
The SACSO methodology for troubleshooting
complex systems

FINN V. JENSEN,1* UFFE KJÆRULFF,1 BRIAN KRISTIANSEN,2 HELGE LANGSETH,1

CLAUS SKAANNING,2 JIŘÍ VOMLEL,1 and MARTA VOMLELOVÁ 1

1Department of Computer Science, Aalborg University, Aalborg, Denmark
2Hewlett-Packard Laboratory for Normative Systems, Aalborg, Denmark

(Received October 27, 2000;Accepted November 30, 2000!

Abstract

The paper describes the task of performing efficient decision-theoretic troubleshooting of electromechanical devices.
In general, this task is NP-complete, but under fairly strict assumptions, a greedy approach will yield an optimal
sequence of actions, as discussed in the paper. This set of assumptions is weaker than the set proposed by Heckerman
et al.~1995!. However, the printing system domain, which motivated the research and which is described in detail in the
paper, does not meet the requirements for the greedy approach, and a heuristic method is used. The method takes value
of identification of the fault into account and it also performs a partial two-step look-ahead analysis. We compare the
results of the heuristic method with optimal sequences of actions, and find only minor differences between the two.

Keywords: Bayesian Network; Decision Theory, Troubleshooting

1. INTRODUCTION

SACSO~Systems for Automated Customer Support Oper-
ations! is a collaboration between the Research Unit of De-
cision Support Systems at Aalborg University and Customer
Support R&D, Hewlett-Packard Company. A result of
SACSO is a decision-theoretic system for troubleshooting
printing systems. A printing system consists of several com-
ponents: the application from which the printing command
is sent, the printer driver, the network connection, the server
controlling the printer, the printer itself, and so forth. It is a
complex task to troubleshoot such a system, and the printer
industry spends millions of dollars a year on customer sup-
port. Therefore, automating the troubleshooting process is
highly beneficial for customer as well as supplier.

Traditionally, computer-aided diagnoses or troubleshoot-
ing consists in using evidence to narrow down the set of
possible causes for observed symptoms and to order them
with respect to likelihood~de Kleer & Williams, 1987!. In
decision-theoretic troubleshooting, costs and likelihoods are
balanced in order to find the next action.

Decision-theoretic troubleshooting was studied by Kal-
agnanam & Henrion~1990!, and it was extended to the
context of Bayesian networks by Heckerman et al.~1995!.
They provide a framework for suggesting sequences of ques-
tions, repair actions, and configuration changes to obtain
further information. By calculating a local efficiency of the
possible repair actions and continuously choosing the one
of highest efficiency, a repair sequence is established. As-
suming only a single fault, perfect repair actions, indepen-
dent actions, and independent costs, the method finds the
optimal sequence of actions. With respect to questions, Heck-
erman et al.~1995! suggest a myopic one-step look-ahead.

Troubleshooting is addressed in a similar way by Srini-
vas~1995!. In particular, he addresses the problem of mul-
tiple faults, and under the assumption of independent faults,
he provides an effective way of determining an optimal
repair sequence.

When troubleshooting printing systems, it is more natu-
ral to assume a single fault than to assume independent
faults. We exploit the single-fault assumption heavily in
knowledge acquisition as well as in inference: naïve Bayes
models suffice, and probability updating is very fast, allow-
ing for methods requiring a large set of updates.

However, the repair actions for printing systems are im-
perfect and dependent, and a myopic analysis of questions

Reprint requests to: Professor Finn V. Jensen, Department of Computer
Science, Aalborg University, Fredrik Bajers Vej 7, DK-9220 Aalborg, Den-
mark. E-mail: fvj@cs.auc.dk

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2001!, 15, 321–333. Printed in the USA.
Copyright © 2001 Cambridge University Press 0890-0604001 $12.50

321

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

is insufficient for uncovering the value of asking a question
later in the session. Therefore, we have modified the ap-
proach of Heckerman et al.~1995!, taking advantage of the
opportunity to perform many probability updates. The
SACSO algorithms for selection of troubleshooting steps
have been further described by Skaanning et al.~2000!.

To allow domain experts to efficiently implement their
models in practice, the SACSO project has also resulted in
a knowledge acquisition tool described by Skaanning~2000!.
The tool, called BATS Author, allows a domain expert with
no knowledge of Bayesian networks to construct trouble-
shooting models, and thereby eliminates the traditional
knowledge acquisition bottleneck for Bayesian networks.

2. THE DECISION-THEORETIC
TROUBLESHOOTING TASK

A fault causing a~man-made! device to malfunction is iden-
tified and eliminated through a sequence of troubleshooting
steps. Some steps arerepair stepswhich may or may not fix
the problem, some steps areobservation stepswhich can-
not fix the problem, but may give indications of the causes
of the problem, and some steps have repair aspects as well
as observation aspects. All steps have a cost in terms of
money, time, and so on, or combinations thereof. The task
is to find the cheapest strategy for sequencing the trouble-
shooting steps. In this paper, we deal with pure repair steps
and pure observation steps only, and we shall call them
actionsandquestions, respectively.

A troubleshooting problem can be represented and solved
through a decision tree. However, as decision trees have a
risk of becoming intractably large, we look for ways of
pruning the decision tree. Also, a troubleshooting strategy
may by itself be intractably large, and we look for ways of
stepwise expanding the strategy through local calculations
based on the actual past.

