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We investigate the asymptotic version of the Erdős–Ko–Rado theorem for the random k-uniform
hypergraph Hk(n, p). For 2 � k(n) � n/2, let N =

(n
k

)
and D =

(n−k
k

)
. We show that with probab-

ility tending to 1 as n → ∞, the largest intersecting subhypergraph of Hk(n, p) has size

(1+o(1))p
k
n

N

for any

p � n
k

ln2
(

n
k

)
D−1.

This lower bound on p is asymptotically best possible for k = Θ(n). For this range of k and p, we
are able to show stability as well.

A different behaviour occurs when k = o(n). In this case, the lower bound on p is almost
optimal. Further, for the small interval D−1 � p � (n/k)1−ε D−1, the largest intersecting sub-
hypergraph of Hk(n, p) has size Θ(ln(pD)ND−1), provided that k �

√
n lnn.

Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymp-
totic size of the largest intersecting family in Hk(n, p), for essentially all values of p and k.
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1. Introduction

The Erdős–Ko–Rado theorem [11] is a cornerstone in extremal combinatorics. Let [n] denote the
set {1,2, . . . ,n}, and let

([n]
k

)
denote the set of all k-element subsets of [n]. A family of k-element

sets F ⊂
([n]

k

)
is called a k-uniform hypergraph on the vertex set [n], and such a hypergraph is

called intersecting if A∩B 	= /0 holds for every edge A,B ∈F . The Erdős–Ko–Rado theorem then
states that for 2 � k � n/2, an intersecting family F ⊂

([n]
k

)
must satisfy |F| � k

n

(n
k

)
. This is best

possible, as seen by the principal hypergraphs Fi, which consist of all edges containing the fixed
element i ∈ [n].

We investigate a random analogue of the Erdős–Ko–Rado theorem in which the ambient space([n]
k

)
in the theorem is replaced by a random space. Random analogues of extremal results have

been studied extensively in the past few decades, and we refer to [6, 8, 23, 24] for the history of
this line of research and recent breakthroughs.

The ambient random space we will work with is Hk(n, p), the binomial random k-uniform
hypergraph on the vertex set [n] in which each edge e∈

([n]
k

)
is included in Hk(n, p) independently

with probability p. Further, for a k-uniform H, let i(H) denote the size of the largest intersecting
subhypergraph of H, that is,

i(H) = max{|F| : F ⊂ H and F is intersecting}.

In this notation the Erdős–Ko–Rado theorem states that

i(Hk(n,1)) = i

((
[n]
k

))
=

k
n

(
n
k

)
.

Notation. All asymptotic limits in this paper are taken as n → ∞. If we write a(n) � b(n) or
a(n) = o(b(n)), it means that a(n)/b(n)→ 0. In particular, the notation o(1) represents a function
that goes to 0 as n → ∞, as usual. For simplicity, we omit floor and ceiling functions, whenever
they are not essential. We say that a sequence of events En holds asymptotically almost surely if
Pr[En] → 1 as n → ∞. We use lnd c to denote (lnc)d .

We will be interested in i(Hk(n, p)) for k = k(n) and all p = p(n) ∈ (0,1). This question was
investigated by Balogh, Bohman and Mubayi [3], which obtained very precise results for the size
and structure of the largest intersecting family in Hk(n, p), for k � n1/2−o(1). For larger k, they
obtained asymptotic tight bounds on i(Hk(n, p)), but only for rather large values of p. In general,
their result highly depends on the range of k and p, and hence it is slightly cumbersome to state.
Therefore, we will only partially discuss it here, and refer to [3] for detailed information. Their
result concerning the large range of k is given below in Proposition 1.1.

Proposition 1.1 (Proposition 1.3 in [3]). Let δ = δ (n) > 0 and N =
(n

k

)
. If lnn � k < (1−

δ )n/2 and p � (1/δ )((lnn)/k)1/2, then almost surely, as n → ∞,

i(Hk(n, p)) = (1+o(1))p(k/n)N.
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In other words, for this range of p, the expected size of the intersection of a principal family
Fi with Hk(n, p) is very close to the size of a maximum intersecting subfamily of Hk(n, p). We
extend this result, and provide an almost complete description of i(Hk(n, p)) as follows.

Theorem 1.2. For all 0 < ε < 1 there exists a constant C > 0 for which the following holds.
Let p = p(n) ∈ (0,1), k = k(n), where 2 � k � n/2, N =

(n
k

)
, and D =

(n−k
k

)
. Then almost surely,

as n → ∞,

(1) i(Hk(n, p)) = (1± ε)pN if N−1 � p � D−1,

(2) i(Hk(n, p)) � (1− ε)
N
D

ln(pD) if D−1 � p � (n/k)D−1 and k �
√

n lnn,

(3) i(Hk(n, p)) � C
N
D

ln(pD) if D−1 � p � (n/k)1−ε D−1,

(4) i(Hk(n, p)) = (1± ε)p
k
n

N if p � C(n/k) ln2(n/k)D−1.

The first bound follows from a standard deletion argument, and we state it here for complete-
ness. Note also that i(Hk(n, p)) is monotone in p. Hence, in the range of p around (n/k)D−1 not
mentioned in the theorem, we have i(Hk(n, p)) = O((N/D) ln2(n/k)) due to (4).

