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A laminar water jet issuing at high speed from a short circular nozzle into air exhibits
various instability features at different distances from the nozzle exit. Near the exit,
the effects of gaseous friction and pressure are relatively weak. Deformation of the jet
surface in this region is mainly due to the instability of a thin liquid shear layer flow,
which relaxes from the velocity profile produced by the nozzle wall. In this paper,
a model for this type of instability based on linear stability analysis is investigated
to describe the process initiating the formation of liquid ligaments disintegrating into
fine droplets near the nozzle exit. The modelling comprises identifying unstable waves
excitable in the liquid shear layer and exploring a self-destabilizing mechanism by
which unstable waves responsible for the formation of liquid ligaments are naturally
reproduced from the upstream-propagating capillary waves produced by the growth of
the unstable waves themselves. An expression for the location of ligament formation
onset is derived that can be compared with experiments. The model also explains
changes in jet instability features away from the nozzle exit and for very short nozzles.

Key words: aerosols/atomization, capillary waves, wakes/jets

1. Introduction

Water issuing into still room air from a circular nozzle exhibits various disintegration
features depending on jet speed and nozzle shape (McCarthy & Malloy 1974).
At low jet speeds, the Plateau–Rayleigh (Plateau 1873; Rayleigh 1878) instability
disintegrates the jet into large droplets at large distances from the nozzle. As the jet
speed is increased, aerodynamic forces and the nozzle exit velocity profile affect the
jet instability (Chandrasekhar 1961; Batchelor & Gill 1962; Taylor 1963; Mattingly &
Chang 1974; Sterling & Sleicher 1975; Lin & Reitz 1998; Gordillo & Pérez-Saborid
2005). For a long nozzle, the nozzle flow becomes turbulent at a certain jet speed.
At higher jet speeds, a fully turbulent jet experiences turbulent atomization, which
transforms all the issued water into a spray of fine droplets. In contrast, a water
jet issuing from a short nozzle or an equivalent convergence nozzle can maintain
a laminar jet state up to a much higher jet speed. Figure 1(a) shows high-speed
photography of such a water jet (Hoyt & Taylor 1977; Taylor & Hoyt 1983), in which
the laminar velocity profile of the issued water at the nozzle exit is uniform except
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FIGURE 1. A water jet issuing into still room air at a speed of 25 m s−1 from a
6.35 mm diameter and 6.35 mm long straight nozzle, preceded by a cone section with a
7◦ half-angle. The flow exiting the nozzle is laminar. (a) Near the nozzle exit, appreciable
axisymmetric surface deformation is observed, which develops into a three-dimensional
surface deformation forming ligaments and atomized droplets. (b) Far downstream from
the nozzle exit (216D < x < 240D), only relatively large-scale surface irregularities
(varicose and sinuous waves) are observed.

in a thin shear flow layer adjacent to the jet surface. A characteristic instability of
this jet is the emergence of fine axisymmetric surface deformation, which transitions
to turbulent atomization with liquid ligaments formed almost normal to the jet
surface that break into fine droplets (figure 1a), while the jet behaviour observed far
downstream of the nozzle (figure 1b) is similar to that at lower jet speeds. Therefore,
this jet provides a suitable prototype for studying the underlying physics initiating
turbulent atomization.

The turbulent atomization mechanism has been investigated from various points
of view (Ranz 1958; Mayer 1961; Taylor 1963; Reitz & Bracco 1982; ?; Levich
1992; Huh, Lee & Koo 1998; Lasheras & Hopfinger 2000; Yecko, Zaleski & Fullana
2002; Lin 2003; Marmottan & Villermaux 2004; Yecko & Zaleski 2005; Trinh 2007;
Eggers & Villermaux 2008; Gorokhovski & Herrmann 2008; Shinjo & Umemura 2010,
2011) because its understanding is crucial for controlling spray formation in various
applications. Most research has focused on aerodynamic effects on the interfacial
instability. A well-known theory is the Kelvin–Helmholtz instability applied to an
interface between liquid (density ρ, tangential velocity U, surface tension σ ) and gas
(ρg, Ug = 0) phases (Chandrasekhar 1961), which leads to a complex phase velocity
c as a function of wavenumber k:

c= ρU
ρ + ρg

± i
1

ρ + ρg

√
ρρgU2 − (ρ + ρg)σk. (1.1)

This expression is often used in constructing atomization simulators (typically KIVA)
(Huh et al. 1998; Trinh 2007) for industrial applications. In this theory, the strong
instability arises from a large velocity difference U between the liquid and gas phases.
However, several experimental observations (Fenn & Middleman 1969; Davies &
Young-Hoon 1974; Phinney 1975; Hoyt & Taylor 1977; Arai, Shimizu & Hiroyasu
1985; Karasawa et al. 1992; Wu, Miranda & Faeth 1995), including those shown in
figure 1, indicate that aerodynamic effects on turbulent atomization are of secondary
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importance. It is instead believed that a liquid shear layer formed during the nozzle
passage plays an important role. Wu et al. (1995) showed that the size of the atomized
droplets is well correlated with the liquid shear layer thickness for all tested liquids,
ambient gas environments, jet exit velocities and jet exit diameters. Therefore, the
interfacial instability observed in figure 1(a) may be independent of aerodynamic
effects. However, (i) there is no theory that identifies the involved instabilities and
reasonably supports this idea. Furthermore, (ii) it is not known why the turbulent
atomization starts steadily at a certain distance from the nozzle exit. The present study
attempts to address points (i) and (ii) by assuming a completely (disturbance-free)
laminar nozzle flow.

To do this, it is necessary first to identify the origin of the liquid shear layer
instability. Figure 1(a) indicates the temporally periodic production of small surface
deformation near the nozzle exit, the spatial evolution of which may be described
in a framework of linear theory. Convectively unstable shear flows (mixing layers,
flat-plate wakes) are sensitive to external noise and display extrinsic dynamics (noise
amplifiers) (Huerre & Monkewitz 1990). Therefore, past studies have simply assumed
the presence of random disturbances from which the most unstable wave component
can grow first. However, for a spatially developing instability to be periodic in
time, a deterministic mechanism should exist to produce convectively unstable waves
repeatedly at a fixed location. The atomization onset location will then be fixed.
Considering the rapid growth of shear flow instability, it seems more reasonable
to consider that the disturbances responsible for flow instability are produced
downstream of the nozzle exit and the shear flow instability may be self-sustained by
a deterministic mechanism.

As a linear theory describing self-sustained instabilities, the concepts of absolute
instability (Briggs 1964; Huerre & Monkewitz 1990) and global mode analysis
(Chomaz 2005) are familiar and applied to various flows in order to predict the
baseline flow condition for which the predicted instability emerges. For example, in
wakes behind a body, it is found that increased Reynolds number changes a blunt-body
wake flow from a stable state to a convectively unstable state and finally an absolutely
unstable state with self-excited mechanisms. In global mode analysis, the whole flow
region with specific inlet and outlet boundary conditions are considered. Gallaire &
Chomaz (2004) showed that wave propagations between the inlet and outlet may
result in a linear instability for a simple model of incipient vortex breakdown, while
most global mode analyses rely on the presence of an absolute instability region for
self-sustainability.

However, these current theories do not unambiguously identify the mechanism
of temporally periodic, spatially developing flow formation. In fact, the absolute
instability analysis only predicts the long-time response behaviour (temporal evolution)
of an impulsively forced baseline flow portion. The underlying physics of absolute
instability can be easily figured out for a separated flow configuration (Yu &
Monkewitz 1990; Takemoto & Mizushima 2010). When some elements of the
dispersive wave produced by an impulsive forcing are elongated and turn to unstable
wave elements in a region upstream of the forcing location, the disturbed flow
can grow in a self-excited fashion. The baseline flow portion that exhibits such a
response is called ‘absolutely unstable’. In the linear theory, any external perturbation,
even part of the disturbed flow, may play a similar role as the impulsive forcing.
Therefore, the disturbed flow in the absolutely unstable region must eventually be in
a nonlinear regime (limit-cycle state), which can no longer be described by a linear
theory (e.g. see experiments by Inoue (1985)). Although it may explain the initial
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formation of convectively unstable waves, linear absolute instability does not explain
the mechanism of continued periodic formation of convectively unstable waves at a
fixed location unless the nonlinear dynamics is fully explored. The linear theory is
only applicable to a restricted region upstream of the nonlinearly developing region.
This is the place where the leading short-wave elements of the upstream-propagating
dispersive wave may remain with small amplitude. Therefore, in the present study,
attention is directed to a deterministic reproduction mechanism of convectively
unstable waves at the nozzle exit, which is described by a linear theory, including
the downstream effects caused by unstable wave growth.

In a study of low-speed water jets, in which initial Plateau–Rayleigh unstable
wave elements are always in a linear regime, Umemura (2011) and Umemura et al.
(2011) focused on the roles played by the nozzle and the upstream-propagating
capillary waves (dispersive waves) produced by the surface energy release. In that
work, he proposed a self-destabilizing loop that disintegrates the jet into droplets
at a fixed distance according to the Plateau–Rayleigh instability. The essential idea
behind this proposal is based on the fact that the end pinching and the growth
of the Plateau–Rayleigh unstable wave (convective instability) is caused by the
energy released by surface area reduction. Part of the released surface energy,
which is transferred upstream by a capillary wave, is available to reproduce the
Plateau–Rayleigh unstable wave in the newly issued liquid column.

The high-speed liquid jet in figure 1(a) has a common feature with this low-speed
jet, in that convectively unstable waves may be reproduced in the newly issued laminar
jet. The idea of a self-destabilizing mechanism developed for a low-speed liquid jet
can be extended to the present problem in order to explore the self-destabilizing
mechanisms involved in figure 1(a) by identifying the origin of the liquid shear
flow instability. Figure 2 illustrates the self-destabilizing mechanism proposed in the
present paper. It shows a scenario of instability initiating the formation of liquid
ligaments disintegrating into fine droplets in a high-speed jet from a short nozzle.
The present paper describes our theoretical developments leading to the model of
figure 2 and shows the role played by the surface liquid shear layer on the excitation
of atomizing ligaments.

The present paper is organized as follows. In § 2, the baseline jet flow structure of
figure 1 is analysed, for which excitable instabilities are examined in the subsequent
sections. In § 3, a problem involved in conventional linear instability analyses is
discussed. Based on this discussion, the self-destabilizing loops proposed in figure 2
are identified in § 5 based on linear stability analysis conducted in § 4. Section 6
explains the physics underlying figures 1(a) and 2 and predicts the onset location
of ligament formation for comparison with experimental observations. Section 7
summarizes the results of the present research.