2.1. Action sequences

In this section we consider a set of steps consisting of ac-
tions only. An action,Ai , has two possible outcomes, namely
“Ai 5 yes” ~the problem was fixed! and “Ai 5 no” ~the
action failed to fix the problem!. Each action,Ai , has a cost
CAi ~e! which may depend on evidencee. We shall some-
times useCi ~e! ~or Ci ! as shorthand forCAi ~e!. As there are
no questions, atroubleshooting strategyis a sequence of
actionss 5 ^A1, . . . ,An& prescribing the process of repeat-
edly performing the next action until an action fixes the
problem or the last action has been performed.

When solving a troubleshooting problem, we have some
initial evidencee and, in the course of executing actions in
the troubleshooting sequences 5 ^A1, . . . ,An&, we collect
further evidence, namely that the previous actions have
failed. We lete i denote the evidence that the firsti actions
have failed, and we shall refer to a set of failed actions as

simple evidence. In the following we shall not mention the
initial evidence explicitly.

Definition 1. The expected cost of repair, ECR, of a
troubleshooting sequences5 ^A1, . . . ,An& with costsCi is
the mean of the costs until an action succeeds or all actions
have been performed:

ECR~s! [(
i

ECRi ~s!,

where

ECRi ~s! 5 Ci ~e
i21!P~e i21!. n

Note that the term “expected cost of repair” may be mis-
leading, as we allow a situation where all actions have been
performed without having fixed the problem. If this hap-
pens, it will happen with the same probability no matter the
sequence, and therefore we need not estimate a cost for it.
We may also extend the set of actions with acall service
action,CS. We shall return to this in Section 2.3.

Now, consider two neighboring actionsAi andAi11 in s,
and lets' be obtained froms by swapping the two actions.
The contribution to ECR~s! from the two actions is

Ci ~e
i21!P~e i21! 1 Ci11~e

i !P~Ai 5 no,e i21!, ~1!

and the contribution to ECR~s' ! from the two actions is

Ci11~e
i21!P~e i21! 1 Ci ~e

i21, Ai11 5 no!P~Ai11 5 no,e i21!.

~2!

As the difference between~2! and ~1! equals ECR~s' ! 2
ECR~s!, we get

ECR~s' ! 2 ECR~s! 5 P~e i21!{~Ci11~e
i21! 2 Ci ~e

i21!

1 Ci ~e
i21, Ai11 5 no!P~Ai11 5 no6e i21!

2 Ci11~e
i !P~Ai 5 no6e i21!!.

If s is an optimal troubleshooting sequence, we must have
ECR~s! # ECR~s' !, and therefore

Ci ~e
i21! 1 Ci11~e

i !P~Ai 5 no6e i21!

Ci11~e
i21! 1 Ci~e

i21, Ai11 5 no!P~Ai11 5 no6e i21!. ~3!

If it holds that the costs are independent of the actions taken,
~3! can be rewritten as

P~Ai 5 yes6e i21!

Ci

$
P~Ai11 5 yes6e i21!

Ci11

. ~4!

322 F.V. Jensen et al.

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

Definition 2. Let A be a repair action and lete be the
evidence compiled so far. Theefficiency of Ais defined as

ef~A6e! 5
P~A 5 yes6e!

CA~e!
. n

Proposition 1. Let s be an optimal sequence of actions
for which the costs are independent of the actions taken.
Then it must hold that ef~Ai 6e

i21! $ ef~Ai116e
i21!. n

In general,~3! can be used for pruning the decision tree,
but Proposition 1 makes it even simpler. Assume that action
Bi has been chosen at a branch where the options were
B1, . . . ,Bm with current efficiencies ef~B16e!, . . . ,ef~Bm6e!.
Now, if Bi fails, only Bj s for which ef~Bi 6e! $ ef~Bj 6e!
may be chosen, but after failure ofBj any action may be
chosen.

2.2. The greedy approach

It would be much easier to solve the troubleshooting prob-
lem if we could base the sequencing on a greedy approach:
choose always an action with highest efficiency. However,
Proposition 1 does not guarantee that this approach will
yield an optimal troubleshooting sequence.

In Figure 1 there are four possible causes,C1, C2, C3,
and C4, for a device malfunctioning, and we assume that
exactly one of the causes is present, and that the prior prob-
abilities are 0.2, 0.25, 0.40, and 0.15, respectively. Assume
that all actions have cost 1. Then actionA2 has the highest
efficiency, and ifA2 fails, thenA1 has higher efficiency
thanA3. The sequencêA2, A1, A3& has ECR5 1.50. How-
ever, the sequencêA3, A1& has ECR5 1.45.

To analyze why the decreasing efficiency approach does
not guarantee an optimal sequence, let^A1, . . . ,An& be a
sequence ordered by decreasing efficiency. If the sequence
is not optimal, there must be two actionsAi andAj , i , j,
which, in the optimal sequence, are taken in different order.
At the time whereAi is chosen, we have

P~Ai 5 yes6e!

Ci

.
P~Aj 5 yes6e!

Cj

.

In the optimal sequence, whereAj is chosen beforeAi , we
have

P~Ai 5 yes6e ' !

Ci

,
P~Aj 5 yes6e ' !

Cj

,

wheree ande ' are simple evidence~not involving Ai and
Aj !. We can infer that an action sequence^A1, . . . ,An& is
optimal if, for all i , j, it holds that

ef~Aj 6e! # ef~Ai 6e!,

wheree is simple evidence~not involvingAi andAj !.

Proposition 2. Consider the following assumptions.

