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Dynamics of directional soluble wicking

Sohyun Jung1, Wonjung Kim2,† and Ho-Young Kim1,†
1Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
2Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea

(Received 24 September 2019; revised 3 December 2020; accepted 30 December 2020)

Liquids can invade fibrous porous media when the fibres are either wettable or soluble,
and the infiltration rate can differ depending on spatial distribution of fibres as well as
liquid properties. With continuing developments in dissolution-driven release mechanisms
of porous drugs and chemical pattern formations, the understanding of how liquids
spontaneously infiltrate into soluble fibrous media is strongly called for. Here we show
that unlike capillarity-driven insoluble wicking (exhibiting diffusive growth of wetting
distance with time), the wicking distance in soluble porous media grows linearly with
time as dominated by liquid viscosity rather than surface tension. Such soluble wicking is
highly sensitive to flow orientation relative to fibre alignment, so that it arises only in the
crosswise direction while being strongly inhibited in the lengthwise direction. We present
a theoretical model to explain the experimentally measured wicking rates in soluble porous
media.
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1. Introduction

Liquid flows infiltrating into porous media are found in a variety of situations, including
painting (Kim et al. 2015) and writing (Kim et al. 2011) on paper, wetting of soils (Raux
et al. 2013) and hydrogels (Yoon et al. 2010) and absorption in hygiene items (Landeryou,
Eames & Cottenden 2005). When the media are wettable but insoluble in the liquid, the
flow velocity is determined by the balance of capillary driving force and viscous resisting
force. A simple approach considering the voids as an assemblage of cylindrical conduits
predicts that the wetting distance will grow like t1/2 with t being time (Washburn 1921),
which has been widely adopted to explain basic wetting dynamics of porous media for
over a century. However, variations of the wetting dynamics can arise as a result of a
number of factors, such as effects of gravity (Kim, Ha & Kim 2017), poroelastic response
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of soft solids (Ha et al. 2018), spatial irregularities or directionality of pore networks (Xia
& Brueck 2008) and solubility of medium solids (Twist & Zatz 1988).

In particular, liquid invasion in soluble porous media plays an essential role in
drug delivery, where porous drugs should be dissolved to release their contents at a
controlled rate where and when desirable. Liquid flows caused by pressurized injection,
rather than spontaneous capillary imbibition, and subsequent dissolution in soluble
porous media were previously investigated with a major focus on the formation of
ramified patterns (Daccord 1987; Szymczak & Ladd 2011). In drug delivery, the role
of porosity in drug release rate was experimentally studied when the governing step of
drug response was swelling (Colombo et al. 1996) or dissolution (Brielles et al. 2007).
Despite these pioneering but limited studies, the fundamental physical understanding of
capillarity-driven imbibition dynamics coupled with dissolution in drug delivery has rarely
been attempted and as a result is still far from complete.

Here, we study the capillarity-assisted invasion of liquid in porous media, referred to
as wicking, the dynamics of which changes sensitively with directionality of the porous
network as well as the solubility of the solid. As a model system to study the dynamics
of directional soluble wicking, we use porous sheets of polyethylene oxide (PEO) fibres.
By controlling the ordering of fibres in the fibre deposition process, we can investigate
the effects of fibre directionality (random or directional) on the preferred orientation and
rates of wicking dynamics. Polyethylene oxide can be dissolved in aqueous solutions, but
is insoluble in ethylene glycol and silicone oil. Thus, we can compare the imbibition
dynamics of dissolving and non-dissolving liquids to find the effects of dissolution on
the rates of wicking dynamics. We find that the rate of soluble wicking is determined by a
completely different process from that of insoluble wicking, thereby giving different power
laws of wicking distance. Furthermore, such effects of dissolution are shown to give rise
to a counterintuitive wicking behaviour in soluble sheets of aligned fibres, so that wicking
occurs dominantly in the crosswise, rather than the lengthwise, direction.

In the following, we start with an explanation of the experimental processes for
fabricating porous sheets of fibres and for observing the wicking dynamics. We then briefly
review basic theories associated with capillarity-driven non-reactive liquid flows in porous
media. We list our observation results of wicking flows, where the basic wicking dynamics
in insoluble porous sheets of randomly deposited fibres serves as a basis to identify the
effects of fibre alignment and solubility. We theoretically analyse the wicking rates by
identifying essential physics governing the flows, which yields power laws consistent with
experimental data.