If k is linear in n, the bounds in (1) and (4) determine i(Hk(n, p)) asymptotically for essentially
all p. Here, we have a change of behaviour around D−1. Roughly speaking, for p below D−1,
essentially all of Hk(n, p) is intersecting. Beyond that point, that is, for p � D−1, the largest
intersecting subhypergraph of Hk(n, p) has size very close to the size of the intersection of a
principal hypergraph with Hk(n, p). Observe that cases (2) and (3) are trivial for k = Θ(n).

For k = o(n) there is a rather short range of p where i(Hk(n, p)) reveals a ‘flat’ behaviour.
Indeed, the upper bound (3) shows that i(Hk(n, p)) grows slowly with p, since it appears only in
the ln-term. The corresponding lower bound in (2) shows that for k � n1/2+o(1) this bound is tight
up to a multiplicative constant. We provide no lower bound for the range k < n1/2−o(1) here, as in
this case the result of Balogh, Bohman and Mubayi is more satisfactory. Again, we refer to [3]
for further information.

Although the ‘flat range’ phenomenon might come as a surprise, it has been observed else-
where. Indeed, in the dense case, that is, for p = 1, and for k = o(n), the size of the largest
intersecting family is vanishing compared to the ambient space, that is,

i

((
[n]
k

))
=

k
n

(
n
k

)
= o

((
n
k

))
.

For these so called ‘degenerate’ problems, the random analogues typically reveal such an inter-
mediate flat behaviour, as observed for example in [19, 20].

The question of the range of p for which the largest intersecting family F ⊂Hk(n, p) is indeed
the projection of a principal family has been successfully addressed in [3] for k < n1/2−o(1). For
larger k, which we are mainly interested in, the problem seems to be more complicated, and has
only been studied recently in [14], for constant p. We make no contribution to this question here.
However, as well as the bounds on i(Hk(n, p)), we are able to show stability for k = Θ(n) in the
same range for p as in case (4) in Theorem 1.2.
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Theorem 1.3. For every β > 0 and ε > 0 there exist constants δ > 0 and C > 0 for which the
following holds. For any βn < k(n) < (1/2−β )n and p � C ·D−1, asymptotically almost surely
stability holds, that is, for every intersecting family F ⊂Hk(n, p) of size |F| � (1−δ )p(k/n)N,
there is an element i ∈ [n] that is contained in all but at most ε p(k/n)N elements of F .

In the dense case, that is, for p = 1, the result was proved by Friedgut [12]. Indeed, the proof
of Theorem 1.3 relies on the result of Friedgut and on a removal lemma for the Kneser graph due
to Friedgut and Regev [13].

Further results and organization. In proving Theorems 1.2 and 1.3, it will be convenient for
us to work with the Kneser graph K(n,k). The vertex set of this graph is

([n]
k

)
, and two k-element

sets form an edge if and only if they are disjoint. Hence K(n,k) is a
(n−k

k

)
-regular graph on(n

k

)
vertices, and a hypergraph F ⊂

([n]
k

)
is intersecting if and only if F is an independent set

in K(n,k). Further, let K(n,k, p) denote the subgraph of K(n,k) induced on the random vertex
set obtained by including each vertex from

([n]
k

)
independently with probability p. Due to the

correspondence, all bounds on intersecting subgraphs of Hk(n, p) will follow from corresponding
bounds on the size of largest independent sets in K(n,k, p).

Using this translation, Theorem 1.2 follows from a more general scheme which relies on the
technical Proposition 2.4 and Lemma 2.1, to be introduced in the next section. Further, for The-
orem 1.3 we will need Lemma 2.3, which together with Lemma 2.1 will be proved in Section 3.
Based on these results, we will give the proofs of Theorems 1.2 and 1.3 in
Section 2.

In general, the proof scheme based on Proposition 2.4 and Lemma 2.1 can be used to bound
the size of the largest independent sets in random subgraphs of any D-regular graph G (in fact
a sequence of graphs). Here, by random subgraph we mean the graph induced on a binomial
random subset of the vertex set. This application yields asymptotically sharp bounds if G has
an independent set of size (close to) −λmin|V (G)|/(D−λmin). Indeed, Theorem 1.2 shows such
an application to the Kneser graph, and there are many other graphs for which this applies.
We refer to [2], for example, for a list of such graphs which include the weak product of the
complete graph, line graphs of regular graphs which contain a perfect matching, Paley graphs,
some strongly regular graphs, and appropriate classes of random regular graphs (see Section 5.1
of [2]).

The proof of Proposition 2.4 will be given in Section 4. It is based on a description of all
independent sets in locally dense graphs. This idea can be traced back to the work of Kleitman
and Winston [18], and has been exploited in various contexts since their work. Though similar
proofs have been given elsewhere, none of them seems to fit into our context fully. This also
applies to the powerful extension of the ideas of Kleitman and Winston to hypergraphs due to
Balogh, Morris and Samotij in [6] (see also [23]), which only partially suits our needs.

2. Proofs of Theorems 1.2 and 1.3

As mentioned before, the proofs of the main theorems rely on Proposition 2.4. A central notion
employed in this proposition which applies to K(n,k) is as follows.

https://doi.org/10.1017/S0963548316000420 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000420
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Definition. Given λ ∈ (0,1], γ ∈ (0,1], and a graph G on N vertices, we say that G is (λ ,γ)-
supersaturated if, for any subset S ⊆V (G) with |S| � λN, we have

e(S) � γ
(
|S|
N

)2

e(G).

