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We consider two-dimensional mass transport to a finite absorbing strip in a uniform shear flow as
a model of surface-based biosensors. The quantity of interest is the Sherwood number Sh, namely
the dimensionless net flux onto the strip. Considering early-time absorption, it is a function of the
Péclet number Pe and the Damköhler number Da, which, respectively, represent the characteristic
magnitude of advection and reaction relative to diffusion. With a view towards modelling nanoscale
biosensors, we consider the limit Pe � 1. This singular limit is handled using matched asymptotic
expansions, with an inner region on the scale of the strip, where mass transport is diffusively dom-
inated, and an outer region at distances that scale as Pe−1/2, where advection enters the dominant
balance. At the inner region, the mass concentration possesses a point-sink behaviour at large dis-
tances, proportional to Sh. A rescaled concentration, normalised using that number, thus possesses a
universal logarithmic divergence; its leading-order correction represents a uniform background con-
centration. At the outer region, where advection by the shear flow enters the leading-order balance,
the strip appears as a point singularity. Asymptotic matching with the concentration field in that
region provides the Sherwood number as

Sh = π

ln(2/Pe1/2) + 1.0559 + β
,

wherein β is the background concentration. The latter is determined by the solution of the canonical
problem governing the rescaled inner concentration, and is accordingly a function of Da alone. Using
elliptic-cylinder coordinates, we have obtained an exact solution of the canonical problem, valid for
arbitrary values of Da. It is supplemented by approximate solutions for both small and large Da
values, representing the respective limits of reaction- and transport-limited conditions.
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1 Introduction

Biomolecular detection and monitoring of analytes in aqueous solutions is a fundamental chal-
lenge. In particular, there is a great interest in developing miniaturised label-free surface-based
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biosensors on which analytes bind to receptors [9]. The miniaturisation revolution has led to a
technological transition from ‘microsensors’ (∼10 µm length) to ‘nanosensors’ (∼10 nm length).
The latter, implemented by silicon nanowires [5, 4], allow for the rapid detection of small analyte
concentrations.

Given the severe time limitations of ‘stationary’ systems, where the target analytes reach the
sensor by pure diffusion [16], it is desirable to employ flowing systems, where forced convection
of the analyte-carrying solution significantly enhances collection rate. A paradigmatic system,
discussed by Squires et al. [17], involves pressure-driven flow between two walls. One of the
walls is decorated with a surface-based sensor (say of length 2a) which is functionalised by a
coverage of immobile receptors. The transport of analyte molecules in the solution is described
using an advection–diffusion description, while their binding and unbinding to the receptors is
modelled using reaction kinetics. The quantity of interest is the net flux of analytes onto the
sensor.

The pertinent values characterising realistic systems allow for significant simplifications of
the above description. The first has to do with geometry. In many configurations, the sensor
width is comparable or even identical to the channel width, which in turn is much larger than
other geometric length scales, namely the distance between the walls (the ‘channel height’) and
the length of the sensor. This leads to a convenient two-dimensional (2D) model. The second
simplification has to do with disparity of kinetic and diffusive timescales, which allows for a
quasi-steady description of the analyte transport in the bulk.

On the continuum level, the absorption of analytes to the sensor gives rise to the formation of a
depletion region, about the sensor, where analyte concentration is appreciably reduced. The size
and geometry of the depletion region for flowing systems is discussed at length by Squires et al.
[17], who make a distinction between ‘slow’ flows, where the depletion region extends upstream
of the sensor, and ‘fast’ flows, where that region is thin compared with channel size. (The dis-
tinction is made precise using a Péclet number which is based upon the channel height.) Since
the net flux is small in the former case, practical interest lies in the latter, where analyte transport
practically occurs under a uniform shear flow – namely the near-wall linear approximation of the
parabolic Poiseuille flow.

Focusing upon these fast flows, Squires et al. [17] subsequently identified two different
régimes, depending upon the sensor size a (or, more precisely, the sensor-based Péclet num-
ber, say Pe). The first, corresponding to Pe � 1, is where the depletion region thickness is
small compared with the sensor length, resulting in narrow boundary-layer structure; the second,
corresponding to Pe � 1, is where the depletion region is large compared with a. Practically
speaking, these two régimes represent analyte transport about micro- and nanosensors, respec-
tively. Motivated by the importance of the latter, we focus here upon the second régime. In what
follows, we accordingly address the problem of small Péclet-number mass transport to a finite
strip in a uniform shear flow.