2. Materials and methods

For porous substrates to imbibe liquids, we used sheets of fibres of PEO (Sigma Aldrich)
with a molecular weight of 3 × 105, which were produced by electrospinning. A jet of
aqueous PEO solution of 10 wt% concentration was ejected from a metal capillary of 0.26
mm in inner diameter under an electric field of 100 kV m−1. The jet was partially solidified
during flight and deposited on a collector as fibres. On a flat plate ground, the fibres were
chaotically deposited as shown in figure 1(a) to yield a sheet of average thickness of 77 μm.
The fibres were aligned in one direction on the surface of a drum collector rotating at the
same linear speed as the jet (4.7 m s−1) (Shin et al. 2018), as shown in figure 1(b). The
average thickness of the sheets obtained by the directional electrospinning process was
33 μm. In the image, we find some fibres crossing the uniformly aligned fibres, which
play an important role in guide wicking in some cases as discussed below. The average
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Figure 1. (a) Random deposition of electrospun fibres of PEO, and the corresponding SEM image. (b)
Directional deposition of electrospun fibres of PEO, and the corresponding SEM image. (c) Wicking of a liquid
from a point source emanating from a capillary tube touching a PEO fibrous sheet. (d) Propagation of liquid
front against gravity into a strip of fibrous PEO sheet. (e) Wicking of ethylene glycol in a randomly deposited
insoluble sheet. ( f ) Wicking of ethylene glycol in a directionally deposited insoluble sheet. (g) Wicking of
water in a randomly deposited soluble sheet. (h) Wicking of water in a directionally deposited soluble sheet.
In (e–h), the left and right columns correspond to the flows from a point source (capillary) and a liquid pool,
respectively. Small boxes in the top row of (e–h) indicate fibre alignment. Scale bars, 5 mm.

radius of fibres was measured using scanning electron microscopy (SEM) images, and
the porosity was obtained by comparing the densities of PEO and the fibrous sheets. The
characteristics of the fibrous sheets are listed in table 1. The average distance between
aligned fibres in the directionally electrospun substrates was measured via SEM images to
be 7 μm with a standard deviation of 3 μm.

The liquids used in our experiments are ethylene glycol, silicone oil, water, aqueous
ethylene glycol of various concentrations and chloroform, the physical properties of which
are listed in table 2. Liquids A and B have a contact angle of nearly zero with PEO sheets
but do not dissolve the fibres. The other liquids (C to F) dissolve PEO. We observed
wicking of a liquid emanating from a capillary tube on a porous substrate due to capillary
action to check the directionality of the spreading dynamics, as shown in figure 1(c). The
rate of one-dimensional wicking was separately measured by observing the propagation of
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Sheet Random Directional

Fibre radius, Rf , ± std (nm) 209 ± 38 234 ± 50
Porosity, φ 0.84 0.65
Equivalent pore radius, R (μm) 2.3 0.86
Permeability, k, measured (m2) 4.8 × 10−14 4.1 × 10−15

Permeability, k, modelled (m2) 4.8 × 10−14 4.4 × 10−15

Table 1. Characteristics of the porous fibrous sheets. For fibre radius, std stands for standard deviation.

Symbol

Surface tension Viscosity Density Directional
Liquid (mN m−1) (mPa s) (kg m−3) Random (⊥, ‖)

A Ethylene glycol (EG) 47 21.1 1112 ,

B Silicone oil 40 10.0 939 ,
C Water 72 1 997 ,

D Aqueous EG (10 wt%) 67 1.4 1042 ,

E Aqueous EG (20 wt%) 59 1.9 1068 ,
F Chloroform 27 0.6 1490 ,

Table 2. Properties of liquids used in the experiments at a temperature of 25 ◦C. Symbols are also listed
that appear in figures 3–6 indicating the experimental conditions. Symbols ⊥ and ‖ indicate crosswise and
lengthwise wicking, respectively.

the wetting front, L(t), in a 1 cm wide strip from the free surface of a liquid pool, as shown
in figure 1(d).

The deformation of PEO fibres in response to humidity change was visualized using an
environmental SEM (ESEM) instrument (Philips XL-30 FEG). We placed a fibrous PEO
sheet measuring 5 mm × 5 mm in area on a Peltier plate whose surface temperature was
kept at 2 ◦C. The relative humidity in the ESEM chamber was varied from 25 % to 95 %
during experiments.