In addition, let λ = λ (n) > 0 and γ = γ(n) > 0. A sequence {Gn}n∈N
is called (λ (n),γ(n))-

supersaturated if Gn is (λ (n),γ(n))-supersaturated for each n ∈ N.

Hence, in a (λ ,γ)-supersaturated graph G each set S of size at least λN spans many edges.
Indeed, up to the multiplicative factor γ , S spans as many edges as expected from a random subset
of V (G) of the same size.

Using an extension of Hoffman’s spectral bound [16], one can relate supersaturation to the
eigenvalues of a graph. We refer to Section 3 for the proof.

Lemma 2.1. Let G be a D-regular graph on N vertices, and let λmin denote the smallest
eigenvalue of the adjacency matrix of G. Then every set S ⊂V (G) satisfies

e(S) �
(

λmin

D
N
|S| +

D−λmin

D

)(
|S|
N

)2

e(G).

As the eigenvalues of the Kneser graph are known due to Lovász [21], we immediately con-
clude the following supersaturation for the Kneser graph.

Lemma 2.2. Let 2 � k � n/2 and τ = τ(n) > 0. Then K(n,k) is ((1 + τ)k/n,τ/(1+ τ))-
supersaturated.

Proof. The Kneser graph K(n,k) has degree D =
(n−k

k

)
, and the smallest eigenvalue of K(n,k)

is given by (see [21])

λmin = −
(

n− k−1
k−1

)
= − k

n− k
D.

Let S ⊂
([n]

k

)
be of size at least (1+ τ) k

n N, with N =
(n

k

)
. Lemma 2.1 implies that

e(S) �
(
− n

(n− k)(1+ τ)
+

n
n− k

)(
|S|
N

)2

e(G),

and the claim follows.

Beyond the notion of supersaturation needed for the proof of Theorem 1.2, we will rely on the
following notion of robust stability in the proof of Theorem 1.3 (see also [22]).

Definition. Let λ ,ε,δ > 0. Let G be a graph on N vertices, and let B(G) ⊆ P(V (G)) be a
family of sets. We say that G is (λ ,B(G))-stable with respect to (ε,δ ) if, for every S ⊆ V (G)
with |S| � (1−δ )λN, we have either

• e(S) � δ (|S|/N)2 · e(G), or
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• |S\B| � ελN, for some B ∈ B(G).

In addition, let λ = λ (n) > 0, {Gn}n∈N
be a sequence of graphs, and let B = {Bn}n∈N

with
Bn ⊂P(V (Gn)) be a sequence of families of sets. We say that {Gn}n∈N

is (λ ,B)-stable if for any
ε > 0 there exists δ > 0 and n0 ∈ N such that, for all n � n0, the graph Gn is (λ (n),Bn)-stable
with respect to (ε,δ ).

It is instructive to think of B(G) as the family of largest independent sets in G, and of λN as
the size of each B ∈ B. The first part of the definition roughly says that if G is robustly stable,
then any vertex set S whose size is close to the size of a largest independent set in G must either
contain many edges, or be close to a largest independent set in structure.

The Kneser graph satisfies robust stability for k linear in n, as stated in the next lemma. It
is a direct consequence of the corresponding stability result proved by Friedgut [12], and the
removal lemma proved by Friedgut and Regev [13]. Again, we refer to Section 3 for the details
of the proof. In the following, let Fi ⊂

([n]
k

)
denote the principal hypergraph centred at i, that is,

the hypergraph consisting of all k-element subsets of [n] containing i ∈ [n].

Lemma 2.3. Let β > 0 and k = k(n), where βn � k � (1/2−β )n, and let Gn = K(n,k). Further,
let Bn(Gn) = {Fi | i ∈ [n]} ⊂ P(V (Gn)), and set B = {Bn}n∈N

. Then G = {Gn}n∈N
is (k/n,B)-

stable.

With supersaturation and robust stability defined, we are now ready to state our main technical
result. Given a graph H, we use α(H) to denote the size of the largest independent set in H. Also,
for a finite set V , we let Vp be a random subset of V obtained by selecting each element v ∈ V
independently with probability p.

Proposition 2.4. Let λ = λ (n) and γ = γ(n) be (0,1)-valued functions, and let G = {Gn}n∈N

be a family of graphs, where each Gn has N = N(n) vertices (with limn→∞ N(n) = ∞) and average
degree D = D(n). For any constant 0 < ε < 1 there exist constants C =C(ε) > 0 and δ = δ (ε) >

0 such that for any probability sequence p = p(n) ∈ (0,1], the following holds. For a random
spanning subgraph Hn = Gn[Vp], where V = V (Gn), we have the following.

(i) If N−1 � p � D−1, then α(Hn) = (1± ε)pN asymptotically almost surely.
(ii) If G is (λ ,γ)-supersaturated and 9D−1 � p � λ ε(λγD)−1, then

P

(
α(Hn) >

4N
εγD

ln(pD)
)

� exp

{
− N

γD
ln(pD)

}
.