Naïvely, it may appear that small Péclet numbers simply imply the neglect of analyte advec-
tion. It is well known, however, that the 2D solution of Laplace’s equation approaches a
source-like behaviour at large distances, which diverges logarithmically. (In the present context,
the analyte concentration actually adopts a sink-like behaviour, proportional to the net analyte
flux onto the sensor.) Such a logarithmic growth is incompatible with the need to approach the
uniform equilibrium concentration at large distances away from the sensor. That incompatibility
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is a manifestation of the well-known singular nature of the small Péclet-number limit [12], where
the associated approximation of diffusive transport breaks down at large distances. (While that
singularity appears in both 2D and 3D problems, it is more acute in the former.) It is remedied
by the use of matched asymptotic expansions [8], whereby the transport domain is conceptually
decomposed into two regions: an ‘inner’ region at the neighbourhood of the sensor, where the
assumption of diffusive transport applies, and an ‘outer’ region at large distances, where advec-
tion enters the leading-order balance. In the 2D context, the small Péclet-number singularity has
been originally confronted in the classical problem of heat transport from a cylinder in a uniform
shear flow [3, 7]. (See Ref. [19] for a more general discussion.) Similar asymptotic methods
will be used here to investigate the small Péclet-number limit in the context of surface-based
sensors.

In describing analyte absorption, we seek to employ an approximate yet reasonable kinetic
model. We accordingly focus upon the early stages of the absorption process, where the concen-
tration of the bound receptors is small. This results in a simple kinetic description, wherein the
diffusive flux of analytes into the sensor is proportional to their surface concentration. (Similar
descriptions have been extensively used in modelling chemically active colloids [6, 13, 21].)
The resulting decoupling of the analyte-transport problem from the time evolution of the
bound-receptors concentration constitutes a significant simplification: indeed, the associated
dimensionless problem depends only upon two parameters, namely the Damköhler number Da,
representing the ratio of diffusive-to-reactive timescales, and the Péclet number Pe, representing
the ratio of diffusive-to-advective timescales.

The closest relevant analysis in the literature is that of Ackerberg et al. [1], who considered
heat transport to an isothermal strip. That analysis may be adapted to the comparable mass-
transport problem provided one (i) considers early times, as above, where the concentration of
the bound receptors is small, and (ii) assumes transport-limited conditions, Da → ∞, when reac-
tion is fast compared with diffusion. As noted by Squires et al. [17], however, the Damköhler
number is actually small for typical kinetic parameters pertaining to nanowire sensors. (This is
hardly surprising, since that number is proportional to the strip length; see equation (3.2).) We
accordingly consider here the general case of an arbitrary value of Da (expecting our results to
degenerate to those of Ref. [1] at large values of that number), with a particular interest in small
Damköhler numbers.

Experimental observations of analyte absorption at nanowire sensors differ from theoretical
estimates by orders of magnitudes [18, 22]. These discrepancies motivate the need for a careful
analysis of the associated absorption processes [17]. Our asymptotic analysis, which incorporates
a reasonable model of chemical kinetics, is a first step in that direction.

2 Physicochemical problem

The 2D transport problem considered herein involves a semi-bounded liquid domain which is in
contact with a planar solid wall; see Figure 1. The liquid contains analyte molecules of an other-
wise uniform volumetric concentration, say A. It undergoes a uniform shear flow (shear-rate G).
Our interest is in the analyte-transport process that occurs due to the introduction of a reactive
strip, say of length 2a, at the chemically inert wall. In particular, we assume that the strip is
covered with immobile receptors, say with a uniform areal concentration R. Analyte transport
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FIGURE 1. Schematic.

to the strip takes place by both Brownian motion (represented by molecular diffusivity D)
and advection by the shear flow. Our ultimate interest is in the net transport of analytes onto
the strip.

The chemical reaction at the strip is represented by the binding of receptor (R) and analyte
(A) molecules to form receptor–analyte (RA) complexes, and the unbinding of these complexes.
These transformations are modelled using the standard receptor–ligand kinetics

R + A � RA. (2.1)

On the continuum level, these are described in terms of the volumetric concentration [A] of
unbound analytes as well as the respective areal concentrations [R] and [RA] of unbound
and bound receptors. The forward binding transition R + A → RA is characterised by the on-
rate constant kon while the backward unbinding transition RA → R + A is characterised by the
off-rate constant koff. The receptor–ligand transformations (2.1) are accordingly manifested by
Langmuir kinetics,

time derivative of [RA] = kon[R][A] − koff[RA], (2.2)

at any point along the strip. Note that (i) the left-hand side of (2.2) is equal to the diffu-
sive flux of analytes from the bulk; (ii) with [R] + [RA] =R, the maximum possible value of
[RA] is R; (iii) at equilibrium, the ratio of bound to unbound receptors is [RA]/[R] = [A]/KD,
wherein KD = koff/kon is the dissociation constant; and (iv) the balance (2.2) provides the reactive
timescale