3. Fundamental theories of capillary flows in porous media

Here, we briefly review the fundamental theories of capillary flows in porous media,
on which our theoretical development will be based. Most porous media are of great
complexity, so theoretical attempts to understand the dynamics of liquids in porous
media have been made through the conceptual model approach (Scheidegger 1960). The
simplest model representing a porous medium is a bundle of straight, parallel capillaries
of uniform diameter. Using this model, we first consider the velocity of the liquid front
in a wettable capillary of radius R, as shown in figure 2(a). The average velocity of
incompressible liquid flow u in a small axisymmetric straight capillary of radius R
(R � L) follows the Poiseuille law written as u = R2(−dp/dx)/(8μ), with L, μ and p,
respectively, being the propagation distance of the liquid, the viscosity and the pressure.
For inertialess surface-tension-driven flow neglecting gravity, the pressure difference is
�p = pa − pi, where pa is the atmospheric pressure and pi is the internal pressure at the
liquid–gas interface. As the pressure of air just outside of the liquid–gas interface is also
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Figure 2. (a) A schematic of liquid imbibition into a capillary with a contact angle of zero under negligible
effects of gravity. (b) A schematic of liquid imbibition into a porous medium.

pa, we realize that �p is equal to the pressure jump across the interface, which is given by
the Laplace–Young equation, �p = σκ , with κ being the interface curvature (de Gennes,
Brochard-Wyart & Quéré 2004). In a wettable capillary, κ ≈ 2R−1, and thus the average
fluid velocity becomes u = σR/(4μL). Using u = L̇, we obtain the classical diffusive
behaviour of the wetted length with time t: L = [σRt/(2μ)]1/2 (Lucas 1918; Washburn
1921).

We now turn to fluid flows in porous media, as shown in figure 2(b), modelled as
a bundle of capillaries having the same radius R, embedded in a solid. If N tubes are
embedded in the unit cross-sectional area, then the total flow rate per unit cross-sectional
area, qm, is NπR2u. Thus, we have qm = φR2(−dp/dx)/(8μ), where the porosity φ (the
fraction of the volume of voids over the total volume) is NπR2.

The fluid flow in porous media with negligible inertia is described by Darcy’s law
(Darcy 1856; Bear 1972). For one-dimensional fluid flow, Darcy’s law is written as
qt = k/μ(−dp/dx), which corresponds to the linear relationship between the total flow
rate per unit area qt and the pressure gradient, with k/μ being the prefactor. Here, k is
the permeability. The analogy between qm and Darcy’s law is obvious. In qm, φR2/8 is
analogous to the permeability k. In applying this relationship to an actual porous medium,
R scales as an average pore radius.

The permeability k is highly related to the geometrical properties of pores, such as
porosity, average size, size distribution and shape. Although the relationship between
geometrical pore characteristics and permeability has long been under discussion through
empirical (Nelson & Baver 1940; Jacob 1946; Baver 1949; Griffiths 1952) and theoretical
(Kozeny 1927; Carman 1941; Purcell 1949; Cornell & Katz 1953; Rose & Witherspoon
1956) studies, these attempts have only found the empirical relations for average
permeability of porous media due to the complex nature of pore structure. Still, it is
reasonable to scale the permeability as the cross-sectional area of actual fluid conduits.

4. Results and discussion

4.1. Types of wicking dynamics
Depending on the solubility in liquid and the directionality of fibres constituting the
substrate, we obtain four different categories of experimental conditions to determine the
wicking dynamics.

(i) When the fibres are randomly deposited and insoluble in the liquid, the wicking
occurs independent of direction exhibiting a circular wet area growing from a point source
as shown in the left-hand column of figure 1(e). For the insoluble strip contacting a free
surface of the liquid, a horizontal wetting front advances against the direction of gravity
as shown in the right-hand column of figure 1(e).
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(ii) When the fibres are aligned and insoluble, the liquid wicks faster along the fibre
direction than across the direction. Thus, the wet area growing from a point source is
elliptical with the major axis coinciding with the fibre alignment direction, as shown in the
left-hand column of figure 1( f ). A relatively smooth horizontal wetting front propagates
from a free surface as shown in the right-hand column of figure 1( f ) with the speeds
different depending on the orientation of fibres relative to a free surface of liquid.

(iii) When the fibres are randomly deposited but soluble in the liquid, the wicking tends
to occur independent of direction with spiky circular fronts from a point source as shown
in the left-hand column of figure 1(g). The rough horizontal wetting front advances from
a free surface as shown in the right-hand column of figure 1(g).