(iii) If G is (λ ,γ)-supersaturated and p � C(λγD)−1 ln2(e/λ ), then

P(α(Hn) � (1+ ε)λ pN) � exp{−ε2 pλN/24}.

(iv) If G is (λ ,B)-stable and p � C(λD)−1 ln2(e/λ ), then with probability at least

1− exp(−δ 2λ pN/2),

the following holds: every independent set I in Hn of size at least (1 − δ )λ pN satisfies
|I \B| � ελ pN for some B ∈ Bn.

https://doi.org/10.1017/S0963548316000420 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000420
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In addition, the following result will be needed for the lower bound (2) in Theorem 1.2. It is
Shearer’s extension [25] of a result due to Ajtai, Komlós and Szemerédi [1].

Proposition 2.5 ([1, 25]). Let G = {Gn}n∈N
be a sequence of graphs on N = N(n) vertices

with average degree at most D = D(n) > 1. If each Gn is triangle-free, then Gn contains an
independent set of size N(D lnD−D+1)/(D−1)2 � N(−1+ lnD)/D.

Finally, we shall repeatedly use Chernoff’s bound for binomial random variables, which we
state here for reference (see [17, Theorem 2.1]).

Lemma 2.6. Given integers m,s > 0 and ζ ∈ [0,1], we have

P(Bin(m,ζ ) � mζ + s) � e−s2/(2ζ m+s/3), (2.1)

P(Bin(m,ζ ) � mζ − s) � e−s2/(2ζ m). (2.2)

We are now ready to present the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Given 0 < ε < 1, apply Proposition 2.4 with ε/4 in order to obtain a
corresponding constant C1. Let C = max{32/ε2,32C1/ε}. Further, let k = k(n), and Gn = K(n,k).
Recall that Gn is a D-regular graph on N vertices, with D = D(n) =

(n−k
k

)
and N = N(n) =

(n
k

)
.

Let Hn = Gn[Vp], where V = V (Gn), and Vp is the set obtained by including each vertex of V
independently with probability p. We apply Proposition 2.4 to {Gn}n∈N

, with functions N(n)
and D(n) as defined above. Bound (1) of Theorem 1.2 follows immediately from case (i) of
Proposition 2.4.

For bounds (3) and (4) of Theorem 1.2, note that by Lemma 2.2 applied with τ = ε/2, we
know that Gn is (λ ,γ)-supersaturated, with λ � (1 + ε/2)k/n and γ = ε/4. Thus we can apply
Proposition 2.4 in both cases. We start with bound (3) of Theorem 1.2. Assume that k = o(n),
since for k linear in n this range of p is trivial. By part (ii) of Proposition 2.4 applied with
ε1 = ε/2, we derive that for 9D−1 � p � (n/k)1−ε/2(εD)−1, which contains our interval for p in
case (3), we have

i(Hk(n, p)) <
8
ε2

1

N
D

ln(pD) � C
N
D

ln(pD)

with probability at least (1−exp(−4N ln(pD)/(εD))). As p� D−1, this probability tends to one
as n goes to infinity, which gives the upper bound in case (3).

Next we show bound (4) of Theorem 1.2. The lower bound follows by considering the sub-
hypergraph of Hk(n, p) consisting of all hyperedges containing, say, the element n. Using the
Chernoff bound (Lemma 2.6), we have with high probability that this (intersecting) subhyper-
graph has size at least (1− ε)p(k/n)N. For the upper bound, we apply bound (iii) of Proposi-
tion 2.4 with ε/4 and λ , γ as chosen above. Then, by the choice of C, we have

i(Hk(n, p)) � (1+ ε)
k
n

pN for p � C(n/k)D−1 ln2(n/k) � C1(λγD)−1ln2(e/λ ),

and the claim follows.
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Finally, we prove bound (2) of Theorem 1.2. Observe that this range of p is non-trivial only
if k � n. By Chernoff’s bound, almost surely Hn has at least (1− ε/32)pN vertices. Further,
E[e(Hn)] = p2ND/2, and it is not hard to see that Var[e(Hn)] � 2p3N2D + p2ND. By Cheby-
shev’s inequality, we derive

P
(
|e(Hn)−E(e(Hn))| � ε p2ND/32

)
� 322Var(e(Hn))

ε2 p4N2D2
,

which goes to zero by the choice of p.

Claim 2.7. For (n lnn)1/2 � k � n and p � (n/k)D−1, asymptotically almost surely the number
of triangles in Hn is at most ε pN/32.

Proof. The expected number of triangles in Hn is at most

p3

(
n
k

)(
n− k

k

)(
n−2k

k

)
.

Using Markov’s inequality and p � (n/k)D−1, the claim follows if we can show that

(n/k)2

(
n−2k

k

)
�

(
n− k

k

)
.

Indeed, (
n− k

k

)(
n−2k

k

)−1

=
(n− k) · · ·(n−2k +1)
(n−2k) · · ·(n−3k +1)

�
(

n− k
n−2k

)k

�
(

1+
k
n

)k

,

and using (1+x) � exp{x−x2} for 0 < x < 1, together with our assumption (n lnn)1/2 � k � n,
we obtain (

n− k
k

)(
n−2k

k

)−1

� exp{k2/n− k3/n2}� n2 � (n/k)2,

which completes the proof of the claim.