2. Velocity profile relaxation of baseline jet flow

The jet considered in this paper is composed of water issuing into still room air
from a short nozzle of diameter D and length L. Surrounding a uniform stream of
large velocity U, the jet has a thin annular liquid shear layer on its surface, which is
formed within the nozzle and has a thickness

δ0 =K

√
νL
U

(K = 3.01) (2.1)
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Reproduction
of 2D and 3D

unstable waves 
Growth

Ligament formation

Primary atomization

Breakup

Upstream energy transfer by
capillary waves

Nozzle
exit

High-speed core flow (uniform stream) 

Coupling of amplified 2D
unstable wave with  3D waves

Self-destabilizing loop

(Linear stage) (Nonlinear stage)

Energy transfer from 
baseline shear flow

through Reynolds stress

FIGURE 2. Self-destabilizing loops formed in the gaseous stress-free liquid shear flow
layer. These loops initiate turbulent atomization. The present paper mainly treats the linear
stage enclosed by the grey dashed line. The unstable waves excited in the shear layer
gain energy from the high-speed core flow through the Reynolds stress and then grow.
The growth of an unstable wave produces capillary waves, which propagate and transport
energy upstream and downstream. Short-wavelength capillary waves reaching the nozzle
exit reflect and may turn to the unstable waves by the Doppler effect at the nozzle exit,
thus reproducing the unstable waves, which generate the short-wavelength capillary waves.
The three-dimensional unstable waves are amplified to form ligaments that disintegrate
into droplets. This process is nonlinear and generates various waves, which prevents
deterministic tracking of the flow development. Overall, the energy cascades from the
high-speed core flow towards atomized droplets.

at the nozzle exit x= 0, where the value of K is determined using the Blasius solution
(Schlichting 1968) such that the boundary layer thickness is equal to the ratio of the
uniform stream velocity and the velocity gradient at the nozzle wall.

The gas density ρg is much smaller than the liquid density ρ. The steady laminar jet
flow (baseline jet flow for stability analysis) realized in the absence of any instability
is characterized as follows. Owing to the liquid kinematic viscosity ν=µ/ρ, the liquid
shear layer relaxes to that compatible with the gaseous frictional stress. At the nozzle
exit x = 0, where the surface velocity Us(x) is zero, gaseous stress does not act on
the jet. As the surface velocity increases downstream, the gaseous stress gradually
increases. In the vicinity of the nozzle exit, the relatively low surface velocity allows
us to consider that the velocity profile of the liquid shear layer relaxes as if the jet
surface were free from gaseous stress. Therefore, the jet surface velocity Us increases
from zero towards the uniform velocity U.

Since the shear layer thickness δ0 is much smaller than the nozzle diameter D,
the liquid shear layer flow may be regarded as planar. In fact, in the experimental
condition of figure 1, application of (2.1) to the straight nozzle section leads to
δ0/(D/2)= 0.016. This result will not change significantly even if the boundary layer
formed in the convergent nozzle section is taken into account. Thus, to characterize
the shear layer flow, it is assumed that the water occupies a semi-infinite region
x > 0 and y > 0. At the nozzle exit location x = 0, the water has an axial velocity
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FIGURE 3. Velocity profile relaxation of the jet surface flow layer. The axial velocity
component u at a distance x from the nozzle exit is expressed as a function of distance y
from the jet surface as shown by the inset. The Reynolds number Reδ0 =Uδ0/ν is based
on the initial layer thickness δ0 and uniform core flow velocity U.

profile u = U tanh(y/δ), while the stress-free condition ∂u/∂y = 0 is satisfied along
the surface y= 0. The steady parallel flow, governed by a unidirectional flow equation
u ∂u/∂x = ν ∂2u/∂y2, was solved numerically under the above-mentioned boundary
conditions to describe the velocity profile relaxation along the jet. This equation
neglects the term v ∂u/∂y in the boundary layer equation, but this approximation
does not affect the flow structure in an essential way. The relevant dimensionless
parameter is the Reynolds number defined by

Reδ0 =
Uδ0

ν
. (2.2)

Figure 3 shows the change in axial velocity profile along the jet. Dragged by the
high-speed core flow, the surface gains a velocity Us(x) = u(x, y = 0). The velocity
profile has an inflection point at a distance Y(x) from the surface at each location x
along the jet. The variations of Y and Us with x from numerical solutions are shown
in figure 4. They are found to be correlated by

Us

U
= 1

2

(
Y
δ0

)4/3

= 1
2

[
10

Reδ0

(
x
δ0

)]1/3

. (2.3)

Using (2.1) and (2.2), the abscissa of figure 4 can be rewritten as

1
Reδ0

x
δ0
= 1

K2

D
L

x
D
. (2.4)

Note that the value of Us/U at each x does not depend on the jet speed U.

3. Energetic consideration of disturbed flow
Instabilities excitable for the baseline jet flow can be examined within the

framework of linear stability analysis. However, there is an important issue that is
not addressed enough in conventional methods. Before presenting our linear stability
analysis, we explain this issue in this section in the context of the present two-phase
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FIGURE 4. Numerical characterization of jet surface flow layer (solid lines). Here Us is
the surface velocity; and Y is the distance from the surface to the inflection point of the
axial velocity profile. The dotted lines correspond to (2.3).

flow problem, although the following arguments are applicable to other problems as
well (including nozzle flows).

Figure 5 shows a control volume (labelled CDFE), set at a distance X from
the nozzle exit. We assume that both liquid and gas flows are governed by the
incompressible Navier–Stokes equations for velocity vi= uδix + v′i , pressure p= 0+ p′
and surface deformation η= 0+ η′. Integrating the inner product of the Navier–Stokes
equations and the velocity vi over the control volume leads to the following expression
(written in two dimensions only for clarity) for the conservation of the sum of kinetic
energy and surface energy:

d
dt

[ ∫∫
CDFE

ρv2
i

2
dx dy︸ ︷︷ ︸

kinetic energy

+ σ

∫ X+∆x

X

√
1+

(
∂η

∂x

)2

dx︸ ︷︷ ︸
surface energy

]

=
∫∫

CDFE
ρvivj

∂vi

∂xj
dx dy︸ ︷︷ ︸

Q

−
∫∫

CDFE
µ

(
∂vi

∂xj

)2

dx dy︸ ︷︷ ︸
dissipation energy

+
∫

CE

[(
ρv2

i

2
+ p
)
vx − 1

2
µ
∂v2

i

∂x

]
dy︸ ︷︷ ︸

J−

+
{
−
∫

DF

[(
ρv2

i

2
+ p
)
vx − 1

2
µ
∂v2

i

∂x

]
dy
}

︸ ︷︷ ︸
J+

+

−σ
∂η

∂x
∂η

∂t√
1+

(
∂η

∂x

)2

∣∣∣∣∣∣∣∣∣∣
x=X

︸ ︷︷ ︸
W−

+ σ

∂η

∂x
∂η

∂t√
1+

(
∂η

∂x

)2

∣∣∣∣∣∣∣∣∣∣
x=X+∆x︸ ︷︷ ︸

W+

. (3.1)

If we take an ensemble average of (3.1) and subtract the baseline flow contributions,
we obtain the conservation equation for the sum of the kinetic energy and surface
energy of the disturbed flow. In this averaged equation, the term Q expresses the
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Liquid phase

Gas phase

A B

C D
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Short
nozzle

Undisturbed
region
(Stagnant
water
reservoir)

Undisturbed region
(Stagnant air)

Undisturbed region
(Jet centre line)

Q

X

0
x

Us

U
Baseline
velocity
profile

FIGURE 5. Energy balance for fluid in a control volume. The x axis is taken to be
consistent with the liquid surface of the baseline jet flow. In general, the fluid receives
energy transferred from outside the control volume. In the grey region, the disturbed flow
gains energy Q from the baseline jet flow through the Reynolds stress. Since an objective
of the present study is to show that turbulent atomization can be brought about without
the influence of gaseous flow, Jg− = Jg+ = 0 is assumed in the text.

energy transferred from the baseline flow to the disturbed flow through the Reynolds
stress. There are no energy influxes from undisturbed regions. Equation (3.1) clearly
indicates that disturbed flow develops by receiving energy not only from Q but also
from W and J, which express the energy transferred from upstream and downstream of
the control volume. As a result, even if the control volume and its upstream region
are initially in an undisturbed flow state (Q = W− = J− = 0), a disturbed flow can
be produced in the control volume by the presence of W+ and J+ as a result of
(i) penetration of a disperse capillary wave due to the surface deformation of the
downstream disturbed flow and (ii) formation of an induced flow field due to the
vorticity distribution of the downstream disturbed flow.

When the x directional variation of the baseline flow can be neglected in the control
volume, linear stability of the local baseline flow can be examined by conventional
stability analysis, which assumes that the disturbed flow has an x dependence of
exp(ikx). However, the resulting unstable wave solution (in either temporal or spatial
evolution analysis) does not generally satisfy the boundary conditions associated with
W and J. This is because the unstable wave solution accounts for the effect of Q but
does not correctly account for the resulting effects of W and J, even in the linear
regime. This difficulty becomes serious especially where the unstable wave has the
smallest amplitude, i.e. where the unstable wave is produced in a newly issued liquid
(W−= J−= 0). To resolve this difficulty, we need an additional solution that accounts
for the presence of W+ and J+. That is a neutral wave solution that transports energy
effectively from the downstream side and produces an unstable wave in the newly
issued liquid.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

51
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.511


Model for the initiation of atomization in a high-speed laminar liquid jet 673

Umemura (2011) introduced this self-destabilizing mechanism to modify the
conventional linear instability analysis for low-speed jets, in which the reduction in
surface area is the only source of energy for the unstable wave. He showed that the
steady reproduction of the Plateau–Rayleigh unstable wave in the newly issued liquid
can be described by introducing a synchronized steady capillary wave that transports a
portion of the surface energy released by the growth of the Plateau–Rayleigh unstable
wave or by jet tip contraction, in the upstream direction. A similar mechanism might
operate for the high-speed laminar jet considered in the present study. We note the
presence of W+ in a disturbed flow region. A capillary wave intrinsic to two-phase
flow is indispensable for the onset of turbulent atomization. In addition, similar to
the Love waves (see Love 1911) found in elasticity problems, the capillary wave may
be an effective energy transport agent because the involved liquid region is confined
to a thin surface liquid layer along the jet surface. Therefore, it is conjectured that a
rapid growth of an unstable wave near the nozzle exit produces dispersive capillary
waves propagating in the upstream direction and disturbing the newly issued liquid.