(iv) When the fibres are aligned but soluble, the liquid wicks much faster in the
crosswise direction than the lengthwise direction. Thus, the wet area growing from a
point source elongates in a direction perpendicular to aligned fibres while the wicking
along the fibres is severely suppressed as shown in the left-hand column of figure 1(h).
The wetting front advancing from a liquid pool’s free surface is fairly spiky when the
free surface and the fibre directions are parallel, as shown in the right-hand column of
figure 1(h). Wicking was hardly observed when the strip touched the free surface with the
fibre direction perpendicular to the free surface.

4.2. Insoluble wicking
We start with the dynamics of wicking of liquids in insoluble fibrous sheets, representative
images of which are shown in figure 1(e, f ). We first consider the wicking rates of liquids
in the sheets of randomly deposited fibres. As delineated in § 3, in porous media with
homogeneous porosity, one-dimensional fluid flows follow Darcy’s law: q = kr�p/(μLr),
where q, kr and Lr are, respectively, the average fluid velocity over the unit area, the
permeability and the wicking distance. However, the flow velocity that we observe is
the average local fluid flow velocity u, which must be greater than the average fluid
velocity over the unit area owing to the solid area in porous media. According to the
commonly accepted hypothesis known as the Dupuit–Forchheimer assumption (Dupuit
1863; Forchheimer 1986), the average local fluid flow velocity u is q/φ, which leads to
u = kr�p/(φμLr). If capillarity drives the flow in the wettable media with negligible
gravitational effects owing to a very low Bond number, Bo = ρgR2/σ ∼ O(10−6), the
pressure difference established between the reservoir and the interior of advancing
meniscus is equal to the Laplace pressure, �p = 2σ/R, where R, ρ and g are the equivalent
pore radius, liquid density and gravitational acceleration, respectively. Modelling the
porous sheet structure as a regular array of cylindrical conduits with equivalent hydraulic
radius R, we estimate R using two measurable parameters, porosity φ and fibre radius
Rf , as R = Rf φ/(1 − φ) (Mao & Russell 2008). Then, taking q = L̇r in Darcy’s law and
integrating with respect to time from t = 0 to t gives

Lr = 2
[
(1 − φ)kr

φ2Rf

σ

μ

]1/2

t1/2. (4.1)

We plot the wicking distance of liquids A and B in the sheets of randomly deposited
fibres in figure 3(a). Although the wicking occurs at different rates for the differing
properties of the liquids (inset in the figure), the measurement data of wicking distance are
collapsed onto a single line when plotted according to (4.1). The diffusive behaviour of the
wetting distance on two-dimensionally isotropic insoluble porous sheets is consistent with
results of prior studies using fibrous sheets of non-woven fabrics (Kim et al. 2015) and
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Figure 3. (a) The wicking distance of liquids A and B in insoluble porous sheets of randomly deposited fibres
plotted according to (4.1). Inset: raw data of L versus t. (b) The wicking distance of liquid A in insoluble sheets
of directionally deposited fibres. Different power laws are observed depending on the flow direction. Inset:
linear plots of Ll and Lc versus t. (c) The wicking distances in insoluble sheets of randomly deposited fibres,
and the lengthwise wicking distances in insoluble sheets of directionally deposited fibres, plotted according to
scaling law (4.1). The slopes of the best-fitting lines corresponding to 4kr/φ are 2.3 × 10−13 and 2.5 × 10−14

m2 for random and directional substrates, respectively. (d) The crosswise wicking distance of liquids A and B
plotted versus σRt/μ.

paper (Kim et al. 2011). The slope of the best-fitting dotted line in figure 3(c) corresponds
to 4kr/φ, and we find the permeability of the insoluble porous sheet of randomly deposited
fibres to be kr = 4.8 × 10−14 m2.

We now consider the wicking rates in the sheets of directionally deposited fibres as
shown in figure 1( f ). As the wicking rate depends on the direction of flow relative to
fibre alignment, we plot the temporal evolutions of the lengthwise imbibition Ll and the
crosswise imbibition Lc in figure 3(b). We see different power laws observed depending
on the wicking direction, so that Ll ∼ t1/2 and Lc ∼ t1/3. The diffusive behaviour of Ll
indicates that the lengthwise flow follows Darcy’s law as driven by capillarity. Thus, we
express Ll in the same form as (4.1), Ll = 2[(1 − φ)klσ/(φ2Rf μ)]1/2t1/2, with kl being
the permeability of the directionally deposited sheet, which collapses the raw data of Ll of
liquids A and B onto a single line, as shown in figure 3(c). The slope of the line of best fit
empirically gives the permeability, kl = 4.1 × 10−15 m2.