Hence, by removing at most ε pN/32 vertices, we obtain a triangle-free graph with at least
(1− ε/16)pN vertices, and no more than (1/2 + ε/32)p2ND edges. Consequently, this graph
has average degree at most (1+ ε/4)pD, and due to Proposition 2.5, it contains an independent
set of size

(1− ε/16)pN
(1+ ε/4)pD

(
ln((1+ ε/4)pD)−1

)
� (1− ε)

N
D

ln pD.

This completes the proof.

Proof of Theorem 1.3. Let β > 0 be fixed, and βn � k � (1/2−β )n. Again, let Gn denote the
Kneser graph K(n,k). Set λ = k/n, and for a given n, let Bn be the set of all principal hypergraphs
Fi, for i = 1, . . . ,n. By Lemma 2.3, the family G = {Gn} is (λ ,B)-stable, where B= {Bn}n∈N

. For
a given ε > 0, we apply Proposition 2.4 in order to obtain constants C′ and δ > 0. Since k = Θ(n),
it is possible to choose an appropriate constant C such that δ and C satisfy the conclusion of the
theorem, which completes the proof.
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3. Proofs of Lemmas 2.1 and 2.3

As mentioned before, the proof of Lemma 2.1 is a straightforward extension of Hoffman’s
bound [16].

Proof of Lemma 2.1. Given a D-regular G with N vertices and smallest eigenvalue λmin, we
need to show that for every non-empty S ⊂V (G),

eS = e(S) �
(

λmin

D
N
|S| +

D−λmin

D

)(
|S|
N

)2

e(G).

Let M denote the adjacency matrix of G. For x,y ∈ R
N , let 〈x,y〉 = ∑N

i=1 xiyi. Also, let vS be
the 0/1-characteristic vector of S. First note that 〈vS,MvS〉 = 2eS. Since M is a symmetric real
matrix, it is diagonalizable by an orthonormal basis. Let u1, . . . ,uN be normalized eigenvectors
of M with corresponding eigenvalues λ1 � λ2 � · · · � λN = λmin, respectively. Since G is a D-
regular graph, we have u1 = (1/

√
N, . . . ,1/

√
N) and λ1 = D. Let vS = ∑N

i=1 aiui be the expansion
of vS by eigenvectors. We have

2eS = 〈vS,MvS〉 =
N

∑
i=1

λia
2
i � λ1a2

1 +λmin

N

∑
i=2

a2
i .

Now observe that a1 = 〈vS,u1〉 = |S|/
√

N. In addition, |S| = 〈vS,vS〉 = ∑N
i=1 a2

i . Therefore,

2eS � D
|S|2
N

+λmin

(
|S|− |S|2

N

)

= |S|
(

λmin +
|S|
N

(D−λmin)
)

=
(
|S|
N

)2

2e(G)
(

λmin

D
N
|S| +

(
1− λmin

D

))
,

and the lemma follows.

We now proceed to show robust stability for the Kneser graph for k = Ω(n). The proof is a
direct consequence of stability due to Friedgut [12] and a removal lemma for the Kneser graph
due to Friedgut and Regev [13], which we state next.

Proposition 3.1 (Friedgut [12]). Given β > 0, let k = k(n) be a sequence of integers satisfying
βn � k � (1/2−β )n. For all ε > 0 there exists δ > 0 and n0 such that, for all n � n0, the following
holds. If F ⊆

([n]
k

)
is an intersecting family of size at least

(1−δ )
(

n−1
k−1

)
,

then there is i ∈ [n] such that

|F \Fi| � ε
(

n−1
k−1

)
.
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Proposition 3.2 (Friedgut and Regev [13]). Given β > 0, let k = k(n) be a sequence of
integers satisfying βn � k � (1/2− β )n. Moreover, let N =

(n
k

)
and D =

(n−k
k

)
. For all ε > 0

there exists δ > 0 and n0 such that, for all n � n0, the following holds. Every family F ⊆
([n]

k

)
which spans at most δ |F|2(D/N) non-intersecting pairs can be made intersecting by removing
at most ε

(n−1
k−1

)
elements from F .

Proof of Lemma 2.3. Given any ε > 0, first let ε2 = ε/2, and apply Proposition 3.1 to get a
corresponding δ2 = δ2(ε2) > 0. Now set ε1 = min(ε/2,δ2/2), and this time use Proposition 3.2
in order to obtain an appropriate δ1 = δ1(ε1) > 0. Finally, set δ = min(δ1,δ2/2) = δ (ε) > 0.

It follows that for any family F with

|F| � (1−δ )
(

n−1
k−1

)

and

e(F) � δ (|F|/N)2(ND/2) � δ1|F|2(D/N)

there exists an intersecting family F′ ⊆ F obtained from F by removing at most ε1

(n−1
k−1

)
of its

elements such that

|F′| � (1−δ − ε1)
(

n−1
k−1

)
� (1−δ2)

(
n−1
k−1

)
.

In addition, Proposition 3.1 implies that for some i ∈ [n], we have

|F′ \Fi| � ε2

(
n−1
k−1

)
.

Therefore,

|F \Fi| � |F \F′|+ |F′ \Fi| � ε1

(
n−1
k−1

)
+ ε2

(
n−1
k−1

)
� ε

(
n−1
k−1

)
,

which completes the proof.