To examine this possibility, we first analyse the types of unstable and neutral waves
that are excitable at each station along the baseline jet flow in § 4. This analysis can
be carried out following a conventional linear stability analysis. To determine which
waves are really excited within the control volume targeted by the linear stability
analysis, we have to examine the downstream boundary state of the control volume
(presence of W+ and J+). If there is significant energy transfer across the downstream
boundary, the control volume state must count this energy flux. Such a consideration
is indispensable in the present stability analysis, because unstable wave growth results
in a nonlinear flow downstream and there must emerge dispersive capillary waves
propagating in the upstream direction. In § 5, the perturbation wave characteristics
derived from the linear stability analysis in § 4 are combined with this control
volume argument to propose a mechanism by which the convectively unstable waves
derived from the linear stability analysis are naturally reproduced periodically at the
nozzle exit.

4. Linear stability analysis of baseline jet flow
In a linear system, a temporally periodic phenomenon must be described in terms

of synchronized waves. The linear spatial stability of the baseline flow at each
axial location x = X can be examined by imposing on the local baseline flow field
{[u(X, y), 0, 0], p= 0}, a perturbation flow

(u′, v′,w′, p′)= {ū′(y), v̄′(y), w̄′(y), p̄′(y)} exp[ikξ − iωt+ imz] (4.1)

and surface deformation

η= ε exp[ikξ − iωt+ imz], (4.2)

where k, m and ω denote the complex axial wavenumber (kr + iki), real azimuthal
wavenumber and real frequency, respectively. Here ξ is the local axial coordinate
defined about each axial location x= X and z is the coordinate perpendicular to the
xy plane. The local baseline flow is assumed to be uniform in the axial direction.
The disturbed flow must satisfy the following energy conservation equation:[

∂

∂t
+ u(y)

∂

∂ξ

]
ρ(u′2 + v′2)

2
=−∂u′p′

∂ξ
− ∂vp′

∂y
− ρu′v′

du
dy
. (4.3)
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FIGURE 6. Modelling of the local axial velocity profile (black line) of the liquid shear
layer. The broken-line profile (grey line) defines a three-layer structure. The values of the
characteristic quantities, Us, Y, h and δ, change with the distance x from the nozzle exit.

This indicates that the unstable wave can grow only when energy is supplied from the
shear flow (∂u/∂y> 0) through the Reynolds stress (the third term on the right-hand
side). Therefore, if ∂u/∂y = 0 or the perturbation velocity vanishes where the shear
rate exists, the perturbation wave must be a neutral wave.

4.1. Modelled velocity profile
Based on figure 3, the baseline jet flow at each Us location was approximated by the
following analytical expression:

û= u−Us

U −Us
=


ψy2, 0 6 y 6 Y,

tanh
(

y− θ
δ∗

)
, y > Y.

(4.4)

The parameters ψ and θ are determined so as to make the velocity profile and its
slope continuous at the inflection point y= Y:

ψ = −δ∗ +
√
δ2∗ + Y2

Y3
,

θ

δ∗
= Y
δ∗
− 1

2
ln

∣∣∣∣∣∣∣∣∣∣
1− Y

δ∗
+
√

1+
(

Y
δ∗

)2

1+ Y
δ∗
−
√

1+
(

Y
δ∗

)2

∣∣∣∣∣∣∣∣∣∣
. (4.5a,b)

The grey solid line in figure 6 expresses the broken-line profile (three-layer model)
(Rayleigh 1880). The parameters δ∗ and Y are related to the parameters h and δ as
follows:

Y
δ0
= 2

h
δ0
=


2

Us

U
, 0 6 Us

U
6 1

2
,

1
2

1

1− Us

U

,
1
2
6 Us

U
6 1,

(4.6)
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FIGURE 7. Axial change in the liquid shear layer structure modelled in figure 6.
Instead of the distance x from the nozzle exit, the dimensionless surface velocity Us/U
is used to express the degree of velocity profile relaxation. The open circles denote
the correlation equations δ/δ0 = 1/[1− (Us/U)] and h/δ0 = Us/U (0 6 Us/U 6 0.5) or
0.25/[1− (Us/U)] (0.5 6 Us/U 6 1).

δ∗
δ0
= δ

δ0
−

(
h
δ0

)2

δ

δ0

=



1

1− Us

U

−
(

Us

U

)2 (
1− Us

U

)
, 0 6 Us

U
6 1

2
,

15
16

1

1− Us

U

,
1
2
6 Us

U
6 1.

(4.7)

Figure 7 shows the correlations of h and δ with the numerical calculation results.
It is known (Rees & Juniper 2009) that the exact shape of the baseline velocity

profile does not qualitatively change its stability characteristics and only weakly
changes the cutoff wavenumber above which perturbations are neutralized. This fact
was confirmed in our preliminary stability analyses. This would be the case, whether
viscous or inviscid, as confirmed in the single shear problem (Esch 1957).

4.2. Spatial evolution analysis
The jet surface deformation introduces the Weber number

Weδ0 =
ρU2δ0

σ
(4.8)

into the stability analysis. For a given set of dimensionless parameters Weδ0 ,
Us/U,mδ0 and ωδ0/U, we solved the following ordinary differential equation system
(transformed from the Rayleigh equation, i.e. the homogeneous type of (B 9) for
p̄′ = Pk) numerically to determine the eigenvalue kδ0:

Π = 1
p̄′

dp̄′

dy
, (4.9)

dΠ
du
− 2

k
ku−ωΠ +

Π 2 − (k2 +m2)

du/dy
= 0, (4.10)
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Π(y=∞ or u=U)=−√k2 +m2, (4.11)

Π(y= 0 or u=Us)= ρ(kUs −ω)2
σ(k2 +m2)

= 1
δ0

(
kδ0

Us

U
− ωδ0

U

)2

(kδ0)2 + (mδ0)2

1
Weδ0

, (4.12)

where, from (4.4),

dû
dy
=


2
√
ψ û, 0 6 y 6 Y,

1
δ∗
[1− û2], y > Y.

(4.13)

Equation (4.10) can be integrated from u=U towards u=Us subject to the boundary
condition (4.11) and dΠ/du(u=U) = −2

√
k2 +m2/(1+ δ∗

√
k2 +m2)(U −ω/k). The

eigenvalue k is determined so as to satisfy the boundary condition (4.11) at u = Us.
In the limiting case Weδ0→∞, when p̄′(y= 0)= 0 and therefore Π diverges at y= 0,
the solution is obtained by replacing Π by f = 1/Π in the system of equations.

The following are found from this system of equations. If the liquid region is
extended symmetrically about y = 0 to the other semi-infinite space y < 0 with the
same velocity profile as (4.4), this baseline flow expresses a wake flow behind a flat
plate placed parallel to a uniform liquid stream of velocity U. The inviscid stability
of this flow is governed by the same differential equation as (4.10) subject to the
boundary conditions Π(y=±∞)=∓√k2 +m2. It is well known that wake flow has
two instability modes: the varicose mode satisfying Π(y = 0) = 0, and the sinuous
mode satisfying |Π(y= 0)| = ∞. The latter mode has a larger growth rate than
the former (Papageorgiou & Smith 1989; Woodley & Peake 1997; Taylor & Peake
1999). The surface boundary condition (4.12) implies that Π(y= 0)→ 0 as Weδ0→ 0
while Π(y = 0) diverges as Weδ0 →∞ in which we are interested. Therefore, our
baseline jet flow has an unstable wave solution corresponding to the sinuous mode
of a flat-plate wake. In our problem, the sinuous mode corresponds to a deformable
jet surface while the varicose mode corresponds to no jet surface deformation. Thus,
jet surface deformation is indispensable for the excitation of a strong liquid shear
flow instability at large Weδ0 , which leads to the onset of atomization downstream.
Therefore, only solutions at large Weδ0 are presented in the following. Furthermore,
the spatial unstable solutions being presented are those which can transform to the
temporal unsteady solutions by an increase in the imaginary part ωi of the complex
frequency ω=ωr + iωI (causality).

In the present study, the liquid issued from the nozzle is assumed to be in a laminar
flow state to ensure the exclusion of unknown nozzle flow disturbances responsible for
the liquid shear flow instability. Therefore, the experimentally allowable value of Reδ0

or Weδ0 has an upper limit for a long nozzle. In the case of figure 1, Reδ0 = 1196
and ρνU/σ = Weδ0/Reδ0 = 0.347. The estimated Reynolds number Reδ0 exceeds the
critical Reynolds number of 735 (corresponding to 420 in Schlichting (1968)) for the
stability of wall boundary layer flow, but it is still smaller than the turbulent transition
Reynolds number of 1663 (quoted as 950 in Schlichting (1968)). The condition Reδ0 =√

Weδ0 ×
√
(σδ0)/ρ/ν < 735 leads to Weδ0 < 148 for figure 1(a). Thus, we will select

Weδ0 = 100 as a typical value in the present study in order to allow for a long nozzle.
However, the model developed in the present study will be able to apply larger Reδ0

values to describe a self-destabilizing mechanism operating in the near-nozzle region
of a short nozzle.
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FIGURE 8. The 2D spatial instability characteristics along the jet: (a) spatial growth rate;
(b) wavenumber; (c) phase velocity. The phase velocity cr is calculated by dividing the
frequency ω by the real wavenumber kr.