Given the measured values of permeability in random and directional fibrous sheets,
we check whether they can be predicted by a previous model (Rodriguez, Giacomelli &
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Vazquez 2004) which proposes the following form of k as a function of porosity: k =
φn+1(1 − φ)−n/C, where n and C are empirical parameters. Taking n = 0.97, a value
corresponding to fibreglass in Rodriguez et al. (2004), we find C = 2.6 × 1014 m−2 to
match the measured and predicted permeabilities of a random deposited sheet, kr = 4.8 ×
10−14 m2. The chosen values of n and C lead to the following value of the permeability
in the directionally deposited sheet predicted: kl = 4.4 × 10−15 m2. This matches closely
the measured value of kl = 4.1 × 10−15 m2. This is consistent with the previous finding
(Rodriguez et al. 2004) that the permeability of porous media made of the same fibre
materials exhibits the same functional dependency on porosity whether fibres are aligned
or not.

For imbibition to arise in the crosswise direction, the liquid following the aligned fibres
should either touch adjacent fibres upon bulging through the inter-fibre gaps (Bayramli
& Powell 1990) or wick along misaligned fibres crossing the fibre alignments. Because
the average inter-fibre distance (7 μm) is greater than the fibre radius (235 nm), the
bulging is unlikely to convey liquid to adjacent fibres. Thus, the flow path for the crosswise
impregnation is provided by occasionally encountered misaligned fibres, as schematically
shown in the inset of figure 3(d). Since the pathway of crosswise wicking involves complex
detours, the wicking dynamics no longer follows the classical diffusive rule.

With no theoretical models for the crosswise wicking available, we figure out the
functional dependence of wicking distance on such independent parameters as t, R, σ

and μ based on dimensional analysis (Buckingham 1914). The dimensionless crosswise
wicking distance Lc/R is a function of a dimensionless time, σ t/(μR). Assuming that a
power law is observed, we write Lc ∼ (σ t/μ)αR1−α . We have seen above that α = 1/2 for
insoluble wicking in randomly deposited sheets and lengthwise imbibition in directional
fibrous sheets. However, for crosswise wicking that suffers from infrequent but tortuous
flow paths, α tends to decrease with an increase of the tortuosity, defined as the length ratio
of the actual flow path to the straight path (Cai & Yu 2011). The tortuosity will increase as
the number of misaligned fibres decreases. Upon finding that Lc ∼ t1/3 from our raw data,
we have plotted Lc versus σR2t/μ in figure 3(d), which validates that the power law is
indeed observed with a power α = 1/3 for the particular fibrous sheets used in this work.

4.3. Wicking in randomly deposited soluble sheets
While the PEO fibres are insoluble in liquids A and B, they are soluble in aqueous solutions
(liquids C to E) and chloroform (liquid F). When liquids touch randomly deposited soluble
porous sheets, the wicking rates are independent of direction although the wetting front is
uneven. Figure 4(a) shows the soluble wicking dynamics qualitatively different from that
in insoluble porous media, i.e. the wicking distance in soluble porous media grows linearly
with time rather than increasing like t1/2.

The transport of liquid in soluble porous media involves more complex processes than
in insoluble porous media. In general, when polymer contacts its solvent, the polymer
first swells by absorbing the solvent, and then turns into gel (a diluted cross-linked system
with negligible fluidity). If the gel layer blocks flow paths in the fibrous network, the
gel layer should be dissolved away into fresh solvent before liquid propagation resumes.
To aid the understanding of soluble wicking dynamics in general, we consider two cases
depending on the size of conduit relative to the degree of polymer swelling. First, the
conduit is so large that the swelling of polymeric wall does not block the conduit but
only modifies the capillary radius and the liquid properties (viscosity and surface tension),
as illustrated in figure 5(a). Second, the conduit is so narrow that the polymer swelling
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Figure 4. (a) The liquid invasion distance, Ls, of various liquids versus time in soluble porous sheets of
randomly deposited PEO fibres. (b) Distance Ls versus βt/μ, plotted according to scaling law (4.2). (c)
Schematics of physical processes during wicking of a porous sheet of randomly deposited soluble fibres. The
solvent diffuses in fibres (orange arrows), which swell and turn to a gel layer accordingly. The loosened polymer
chains are dissolved away (yellow arrows) where they can meet fresh liquid, which becomes an instantaneously
preferred direction of soluble wicking. (d) Two ESEM images of PEO fibres that swell and consequently buckle
to contact with their neighbours under a high humidity (RH, relative humidity). (e) Inverted microscopy image
of a soluble random porous sheet being impregnated by water, whose wet area appears bright.

blocks the channel rapidly as shown in figure 5(b). Wicking can resume only when the gel
blocking the conduit is dissolved into the solvent.