• The device has n different faults F1, . . . ,Fn and n dif-
ferent repair actions A1, . . . ,An.

• Exactly one of the faults is present.

• Each action has a specific probability of repair, pi 5
P~Ai 5 yes6Fi !, and P~Ai 5 yes6Fj ! 5 0 for i Þ j.

• The cost Ci of a repair action does not depend on the
performance of previous actions.

If these assumptions hold, then ef~Aj ! # ef~Ai! implies that
ef~Aj 6e! # ef ~Ai 6e!, wheree is simple evidence (not in-
cluding Ai and Aj). n

Note that we do not assume the repair actions to be per-
fect. They may fail to fix a fault which they are supposed to
fix.

Proof: Let Am be an action which has failed. We shall cal-
culateP~Ai 5 yes6Am 5 no! ~for notational convenience,
we omit mentioning of the current evidence!. Due to the
single-fault assumption, we haveP~Am5 no6Ai 5 yes! 51.
Using Bayes’ rule we get

P~Ai 5 yes6Am 5 no! 5
P~Am 5 no6Ai 5 yes!P~Ai 5 yes!

P~Am 5 no!

5
P~Ai 5 yes!

P~Am 5 no!.

That is,P~Am 5 no! is a normalizing constant for the re-
maining actions, and the relative order of efficiencies is
preserved. n

The following theorem concludes the considerations. The
theorem is a slight extension of similar results by Kalag-
nanam & Henrion~1990! and Heckerman et al.~1995!.

Theorem 1. Let s5 ^A1, . . . ,An& be an action sequence
for a troubleshooting problem fulfilling the conditions in
Proposition 2. Assume that s is ordered according to de-

Fig. 1. An example of dependent actions. Each ofC1, . . . ,C4 is a possible
cause of a particular fault of a device, and each of the actions,A1, . . . ,A3,
will eliminate the fault associated with their parent causes.

SACSO troubleshooting 323

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

creasing initial efficiencies. Then s is an optimal action
sequence and

ECR~s! 5 (
i51

n

CiS12 (
j51

i21

pjD. ~5!

n

Proof: From the proof of Proposition 2, we have that the
relative order of the efficiencies of the actions are pre-
served. For any action sequences' which is not ordered
according to ef~Ai !, there will be aj so that ef~Aj ! , ef~Aj11!
and therefore ef~Aj 6e

j21! , ef~Aj116e
j21!. Hences' can

be improved by swappingAj andAj11. From the definition
we have

ECR~s! 5 (
i51

n

Ci P~e i21!.

Due to the single-fault assumption, we haveP~e i21! 512

(j51
i21 pj . n

2.3. Call service

The actioncall service~CS! will always solve the problem.
The cost ofCS is not the unknown price of fixing the de-
vice, but a fixed overhead of having outsiders fixing a prob-
lem you could have fixed yourself. The efficiency ofCSis
10CCS no matter the set of actions performed so far.

Let s 5 ^A1, . . . ,An& be an optimal action sequence re-
sulting from a situation meeting the assumptions in Propo-
sition 2. It may be so that the sequence should be broken
beforeAn and service is called. According to Proposition 1,
CSshall only be performed after an action of higher effi-
ciency. In SACSO we suggest theCSaction as soon as it
has maximal efficiency. However, this is not guaranteed to
be optimal. The question of finding an optimal action se-
quence includingCSis of higher combinatorial complexity.
Instead of looking for a sequencing of actions each of which
must eventually be performed if the other actions fail, we
shall now look for a subset of actions and a sequencing of
them. We shall not go further into this problem.

2.4. Questions

The outcome of a question may shed light on any of the
possible faults, or it may be focused on a particular fault.

The troubleshooting task is to interleave actions and ques-
tions such that the expected cost is minimal. To do so, we
need to analyze the value of answers to questions.

Imagine that we are in the middle of a troubleshooting
sequence; we have so far gained the evidencee, and now
we have the option to ask the questionQ with cost CQ.
For simplicity, we assume thatQ has only two outcomes,
“yes” and “no.” Assume that no matter the outcome ofQ,
we are able to calculate the minimal expected cost of re-
pair for the remaining sequence. So let ECR be the mini-

mal expected cost ifQ is not performed, and let ECRQ5yes

and ECRQ5no denote the same for the outcomes “yes” and
“no,” respectively.

Then the value of observingQ is

V~Q! 5 ECR2 ~P~Q 5 yes6e!ECRQ5yes

1 P~Q 5 no6e!ECRQ5no!, ~6!

andQ is performed if and only ifV~Q! . CQ.
To determine whether or not to ask a question prior to an

action, we have to analyze all possible succeeding se-
quences, and if there are several actions and questions, it is
in general intractable: in the future, we will also have ques-
tion options to interleave.

A workable approximation is themyopic strategy: as-
sume at any stage of troubleshooting that we allow ques-
tions to be asked, but in the future we allow only repair
actions. In that case, the task reduces to calculating ex-
pected costs given the various outcomes of the possible
questions, and the approaches from the previous section
can be used.

2.5. Strategy trees

When questions are part of the troubleshooting, then a trou-
bleshooting strategy is a tree rather than a sequence. To
emphasize this fact, we shall sometimes refer to such a
strategy as astrategy tree. Figure 2 provides an example of
a strategy tree.