τR = 1

konA . (2.3)
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3 Problem formulation

3.1 Dimensionless formulation

We employ a dimensionless notation where length variables are normalised by a and the time t
by τR. The dimensionless analyte and bound-receptor concentrations are defined as c = [A]/A
and b = [RA]/R, respectively. The dimensionless problem involves four parameters. These are
the Péclet number,

Pe = a2G

D
, (3.1)

which represents the ratio of advection to diffusion; the Damköhler number

Da = akonR
D

, (3.2)

which represents the ratio of reaction to diffusion; the concentration ratio C =A/KD, which
indicates how ‘dilute’ is the solution; and the timescale ratio �= τD/τR, wherein τD = a2/D is
the diffusive scale.

We make use of the (x, y) Cartesian coordinates, where the x-axis, which points in the flow
direction, coincides with the solid wall, and the y-axis points into the liquid. The origin is chosen
in the centre of the strip. The analyte concentration c(x, y, t) is governed by (i) the conservation
equation,

�
∂c

∂t
+ Pe y

∂c

∂x
= ∇2c for y> 0; (3.3)

(ii) the no-flux condition at the inert portions of the wall,

∂c

∂y
= 0 at y = 0 for |x|> 1; (3.4)

(iii) the kinetic condition [cf. (2.2)],

∂c

∂y
= Da {c(1 − b) − b/C} at y = 0 for |x|< 1; (3.5)

and (iv) the approach to a unity analyte concentration at large distances,

c → 1 for r → ∞, (3.6)

wherein r =√
x2 + y2.

The preceding problem is coupled to the bound-receptor concentration b(x, t), which is
governed by the following evolution equation:

∂b

∂t
= c(1 − b) − b/C for − 1< x< 1, (3.7)

where c is evaluated at y = 0. The latter equation introduces an explicit time dependence, which
necessitates the introduction of appropriate initial conditions. These are given by

c ≡ 1, b ≡ 0 (3.8a, b)
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at t = 0. Thus, the above formulation faithfully represents the unsteady process which results
when an initially homogenous solution is brought into contact with a sensor-supporting wall and
is exposed to a uniform shear flow.

Our goal is the Sherwood number (also called the mass-transfer Nusselt number), namely the
net analyte flux onto the strip (normalised by AD):

Sh =
∫ 1

−1

∂c

∂y

∣∣∣∣
y=0

dx. (3.9)

It is a function of t and the above-mentioned parameters.

3.2 Simplified problem

In virtually all practical problems, the diffusive timescale is much shorter than the reactive one
[17], whereby �→ 0. The conservation equation (3.3) is then replaced by the quasi-steady
advection–diffusion equation

∇2c = Pe y
∂c

∂x
for y> 0. (3.10)

In what follows, we focus here upon early times, where the concentration of bound receptors
is small, b � 1. In these times, condition (3.5) is simplified to

∂c

∂y
= Da c at y = 0 for |x|< 1. (3.11)

The coupling with b, which has entered through (3.5), disappears, as does the dependence upon C.
More importantly, with the evolution equation (3.7) being irrelevant, there is no time depen-
dence in the problem, explicit or implicit. Consistently, the initial condition (3.8a) is abandoned.
We accordingly denote hereafter the analyte concentration by c(x, y). The (misleadingly simple
looking) problem governing that field is conveniently summarised in Figure 2. Note that the
Sherwood number (3.9) is now a function of Pe and Da alone.

3.3 Small Péclet numbers

Our interest is in the limit of small Péclet numbers, Pe � 1, representing analyte transport about
nanosensors. Naïvely, it may appear that at leading order the advection–diffusion equation (3.10)
simply degenerates to Laplace’s equation. In the present context, however, it is impossible to find
a 2D solution of Laplace’s equation that approaches a uniform value at infinity, as specified by
condition (3.6). The reason has to do with the net flux into the strip: at large distances the strip
appears like a point sink, implying a logarithmic variation with r of c.

The singularity of the small-Pe limit is handled using matched asymptotic expansions. Thus,
we conceptually decompose the liquid domain into an inner region at the scale of the strip,
r = O(1), where c is dominated by diffusion, and an outer region at large distances, where analyte
advection and diffusion are comparable.
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FIGURE 2. Simplified dimensionless problem.