4.3. Two-dimensional stability
First, we consider two-dimensional (2D) perturbations (m= 0). The parameter Us/U
specifies a location x along the jet by (2.3). For given values of Weδ0 and Us/U, the
complex eigenvalue k = kr + iki is calculated as a function of frequency ω. Figure 8
shows the local stability characteristics at four locations Us/U = 0, 0.2, 0.4 and 0.6
for Weδ0 =∞, 1000 and 100. All quantities are non-dimensionalized. The dependence
of spatial growth rate (−ki), real wavenumber kr and phase velocity cr = ω/kr on
frequency ω are depicted in figure 8(a), (b) and (c), respectively. These behaviours
are similar to the sinuous mode of a wake flow with a Gaussian velocity profile,
except in a vicinity of Us/U= 0, where there appears a singular behaviour intrinsic to
the present problem (which will be discussed later). The presence of surface tension
suppresses instability and results in smaller growth rate. However, this decrement is
not significant at large Weδ0 > 50, except in the vicinity of Us/U = 0 in the limit
Weδ0 → ∞. The maximum growth rate decreases as the surface velocity increases,
owing to the shear rate decrease. Note that all waves shown in figure 8 are associated
with sinusoidal jet surface deformation. By phase mixing, the influence of a sinusoidal
surface deformation of wavenumber kr is confined within a distance of O(1/kr) from
the surface. In the three-layer model (see figure 6), the baseline flow state is clearly
distinguished by the boundary distances h and h+ δ from the surface. The Reynolds
stress contribution is active only in the layer h < y < h + δ. Therefore, for a wave
satisfying kh> 1, the wave cannot obtain energy from the shear flow (see (4.3)). As
a result, the unstable wave turns to a neutral wave at a cutoff wavenumber depending
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FIGURE 9. Relationship between spatial and temporal evolution solutions for Us = 0 and
Weδ0 =∞. The solid circles denote the complex wavenumber k = kr + iki obtained when
the imaginary part ωi of complex frequency ω is increased by an increment of 0.05U/δ0
for each prescribed real part ωr.

on Us/U (and Weδ0). Unlike the unstable wave with a wavenumber dependence on
frequency almost independent of Weδ0 and Us/U, the neutralized wave (capillary wave)
is significantly affected by Weδ0 and Us/U.

There is another class of capillary wave solution, which is shown by a line with
no symbols in figure 8(b,c) for the frequency range ωδ0/U< 0.5. This capillary wave
has an upstream propagation speed. As the wavenumber increases, the phase velocity
decreases from Us and eventually becomes negative. In figure 8, the range of ω
is extended to the negative side to express the upstream-propagating capillary wave
portion continuously, although both real frequency ω and wavenumber kr are assumed
to take a non-negative value in the text. The upstream-propagating capillary wave
satisfies the dispersion relation ω= k′(

√
σk′/ρ −Us) to a good approximation except

immediately near the nozzle exit. According to (3.1), the upstream energy transfer
rate of this wave with small amplitude ε is calculated as

E= J+ +W+ = ω

2π

∫ 2π/ω

0

[
−
∫ 0

−∞

{
p′u′ + 1

2
ρ(u′2 + v′2)Us

}
dy+ σ ∂ηc

∂x
∂ηc

∂t

]
dt

= 3σ
4
ε2kω. (4.14)

At Us= 0 (h= 0) in the limit Weδ0→∞, the unstable wave covers all wavenumbers
and exhibits singular behaviour characterized by −kiδ0 = 0.52/

√
1− (ωδ0/U),

krδ0 = 0.75/
√

1− (ωδ0/U) and cr/U = 1.33
√

1− (ωδ0/U). This singularity is
intrinsic to the present baseline shear flow. Figure 9 shows the traces of the complex
wavenumber k obtained when we consider a complex frequency ω = ωr + iωi and
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FIGURE 10. Solution of (4.10)–(4.12) for Us= 0 and Weδ0 =∞. The critical layer location
where kru−ω becomes zero is consistent with the zero point of the real part of 1/Π . As
ωδ0/U approaches unity, the critical layer approaches the jet surface.

increase the imaginary part ωi from zero. Since the spatial solution transitions to the
temporal solution, it is confirmed that the calculated solutions express the growing
wave. In figure 9, the temporal growth rate distribution over wavenumber is also
plotted, which has a long tail extending to infinite kr. In either spatial or temporal
solutions, the phase velocity approaches zero as kr tends to infinity. As a result, even
for a very small temporal growth rate, the vanishingly small travelling distance of
a convectively unstable wave element during a long time results in a large spatial
growth rate diverging at the condition ωδ0/U = 1. As Us increases from zero, this
singularity disappears because h increases from zero. Figure 10 shows the change in
the 1/Π profile with ωδ0/U. It is found that the critical layer location approaches
the surface as ωδ0/U approaches unity (and thereby kr diverges). For Us > 0, the
critical layer for large kr should be at u<Us, so that no unstable wave exists at large
wavenumbers.

4.4. Three-dimensional stability
Figure 11 shows three-dimensional (3D) unstable waves (mδ0 = 0, 0.5, 1 and 2)
at Us/U∞ = 0, 0.2, 0.4 and 0.6 for Weδ0 = 100. The overall trend at Us/U∞ > 0
is similar to the 2D case. An additional azimuthal surface tension action further
suppresses instability and reduces the growth rate and cutoff wavenumber as mδo
increases. On the other hand, it is interesting to note that the introduction of azimuthal
surface deformation causes the upstream-propagating capillary wave velocity to
diverge at vanishingly small ω or kr. This effect is a consequence of the fact that
purely azimuthal capillary waves (kr = 0) can propagate in the azimuthal direction
independently of the baseline jet flow. As a result, the 3D unstable waves have a
lower limit to wavenumber that increases with m. Because of this narrowing of the
unstable wave range, the 3D unstable waves with large m have a smaller growth rate
and cannot play an important role in jet instability. In figure 11, the 3D unstable
wave with m = kr is also depicted for reference, which will be used to consider
ligament formation from the jet surface in § 6. The maximum growth rate of the 3D
unstable wave is smaller than that of the 2D unstable wave.
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FIGURE 12. Change in wavenumber of (a) 2D and (b) 3D (m= k) synchronized neutral
and unstable waves along the jet at Weδ0 = 100. Energy is transferred along each capillary
wave curve in the direction indicated by the arrows. Each unstable wave transforms to a
neutral wave at a larger distance from the nozzle for smaller wavenumber.

An important indication in figures 8 and 11 is that the liquid shear layer may
become unstable without any assistance of aerodynamic forces. Unlike the low-speed
jet, in which the Plateau–Rayleigh instability is sustained by a decrease in surface
area, the present unstable waves that increase the jet surface area are sustained by the
Reynolds stress, which transfers energy from the baseline jet flow to the disturbed
flow. We also note that the unstable wave solutions are only applicable when the jet
surface can deform. If the liquid surface is not allowed to deform, such as for pipe
flow, no unstable wave exists at the large Weδ value under consideration. Therefore,
the unstable waves at the large Weber number, derived in this analysis, describe those
unstable waves characteristic to high-speed liquid jets with a thin liquid shear layer
on the jet surface.

5. Self-destabilizing mechanism

The convectively unstable waves predicted by the linear stability analysis can
emerge only when their initial wave elements are produced at a fixed location
somehow. To explain why the liquid jet issued in a laminar flow state can exhibit
a ‘steadily’ atomizing feature (figure 1a), it is necessary to explore the mechanism
by which the convectively unstable waves are steadily reproduced at a fixed location
near the nozzle exit. In this section, we consider this problem.

5.1. Synchronized waves along the jet
By joining each mode of wave elements at neighbouring stations for a specified
frequency ω, we can know the change in wavenumber for each synchronized wave
along the jet as shown in figure 12 for Weδ0 = 100. In figure 12(b), only 3D waves
with m= k are presented for later use. For an unstable wave, two typical frequencies
ωδ0/U = 1 and 0.5 are selected for illustration. The direction of energy transfer in
each capillary wave is indicated by an arrow. Since the jet surface velocity decreases
by moving towards the nozzle, the upstream-propagating capillary wave lengthens its
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wavelength. It is found that the upstream-propagating capillary wave of ωδ0/U = 0.5
has a wavenumber kδ0 = 4.2 (2D) and 2.6 (3D) at the nozzle exit. This implies that
the wavelength of these neutral waves at the nozzle exit is larger than the shear layer
thickness δ0. The figures do not claim that the synchronized wave expressed by each
curve exists everywhere. Since the depicted unstable wave is convectively unstable,
it can exist only downstream of the location where it is steadily produced. On the
other hand, an upstream-propagating capillary wave can exist upstream of a location
and serve as a carrier of the streamwise energy flow W and J defined in figure 5.

Each pair of synchronized unstable and upstream-propagating capillary waves in
figure 12 may be associated with each other. As explained before, the unstable
wave and the neutral wave have a different surface deformation influence depth.
Therefore, they behave independently, except where their wavelengths become equal.
The existence of an intersection point (the same wavelength at the same station)
of a synchronized capillary wave and an unstable wave curve implies that the two
waves are interchangeable at that station because the neutral wave can transfer energy
to create or eliminate the unstable wave. Therefore, by searching for such a most
upstream intersection point in figure 12, we could find a loop exciting the unstable
wave in the newly issued liquid. However, it is found that there exists no intersection
point where a neutral wave changes to an unstable wave at Us/U > 0, implying that
no convectively unstable wave is produced downstream of the nozzle exit (Us > 0).

Nevertheless, there are an upstream-propagating capillary wave reaching the nozzle
exit and an unstable wave leaving the nozzle exit, which have the same frequency.
Therefore, a capillary wave of frequency ω can turn into an unstable wave of the
same frequency ω at the nozzle exit in the following way. Since the capillary wave
cannot penetrate into the nozzle, a standing-wave-like pressure field is generated at
the nozzle exit by the successive arrival of the incident capillary wave elements at
the nozzle exit. The influence of this pressure field, which has no phase mixing, can
penetrate deeper from the jet surface and disturbs the shear layer of the newly issued
liquid, which has a large velocity U at its edge. Then, a long wave (λ= 2πU/ω) is
produced in response to the frequency ω of the disturbing pressure. This situation is
similar to the tripping wire in a classical experiment in which a wall boundary layer
unstable wave is excited by a tripping wire placed on the wall. In the framework
of local stability analysis, such an exact 3D flow structure cannot be described.
Instead, it is described as the production of a synchronized unstable wave at the
nozzle exit according to the wave reflection condition (Doppler shift). Since each
upstream-propagating capillary wave transfers energy from downstream to upstream,
there must be an energy source supporting this capillary wave somewhere downstream.
Considering that a real capillary wave hardly propagates upstream against a high-speed
surface velocity, the energy source should be located near the nozzle exit where the
surface velocity is relatively small. If such a capillary wave is produced by the growth
of the unstable wave, this cycle is repeatable and constitutes a self-destabilizing loop
in the near-nozzle region.

As described in the next subsection, the linear unstable wave increases its amplitude
rapidly from a small, but unknown and not infinitesimal, initial amplitude ε0 (0 <
ε0 < δ0). As a result, there is a near-nozzle region where the linear unstable wave is
largely amplified but its amplitude still remains smaller than δ0. At these locations, the
nonlinear effects neglected in the usual linear stability analysis may serve as a kind
of forcing radiating dispersive capillary waves, and result in an upstream-propagating
capillary wave that is synchronized with the linear unstable wave and has an amplitude
of O(ε0). This is a causality discussed in § 3, in that part of the energy transferred
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from the baseline flow to the amplified unstable wave is transferred from downstream
at a higher fluctuation energy level to upstream at a lower fluctuation energy level. In
appendix A, theoretical considerations aiming at supporting this nonlinear upstream-
propagating capillary wave production mechanism are provided for reference.