There are two types of nodes in a strategy tree—chance
nodesand terminal nodes. Chance nodes are displayed as
circles, and they are labeled with troubleshooting steps~ac-
tions or questions!. Edges are labeled with outcomes of the
steps, and we let Lab~e! denote the function yielding labels
to edges, e. Terminals are diamond shaped, and they indi-
cate that the device has been repaired. The set of terminal
nodes of a strategy trees is denotedL~s!.

Fig. 2. A strategy tree.

324 F.V. Jensen et al.

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

Let path~n! be the unique sequence of edges constitut-
ing a path from the root node to noden in a strategy tree.
Then en 5 øe[path~n! Lab~e! defines the evidence corre-
sponding to the already performed actions and questions.
Furthermore, letP~en! denote the probability of evidence
en, that is, the probability of getting to noden from the
root node. Finally, lett~n! denote the total cost of actions
and questions in the path from the root node to noden. For
example, in Figure 2, the evidence corresponding to node
d labeled byA2 is Q1 5 no, A1 5 no, the probability of
getting there isP~Q1 5 no, A1 5 no!, and the total cost of
getting there isCQ1 1 CA1.

Next, we extend the definition of expected cost of repair
to strategy trees.

Definition 3. The expected cost of repair of trouble-
shooting strategys is defined as

ECR~s! 5 (
,[L~s!

P~e, !t~,!. n

The goal of the troubleshooting task is to find a trouble-
shooting strategy that minimizes the expected cost of repair
among all possible strategies.

2.6. Complexity of troubleshooting

The search for an optimal decision-theoretic troubleshoot-
ing strategy has appeared to be an NP-complete problem.

Theorem 2. Given a troubleshooting problem with de-
pendent actions, the single-fault assumption, and a con-
stant K[R1, determining if there exists a troubleshooting
sequence s withECR~s! # K is an NP-complete problem.

n

Proof: The idea of the proof is to reduce the problem to the
Exact cover by 3-sets~see Sochorová & Vomlel, 2000, for
details!. n

Similar theorems may be proven for questions~even with
independent actions! and dependent costs~even with inde-
pendent actions and without questions!.

Since we deal with an NP-complete problem, we must
resort to efficient heuristics to solve the problem within
reasonable time. These heuristic methods are described in
Section 4. First, however, we describe the models used for
troubleshooting in the printing domain that motivated the
development of the SACSO troubleshooting approach.

3. PRINTING SYSTEM MODELS

The SACSO printing diagnosis system consists of many
separate Bayesian networks, each modeling a printing er-
ror. If error conditions overlap and cannot easily be sepa-
rated, they have to be represented in the same model. In
printer systems, there are the following types of error
conditions:

• Dataflow models—these models cover problems where
the customer does not get any output from the printer,
or gets corrupted output from the printer when attempt-
ing to print. These errors can be caused by any of the
components in the flow from application to printer that
the print job passes through. Skaanning et al.~1998!
have described these in detail.

• Error codes—these models handle all types of error
codes that can appear on the control panel of the printer.
Skaanning et al.~1998! have described this category in
detail.

• Unexpected output—these models handle all catego-
ries of unexpected output that can occur on the printer,
for example, job not duplexed or spots, stripes, or band-
ing on the paper.

• Miscellaneous—these models handle miscellaneous er-
roneous behavior of the printer not covered by the above
three, such as noise from the printer engine, slow print-
ing, problems with bidirectional communication, and
so forth.

These error categories are related in the way that all error
types can result in a general printer problem, and “Data
flow problems” can cause the three other error types.

Each of the SACSO models includes acause variable
that defines the probability distribution over the causes of
the error condition. The causes are modeled as the states of
this variable. All actions and questions that can be posed in
the troubleshooting process are represented as children of
the cause variable. An example is shown in Figure 3. The
benefit of thisnaïve Bayesstructure is that all actions and
questions are independent given the causes. This can be
exploited in the algorithms for finding the best next step, as
shown in Section 4.

3.1. The unexpected-output models

The unexpected-output models represent all the situations
where the customer does not get the expected output. This
is usually due to settings not set correctly, or malfunction-
ing printer parts. Figure 4 shows an example Bayesian net-
work model for an unexpected output category,Spots. To
enforce the single-fault assumption, the causes of this net-
work are internally collapsed to a single node such as in
Figure 3.

The customer may experience spots on the paper for some
of the following reasons:

• The toner cartridge is malfunctioning either because it
is defective or improperly seated.

• The media used has the wrong specifications.

• The environmental conditions of the printer may be
out of specification, for example, too humid, warm,
and so on.

• The transfer roller is malfunctioning either because it
is defective, not seated correctly, or dirty.

• The power cord of the printer is not earth grounded.

SACSO troubleshooting 325

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

Fig. 3. An example of the very simple Bayesian network structure used for troubleshooters.

Fig. 4. An example of a Bayesian network model of theSpotscategory of unexpected output.

326 F.V. Jensen et al.

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

3.2. The troubleshooting layer

The Bayesian network model pictured in Figure 4 is not
sufficient for troubleshooting, as it only contains informa-
tion about the possible causes for the various problems with
the printer. It contains no information on actions that can be
used to resolve the problem at hand or gather information
that can be used to speed up the troubleshooting. In this
section, we describe how variables representing informa-
tion like this can be added to the structures presented in the
previous sections.

We basically represent two types of troubleshooting
steps; namely questions~including tests!, which provide

general information that can change the optimal sequence
of troubleshooting steps, and actions, which can solve the
problem.