4. Proof of Proposition 2.4

We begin with the proof of a simple structural result for independent sets in graphs (Lemma 4.1).
For a given graph G, let IG(t) denote the set of independent sets of G of size exactly t, and let
IG denote the set of all independent sets in G.

Lemma 4.1. Let G be a graph on N vertices, and let γ > 0 be an arbitrary real number. In
addition, let 0 < � < t be integers. Then, for every independent set I ⊂ V (G) of size at least t,
there is a sequence of vertices x1, . . . ,x� ∈ I and a sequence of subsets V (G) ⊇ X1 ⊇ ·· · ⊇ X�

depending only on x1, . . . ,x� such that:

• x1, . . . ,xi 	∈ Xi for all i � �,
• I \{x1, . . . ,xi} ⊂ Xi for all i � �.

Moreover, we have either

(i) |Xi| �
(

1−2γ
e(G)
N2

)
|Xi−1| for all 1 � i � �, or
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(ii) e(G[Xi]) < γ
|Xi|2
N2

e(G) for some 1 � i � �.

Proof. Fix an independent set I of size at least t. We need to define the required sequences
x1, . . . ,x� and X1, . . . ,X�. Assume that we have already chosen elements x1, . . . ,xi−1 ∈ I and sets
V (G) = X0 ⊃ X1 ⊃ ·· · ⊃ Xi−1 satisfying the conditions of our result. Observe that initially no
element has been selected, and for convenience we set X0 = V (G).

Consider an ordering (v1, . . . ,v|Xi−1|
) of the vertices in Xi−1 which satisfies

|N(vi)∩{vi+1, . . . ,v|Xi−1|
}| � |N(v j)∩{vi+1, . . . ,v|Xi−1|

}|

for all i < |Xi−1| and all j > i. Such an ordering clearly exists, since one can repeatedly choose
(and remove) the vertex with highest degree in the remaining graph. In this case we say that this
is a max-ordering of the elements in Xi−1.

Let j be the smallest index such that the vertex v j in the max-ordering of Xi−1 is contained
in I. Such an index must exist, since I \ {x1, . . . ,xi−1} ⊆ Xi−1 and i− 1 < � < t � |I|. We define
xi = v j, and set S = Xi−1 \{v1, . . . ,v j}.

If deg(v j,S) < 2γ|S|e(G)/N2 then we let Xi = S. Note that, due to the max-ordering and the
definition of v j, every vertex v ∈ Xi = {v j+1, . . . ,v|Xi−1|

} satisfies deg(v,Xi) � deg(v j,Xi).This

implies that the number of edges in Xi satisfies e(Xi) < γ|Xi|2e(G)/N2. Otherwise, that is, for the
case deg(v j,S) � 2γ|S|e(G)/N2, we let Xi = S\N(v j). Then,

|Xi| � |S|−deg(v j,S) =
(

1−2γ
e(G)
N2

)
|S| �

(
1−2γ

e(G)
N2

)
|Xi−1|.

Finally, observe that it follows from the definition of v j that we always have I \{x1, . . . ,xi} ⊂ Xi,
which completes the proof.

From this lemma we immediately deduce the following corollaries.

Corollary 4.2. Let G = (V,E) be a fixed (λ ,γ)-supersaturated graph on N vertices with aver-
age degree D, where λ ,γ > 0. Let t � 1, and let � be an integer such that 0 < � < t. Finally,
set

ν = ν(�) = max

{(
1− γ

D
N

)�

,λ
}

.

Then, for every independent set I ∈ IG(t), there exists a subset L ⊂ I of size � and a set P(L),
depending only on L, of size at most νN such that I \L ⊂ P(L) ⊂ V (G). Further, we have L∩
P(L) = /0. In particular, it follows that

|IG(t)| �
(

N
�

)(
νN

t − �

)
.

Proof. Given I ∈ IG(t), we apply Lemma 4.1 to obtain a sequence of vertices x1, . . . ,x� and
sets V = X0,X1, . . . ,X�, as stated. Now set L = {x1, . . . ,x�} and P(L) = X�, and observe that
I \L ⊂ P(L) and L∩P(L) = /0.
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If

|Xi| �
(

1−2γ
e(G)
N2

)
|Xi−1| for all i � �,

then

|P(L)| �
(

1−2γ
e(G)
N2

)�

N.

In other words,

|P(L)| �
(

1− γ
D
N

)�

N.

On the other hand, if

e(Xi) < γ
|Xi|2
N2

e(G) for some i � �,

then |P(L)| � λN, since by assumption G is (λ ,γ)-supersaturated. Altogether, it follows that
|P(L)| � νN, which completes the proof.

Corollary 4.3. Let λ ,ε,δ > 0 and let G = (V,E) be a graph on N vertices which is (λ ,B)-
stable with respect to (ε,δ ). Let

t > � � ln

(
1

(1−δ )λ

)
N2

2δe(G)
.

Then, for every independent set I ∈ IG(t), there exists a subset L ⊂ I of size � and a set P(L) ⊂
V (G) depending only on L such that I \L ⊂ P(L) and L∩P(L) = /0. Furthermore, either

• |P(L)| � (1−δ )λN, or
• |P(L)\B| � ελN for some B ∈ B.