5.2. Linear spatial growth of unstable waves
Using the local spatial growth rate, the growth of each synchronized unstable wave
along the jet can be calculated by

ln
ε

ε0
=
∫ x

0
(−ki) dx=

∫ x/δ0

0
(−kiδ0) d

(
x
δ0

)
= 2.4 Reδ0

∫ Us/U

0
(−kiδ0)

(
Us

U

)2

d
(

Us

U

)
,

(5.1)

where (2.3) is used to derive the final expression. The amplification ratio A= ε/ε0 is
expressed in logarithmic form for later use in § 6. The initial unstable wave amplitude
ε0 denotes the ‘apparent’ amplitude at the nozzle exit (x = 0, Us = 0), extrapolated
from the downstream unstable wave growth. To satisfy the boundary condition
η(x = 0, t) = ∂η/∂t(x = 0, t) = 0, the unstable wave surface deformation in the
conventional theory should be expressed as η = 2ε0 sinh(−kix) cos(krx−ωt) by
introducing the (decaying) wave with negative Reynolds stress contribution. If the
unstable wave (5.1) is reproduced by the nozzle exit reflection from the synchronized
upstream-propagating capillary wave, the boundary condition is always satisfied
automatically.

Figure 13 shows the calculation results of ln(ε/ε)/Reδ for the 2D (dashed lines)
and 3D (solid lines) waves, from which we can determine the dependence of the
amplification ratio A = ε/ε0 on ωδ0/U at each station Us/U for various values of
Reδ0 . Each synchronized unstable wave grows at a rate that varies along the jet. As a
result, the synchronized unstable wave with the largest amplitude ratio at each station
(locally dominant unstable wave) alters depending on the distance from the nozzle
exit. It is interesting to note that figure 13 explains the surface deformation pattern
changes observed in figure 1 for an equal initial amplitude ε0. First, a 2D surface
deformation emerges, which is then gradually corrugated by the superposition of 3D
unstable waves with increased m to form liquid ligaments disintegrating into droplets.
The wavelength of the locally dominant 2D unstable is lengthened along the jet.

5.3. Self-destabilizing loop
Obviously, the nonlinear capillary wave production region is correlated with the
ε0 value. To gain physical insights into the self-destabilizing loop, we consider a
model equation based on the working hypotheses mentioned in § 5.1. The baseline
jet flow is forced by the nonlinear unstable wave growth. According to the local
linear stability analysis for a vicinity of x = X, the amplitude dη̄UPC(X)/δ0 of the
upstream-propagating capillary wave produced by the forcing on an infinitesimal
region (X, X + dX) is proportional to the local forcing strength and estimated
as C(ε0/δ0)

3A3(X) dX based on the conventional method of regular perturbation
expansion in a small parameter ε0/δ0 < 1. The coefficient C is considered to be of
O(1) and to depend weakly on X and Reδ0 . For simplicity, we ignore the amplitude
variation accompanied by the wavelength variation between the local forcing location
and the nozzle exit, i.e. dη̄UPC(x = 0) = dη̄UPC(x = X). A similar synchronized
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FIGURE 13. Changes in amplitude of 2D and 3D synchronized unstable waves along
the jet.

upstream-propagating capillary wave is produced by each local forcing along the
jet and superimposed. If such a capillary wave is always produced in phase with the
linear unstable wave at each location X, the overlapping capillary waves have the
same phase at any upstream location. Therefore, summing up all forcing-produced
synchronized capillary waves over an interval 0 6 X 6 Xmax 6 `s, the net amplitude of
the synchronized upstream-propagating capillary wave at the nozzle exit is estimated
by the following equations (Ξ will be explained after (5.5)):

η̄UPC(x= 0)
δ0

=
(
ε0

δ0

)3 ∫ Xmax

0
CΘ

dX
δ0
, (5.2)

Θ = exp

[
2.4 Reδ0

∫ Us/U

0
Ξ

(
Us

U

)2

d
(

Us

U

)]
with Ξ = 3(−kiδ0)− (γ δ0). (5.3)

The capillary wave amplitude (5.2) produces a new synchronized unstable wave with
an initial amplitude ϕη̄UPC(x= 0) in the newly issued liquid according to the complete
reflection condition. The coefficient ϕ (61) takes a value of O(1) when the upstream
transferred energy is all used to produce the new unstable wave. If ϕη̄UPC(x= 0)= ε0,
which is possible when

ε0

δ0
∼
(
ε0

δ0

)3

A3(X = Xmax) (5.4)

in order estimation assuming ϕ = C = 1, the upstream-propagating capillary wave
and the unstable wave compose a self-destabilizing loop and its initial unstable wave
amplitude ε0/δ0 is determined as

ε0

δ0
= 1√

ϕ

1√
2.4 Reδ0

∫ Us,max/U

0
CΘ

(
Us

U

)2

d
(

Us

U

) , (5.5)
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which must be less than unity. Then, the amplitude (ε0/δ0)A of the linear unstable
wave in the self-destabilizing loop region remains at most O((ε0/δ0)

1/3), as can be
found from (5.4).

In the inviscid analysis under consideration (γ = 0 in (5.3)), an upstream-
propagating capillary wave, produced at each location, reaches the nozzle exit without
amplitude attenuation. We may put Xmax= `s. In this case, ε0/δ0 calculated from (5.5)
may take a very small value for a large value of Reδ0 . Since such an unstable
wave grows in the linear regime extending to a large distance from the nozzle
exit, it does not bring about turbulent atomization even at large Reδ0 , consistent
with the conventional linear stability analysis, which is based on the assumption
of infinitesimal ε0/δ0. This prediction is contradictory to experimental observations
(e.g. figure 1). Instead, (5.5) implies that an increased ε0/δ0 (<1) at larger Reδ0

makes it possible for the linear unstable wave to grow to a nonlinear regime at a
location X between Xmax and `s, and bring about turbulent atomization downstream.
Any contribution from the nonlinear unstable wave evolution is not described by
the present analysis. Therefore, for reference, let us consider a self-destabilizing
loop operating in the linear region by taking the integral upper limit Xmax as a
location where the linear unstable wave amplitude ε grows to 0.1λ, say, beyond
which the unstable wave evolution becomes nonlinear (Li & Umemura 2014). This
condition ε/δ0 = (ε0/δ0)A(X = Xmax) = 0.1 × 2π/(krδ0) ∼ 0.4 combined with (5.4)
leads to ε0/δ0 ∼ [0.1× 2π/(krδ0)]3 ∼ 0.064 and A = 6.25. According to (5.1) and
(2.3), this implies that, as Reδ0 increases, Xmax decreases under the condition of
almost unchanged ε0/δ0. Since the contribution from the nonlinear region will reduce
(enlarge) the ε0/δ0 (A) value considerably, it is reasonable to assume that ε0/δ0 takes
a value less than 0.1.

For a given short nozzle, the increased U decreases δ0. In an asymptotic feature, the
jet flow should resemble that of a high-speed orifice jet issued from a large stagnant
liquid reservoir. The liquid entering the orifice hole has no short-wave disturbances
exciting the jet shear instability. The approach of Xmax to the nozzle exit beyond a
distance will eventually force us to solve the disturbed jet flow field coupled with
the nozzle flow to describe a proper self-destabilizing loop, because the pressure
wave produced by the successive arrival of capillary wave elements penetrates into
the nozzle. A hypothetical scenario derived from this consideration is that, as the jet
speed increases, the place where a self-destabilizing loop operates shifts upstream and
finally into the nozzle. The ‘noise’ considered in the conventional linear instability
analysis may be interpreted as the disturbances produced by the self-destabilizing
loop operating upstream. Then, the atomization onset location could be correlated in
terms of nozzle flow Reynolds number in a universal way.

To determine the realizable loop, it is necessary to consider an initial value
problem for the baseline jet flow mimicking the laminar jet formation process. The
self-destabilizing loop operation for an unstable wave with small (−ki)δ0 or Us`
requires a relatively large initial unstable wave amplitude, which would never be
excited in this process. Therefore, the frequency of a realizable unstable wave will
be confined to a narrow range.

The above-mentioned behaviour is based on the inviscid analysis. In reality, a
viscous effect is not negligible for short waves propagating against large surface
velocity. Each upstream-propagating capillary wave attenuates its amplitude and
transferred energy exponentially owing to viscous energy dissipation by moving away
from the forcing location (i.e. dη̄UPC(x= 0)< dη̄UPC(x=X)). In (5.3), this modification
is expressed by the local spatial damping rate γ , which is derived from the viscous
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FIGURE 14. Self-destabilizing loop formation region Ξ > 0. Here Ξ is calculated for
2D unstable waves in the experimental condition of figure 1. In the grey region, Ξ < 0.
The triangles express the positive Ξ distribution along the jet for the unstable wave of
frequency indicated by the horizontal dashed line.

capillary wave solution of linear spatial evolution analysis for a semi-infinite liquid
in a uniform translation of velocity Us. For a given value of ω, Ξ monotonically
decreases from a positive value Ξ0(ω) (at Us=0) to a negative vale. It takes a positive
value in the white region (Us 6 U′s,max(ω)) illustrated in figure 14(a). This figure is
calculated for a reference jet flow condition (Reδ0 = 740, L/D = 1, Weδ0 = 96.5). A
similar figure is obtained for other jet flow conditions. There is a certain frequency
ω = ωm (ωmδ0/U ∼ 0.6 in figure 14a) maximizing the value of U′s,max(ω), for which
the Ξ distribution is plotted in figure 14(a). Using this distribution, the Θ distribution
defined by (5.3) is calculated as shown by the thick black solid line in figure 14(b).
Four other profiles are also drawn to see the effects of L/D and Reδ0. The thick grey
solid line corresponds to the experimental condition of figure 1, roughly. The Θ value
rapidly decreases to zero as Us exceeds U′s,max. This implies that the white region
characterizes where a self-destabilizing loop may operate. The white region boundary
plays a similar role to the integral upper limit Xmax= `s of the inviscid case, whereas
the linear unstable wave can continue to grow until it becomes nonlinear. Therefore,
the self-destabilizing loop may be located upstream of the separated nonlinear region
and it does not have any contribution from the nonlinear regime. Behaviour other
than this is similar to the inviscid case.