In Figure 5, some troubleshooting actions and questions
have been added to the model for the “HP MIO1 not ready”
error code. The experts listed the actions and questions that
they would usually perform when troubleshooting this er-
ror code over the telephone.

For each action it was determined which causes it could
fix:

• Removing the network0IO cable can solve the prob-
lem if the network is the cause.

Fig. 5. An error code model with added troubleshooting actions~rectangular shaped! and questions~diamond shaped!.

SACSO troubleshooting 327

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

• Troubleshooting the entire dataflow can also solve the
problem if the network is the cause. This action corre-
sponds to the entire dataflow and all its troubleshoot-
ing steps.

• Waiting 5 minutes for initialization can solve the prob-
lem if the customer did not wait long enough.

• Cycling power can solve temporary problems and some
intermittent. Even though intermittent problems are not
really solved, this is the way it will look to the customer.

For each cause, fixable by an action, the printer experts
have given a probability that the action would fix the cause,
along with the cost of performing the action. The cost is
based on four measures: thetime it takes to perform the
action, therisk of breaking something else while perform-
ing the action, themoneyinvolved in performing the ac-
tion, and a potentialinsult by suggesting the action~e.g.,
check whether the power is on!. These four factors are
weighed and combined into a single figure.

3.3. An example run

Below, we have listed the steps generated by a troubleshoot-
ing tool called BATS Troubleshooter~see Section 4.3! in
the presence of the error code “HP MIO1 not ready.” As-
suming that a defective MIO card is the cause of the prob-
lem, the troubleshooter will guide the customer through the
following actions and questions.

1. Question: Did you wait 5 minutes for initialization?
This question is given first to rule out the possibility
that there is no problem at all. If the customer answers
“no,” he will be told to wait 5 minutes for proper
initialization. As this does not solve the problem, the
system continues.

2. Test: Move MIO card to another slot in the printer and
try printing. This action tests whether there is a printer
hardware problem with a broken MIO card slot. It
does not solve the problem, and the system continues.

3. Repair action: Remove network0IO cable. This ac-
tion can rule out a relatively likely cause~17%! with a
very low cost~1 minute!. It does not solve the prob-
lem, and the system continues.

4. Repair action: Ensure that the MIO card is supported
by the printer. This will rule out situations where the
customer is using a third-party card or a card which is
out of specifications. As the card is within specifica-
tions, the system will continue.

5. Test:

a! Try another supported MIO card. This test can help
rule out one of the most likely causes, defective
card~47%!. It does solve the problem, but the sys-
tem cannot say for sure whether it was because the
original card was seated improperly is defective,
has corrupt NVRAM, or has corrupt or out-of-date
firmware.

b! Reinsert the old card and test whether printing
works now. This checks whether the new card
works because the old card was not seated prop-
erly. Since the old card is defective, it will obvi-
ously still not work.

The troubleshooter finally concludes that the MIO card
is defective after ruling out the possibility of the card being
seated improperly.

4. THE SACSO TROUBLESHOOTING
APPROACH

This section describes the SACSO approach to troubleshoot-
ing, and a tool implementing the approach is briefly de-
scribed. We also compare the troubleshooting strategies
obtained from the tool~and variants of it! with optimum
troubleshooting strategies.

At any time in the troubleshooting process, we wish to
select the next step on the basis of the information gathered
so far. Whenever a step has been performed and informa-
tion from that step has been included, the same procedure
for selecting the next step is repeated based on the updated
information.

The basic idea behind selecting the next step is to com-
pare the expected result of performing the repair action of
highest efficiency with the expected result of asking a ques-
tion ~or performing a test!. Our approach to evaluating the
expected result of tests and questions is based on the fol-
lowing idea.

Assume, for example, that the fault is that the user has
not installed a printer driver. Then the answer “no” to the
question “Is there a printer driver installed?” will end the
troubleshooting sequence. The rest will be instructions on
how to get an appropriate driver and how to install it. There-
fore, a question without any ability to fix the problem has a
value. Entropy could be used as a measure of how focused
the probability mass is. However, we have taken another
approach in SACSO: if some answerq to questionQ will
identify the fault with almost certainty, then the value,VQ,
of askingQ is P~Q 5 q!. Mathematically, we calculate

PQ~e! 5 max
i

max
q

P~ fi 6Q 5 q,e! 2 P~ fi 6e!

12 P~ fi 6e!
.

The “good” answer is denotedqG. If PQ~e! exceeds a pre-
defined threshold,VQ is set toPQ~e!{P~qG!; otherwise it is
set to zero. If there are several good answers, the corre-
sponding values are added.

We extend Definition 3 and define thecurrent expected
cost of repairof a troubleshooting strategys, given evi-
dencee compiled so far, as

ECR~s6e! 5 (
,[L~s!

P~e, 6e!{t~,!.

328 F.V. Jensen et al.

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

Whens is clear from the context, we shall useECR~e! as an
abbreviation forECR~s6e!.

Let ^S1, . . . ,Sn& be the sequence of troubleshooting steps
ordered according to the current efficiencies. As the assump-
tions in Proposition 2 are not met, it would be misleading to
use Formula~5!. Instead, we are forced to use Definition 1,
and the calculation of ECR requires probability updating
for each step in the sequence. Questions~and tests! are
included in the sequence if theirPQ~e! is beyond a thresh-
old close to 1 and if@PQ~e!P~qG!#0CQ is maximal. When
calculating ECR for a sequence containing a question, “the
action has failed” means “Q Þ qG.” That is, Q Þ qG is
inserted as evidence and used for the steps followingQ.