Proof. We apply Lemma 4.1 to G using γ = δ in order to obtain a sequence of vertices x1, . . . ,x�

and subsets X1, . . . ,X� with the desired properties. Let L = {x1, . . . ,x�}. If

|Xi| �
(

1−2δ
e(G)
N2

)
|Xi−1| for all i � �,

then set P(L) = X�. Using our assumption on �, we get

|P(L)| �
(

1−2δ
e(G)
N2

)�

N � (1−δ )λN.

Otherwise, pick the smallest index j � � such that

e(G[Xj]) < δ
|Xj|2

N2
e(G),

and let P(L) = Xj. Again, if |P(L)|� (1−δ )λN we are done. On the other hand, if this condition
does not hold, we deduce from the (λ ,B)-stability of G that there exists some B ∈ B for which
|P(L)\B| � ελN, which completes the proof.

https://doi.org/10.1017/S0963548316000420 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000420
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Now that we have all the necessary machinery, we proceed with the proof of Proposition 2.4.

Proof of Proposition 2.4. Let λ = λ (n), γ = γ(n), and let G = {Gn}n∈N
be a sequence of

graphs. For a given 0 < ε < 1, let C1 = 800/ε3. For the proof of case (iv) in Proposition 2.4,
suppose that G is (λ ,B)-stable for some B. Then for ε ′ = ε/2, there is a constant δ ′ > 0 and
n1 ∈ N such that, for all n � n1, the graph Gn is (λ ,Bn)-stable with respect to (ε ′,δ ′). We choose
δ = min{δ ′/4,ε ′/16,1/16} and C2 = 100/δ 4. Finally, set C = max{C1,C2}, and let n0 � n1 be
sufficiently large.

We proceed with the proof of case (i) of Proposition 2.4. Assume that N−1 � p � D−1. Using
the Chernoff bound (Lemma 2.6), we have almost surely |Vp| = (1± ε/2)pN, which proves the
upper bound. Further, we have E(e(Hn)) = 1

2 NDp2, and by Markov’s inequality a.a.s. e(Hn) �
ε pN/2 holds. By deleting at most this number of vertices from Hn, we obtain an independent set
of size at least (1− ε)pN, which proves the lower bound.

For part (ii), assume that 9D−1 � p � λ ε(λγD)−1. Further, let

� = (1+ ε)
N
γD

ln(pD) > 0 and t =
4N

εγD
ln(pD).

Let X be the random variable counting the number of independent sets of size exactly t in Hn,
that is, X = |IHn

(t)|. By the choice of our parameters, Corollary 4.2 applies, and we obtain

E[X ] �
(

N
�

)(
ν(�)N
t − �

)
pt ,

where

ν(�) = max

{(
1− γ

D
N

)�

,λ
}

.

Using
(

n
k

)
�

(
en
k

)k

and the choice of � and t, we get
(

N
�

)
�

(
eγD

ln(pD)

)�

and

(
ν(�)N
t − �

)
�

(
eν(�)γD
ln(pD)

)t−�

.

Combining the two inequalities, and noting that our choice of C guarantees that � � εt/2, we get

E[X ] �
(

eγ pDν1−ε/2

ln(pD)

)t

.

If ν(�) = λ , we have γ pDν1−ε/2 � λ ε/2 � 1, since p � λ ε(λγD)−1. On the other hand, if

ν(�) � e−�γ(D/N) � (pD)−1−ε ,

we have

γ pDν1−ε/2 � γ(pD)−ε/2+ε2/2 � γ � 1

since ε < 1. Hence, E(X) � (e/ ln(pD))t , and the claim follows from Markov’s inequality.
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For part (iii), assume that p � C(λγD)−1 ln2(e/λ ). Let

t = (1+ ε)pλN and � =
N
γD

ln

(
e
λ

)
.

We need to upper-bound the following probability:

q = P[∃I ⊂Vp, |I| = t, I is an independent set in Gn].

It follows from Corollary 4.3 that for any I ∈ IGn
(t), there exist L ⊂ I of size � and P(L) such

that I \L ⊂ P(L) ⊂V . Therefore,

q � ∑
L

P[L ⊂Vp and |Vp ∩P(L)| � t − �],

where the sum is taken over all subsets L ∈
(V

�

)
that correspond to some independent as given by

Corollary 4.3. Using the fact that L and P(L) are disjoint, we obtain

q � ∑
L

P[L ⊂Vp] ·P[|Vp ∩P(L)| � t − �]. (4.1)

In addition, by our choice of �, it follows that ν(�) = λ . Therefore, for any such L, we have
|P(L)| � ν(�)N � λN. Further, the choice of � and p implies that � � (ε/2)pλN. Hence with
X = |Vp ∩P(L)|, we have due to the Chernoff bound that

P(X � t − �) � P

(
X � p|P(L)|+ ε pλN

2

)
� exp

(
−ε2 pλN

12

)
.

From (4.1) and
(

N
�

)
�

(
eN
�

)�

,

it follows that

q �
(

eN p
�

)�

exp

(
−ε2 pλN

12

)
= exp

(
� · ln

(
eN p
�

)
− ε2 pλN

12

)
.