Normalizing Us by U′s,max, we find that (5.5) determines ε0/δ0 as a function of

X′max

δ0
= 0.8 Reδ0

(
U′s,max

U

)3

or
X′max

D
= 0.8K2

(
U′s,max

U

)3 L
D
. (5.6a,b)

The calculation condition for the Ξ distribution depicted in figure 14(a) yields
X′max/δ0 = 10.4 and X′max/D = 0.127, which leads to an estimate ε0/δ0 = 0.0625
(A ∼ 30) by calculating (5.5) under the assumption C = φ = 1. Since an increase in
U increases γ δ0 and decreases Us,max/U, the value of Us,max/U tends to change with
Reδ0 in a reciprocal way until the nozzle flow is coupled with the jet flow.
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6. Initiation of atomization

In § 5, we found the possibility that the predominant synchronized unstable waves
depicted in figure 12 can be repeatedly reproduced at the nozzle exit through their own
self-destabilizing loops as illustrated in figure 2. We now consider 2D unstable waves
superimposed by 3D unstable waves. The 3D unstable waves take the form of standing
waves in the azimuthal direction for a pair of positive and negative m values so as
to avoid phase mixing in the azimuthal surface deformation. A precursor of turbulent
atomization is the formation of liquid ligaments from the jet surface (see figure 1a).
Ligament formation is a nonlinear process that generates various new surface waves
and prevents the tracing of the subsequent flow development deterministically. This
implies that atomizing surface flow eventually becomes turbulent. In this section, using
(5.1) we predict where ligaments begin to be formed at given jet speeds. There are
several ligament formation mechanisms proposed in the literature.

(i) The action of a gaseous frictional force (Yecko & Zaleski 2005; Shinjo &
Umemura 2011) or suction pressure (Taylor 1950) on the bulging surface
portion. These possibilities are prohibited in the present model considering the
near-nozzle jet surface that is effectively free from gaseous forces. As pointed
out by Wu, Tseng & Faeth (1992) and observed in figure 1(a), each ligament
near the nozzle exit takes the shape formed by liquid ejecting outwards with
the local surface velocity and a normal velocity proportional to the jet speed,
suggesting that aerodynamic effects are negligible.

(ii) Turbulent eddy ejection (Wu et al. 1992), which cannot apply upstream of the
turbulent atomization region.

(iii) Destabilization of capillary waves by the action of large transverse inertial forces
on the surface layer liquid, which may occur by the passages of amplified 2D
unstable waves. The interaction terms between the streamwise and azimuthal
disturbance waves are of higher order in the present perturbation analysis.

All these mechanisms may operate in the turbulent atomization region. As a linear
process initiating the turbulent atomization nearest to the nozzle exit, we are interested
in the development of synchronized 3D waves that effectively form liquid ligaments.
Since a liquid ligament must be formed by liquid concentrating from the surrounding
trough surface portion, a large difference between axial and azimuthal wavenumbers is
not suitable for ligament formation. In fact, the m= kr unstable wave is a preferential
surface deformation pattern that creates liquid surface spikes with minimum surface
energy addition (Lyngshansen & Alstrøm 1997). Therefore, in the following we only
treat the m= kr unstable waves as 3D unstable waves.

6.1. Location of ligament formation onset
The growth of 3D unstable waves leads to the formation of ligaments that disintegrate
into droplets. The self-destabilizing loop fixes the onset location of ligament formation,
which may be predicted using the linear 3D unstable wave solution as described
below.

Since ln(ε/ε0) is proportional to Reδ (see (5.1) and figure 13), the location where
amplification enters a nonlinear regime depends crucially on the value of Reδ0 . When
the amplitude ε of the locally dominant 3D unstable wave exceeds a fraction φ of
the wavelength, i.e. ε > φ(2π/m), the nonlinear effect becomes significant in the
formation of a liquid ligament and suppresses the surface deformation (Lyngshansen
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FIGURE 15. Relationships between Reδ0 , ωδ0/U and Us/U at the instant when 3D
unstable waves begin to form ligaments.

& Alstrøm 1997) from an exponential growth to a linear growth. Then, the most
upstream location where the condition

ln
ε

ε0
= ln

(
2π

mδ0
F
)
, F= φ

ε0/δ0
, (6.1)

is satisfied may be defined as the onset location of ligament formation. For reference,
we simply assume F = 10 for any ω and Reδ0 ranges of interest, based on the
suggestion φ∼O(0.1) and ε0/δ0∼O(0.01) in § 5. Then, (6.1) can be calculated using
the mδ0 value determined as a function of Us/U and ωδ0/U in figure 11. It is notable
that the choice of the F value does not crucially affect the value of the logarithmic
(6.1).

It is convenient to rewrite (5.1) as

1
Reδ0

= 2.4

ln
ε

ε0

∫ Us/U

0
(−kiδ0)

(
Us

U

)2

d
(

Us

U

)
. (6.2)

The right-hand side then becomes a function of ωδ0/U for each given Us/U value.
Figure 15 shows this graph for the 3D unstable wave, which has a maximum value at
a certain value of ωδ0/U for various Us/U. The maximum total amplification ratio is
achieved at the location Us/U∼ 0.8 for ωδ/U∼ 0.4. Therefore, turbulent atomization
should begin upstream of the location Us/U = 0.8. The peak value at each Us/U
expresses the inverse of the Reynolds number Reδ0 , for which ligament formation is
initiated at the Us/U location under consideration. Thus, we can express the ligament
formation onset location Us/U as a function of Reδ0 .

6.2. Comparison with experiments
For experimental comparison, it is more convenient to express the ligament formation
onset location xt/D as a function of ReD =UD/ν. This can be done using (2.1) and
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FIGURE 16. Predicted onset location xt of ligament formation (thin solid lines) in
comparison with experiments by Hoyt & Taylor (1977), Taylor & Hoyt (1983) and Wu
et al. (1995). The thickened line portion satisfies the assumptions made in the present
analysis. The open and solid symbols denote the onset location of ligament formation and
turbulent atomization, respectively. The hatched region shows the region within which a
self-destabilizing loop may operate for the atomizing jet issued from an L/D= 1 nozzle.

the relationship between Reδ0 and ReD:

Reδ0 =K

√
L
D

√
ReD. (6.3)

The thin (thick at large ReD) solid lines (called ‘L/D curve’) in figure 16 show the
results of this calculation for water jets. The nozzle length-to-diameter ratio L/D,
which represents δ0/D by (2.1), is taken as a parameter to express the dependence of
xt/D on ReD for laminar jets issued from various short nozzles. The difference from
the assumed value F= 10 can be counted by slightly translating the L/D curves to the
right up (F> 10) or left down (F< 10). At ReD smaller than a critical value specified
by the left end of each L/D curve, ligaments are not formed by the instability under
consideration. Therefore, a larger value of ReD is necessary to produce ligaments for
a shorter nozzle.

The range of ReD for which the present analysis is valid is restricted by the
following two tradeoff conditions imposed on the shear layer thickness δ0.

(a) The planar shear layer approximation is valid for small δ0. The surface
deformation influence attenuates at a depth of 1/m from the baseline jet
surface, y = 0. Curvature effects of the shear flow layer enclosing the jet core
may be neglected if 1/m is smaller than approximately 5 % of the jet radius,
i.e. 2/mD= (2δ0/D)/(mδ0) < 0.05. Thus, we have the condition

ReD >

(
40K
mδ0

)2 L
D
= 1600K2 L

D
(6.4)

for a representative unstable wave of mδ0 ∼ 1.
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(b) The present jet instability is valid for large Weber number Weδ0 >Weδ0,min = 100,
i.e.

ReD >

(
Weδ0,min

K
σD
ρν2

)2/3 (D
L

)1/3

. (6.5)

This condition indicates that the critical ligament formation Reynolds number
depends on the Ohnesorge number as well as L/D.

The thick line portion of each L/D curve in figure 16 expresses the range that
satisfies the conditions (6.4) and (6.5) for water.

Figure 16 shows that the leading edge of the turbulent atomization region
approaches the nozzle exit as ReD increases. For short nozzles, xt/D decreases
in inverse proportion to ReD as a result of the velocity profile relation along the shear
layer whose thickness decreases with increasing ReD. This behaviour is consistent
with experimental observations as described below.

A quantitative comparison with experiment is difficult because there are few reports
detailing jet surface deformation. Here we consider the experimental results of Hoyt
& Taylor (1977), Taylor & Hoyt (1983) and Wu et al. (1995). In these experiments,
the nozzle exit velocity profile has not been measured, so that the actual value of δ0 is
unknown. A close look at the surface deformation in figure 1(a) reveals the presence
of a superimposed 3D unstable wave from immediately downstream of the nozzle exit.

In figure 16, the onset locations of ligament formation and atomization, taken from
figure 1(a), are plotted as the open and solid circles, respectively. As mentioned
before, the ligament formation onset location x may be defined as the location where
the surface deformation amplitude begins to increase linearly along the jet in the
photograph. The open circle in figure 16 expresses this location, which is on the
thickened L/D=2 curve. According to (5.6), this location xt/D∼ 0.25 corresponds to
Us/U ∼ 0.327 (L/D= 1) or 0.227 (L/D= 3).

The nozzle used in the experiment has a straight tube with a unit length-to-diameter
ratio followed by a convergent nozzle portion. For comparison, this nozzle should
be replaced by an equivalent straight nozzle of apparent length L, which yields the
real (but unknown) value of δ0 by (2.1). The value of δ0 was estimated as follows.
The wavelength λ of the dominant 2D unstable wave visible near the nozzle exit in
figure 1(a) was measured to obtain the evaluation λ/D= 0.0551. Assuming that this
unstable wave has the wavenumber kδ0= 1.5 of the 2D unstable wave dominant near
the nozzle exit, we obtain the expression δ0/D = 1.5λ/(2πD) = 0.0131, which leads
to L/D= (0.0131/K)2ReD = 3.09. Although this value is different from the value of
L/D (approximately 2) where the open circle is located, it may be reasonable to say
that agreement is fairly good, at least in order of magnitude, even if the uncertainties
involved in the logarithmic factor ln(ε/ε0) are taken into account.