In the first case, we need to consider simultaneous processes of longitudinal wicking
and the polymer wall’s transverse diffusion, swelling and dissolution. That is, as the wall
swells, the capillary driving force and the viscous resistance change for the shrinking
cross-section of fluid conduit. We also need to consider the loss of liquid for its transverse
diffusion into the polymer wall and possible change of viscosity for polymer dissolution.
This is a challenging problem that should couple capillary dynamics, kinetics of solvent
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Liquid
Liquid

Before swelling During swelling

δ

�R

R

Dissolved
PEO

Liquid diffusion
Dissolution

Gel layer

t = τw0 < t < τw τw < t � τd τw � t < τd τd < t

(a)

(b)

(c)

Figure 5. Schematic illustrations of solvent imbibition through a soluble capillary. (a) When the conduit is
wide, the wicking velocity is an outcome of simultaneous interactions of capillary wicking, solvent diffusion
into the wall, wall swelling and dissolution. (b) When the conduit is narrow, the swelling polymer blocks
the conduit rapidly. The wicking speed is determined by how fast the gel layer is dissolved into the liquid.
(c) Schematics of pore clogging process in porous media, assumed as an assemblage of cylindrical conduits
of equivalent radius R, due to solvent diffusion into polymeric wall. While the solvent diffuses into an inner
wall of a singe conduit by a distance �R, the conduit radius is reduced to R − δ due to the wall swelling as much
as δ.

diffusion and consequent polymer swelling, and chemical reaction of polymer dissolution
into solvent (Ha et al. 2018).

However, the current problem is rather directly linked to the second case of narrow
conduits that are readily blocked by swelling polymer fibres. The swelling ratio of PEO
due to absorption of aqueous liquids is so high (approximately 10) that voids in our porous
sheets with porosity of 0.84 are clogged by the swollen polymer. Then, the wicking arises
by repeating the following steps: wall swelling with capillary wicking until clogging, and
reopening by polymer dissolution. Denoting the time scale of the former step as τw and the
latter as τd, their sum, τ = τw + τd, corresponds to the period of the wicking process. If λ
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Dynamics of directional soluble wicking

is the characteristic distance that a liquid travels before the conduit is clogged, the average
wicking velocity is given by λ/τ . In the following, we show that the time for wicking and
swelling before clogging is much shorter than the dissolution time, i.e. τd � τw. Then we
get τ ≈ τd because the dissolution is the rate-determining step, which allows us to find the
wicking velocity to be λ/τd. Therefore, we only need to consider the rate of dissolution in
order to find the wicking velocity rather than considering simultaneous wicking, swelling
and dissolution.

Figure 4(c) schematically illustrates the processes during soluble wicking. While liquid
infiltrates into the porous sheet, the fibres surrounding pores are swollen with diffusion
of the solvent (liquid). Figure 4(d) shows the swelling of PEO fibres with absorption of
water, leading to buckling and contacts of initially aligned fibres. In order for the wicking
to resume after this pore clogging, a sufficient amount of polymer in the gel layer should
be dissolved away into the fresh liquid following the wetting front. Therefore, the liquid
transport in soluble porous media is an outcome of repeated processes of capillary wicking
of a short distance accompanied by pore clogging and polymer dissolution.

The soluble wicking distance Ls for a time t significantly greater than τ is then written
as Ls = λt/τ . To estimate λ and τ , we consider the two time scales relevant to the soluble
wicking.