4 Inner region

Consider first the leading-order inner problem, consisting of Laplace’s equation governing c and
the boundary conditions (3.4) and (3.11) at y = 0 (see Figure 2). Condition (3.6) does not apply
in the inner region. Rather, c must behave as ln r at large r. More specifically, consistency with
definition (3.9) implies that

c ∼ Sh

π
ln r for r → ∞. (4.1)

Since the only inhomogeneity in the inner problem enters through (4.1), it follows that c is linear
and homogeneous in Sh. We therefore write

c(x, y) = Sh c̃(x, y). (4.2)

The rescaled concentration c̃ is independent of Sh. It satisfies the following: (i) Laplace’s
equation,

∇2c̃ = 0; (4.3)

(ii) the boundary conditions at y = 0,

∂ c̃

∂y
= 0 for |x|> 1,

∂ c̃

∂y
= Da c̃ for |x|< 1; (4.4a, b)

and (iii) the universal behaviour [cf. (4.1)]

c̃ ∼ 1

π
ln r for r → ∞. (4.5)

Conditions (4.4) and (4.5) serve to uniquely define the harmonic function c̃. The canonical prob-
lem governing c̃ depends only upon the single parameter Da. The dependence of the unscaled
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inner field c upon the Péclet number enters only through the dependence of Sh upon that num-
ber. As we shall see in the following, the latter dependence is provided by the requirement of
asymptotic matching.

At this point, we make the following observations. First, since matching with the outer solution
is expressed in the canonical problem through the isotropic condition (4.5), it is evident that c̃ is
symmetric with respect to x:

c̃(−x, y) = c̃(x, y). (4.6)

(This symmetry does not necessarily hold at higher asymptotic orders.)
Second, note that (3.9) in conjunction with (4.2) implies that∫ 1

−1

∂ c̃

∂y
(x, 0) dx = 1. (4.7)

[This could have been alternatively obtained using (4.5) in conjunction with the 2D variant of
Gauss’s theorem.] Condition (4.4b) then imposes the constraint

Da
∫ 1

−1
c̃(x, 0) dx = 1. (4.8)

Since constraints (4.7) and (4.8) follow from the problem formulation, they do not provide
independent information. Nonetheless, they prove useful in the asymptotic analysis that follows.

Last, the large-r asymptotic behaviour (4.5) constitutes the leading term in an asymptotic
series. In particular, the correction term to (4.5) is a constant, representing a ‘background’
concentration, while subsequent terms decay algebraically fast at large r. We accordingly write

π c̃ ∼ ln(2r) + β + · · · for r � 1, (4.9)

where the 2-factor is introduced for convenience and the asymptotic error is ‘algebraically small’
(i.e. smaller than some positive power of 1/r). The background concentration β is determined by
the solution of the canonical problem; consequently, it is a function of the single parameter Da.

5 Outer problem and asymptotic matching

It follows from (3.10) that a small-Pe balance between advection and diffusion takes place when

r = O(Pe−1/2). (5.1)

We accordingly define the outer Cartesian coordinates (X , Y ) = Pe1/2(x, y) and the corresponding
radial coordinate R = Pe1/2r. In the outer region, where R = O(1), the strip appears like a point
singularity at the origin.

5.1 Outer problem

Consider now the outer-region concentration, denoted by C(X , Y ). It is governed by the
advection–diffusion equation [cf. (3.10)],

∂2C

∂X 2
+ ∂2C

∂Y 2
= Y

∂C

∂X
for Y > 0; (5.2)
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the no-flux condition [cf. (3.4)],

∂C

∂Y
= 0 at Y = 0 for |X | 
= 0; (5.3)

and the approach to the equilibrium value [cf. (3.6)]

C → 1 for R → ∞. (5.4)

The limit Pe � 1 may be interpreted as that corresponding to a strip of shrinking size. Since a
vanishingly small strip can have no effect on the analyte concentration, it is evident from (5.4)
that at leading order C ≡ 1. Asymptotic matching with (4.1) then suggests that C − 1 is of the
order Sh (implying, inter alia, that Sh � 1). We accordingly write

C = 1 + Sh C̃. (5.5)

At leading order C̃ satisfies (5.2) and (5.3), large-R decay and the requirement of asymptotic
matching with (4.1), namely

C̃ ∼ 1

π
ln R for R � 1. (5.6)

This matching condition, in conjunction with (5.3), gives

∂C̃

∂Y
= δ(X ) at Y = 0. (5.7)

5.2 Fourier-transform solution

The problem governing C̃ is identical to that appearing in Ref. [1] (provided that their variable
k is set to unity). This was to be expected, since the different transport mechanism at the inner
region does not affect the universal growth (4.1). The matching process we employ here is sim-
pler than that of Ref. [1]. We accordingly we find it convenient to describe the calculation of
C̃.