Recall that we want to prove that q � exp(−ε2 pλN/24). With the choice � = (N/γD) ln(e/λ ) it
is now sufficient to show that

1
γD

ln(e/λ ) ln

(
epγD

ln(e/λ )

)
� ε2 pλ

24
,

or equivalently

24
ε2γλD

ln(e/λ ) � p
ln(epγD/(ln(e/λ )))

.

As the left-hand side is independent of p and the right-hand side is increasing in p, it is suffi-
cient to show the inequality for the endpoint p = C(λγD)−1 ln2(e/λ ). In this case the inequality
follows from

24/ε2 � C ln(e/λ )/ ln

(
eC
λ

ln(e/λ )
)

.
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Note that ln((eC/λ ) ln(e/λ )) > ln(e/λ ) + lnC, since eC/λ > ln(e/λ ). Therefore the bound
follows from 48/ε2 � C ln(e/λ )/(ln(e/λ )+ lnC), or equivalently

48
ε2

� C
1+ ln(C)/ ln(e/λ )

.

Since the right-hand side is decreasing in λ , it is sufficient to verify for λ = 1, which is immediate
from the choice of C1 and C.

For part (iv), let p � C(λD)−1 ln2(e/λ ). Further, let

T = {I ∈ IGn
: |I| > (1−δ )λ pN and |I \B| > ελ pN for all B ∈ Bn}.

Our task is to upper-bound the value of

qT = P(there is an independent set I ⊂Vp with I ∈ T ).

Recall our choice of ε ′, δ ′, and n0, and that Gn is (λ ,Bn)-stable with respect to (ε ′,δ ′) for
every n � n0. We apply Corollary 4.3 with ε ′, δ ′, t = (1−4δ )λ pN, and

� =
N

δD
ln

e
λ

� δλ pN.

Note that this is a valid choice of �, since

N
δD

ln
e
λ

� ln

(
1

(1−δ )λ

)
N2

2δe(G)
.

This implies that for every I ∈ T there is some L = L(I) ⊂ I of size � and some P(L) ⊂ V (Gn),
depending only on L and disjoint from L, such that I \L ⊂ P(L). Hence, if there is an I ⊂Vp with
I ∈ T , then there is an L of size � with

(A) L ⊂Vp, and
(B) |P(L)∩Vp| � (1−δ )pλN − � � (1−2δ )pλN and |(P(L)\B)∩Vp| > ελ pN−� � 3

4 ελ pN
for all B ∈ Bn, since δ � ε ′/16 = ε/32.

Let qP(L) be the probability that event (B) holds for the random set Vp. As L and P(L) are
disjoint, we have

qT � ∑
L

P[L ⊂Vp] ·qP(L), (4.2)

where the sum ranges over all L ∈
(V

�

)
corresponding to some I as given by Corollary 4.3.

From Corollary 4.3 and the chosen parameters, either |P(L)| � (1− δ ′)λN or |P(L) \B| �
ε ′λN for some B ∈ Bn. Consider each of the cases separately. If

|P(L)| � (1−δ ′)λN � (1−4δ )λN

then Chernoff’s bound (Lemma 2.6) yields

P(|P(L)∩Vp| � (1−2δ )pλN) � exp{−δ 2λ pN}.

Similarly, if |P(L) \B| � ε ′λN = ελN/2 for some B ∈ Bn, then, together with δ � ε/32, we
have

P

(
|(P(L)\B)∩Vp| >

3
4

ελ pN

)
� exp{−ελ pN/48} � exp{−δ 2λ pN}.
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Consequently, for every set L as above we have qP(L) � exp{−δ 2λ pN}.
Hence (4.2) combined with

(
N
�

)
�

(
eN
�

)�

and the choice of � = (N/(δD)) ln(e/λ ) yields

qT �
(

epN
�

)�

exp{−δ 2λ pN} � exp

{
� ln

(
eδ pD

ln(e/λ )

)
−δ 2λ pN

}
.

To complete the proof it suffices therefore to show that

� ln

(
eδ pD

ln(e/λ )

)
< δ 2λ pN/2,

or equivalently

2 ln(e/λ )
λδ 3D

<
p

ln(eδ pD/(ln(e/λ )))
.

As the left-hand side does not depend on p, and the right-hand side is monotone increasing in p,
it is sufficient to verify this inequality for the endpoint p = C(λD)−1 ln2(e/λ ). In this case, and
noting that eδC/λ > ln(e/λ ) due to our choice of C2 and C, the claim follows from

2
δ 3

<
C ln(e/λ )

ln((eδC/λ ) ln(e/λ ))
<

C ln(e/λ )
2ln((eδC/λ ))

=
C

2+2ln(δC)/ ln(e/λ )
.

As the right-hand side is decreasing in λ , it is sufficient to verify for λ = 1 which, however, is
immediate from the choice of C and C2. This completes the proof.

5. Concluding remarks

While this work has been under review, there has been a vivid interest in questions related to
random versions of the Erdős–Ko–Rado theorem (see [4, 5, 7, 9, 10, 14, 15]). In particular, as
well as the results of Balogh, Bohman and Mubayi [3], the question concerning the structure of
the largest intersecting family in the random setting has been addressed in [5, 14, 15] for various
ranges of k and p. Moreover, an extension of the robust stability result for intersecting families,
Lemma 2.3, has been considered in [9], implying that Theorem 1.3 can be extended to a larger
range of k. We refer to these papers for further information.
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