(i) Time for wicking and swelling until clogging, τw. The time τw for liquid to wick over
a distance λ owing to capillarity with negligible inertia can be given by the Washburn rule
(Washburn 1921): λ ∼ (σRτw/μ̃)1/2, where μ̃ is the average viscosity of liquid. As the
liquid diffuses into PEO fibres, the polymer swells, so that the fluid conduit is clogged
as schematically illustrated in figure 5(c). Assuming porous media as assemblages of
cylindrical conduits of equivalent radius R, we consider diffusion of solvent into the
inner wall of a polymeric cylindrical tube by a distance �R. Then the polymer swells
in a way such that the conduit radius is reduced to R − δ. It is known that PEO swells
approximately 10 times by absorbing aqueous liquids (Abd El-Hady & Abd El-Rehim
2004), so that �R/R ∼ 0.1 when the conduit is clogged (δ = R). With the characteristic
swelling time scale τw estimated as the diffusion time scale to a distance of �R = 0.1R,
we get τw ∼ (0.1R)2/Ds. Because the diffusion coefficients of liquids C to F into PEO
fibres are of the order of Ds ∼ 10−9 m2 s−1 (Vrentas & Duda 1979; Barnes et al. 1994),
we find τw ∼ 10−5 s for R ∼ 10−6 m.

(ii) Time for reopening by polymer dissolution, τd. The time for polymer dissolution
in fresh liquid by disentanglement of loosened polymer chains is scaled as τd ∼ λ/Kd,
where the unit wicking distance λ serves as a gel layer thickness and Kd is the rate of
polymer chain detachment and diffusion into liquid. If the diffusivity of a polymer in a
liquid and the radius of gyration are, respectively, denoted as Dl and rg, Kd is scaled as
Kd ∼ Dl/rg (de Gennes 1979; Doi & Edwards 1988). Using the Stokes–Einstein relation
(Couper & Stepto 1969), Dl ≈ kBT/(6πμrg) with kB, T and μ respectively being the
Boltzmann constant, the absolute temperature and the viscosity of fresh liquid, we estimate
τd ∼ 6πλμr2

g/(kBT).
As the capillary wicking stops due to pore clogging by swelling, the distance λ can

be obtained by substituting τw ∼ (0.1R)2/Ds into the foregoing Washburn rule: λ ∼
0.1R[σR/(μ̃Ds)]1/2. The viscosity of wicking liquid increases exponentially with the PEO
concentration, and thus we take μ̃ ∼ 1 Pa s based on the viscosity data of an aqueous
solution of PEO with molecular weight of 3 × 105 g mol−1 (Ebagninin, Benchabane &
Bekkour 2009). Then, we find the gel layer thickness to scale as λ ∼ 10−6 m. This value
is consistent with the thickness of a mushy layer formed at the wetting front radially
emanating from a liquid source at the centre, as imaged by an inverted microscope (Nikon
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Eclipse TS100) in figure 4(e). We obtain the estimates of the time scales τw ∼ 10−5 s and
τd ∼ 10−3 s with a characteristic value of rg taken to be 10−8 m (Werzer, Warr & Atkin
2011). Therefore, the slowest polymer dissolution is a rate-limiting step that determines
the rate of liquid invasion in soluble porous sheets of PEO fibres.

We write Ls ∼ λt/τd, which gives

Ls ∼ β

μ
t, (4.2)

with β = kBT/r2
g. Figure 4(b) shows that the scattered data of liquid invasion distance

Ls for various liquids are collapsed onto a single line when plotted according to scaling
law (4.2). The slope of the line of best fit is αs = 1.2, leading us to write Ls = αsβt/μ.
The liquid invasion rate in soluble isotropic porous sheets is critically dependent on the
viscosity but independent of surface tension of liquid, as the rate of disentanglement of
polymer chains into fresh liquid determines the liquid propagation speed.

4.4. Wicking in directionally deposited soluble sheets
Since the lengthwise wicking in directionally deposited fibrous soluble sheets is
insignificant, we plot the wicking distance in the crosswise direction Ld versus time in
figure 6(a). The distance corresponds to the average height of spiky fronts shown in the
right-hand column of figure 1(h). We see that the distance grows linearly with time just as
for the randomly deposited sheets but at a higher rate. Since the coupled process of pore
invasion–pore clogging–polymer dissolution should still arise for liquid propagation, we
plot Ld versus βt/μ according to scaling law (4.2) in figure 6(b). We find the experimental
data to be collapsed onto a single line with a slope αd = 1.6, which is 1.3 times higher
than the value for the randomly deposited sheets, αs.