We employ the Fourier transform and its inverse,

Ĉ(α, Y ) =
∫ ∞

−∞
C̃(X , Y )eiαX dX , (5.8a)

C̃(X , Y ) = 1

2π

∫ ∞

−∞
Ĉ(α, Y )e−iαX dα. (5.8b)

Forming the transform of (5.2) yields the Airy equation

d2Ĉ

dζ 2
− ζ Ĉ = 0, (5.9)

wherein

ζ = e−iπ/6α1/3(Y + iα). (5.10)

The solution of (5.9) which decays at large R is

Ĉ = H(α) Ai(ζ ), (5.11)

https://doi.org/10.1017/S0956792519000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000238


772 E. Yariv

where the requirement | arg ζ |<π/3 implies that

−π/2< arg α < 3π/2. (5.12)

A branch cut, which extends along the negative imaginary axis, is accordingly introduced in the
complex α-plane. Forming the transform of (5.7) gives H(α) = eiπ/6/α1/3 Ai′(ζ0), wherein

ζ0 = ζ |Y=0 = eiπ/3α4/3 (5.13)

and the prime denotes differentiation with respect to the argument. The inversion formula (5.8b)
then gives

C̃(X , Y ) = 1

2π

∫ ∞

−∞
eiπ/6 Ai(ζ )

α1/3 Ai′(ζ0)
e−iαX dα. (5.14)

5.3 Asymptotic matching

Towards asymptotic matching with the inner region, we now restrict the attention to Y = 0,
whereby ζ = ζ0. The outer concentration (5.14) becomes

C̃(X , 0) = 1

2π

∫ ∞

−∞
eiπ/6 Ai(ζ0)

α1/3 Ai′(ζ0)
e−iαX dα. (5.15)

Since all the zeros of Ai′(ζ0) are located on the negative real axis of the complex ζ0-plane, the
isolated singularities of the integrand are located at the positive imaginary axis of the complex
α-plane. For X < 0, where e−αX decays at large and positive Im α, the integral (5.15) is evaluated
by forming a closed contour in the upper half-plane of the complex α-plane and making use of
Cauchy’s residue theorem, thereby providing C̃(X , 0) as an infinite series. For X > 0, on the other
hand, the integration interval is conveniently represented as the union of two semi-infinite sub-
intervals, one from −∞ to 0 and one from 0 to ∞. Since here e−αX decays at large and negative
Im α, and with the integrand having no singularities in the lower half α-plane, these sub-intervals
may be, respectively, replaced by two rays, proximate to the branch cut, at α = 0− and α = 0+.
Consistently with (5.12), the parameterisation of α along these rays is, respectively, given by
α= se3iπ/2 and α= se−iπ/2, where the real parameter s extends between zero and infinity. We
then obtain

C̃(X , 0) = 1

π
Re {I(X )} , (5.16)

wherein

I(X ) =
∫ ∞

0

e−iπ/6 Ai(e−iπ/3s4/3)

s1/3 Ai′(e−iπ/3s4/3)
e−sX ds. (5.17)

The difference in the type of expressions which apply for negative and positive X has to do with
(5.2) which, unlike (4.3), is asymmetric with respect to X .

In what follows, we only need the positive-X expression (5.16). In Appendix A, we show that
(5.16) and (5.17) give

π C̃(X , 0) ∼ ln X − λ+ o(1) for 0< X � 1, (5.18)

https://doi.org/10.1017/S0956792519000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000238


Small Péclet-number mass transport to a finite strip 773

wherein

λ= 1.0559 (5.19)

and the asymptotic error is algebraically small. This approximation agrees with the one obtained
in Ref. [1].

In performing the asymptotic matching, we follow van Dyke’s convention, considering log-
arithmically small terms on par with O(1) terms [8, 20]. Comparing (5.5) and (5.18) with (4.2)
and (4.9), the latter evaluated at y = 0 and x> 0, we readily obtain

Sh = π

ln(2/Pe1/2) + λ+ β(Da)
, (5.20)

which is indeed � 1 in the small Péclet-number limit, as required.
The Sherwood number is affected by the inner-region transport only through the value

of the background concentration β. When β increases, the ‘difference’ between the analyte-
concentration value at the ‘outer edge’ of the inner region and the unity value at infinity is
curtailed, resulting in a smaller diffusive flux from infinity. It is therefore unsurprising that the
overall flux, as provided by the Sherwood number, decreases.

Expression (5.20) constitutes our key result. As indicated in (5.20), the dependence upon Da
enters only through the dependence of β upon that parameter. In what follows, we evaluate that
dependence by solving the canonical inner problem.