We determine the troubleshooting step,A, of highest ef-
ficiency and calculate ECR~e! as described above. Before
actually performingA, we perform a two-step look-ahead
analysis. Namely, we analyze whether a question should be
asked.

For any question~and test! Q, we do the following. To
determine the effect of askingQ, the expected cost of repair
ECR~e,Q 5 q! for each answerq is determined, and we
calculate

ECRQ~e! 5 CQ 1 (
q

ECR~e,Q 5 q!P~Q 5 q6e!. ~7!

If ECRQ~e! , ECR~e!, the questionQ should be asked.
However, the comparison is biased. UnlessQ is a question
which might identify a cause, ECR~e! does not takeQ into
consideration, and we have in fact analyzed the choice of
askingQ now or never. Therefore, before it is decided to
askQ, it is analyzed whether it may be even better to askQ
afterA has been performed:

ECRA,Q~e! 5 CA 1 ECRQ~e, A 5 n!P~A 5 n6e!.

If ECRA,Q~e! , ECRQ~e!, the question is not asked, and if
this holds for allQ with ECRQ~e! , ECR~e!, A is per-
formed. Note that the calculation of ECRA,Q~e! requires an
entire new analysis. Notice also, that in caseA fails, then a
renewed analysis is performed.

4.1. Logical constraints and deferred actions

There are various constraints on the sequencing of the ac-
tions. For example, if the step “Reseat MIO Card” has been
performed, the question “Is the MIO Card properly seated?”
should not be asked. Some of these constraints are not con-
sequences of the probabilities in the models. Therefore, the
system keeps special account of these constraints, and it
ensures that they are always met in the analysis of ECR and
when proposing steps.

To improve the flexibility of the system, the user has the
option ofdeferringa proposed action. A deferred action is
still one of the options under consideration later unless the
user requests its removal.

4.2. Persistence and multiple faults

Often, a troubleshooting step changes the configuration of
the system, and therefore the question ofpersistenceis
relevant: is the information acquired still valid? If not, and
if the information is not updated, the system may go wild
or into blind alleys. The printing system application was
analyzed with respect to nonpersistence, and it was con-
cluded that this was not a problem. Actually, there are
actions that change the configuration of the system. How-
ever, these actions either return the system to its original
state upon failure, or modify components that will not be
referred to and have an effect on the system later in the
sequence.

The modeling and the sequencing method rely heavily
on the single-fault assumption. If there are multiple faults,
the proposed sequence will eventually fix them; perhaps at
an unnecessarily high price. In particular, nonpersistence
may be a real problem in case of multiple faults, as each
successful repair action definitely changes the configura-
tion of the system, and maybe even eliminates several faults.
So, after each successful repair action, one may be forced
to discard all previous evidence before continuing the
troubleshooting.

4.3. BATS Troubleshooter

In this section, we briefly describe the Bayesian Automated
Troubleshooting System~BATS!, which implements the
SACSO troubleshooting approach described above.

Figure 6 shows a screenshot of the BATS Trouble-
shooter. The troubleshooter guides the user through a good
troubleshooting sequence to resolve the error condition that
he is currently experiencing. The graphical user interface
allows the experienced user to track the computations of
the algorithms for finding the best next step. The trouble-
shooter can suggest repair actions that may solve the prob-
lem, or questions about the printing system.

The user interface shows the currently suggested steps,
and waits until the user provides the result to the step
~whether an action solved the problem or not, or the answer
to a question!. The currently suggested error condition is
light print—a common problem on printers. The problem
of light print has both hardware and software causes, and
some of the first troubleshooting steps selected by the di-
agnostic engine attempt to decide whether the cause is in
the hardware or software section, for example, “Is the printer
configuration page printed light?”

The troubleshooter continuously displays a list of causes
sorted with respect to their probabilities, a list of trouble-
shooting steps sorted with respect to their efficiencies, and
a list of questions~and tests! sorted with respect to ECRQ
~see Eq.~7!!.

The user interface of the BATS Troubleshooter also sup-
ports more advanced features such as forcing certain steps
to be asked immediately, going back and forward in the
history, saving and loading restartable history files, logging

SACSO troubleshooting 329

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

XML format history files, and so forth. Skaanning et al.
~2000! have described in detail the algorithms behind the
selection of steps in the BATS Troubleshooter.

4.4. Comparison of the SACSO approach
with optimal strategies

As troubleshooting in general is NP-hard we have to use
approximate methods. The space of possible troubleshoot-
ing strategies can be represented as a decision tree. There
are basically two approaches for calculating approximate
strategies: to perform a tree search using heuristics to prune
the tree or to rely on a local computation whenever a new
troubleshooting step has to be chosen. As the first approach
requires a representation of the entire strategy~or frequent
recalculations of it! we have chosen the latter approach in
SACSO. In this section, we compare the strategies provided
by the SACSO method with the optimal strategies.

For comparison we have chosen a set of models of a size
for which it was tractable to determine an optimal strategy.
The optimal strategy was determined through a branch and
bound algorithm. The branch and bound algorithm uses at
each point a lower bound of the ECR for the remaining
troubleshooting strategy.