To understand why the wicking of reactive liquids is fast in the crosswise direction
but severely suppressed in the lengthwise direction, we schematically illustrate physical
processes during crosswise and lengthwise wicking in figures 6(c) and 6(d), respectively.
When the liquid front and fibre alignment are parallel (figure 6c), the dissolved polymer
chains can be easily carried away by fresh liquid that follows the wicking front. The
aligned but buckled fibres having a number of contacts with neighbours guide the flow
to occur perpendicular to the fibre alignment direction without detouring, in contrast with
randomly deposited, insoluble unswollen fibres that force the flow to detour in seeking easy
supply path of fresh liquid. The unevenness of wet front shown in figure 1(g) reflects such
detouring in randomly deposited substrates. The polymer dissociation is still the limiting
step in liquid wicking, allowing us to write Ld = αdβt/μ. We consider the ratio αd/αs
a measure of randomness of fibre directionality affecting the invasion rate of liquid in
soluble fibrous sheets.

When liquid attempts to flow in the lengthwise direction (figure 6d), the aligned fibres
are continually dissolved into the diffusing solvent forming an excessively thick gel layer,
which cannot meet fresh liquid to remove disentangled polymer chains. The thick gel layer
blocking the lengthwise invasion is clearly observed in an SEM image obtained after a
wicking test (figure 6e). The tip of the opening area shows a thin gel layer of the order
of 10−6 m, facilitating the crosswise wicking to elongate the opening in the direction
designated by the black arrow. Such pointed propagation of liquid while shielded by a
thick gel layer in the sides appears to result in the highly spiky wet front in the right-hand
column of figure 1(h).
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Figure 6. (a) The liquid invasion distance Ld of various liquids versus time in soluble porous sheets of
directionally deposited PEO fibres. (b) Distance Ld versus βt/μ, plotted according to scaling law (4.2).
Schematics of physical processes during wicking in (c) the crosswise and (d) the lengthwise direction. (e)
Scanning electron microscopy images of a sheet of directionally deposited fibres after wicking of water
emanated from a capillary.

5. Conclusions

We have shown both experimentally and theoretically that the wicking dynamics of
liquids in fibrous sheets is qualitatively different depending on whether the fibres are
soluble or not. In addition, directionality of fibres has been shown to determine the
preferred orientation of wicking in a solubility-dependent manner. Table 3 summarizes
the findings according to the directionality and solubility of fibrous sheets. In insoluble
fibrous sheets, liquids wick isotropically and diffusively (Lr ∼ t1/2) when the fibres are
randomly deposited as being continuously driven by capillarity and resisted by viscosity.
The diffusive dynamics still holds for the lengthwise wicking in insoluble sheets of aligned
fibres, but the wicking is slower in the crosswise direction. In soluble fibrous sheets,
the wicking dynamics is limited by the dissolution rate of polymer chains into liquid, so
that the wicking distance grows linearly with time in randomly deposited fibrous sheets.
The constant wicking rate also holds for the crosswise wicking in directionally deposited
soluble fibrous sheets. But the lengthwise propagation is inhibited by excessively thick gel
layers formed by continual diffusion of solvent along the aligned fibres.
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Directionally deposited fibrous sheet

Randomly deposited fibrous sheet Lengthwise Crosswise

Insoluble Lr = 2
[

kr

φR
σ

μ

]1/2

t1/2 Ll = 2
[

kl

φR
σ

μ

]1/2

t1/2 Lc ∼
(

σR2

μ
t
)1/3

Soluble Ls = αs
kBT
r2

gμ
t Suppressed Ld = αd

kBT
r2

gμ
t

Table 3. Summary of the wicking dynamics depending on directionality and solubility of fibrous porous
sheets. The equivalent pore radius R = φRf /(1 − φ).

Although capillarity-driven imbibition in insoluble fibrous media is governed by such
physical properties as surface tension and viscosity of liquid and porosity and permeability
of porous network, our study of soluble porous media reveals that their wicking dynamics
is mainly determined by viscosity and fibre alignment. In particular, the high sensitivity of
soluble wicking rates to orientation of fibre alignment opens a new pathway to accurately
control dissolution behaviour of porous sheets. One can expedite dissolution of porous
shells by arranging fibres perpendicular to the desired wicking direction (to induce
crosswise wicking) while arranging fibres parallel to the undesired direction. It is also
possible to spatially pattern the orientation of fibres so that the wicking can occur along
a designated path. In practice, such delicate scheme of guided dissolution will help one
to design air-trapping porous drug delivery systems (Yuasa, Takashima & Kanaya 1996;
Singh & Kim 2000) capable of releasing drugs at a precisely controlled rate and direction,
to encrypt messages on a soluble piece of paper (Thomas et al. 2009; Burgess et al.
2011) or to devise soft robots capable of actuation or morphing in response to surrounding
chemical environments (Yang et al. 2018).
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