6 Solution of the canonical problem

The canonical problem in the semi-bounded geometry y> 0 is naturally handled using elliptic-
cylinder coordinates [14]; see Figure 3. The constant-η curves are the ellipses

x2

cosh2 η
+ y2

sinh2 η
= 1, (6.1)

while the constant-ψ curves are the hyperboles

x2

cos2 ψ
− y2

sin2 ψ
= 1. (6.2)

In terms of these coordinates, the upper-half plane y> 0 is covered by η > 0 and 0<ψ <π ,
while the strip is the line segment η= 0. Note that

η∼ ln(2r) + o(1) for r � 1, (6.3)

and that, at the strip, x = cosψ . Making use of the transformation

∂

∂y

∣∣∣∣
y=0,−1<x<1

= 1

sinψ

∂

∂η

∣∣∣∣
η=0

, (6.4)
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FIGURE 3. Elliptic-cylinder coordinates.

we find that constraints (4.7) and (4.8), respectively, read∫ π

0

∂ c̃

∂η

∣∣∣∣
η=0

dψ = 1, (6.5a)

Da
∫ π

0
c̃|η=0 sinψ dψ = 1. (6.5b)

6.1 Exact solution

To determine c̃(η,ψ), we note that Laplace’s equation (4.3) remains invariant when expressed
in terms of the elliptic-cylinder coordinates,

∂2c̃

∂η2
+ ∂2c̃

∂ψ2
= 0 for η > 0, 0<ψ <π ; (6.6)

while condition (4.4a) reads

∂ c̃

∂ψ
= 0 for ψ = 0, π . (6.7)

We accordingly seek a solution of (6.6) which is an even function of ψ − π/2 [see (4.6)] and
satisfies both (4.5) and (6.7). Using separation of variables and noting (6.3), we readily obtain
the Fourier-series solution,

π c̃ = η+
∞∑

n=0

Ane−2nη cos 2nψ . (6.8)

The coefficients {An}∞n=0 are determined using condition (4.4b), which here reads [see (6.4)]

∂ c̃

∂η
= Da c̃ sinψ for η= 0. (6.9)

Upon substitution of (6.8), we therefore obtain

1 − 2
∞∑

n=0

nAn cos 2nψ = Da
∞∑

n=0

An cos 2nψ sinψ . (6.10)
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FIGURE 4. Variation of β with Da. Solid: exact solution, as obtained from (6.11) and (6.13). Thin: one-term
small-Da approximation (6.20). Dashed: two-term small-Da approximation (6.21).

Multiplying by cos 2mψ (m = 0, 1, . . .) and integrating over the interval (0, π/2) yields the
equation

2Da
∞∑

n=0

FmnAn + πmAm = πδm0, m = 0, 1, . . . , (6.11)

wherein

Fmn = 1 − 4m2 − 4n2

16m4 − 8m2
(
4n2 + 1

)+ (
4n2 − 1

)2
. (6.12)

The infinite linear system governing {Am}∞m=0 is readily solved by controlled truncation. Once
these coefficients are determined, the value of β is obtained. Thus, comparing (4.9) with (6.3)
and (6.8), we find that

β = A0. (6.13)

The universal function β(Da) is presented in Figure 4. The monotonic decrease of β with Da is
expected: the stronger is the reaction, the lower is the ‘mean’ value of the analyte concentration
at the ‘surroundings’ of the strip (namely the outer edge of the inner region).

6.2 Approximate solutions for Da � 1

In addition to the exact solution of the canonical problem for arbitrary Da, it is desirable to
obtain approximate expressions for β(Da) in the diametric limits Da � 1 and Da � 1. Consider
first the transport-limited case Da � 1. From (6.5), we find that, at η= 0, ∂ c̃/∂η= O(1) while
c̃ = O(Da−1). Comparing with the Fourier-series representation (6.8), we find that these two
apparently contradictory balances are satisfied if, at leading order, we retain the first term in
(6.8) while setting An = 0 for all n. This gives

c̃ = η/π + o(1). (6.14)
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With β vanishing at O(1), we conclude that

lim
Da→∞ β = 0, (6.15)

as is indeed apparent in Figure 4. This minimal value of β is expected at large Damköhler num-
bers, where the reaction is fast enough to eliminate the background analyte concentration. The
leading term in (6.14) coincides with the solution obtained in Ref. [1] using conformal mapping,
namely

1

π
Re
{
log[z + (z2 − 1)1/2]

}
, (6.16)

wherein z = x + iy. This was to be expected: as explained in Section 1, the problem formulation
in Ref. [1] corresponds to the large-Da limit of the early-time evolution considered herein.

