 − N[v])) = β(G − N[u] − N[v]).

This is again a contradiction. Hence we have proved that β(H) > β(G).
The second claim follows from the simple identity [9]

−I ′(G, z) =
∑

u∈V (G)

I(G − N[u], z).

Since all I(G − N[u], z) are positive in the interval [0, β(G)], we have

I ′(G, β(G)) < 0,

and thus β(G) is a simple root of I(G, z).
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Clearly, it is enough to prove the claim for a connected graph G since
the roots of I(G, z) are the union of the roots I(Hj, z) where Hj are the connected components of
the graph G. We can also assume that |V (G)| � 2, since the claim is trivial for K1.

Let u be an arbitrary vertex of the graph G. Note that G − N[u] is a proper induced subgraph
of G − u since G is a connected graph on at least two vertices.

Once again we use the identity

g(z) =
I(G − u, z)

I(G, z)
=

1

1 − z I(G−N[u],z)
I(G−u,z)

.

Let us examine

f(z) = z
I(G − N[u], z)

I(G − u, z)
.

Since G − N[u] is a proper induced subgraph of G − u, the radius of convergence of f(z) is
β(G − u), and all the coefficients of f(z) are positive except the coefficient of z0. If ρ is a root
of I(G, z) of modulus β(G), then it must be a singularity of g(z) since I(G − u, z) has no root of
smaller modulus than β(G − u), and β(G − u) > β(G). Hence f(ρ) = 1. Hence |f(ρ)| = f(|ρ|),
so we can use Lemma 2.2 to obtain that ρ = β(G)e2πir/p, where p is some period of f(z). But
f(z) is aperiodic: all the coefficients are positive. Thus p = 1 and ρ = β(G).

4. Concluding remarks

In this last section we mention that we could have proved the same results for the following
weighted version of the independence polynomial.

Let w : V (G) → R+ be a positive function, and let

I((G,w); t) =
∑
I∈I

(∏
u∈I

w(u)

)
(−t)|I |

be the weighted independence polynomial of the graph G, where the summation runs over all
independent sets of the graph G including the empty set.

The weighted independence polynomial satisfies the recursions

I((G,w); t) = I((G − v, w); t) − wvtI((G − N[v], w); t)

and

I((G,w); t) = I((G − e, w); t) − wuwvt
2I((G − N[u] − N[v], w); t),

where v is a vertex and e = (u, v) is an arbitrary edge. From these formulas one can see that
the proof of Lemma 3.2 easily generalizes and one can prove that the weighted independence
polynomial has a unique root of smallest modulus, which is real.

The importance of this weighted independence polynomial (or independent-set polynomial)
is that it is related to the Lovász local lemma through the following theorem of Scott and Sokal
[13, 14].
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We say that a graph G with vertex set V is a dependency graph for the events (Av)v∈V
if, for each v ∈ V , the event Av is independent from the collection {Au | u ∈ N[v]}. Let us
say that a sequence p = (pv)v∈V ∈ [0, 1]V is good for the dependency graph G if, for every
collection (Av)v∈V of events with dependency graph G such that P(Av) � pv for all v ∈ V , we
have P(∩v∈VAv) > 0.

Now combining Theorem 1.3 (the equivalence theorem) with Theorem 2.2 (the fundamental
theorem) of [14], we get the following result.

Theorem 4.1. Let G be a finite graph with vertex set V , and let p = (pv)v∈V ∈ [0, 1]V . Then the
following two statements are equivalent:

(a) p is good for the dependency graph G,
(b) I((G, p), t) > 0 for t ∈ [0, 1].

It is not clear that the weighted version of Theorem 1.1 has any relevance in the context of the
Scott–Sokal theorem.
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