Definition 4. Let F be the set of all possible causes of
the problem and for everyF [F, let the strategysF denote

an optimal strategy givenF 5 yes. We define a lower bound
of the ECR as

ECR5 (
F[F

P~F 5 yes!{ECR~sF !. n

Sochorová & Vomlel~2000! discuss in detail the properties
of ECR. The computation of ECR~sF ! is usually quite easy.
If it holds that the success probabilities for the various ac-
tions are independent and if we have independent costs, an
optimal sequence is achieved by ordering the actions ac-
cording to decreasing efficiency. Under all circumstances,
for the models we are working with, the set of actions ad-
dressing the same fault is very small.

Our implementation of the branch and bound algorithm
performs depth-first search with pruning. Suppose that the
algorithm gets to a node corresponding to evidencee com-
piled so far, where ECR'~e!—the lowest value of ECR from
all subtrees passed through—is stored. Further, suppose that
the step,S, under consideration has outcomess1, . . . ,sq, . . . ,sr

and that, for evidenceei 5 e ø$S5 si % ,

• the optimal value of ECR~ei ! is already known fori 5
1, . . . ,q and

• the value of ECR~ei ! is computed fori 5 q 1 1, . . . ,r.

The pruning of subtrees corresponding to strategies starting
with troubleshooting stepS is performed as soon as we are

Fig. 6. A screenshot of the BATS Troubleshooter.

330 F.V. Jensen et al.

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

sure that these strategies cannot be better than the current
lowest one, that is, when

ECR'~e! # CS1 (
i51

q

P~S5 si 6e!{ECR~ei !

1 (
i5q11

r

P~S5 si 6e!{ECR~ei !.

Since the function ECRprovides lower bounds of the opti-
mal ECR, the optimal strategy cannot be missed.

4.5. Results

We have compared the strategies provided by the methods
listed in Table 1. SACSO-A and SACSO-B differ on the
criteria for selecting the next step, and SACSO is a combi-
nation of the two. The comparison is performed for nine of
the SACSO models for troubleshooting laser printers.

Table 2 summarizes the comparisons~details are pro-
vided by Vomlel~2000!!. The last row of Table 2 summa-
rizes the comparison as the average relative deviation from
the optimal strategy. This shows that the troubleshooting
strategies suggested by the SACSO approach are very close
to optimal strategies, although the computational complex-
ity of the SACSO approach is orders of magnitude lower
than that of an optimal algorithm.

5. VALIDATION

Validation of troubleshooters based on Bayesian networks
poses a potential bottleneck. The system described here al-
lows a number of sequences fulfilling various criteria from
the troubleshooting models to be generated with the so-
calledcase generator. These sequences can then be evalu-
ated with the so-calledcase evaluator. If a sufficient number
of these sequences are accepted, the model has an accept-
able level of quality. If not, the model must be revised.

The validation method allows the generation of se-
quences in two different ways,~i! randomsequences can be
generated using the probabilities in the model,~ii ! special
sequences can be generated fulfilling various criteria such
as sequences with the largest number of steps, sequences
with the highest total cost, sequences ending with “call ser-
vice,” and so forth.

5.1. The case generator

Generation of random sequences is performed utilizing two
diagnostic engines that are being executed in tandem, one
with knowledge of the randomly chosen cause used to gen-
erate answers for steps~Engine 2 in Figure 7! and one with
no knowledge used to suggest the sequence of steps~En-
gine 1!.

Figure 7 illustrates the process followed to generate a
sequence of random steps based on the probabilities of the

Table 1. Troubleshooting approaches

Label Approach

OPTIM Optimal strategy minimizing ECR
SACSO SACSO approach
SACSO-A restricted SACSO approach where questions are selected based onPQ only
SACSO-B restricted SACSO approach where questions are selected based on ECRQ only
P0C The sequence of actions ordered according to step by step updatedp0C-ratio

Table 2. Comparison of values of ECR

actions # obs. OPTIM SACSO SACSO-A SACSO-B P0C

6 2 433.24 442.39 444.54 442.39 444.54
9 3 129.21 129.21 129.21 129.21 155.10

11 3 106.20 112.35 113.36 108.07 116.80
12 3 38.38 38.42 38.42 40.01 43.05
13 4 124.32 124.37 298.09 125.56 300.85
14 4 115.41 115.86 232.05 115.86 236.58
9 9 70.67 75.03 119.28 77.67 121.10

16 5 161.38 162.25 286.75 162.25 286.75
10 10 250.45 253.31 352.31 256.96 479.96

Av. rel. dev. from opt.a 1.81% 48.60% 2.51% 59.16%

aAverage relative deviation from optimum

SACSO troubleshooting 331

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

model. In the left-hand side of Figure 7, the process of the
diagnostic Engine 1 is shown, and the process of the diag-
nostic Engine 2 is shown in the right-hand side. The flow of
control is illustrated by the arrows.

The case generator can also traverse the possible se-
quences and fetch the sequences with the highest number of
steps or those with the highest total cost. Traversing all
possible sequences may be infeasible, in which case the
case generator can be stopped once a sufficient number of
sequences have been traversed.

5.2. The case evaluator

For a quick overview, the case evaluator can provide a set
of random sequences for each cause. When confronted with
a sequence, the expert may accept it or discard it with a
comment explaining what should be modified in the model.
So far, modifications have to be performed manually, and it
is an issue for further research to come up with efficient
methods for automatic conservative refinement: how to
change parameters without altering the accepted sequences.

Fig. 7. The flow of simulating random cases utilizing two diagnostic engines with and without knowledge of the true cause.