6.3 Approximate solution for Da � 1

Consider now the reaction-limited régime, Da � 1, where equations (4.7) and (4.8) suggest that
c̃ = O(Da−1) while ∂ c̃/∂y = O(1). As these scalings allow for a uniform O(Da−1) term in c̃, we
postulate the expansion

c̃ = β−1

πDa
+ c̃0(x, y) + · · · , (6.17)

in which the leading O(Da−1) uniform term trivially satisfies Laplace’s equation (4.3) and the
homogeneous Neumann condition (4.4a). The requisite value β−1 is determined from the solv-
ability conditions at the next asymptotic order. Thus, we make use of the O(1) balance of
(4.4b),

∂ c̃0

∂y
= β−1

π
at y = 0 for |x|< 1, (6.18)

which, when substituted into (4.7), gives

β−1 = π/2. (6.19)

We conclude that

β ∼ π

2Da
for Da � 1. (6.20)

An improved two-term approximation,

β ∼ π

2Da
+ 3

2
− ln 4 + o(1) for Da � 1, (6.21)

is derived in Appendix B. A comparison between the above approximations and the exact solu-
tion is illustrated in Figure 4. When using (6.21), an excellent agreement is observed even for
Da-values larger than one.

A curious feature of approximation (6.20) is that, on a rough scale, it appears to be indis-
tinguishable from the exact variation. This is a mere coincidence; indeed, scrutiny of the
large-Da régime indicates that β there is not O(Da−1), but rather scales inversely with Da ln Da.

https://doi.org/10.1017/S0956792519000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000238


Small Péclet-number mass transport to a finite strip 777

10–3 10–2 10–1 100 101 102 103
0

0.2

0.4

0.6

0.8

1

0.1

0.01

0.001

FIGURE 5. Variation of Sh with Da, as obtained from (5.20) , for the indicated values of Pe. Solid:
exact solution, with β(Da) determined from (6.11) and (6.13). Dashed: the corresponding small-Da
approximation, with β(Da) provided by (6.20).

Nonetheless, the fortuitous resemblance may be exploited to obtain a rough approximation for
Sh, as discussed next.

7 Concluding remarks

We conclude by presenting the quantity of interest, namely the Sherwood number, as obtained
by substitution into (5.20) of β(Da), the latter calculated by (6.11) and (6.13). The variation of Sh
with Da is portrayed in Figure 5 for three (small) values of Pe. At large Da, where β → 0, (5.20)
is reduced to the transport-limited expression obtained in Ref. [1]. This limit thus corresponds,
for a given Pe-value, to the maximal value of Sh. As small Da, Sh diminishes.

Of particular interest is the small-Da limit. As mentioned above, the small-Da approximation
(6.20) is fortuitously accurate for the entire practical range of Da-values. (It is a poor approxi-
mation for large Da, but then β is vanishingly small anyway.) The associated approximation for
Sh, obtained by plugging (6.20) into (5.20), is illustrated in Figure 5. While that approximation
is formally valid only for Da � 1, it practically applies for all Da. The associated dimensional
flux (per unit length) of analytes onto the sensor, associated with that approximation, is

πAD

ln(2/Pe1/2) + λ+ π/2Da
. (7.1)

It may be useful for rule-of-thumb calculations.
An attractive feature of our asymptotic analysis is that the asymptotic correction to (5.20)

is algebraically small. This benefit, shared by other small-Péclet-number problems [7], has to
do with the underlying linearity. In comparable non-linear problems, notably flows at small
Reynolds numbers [10, 15], the non-linearity of the governing equation in the outer region is
responsible for generating logarithmically small corrections. ‘Algebraically accurate’ approxi-
mations for these problems thus requires a hybrid approach, where the mathematical problem in
the outer region is solved numerically [11]. No such sophisticated methods are needed here.
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The 2D model used in the present paper was motivated by the smallness of the sensor length
a compared with its width, say w. Given the emergence of an outer region at distances large
compared with the sensor length, the mere geometric condition a � w is insufficient to justify
that model. Indeed, from (3.1) and (5.1), we see that the dimensional extent of the outer region,
where diffusive and advective transport are comparable for small Péclet numbers, is of order√

D/G. The geometric condition should accordingly be refined to
√

D/G � w.
Last, consider possible future generalisations. Our analysis makes use of the simplified kinetic

condition (3.11), valid at short times. If the exact condition (3.5) were used instead, one could
describe the entire time evolution of analyte capture, still within the quasi-steady approximation
(3.10). The transport process then consists of two coupled problems. The first governs c via a
quasi-steady description; the second, consisting of the evolution equation (3.7) and initial condi-
tion (3.8b), describes an inherently unsteady problem. This general approach can be implemented
by the iteration of two successive steps: in the first, one obtains c for a given distribution of b; in
the second, b is marched forward over a small time step using an appropriate numerical scheme.
With the need to solve an asymptotic problem (governing c) which depends upon a distribution
whose evolution is determined numerically, the above task is quite challenging.
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Appendix A: Small-X approximation for C(X, 0)