Figure 17 shows photographs from the experiments of Wu et al. (1995), from
which we may measure the atomization onset location. The figure also illustrates the
experimental methods; two types of experiment are conducted for jets issued from the
convergent nozzles. In the type A experiments, the convergent nozzle is connected
to a straight nozzle of length L. In the type B experiments, a cutter with a straight
hole of length L is set apart from the convergent nozzle. Wu et al. measured the
dependence of the atomization onset location on jet speed, using pulsed shadowgraph
photography, as shown in figure 17. The experimental uncertainties (95 % confidence)
of this determination were less than 40 %. The water jet data, including the turbulent
jet case with large L/D, are plotted with grey solid symbols in figure 16. Obviously,
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FIGURE 17. Backlit photographs obtained in Wu et al. (1995)’s experiments. The
contraction ratio of the convergent nozzle portion is roughly 100. Type A has a
constant-diameter passage connected with the convergent nozzle. Type B has a cutter with
a constant-diameter passage downstream of the convergent nozzle exit.

the corresponding onset locations of ligament formation must be located upstream of
these points.

The existence of liquid kinematic viscosity is essential for the formation of δ0 in the
nozzle flow. To examine the validity of condition (6.5) for the excitation of the liquid
shear layer flow instability, the four photographs in figure 17, taken for 42 % glycerol
jets issued from the cutter with L/D = 7 and D = 4 mm, were used to measure the
atomization onset locations plotted as solid crosses in figure 16. Compared to water,
42 % glycerol has almost the same density but a smaller surface tension coefficient
and significantly larger kinematic viscosity (lager Ohnesorge number). As a result, the
region satisfying both (6.4) and (6.5) for 42 % glycerol is extended from that for water
to the smaller ReD side. The following are also notable. As explained in § 6.3, an
effective L/D value for a short cutter jet is considered to take a considerably smaller
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value than the cutter aspect ratio (L/D = 7). In the 42 % glycerol jet photographs,
the location xt specified by the L/D = 1 curve at the corresponding ReD value in
figure 16 is indicated by a white horizontal line for reference. It is observed that
(i) the surface deformation amplitude begins to increase linearly from a location near
this line, and (ii) the L/D= 2 curve yields the critical ligament formation Reynolds
number consistent with the U = 16 m s−1 experiment.

The boundary of the hatched region in figure 16 shows the location Us,max/U
indicated in figure 14(b) for laminar L/D = 1 jets, upstream of which a self-
destabilizing loop may operate. For a jet of L/D> 1, this boundary shifts upwards in
the figure by L/D times. Consistent with our prediction, the figure indicates that the
self-destabilizing loop of the atomizing short nozzle jet is located upstream of the
ligament formation onset location. At a large Reynolds number, a self-destabilizing
loop determining the atomization onset location is considered to move into the nozzle
flow. On the other hand, in the 42 % glycerol jet photograph of U = 12 m s−1, we
can observe a significant surface deformation growth without atomization, implying
that the unstable wave of small ε0/δ0 is produced by a self-destabilizing loop within
the hatched region in figure 16.

The plots for the 42 % glycerol jets suggest that the change in ligament formation
onset location with ReD is more moderate than that for the atomization onset location.
The two onset locations approach each other at larger ReD. This trend should be the
same for the water jets. Therefore, the data of Wu et al. (1995) suggest that the
ligament formation onset occurs close to the atomization onset location at large ReD.
In fact, since δ0/D decreases with increasing ReD, the two onset locations should
approach each other. In this respect, we should note that figure 16 is expressed on
a logarithmic scale, which increases the resolution at small x, while the rapid and
fine surface deformation near the nozzle exit becomes difficult to observe with high
resolution. Therefore, a strict comparison in figure 16 is meaningless at large ReD.
When expressed on a linear scale, all the curves in figure 16 collapse to a single line
approaching the abscissa. Hence, in the present comparison with experiment, it only
matters whether the atomization onset location measured in the experiments exhibits
a similar trend to the thick L/D curves. The data of Wu et al. have coincident trends
with the thick L/D curves, which do support the claim of Wu et al. that jet surface
deformation is scaled by the shear layer thickness δ0. It is also worth mentioning that
the mean size of atomized droplets is correlated with the wavelength of the locally
dominant 3D unstable wave, λ=[2π(cr/U)/(ωδ0/U)]δ0, implying that, consistent with
Wu et al.’s non-turbulent jet experiments, the droplet size is scaled by δ0 (the value
of cr/U for 3D unstable waves is nearly unity at any Us/U).

6.3. Laminarization by flow separation from nozzle inlet edge
The cutter in the experiments of Wu et al. (1995) is used to produce a uniform stream
flowing into a straight hole by discarding the boundary layer flow portion formed by
the convergent nozzle wall. Thus, its ideal function would be to create a nozzle flow
consistent with the present analysis. However, the experimental results indicate that
this is not achieved, because (i) a jet without significant surface deformation is issued
from the cutter with L/D< 7 (see the photographs for L/D= 0.16 and 4 in figure 17),
while (ii) the jet directly issued at the same ReD from the convergent nozzle (L/D= 0)
exhibits turbulent atomization near the nozzle exit as seen in figure 17. These two
pieces of evidence clearly indicate that the turbulent atomization of (ii) is caused by
the presence of a thin liquid shear layer.
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The present analysis provides an answer to the question raised by (i), if the core
flow issued from the convergent nozzle has an inward velocity at the leading edge
of the cutter and forms an open cavity between the liquid flow and the hole wall.
In fact, we assume that the flow within the cutter hole develops a boundary layer
flow according to (2.1). The values L/D= 0.15, D= 4 mm and ReD = 2× 105 then
yield δ0/D = 0.00261 and Weδ0 = 361. The Weber number is large enough to excite
the shear layer flow instability, but the thickness of the shear layer produced by the
leading edge of the cutter is so thin that the velocity profile relaxes within the hole.
The subsequent jet flow cannot but be subject to an aerodynamic instability similar
to figure 1(b). Thus, we observe a laminar jet issuing from the cutter. This is a
similar phenomenon as observed by Arai et al. (1985). They found that a turbulent
atomizing water jet issued from a straight nozzle with a sharp-edged inlet connected
to a larger-diameter tube changes to a smooth surface jet when the nozzle flow
experiences a super-cavitation state at a larger jet speed. Therefore, for L/D < 7,
for which a laminar jet is observed, the inlet flow of the cutter hole separates from
the leading edge without reattachment. As the cutter length is increased further,
the separated flow reattaches to the hole wall and the cutter comes to function as
expected.

6.4. Turbulent jet atomization features implied from the present model
In figure 16, the atomization onset locations for turbulent jets are also plotted. The
cutter hole length L/D= 41 at ReD∼ 105 is very short compared to the so-called inlet
length Li for fully developed laminar pipe flow (Li/D= 0.065ReD), and close to the
upper limit of the inlet length for fully developed turbulent pipe flow (Li/D= 25–40).
Since the grey solid squares for L/D= 121 are located at similar places as the grey
solid circles for L/D = 41 in figure 17, we infer that the plots for L/D = 41 show
turbulent jet properties. Interestingly, the turbulent jets exhibit a similar behaviour to
a laminar jet for small L/D. Considering the laminar sublayer and logarithmic layer
in the turbulent nozzle flow and the turbulent atomization maintenance by a surface
flow instability supported by the Reynolds stress, the initiation of turbulent atomization
in the turbulent jets might also be explained using the present analysis by choosing
the shear layer thickness appropriately. In a convergent nozzle, in which there is a
pressure decrease in the direction of flow, the fluid accelerates and the boundary layer
becomes thinner. The accelerating fluid maintains the fluid close to the wall in motion.
When we consider the average flow, the turbulent transition in a straight long hole
plays a similar role to the convergent nozzle, because the turbulent eddies impart
a high flow in the vicinity of the wall and tend to make the average flow uniform
over the cross-section. This means that the average shear flow region is confined to
a thin layer on the wall. The instability of this average shear flow has the same
characteristics as explored in the present analysis, because the Reynolds stress supplies
energy to deform the jet surface. If this shear layer flow instability is dominant near
the nozzle exit, it is not surprising that the turbulent jet results in the same atomization
onset location as the laminar jet case.

Wu et al. (1995) showed that the turbulent atomization onset locations are correlated
in terms of the Weber number based on the nozzle diameter (ρU2D/σ ). This result is
understandable, if we consider that the ratio of the effective δ0 to the nozzle diameter
falls in a restricted range for all cases and that the atomization phenomena are scaled
by δ0. Since the magnitude of turbulent disturbance is much larger than that contained
in the laminar nozzle flow, the above evidence suggests that the main mechanism
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initiating turbulent atomization near the nozzle exit is the disturbance associated with
the downstream phenomena. Hence, we infer that the surface deformation immediately
downstream of the nozzle exit may be described within the framework of a linear
stability analysis. The only difference between laminar and turbulent nozzle flow
is what produces unstable waves in the laminar shear flow layer. In the case of a
laminar jet, there are no disturbances contained in the high-speed laminar stream.
The upstream-propagating capillary waves disturb the shear layer from the outer side
and produce synchronized unstable waves in the shear layer. For a turbulent jet,
the shear layer is disturbed from the inner side by the high-speed turbulent stream.
Nevertheless, the upstream-propagating capillary waves still may take part in the
production of unstable waves.

Finally, we discuss the possibility of ligament formation by a two-stage instability
(Faraday 1831; Kelvin 1871; Rayleigh 1883; Taylor 1950; Benjamin & Ursell 1954;
Villermaux & Clanet 2002) in the turbulent atomization region. The surface liquid
at a station is displaced transversely by the passage of dominant 2D unstable wave
elements (wavenumber kr, phase speed cr) at a frequency Ω = kr(cr −Us). Therefore,
if there is a 3D surface deformation with large wavenumber m resonant with this
oscillation, e.g. ω = √σm3/ρ = 2Ω , the surface deformation is destabilized to
form ligaments when the dimensionless displacement amplitude mε is large enough.
Figure 12 indicates that such a capillary wave is not excited naturally. However, once
the 3D unstable wave experiences nonlinear growth, higher-order capillary waves are
generated by nonlinearities. Therefore, this two-stage instability may operate in the
turbulent atomization region. The turbulent atomization will then become similar to
ultrasonic atomization (Wood & Loomis 1927; Lang 1962; Goodridge, Shi & Lathrop
1996; Goodridge, Hentschel & Lathrop 1999).

7. Conclusion

To realize steadily unstable flow in a jet, there must be a deterministic mechanism
to reproduce the same unstable waves at a fixed location. In the present study, the fluid
dynamical structure initiating steady turbulent atomization was theoretically examined
for high-speed laminar water jets issuing from a short nozzle into stagnant air. It was
found from the linear stability analysis of the local baseline jet flow that the liquid
shear layer produced during the nozzle passage can bring about the steady onset of
turbulent atomization without any influence of the surrounding gas flow, by virtue of
the following self-destabilizing mechanism operating near the nozzle exit.