332 F.V. Jensen et al.

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

If the random sets provided by the case generator are
acceptable, the expert can start a more systematic evalua-
tion by requesting “unfavorable” sequences. That may, for
example, be lengthy sequences, costly sequences, se-
quences with high overhead, or confusing sequences.

6. FURTHER RESEARCH

One type of task for further research involves relaxation of
the assumptions listed in Section 2. Although the trouble-
shooting task is NP-complete under relaxed conditions, it is
still important to find efficient heuristics which have good
chances of providing close-to-optimal sequences. Cer-
tainly, diagnosing multiple faults is important, but there are
other equally important tasks. For man-made devices, one
often meets the conditional cost problem: When fixing or
inspecting a certain part, one has dismantled the device and
before putting it together one may just as well perform
other troubleshooting steps. Also, dependent actions~see
Figure 1! are often seen.

Another type of research task has to do with quality of
the model. Examples are conservative refinement~see Sec-
tion 5!, sensitivity analysis, learning, and adaptation. For
the printer system, it turned out that persistence was not a
problem, but this does not hold in general: when a part of a
system has been changed or reinstalled, how much of the
previous evidence is then still valid?

ACKNOWLEDGMENTS

We thank our coworkers on SACSO, in particular Olav Bangsø,
Thomas Nielsen, Kristian G. Olesen, Lynn Parker, Paul Pelletier,
and Lasse Rostrup-Jensen. The research was supported by the
National Centre for IT Research through Grant #87.2.

REFERENCES

de Kleer, J., & Williams, B.~1987!. Diagnosing multiple faults.Artificial
Intelligence 32, 311–319.

Heckerman, D., Breese, J.S., & Rommelse, K.~1995!. Decision-theoretic
troubleshooting.Communications of the ACM 38(3), 49–56.

Kalagnanam, J., & Henrion, M.~1990!. A comparison of decision analysis
and expert rules for sequential analysis.Uncertainty in Artificial In-
telligence 4~Besnard, P. & Hanks, S., Eds.!, pp. 271–281. New York:
North-Holland.

Skaanning, C.~2000!. A knowledge acquisition tool for Bayesian-network
troubleshooters. InProc. 16th Conference on Uncertainty in Artificial
Intelligence, pp. 549–557. San Francisco: Morgan Kaufmann Publishers.

Skaanning, C., Jensen, F.V., & Kjærulff, U.~2000!. Printer troubleshoot-
ing using Bayesian networks. InIntelligent PRoblem Solving, Meth-
odologies and Approaches, 13th Proceedings of the IEA0AIE 2000,
~Loganantharaj, R. & Palm, G., Eds.! pp. 367–379. Springer, New
York.

Skaanning, C., Jensen, F.V., Kjærulff, U., Pelletier, P., & Rostrup-Jensen,
L. ~1998!. Printing system diagnosis: A Bayesian network application.

Workshop on Principles of Diagnosis, pp. 259–265. Cape Cod,
Massachusetts.

Sochorová, M., & Vomlel, J.~2000!. Troubleshooting: NP-hardness and
solution methods.The Fifth Workshop on Uncertainty Processing
WUPES’2000, Jindřichův Hradec, Czech Republic.

Srinivas, S.~1995!. A polynomial algorithm for computing the optimal
repair strategy in a system with independent component failures. In
Proc. 11th Conference on Uncertainty in Artificial Intelligence, pp.
515–522. San Francisco, CA: Morgan Kaufmann Publishers.

Vomlel, J.~2000!. On quality of BATS troubleshooter and other approxi-
mative methods, Technical report, Department of Computer Science,
Aalborg University, Denmark.

Finn V. Jensenis a Professor in Computer Science at Aal-
borg University, Denmark, with a Ph.D. in Mathematical
Logic from Warsaw University, Poland~1974!. His scien-
tific contributions have, for the last 10 years, mainly been
in connection to Bayesian networks and decision graphs.
He is one of the founders of the Hugin method and the
Hugin Company.

Uffe Kjærulff is an Associate Professor in Computer Sci-
ence at Aalborg University, Denmark, with a Ph.D. in Com-
puter Science from Aalborg University~1993!. His research
interest is reasoning under uncertainty. His scientific con-
tributions relate mostly to methods for efficient inference in
Bayesian networks.

Brian Kristiansen is a Research Assistant and Software
Engineer at Hewlett-Packard Company with an M.Sc. in
Computer Science from Aalborg University, Denmark
~1999!. He has worked for Hewlett-Packard on the SACSO
project since 1999.

Helge Langsethis a Research Assistant at the Department
of Computer Science, Aalborg University, Denmark. He is
a Ph.D. student in mathematical statistics at the Norwegian
University of Science and Technology.

Claus Skaanning is a Research Engineer at Hewlett-
Packard Company with a Ph.D. in Computer Science from
Aalborg University, Denmark~1997!. He worked for
Hewlett-Packard on the SACSO project from 1997 to 2000.

Jiř í Vomlel is a Research Assistant at the Department of
Computer Science of Aalborg University, Denmark, with a
Ph.D. in Artificial Intelligence from the Czech Technical
University, Prague, the Czech Republic~2000!. His re-
search interest is reasoning under uncertainty.

Marta Vomlelová (Sochorova) is a Research Assistant at
Aalborg University, Denmark, with an M.Sc. in Artificial
Intelligence from Charles University, Prague. She is a Ph.D.
student at University of Economics, Prague. Her research
interest is probabilistic modeling.

SACSO troubleshooting 333

https://doi.org/10.1017/S0890060401154065 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154065