The key point is that the liquid shear flow with a high velocity gradient produces
strong unstable waves near the nozzle exit where the surface velocity takes small
values. It was shown from a consideration of higher-order solution behaviour that, at
large Reδ, the growth of a linear unstable wave along the jet produces a synchronized
capillary wave propagating upstream even in the linear regime. Therefore, the
development of unstable waves near the nozzle exit, caused by energy transfer
from the baseline jet flow, produces upstream-propagating waves that transport energy
upstream to reproduce the same unstable waves in the newly issued liquid at the
nozzle exit. Thus, this cycle is repeatable. The growth of self-destabilizing 2D and
3D unstable waves describes the development of axisymmetric surface deformation
followed by the development of 3D unstable waves that initiate turbulent atomization.
The predicted onset location of ligament formation is consistent with experimental
observations including turbulent jets.
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Appendix A. Origin of upstream-propagating capillary wave

A local stability analysis based on the parallel flow approximation is not applicable
in the near-nozzle region, because the baseline flow varies significantly in the axial
direction. An accurate analysis may be performed in a framework of global mode
analysis (e.g. Chomaz 2005) accounting for nonlinearity and possible coupling with
the nozzle flow. Nevertheless, it would be instructive to use the present local stability
solutions to gain insights. Various processes may produce upstream-propagating
dispersive capillary waves. In the present study, we focused on dispersive capillary
waves produced by the unstable wave growth described by (5.1), because the nonlinear
term effects neglected in the linear theory may become significant downstream.

The considered unstable shear flow field should be a function of dimensionless
initial unstable wave amplitude ε0/δ0, whose value is assumed to be less than unity
but unknown. The usual linear stability analysis solves the eigenvalue problem posed
by the first-order homogeneous equation system in a hierarchy of regular perturbation
equation systems generated for the temporally periodic flow field expanded into a
power series of ε0/δ0. In view of figure 1, it is obvious that ε0/δ0 is not infinitesimal.
Therefore, to characterize the present jet instability to O(ε0/δ0), we need to consider
nonlinear effects described by the higher-order equations as well.

In the present local stability analysis, it is assumed that such perturbation equation
systems hold locally for the parallel flow in a vicinity of each location x = X
as long as ε0A(X)/δ0 < 1 and all flow variables appearing in them are smoothly
continuous along the jet. Equation (5.1) indicates that a dominant unstable wave
grows rapidly due to a large value of Reδ0 and saturates at a neutralizing location
x= `s. Therefore, higher-order contributions resulting from a dominant unstable wave
growth were examined by retaining those inhomogeneous terms associated with (5.1)
only. The linear unstable wave used for this analysis has a 2D surface deformation
η/δ0 = (ε0/δ0)A ei(αξ−ωt) + c.c. of a specific frequency ω (>0), where ξ = x − X and
A = eβX . To distinguish from the general wavenumber k of Fourier transformation
used later, the wavenumber and growth rate of the considered linear unstable wave
are denoted by α and β, respectively; A takes a large value away from the nozzle
exit. It should be noted that, in the vicinity of each location x = X belonging to a
linear region where εX/δ0 ≡ (ε0/δ0)A(x = X) < 1, εX/δ0 plays the same role as the
expansion parameter ε0/δ0 in the local perturbation equation systems treated in the
following analysis.

In the vicinity of x = X, the second-order equation system yields particular
solutions that depend on time t and local axial coordinate ξ through the factors
A2 e2βξe2i(αξ−ωt), A2 e2βξ and their complex conjugates. These solutions are multiplied
by the linear unstable wave solution to produce the inhomogeneous terms appearing
in the third-order equation system, which depend on t and ξ through the factors
A3 e3βξei(αξ−ωt) and its complex conjugate in particular. Therefore, the third-order
equation system for the temporally harmonic flow field takes the same form as the
first-order equation system, except for the given temporally harmonic inhomogeneous
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terms, which may be regarded as an ‘external force distribution’ acting on the baseline
jet flow. This third-order equation system yields a particular solution synchronized
with the linear unstable wave. As a result, the perturbation equations, which govern
the temporally harmonic disturbances valid to the third order, may be reduced to
a single equation governing the temporally harmonic surface deformation η/δ0 in
the form D[−i ∂/∂ξ ;ω]η e−iωt = S(X) e(3β+iα)ξe−iωt, where D expresses the functional
form of the dispersion relation derived from the local linear stability analysis (Huerre
& Monkewitz 1990) and S = (ε0/δ0)

3A3(X)B(X) (see appendix B). Here B is a
quantity of O(1). Note that, unlike the usual linear stability analysis, we are now
considering the O(ε0/δ0) equation with the forcing caused by the nonlinear unstable
wave growth effects. What we would like to know is the effect of the forcing applied
to an infinitesimal vicinity of x = X, i.e. 0 6 ξ 6 dX, say. Therefore, the forcing
is considered to vanish outside of this region. The Green’s function formalism of
this problem is facilitated by considering the Fourier-transformed equation in the
framework of local instability analysis. We obtain the Fourier-transform solution
dηk = (2π)−1/2S(X) dX/D(k, ω). Its inverse transformation results in a synchronized
upstream-propagating capillary wave of amplitude dη̄UPC = (ε0/δ0)

3A3C dX upstream
of the forcing portion, in particular, at x = X − 0, where C = |B(X)R(X)|. Here R
is the residual R = 1/[dD/dk (k = −k′; ω)] of the pole k = −k′(ω) expressing the
upstream-propagating capillary wave of the local dispersion relation. Therefore, the
resulting wave coincides with the upstream-propagating capillary wave presented in
§ 4. This result indicates that the first-order equation system to be treated in the
present linear stability analysis should have the inhomogeneous terms appearing in
the third-order equation system, so that the O(ε0/δ0) upstream-propagating capillary
wave produced by the nonlinear unstable wave growth at locations apart from the
nozzle exit might be captured.

The following should be noted. When we consider the wave produced upstream
of x = X by the local forcing on an infinitesimal region [X, X + dX], the formal
O(ε0/δ0) equation derived above is similar to that used in the absolute or convective
instability analysis. The difference is only that, instead of an impulsive forcing in
space and time, a temporally periodically changing force distribution is considered to
act on an infinitesimal interval dX about x = X. Part of the energy introduced by a
forcing is transferred in the upstream direction as a dispersive capillary wave. For the
periodic forcing under consideration, the dispersive capillary waves take the form of
an upstream-propagating capillary wave synchronized with the given unstable wave.
A similar upstream-propagating capillary wave is producible at any location X where
the linear unstable wave amplitude ε0A is smaller than δ0. According to the local
stability analysis concept, there must be a synchronized upstream-propagating capillary
wave, shown in figure 12, which is connected with the forcing-produced synchronized
capillary wave so as to conserve the upstream transferred energy along the jet. This
explains the origin of a synchronized upstream-propagating capillary wave expressed
by figure 12.

Appendix B. Derivation of governing equation for surface deformation

The perturbation equation system treated within the local stability analysis frame-
work is considered for the temporally harmonic, disturbed flow field (η, u′, v′, p′) =
[∆(ξ), U(ξ , y), V(ξ , y), P(ξ , y)] e−iωt valid to order O((εX/δ0)

3) where εX/δ0 =
(ε0/δ0)A(x= X)<1. Some equations have, on their right-hand sides, an inhomogeneous
term associated with the linear unstable wave growth in a vicinity of x = X, which
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takes a form such as (ε0/δ0)
3A3F(y) e(3β+iα)ξ−iωt at 06 ξ 6 dX and vanishes elsewhere.

Denoting the Fourier components of ∆, U, V and P by ∆k, Uk, Vk and Pk,
respectively, the Fourier-transformed ((2π)−1/2

∫ +∞
−∞ dξ e−ikξ operated) equations are

expressed as follows:

ikUk + dVk

dy
= 0, (B 1)

i(ku−ω)Uk + Vk
du
dy
+ 1
ρ

ikPk =
(
ε0

δ0

)3

A3Fu
1√
2π

e(3β+iα+ik)dX − 1
3β + iα + ik

= 1√
2π

(
ε0

δ0

)3

A3FudX, (B 2)

i(ku−ω)Vk + 1
ρ

dPk

dy
= 1√

2π

(
ε0

δ0

)3

A3Fv dX, (B 3)

subject to

Vk(0)− i[kUs −ω]∆k = 1√
2π

(
ε0

δ0

)3

A3G dX, (B 4)

Pk(0)− σk2∆k = 1√
2π

(
ε0

δ0

)3

A3H dX, (B 5)

Pk(∞)=Uk(∞)= Vk(∞)= 0. (B 6)

Note that Fu, Fv, G and H are independent of k; and that Fu(y) and Fv(y) vanish at
y=∞.

From (B 3) and (B 2), we obtain

Vk = 1
i(ku−ω)

[
− 1
ρ

dPk

dy
+ 1√

2π

(
ε0

δ0

)3

A3Fv dX
]
, (B 7)

Uk = 1
i(ku−ω)

[
1

iρ(ku−ω)
du
dy

dPk

dy
− 1
ρ

ikPk

+
{
− 1

i(ku−ω)
du
dy

Fv + Fu

}
1√
2π

(
ε0

δ0

)3

A3 dX
]
. (B 8)

Substituting these into (B 1), we obtain the governing equation for Pk as

d2Pk

dy2
− 2

k
du
dy

ku−ω
dPk

dy
− k2Pk =

[
ρikFu + ρ dGv

dy
− 2k

du
dy

ρGv

ku−ω
]

1√
2π

(
ε0

δ0

)3

A3 dX.

(B 9)
Equation (B 4) combined with (B 7) leads to

dPk

dy
(0)= ρ(kUs −ω)2∆k + [−i(kUs −ω)G+ ρFv(0)] 1√

2π

(
ε0

δ0

)3

A3 dX. (B 10)
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Using (B 5) and (B 10), we can integrate (B 9) from y = 0 to ∞, and obtain the
following form of equation:

Pk(∞)=D(k, ω)∆k − 1√
2π

(
ε0

δ0

)3

A3B(α, β, ω) dX = 0. (B 11)

In the text, ∆k is rewritten as dηk to indicate the contribution from the forcing on the
infinitesimal region (dX).
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