Consider the integrand appearing in (5.17). Making use of the large-argument approximation of
the Airy function (see [2]), we readily obtain

e−iπ/6 Ai(e−iπ/3s4/3)

s1/3 Ai′(e−iπ/3s4/3)
∼ −1

s
for s → ∞, (A1)

which results, upon the naïve substitution X = 0, in an 1/s decay rate of the integrand. It follows
that the asymptotic evaluation of the integral I(X ) for X � 1 falls under the intermediate case
where the dominant contribution is neither local nor global [8]. To evaluate that integral for small
X , we split it as(∫ 1

0
+
∫ s∗

1
+
∫ ∞

s∗

)
e−iπ/6 Ai(e−iπ/3s4/3)

s1/3 Ai′(e−iπ/3s4/3)
e−sX ds

def= I1 + I2 + I3, (A2)

wherein we introduce the auxiliary constant s∗. Since that constant is at our disposal, we can
choose its value at will; we hereafter restrict it to satisfy 1 � s∗ � 1/X . In what follows, we
consider the limit X ↘ 0 and seek the leading-order approximation of I1, I2 and I3. While each
of these approximations may generally depend upon s∗, their sum I must be independent of that
arbitrary parameter which does not appear in (5.17).

In the evaluation of I1, we may simply substitute X = 0, obtaining

I1 ∼
∫ 1

0

e−iπ/6 Ai(e−iπ/3s4/3)

s1/3 Ai′(e−iπ/3s4/3)
ds + o(1). (A3)

The same is true for I2, where, following (A1), we further add and subtract 1/s from the integrand,

I2 ∼
∫ s∗

1

{
e−iπ/6 Ai(e−iπ/3s4/3)

s1/3 Ai′(e−iπ/3s4/3)
+ 1

s

}
ds −

∫ s∗

1

ds

s
+ o(1). (A4)
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In view of (A1), the integrand of the first integral decays faster than 1/s at large s, thus allowing
to replace s∗ by ∞ in that integral. This gives

I2 ∼
∫ ∞

1

{
e−iπ/6 Ai(e−iπ/3s4/3)

s1/3 Ai′(e−iπ/3s4/3)
+ 1

s

}
ds − ln s∗ + o(1). (A5)

In evaluating I3, we cannot substitute X = 0, but we can use (A1). This gives I3 ∼ −E1(s∗X ),
wherein E1 is the exponential integral. Making use of the small-argument expansion of that
special function,

E1(z) ∼ −γE − ln z + O(z) for z � 1, (A6)

in which γE is the Euler–Mascheroni constant, we eventually obtain

I3 ∼ γE + ln s∗ + ln X + o(1). (A7)

Summing up the three contributions (A3), (A5) and (A7), we find that the ln s∗ terms cancel
out whereby the dependence upon s∗ disappears, as it should. Substitution into (5.16) and (5.17)
eventually furnishes the requisite approximation (5.18), wherein

λ= −γE − Re
∫ 1

0

e−iπ/6 Ai(e−iπ/3s4/3)

s1/3 Ai′(e−iπ/3s4/3)
e−sX ds − Re

∫ ∞

1

{
e−iπ/6 Ai(e−iπ/3s4/3)

s1/3 Ai′(e−iπ/3s4/3)
+ 1

s

}
ds.

(A8)
Numerical quadrature of the two integrals appearing in (A8) gives (5.19).

Appendix B: An improved small-Da approximation

Expansion (6.17) is associated with the comparable expansion of β:

β ∼ β−1

Da
+ β0 + · · · . (B1)

To obtain β0, we note that c̃0 satisfies the homogenous conditions (6.7) together with the
far-field behaviour (4.5). It accordingly possesses the Fourier-series representation (6.8). The
corresponding coefficients {An} are determined using the condition

∂ c̃0

∂η
= sinψ

2
at η= 0, (B2)

which follows from (6.18) and (6.19) in conjunction with (6.4). We therefore obtain

1 − 2
∑∞

n=0
nAn cos 2nψ = π

2
sinψ . (B3)

Multiplying by cos 2mψ (m = 0, 1, . . .) and integrating over ψ in (0, π/2) yields

mAm = δm0 + 1

4m2 − 1
, m = 0, 1, . . . , (B4)

where we have used the quadrature∫ π/2

0
cos 2mψ sinψ dψ = 1

1 − 4m2
. (B5)
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For m = 0, (B4) is trivially satisfied, so A0 remains undetermined. For m> 0, we get

Am = 1

m(4m2 − 1)
. (B6)

To determine A0, we employ the solvability condition at the next asymptotic order. Thus,
consider the O(Da) balance of (6.5b),∫ 1

−1
c̃0|η=0 sinψ dψ = 0. (B7)

Substituting (6.8) with (B6) and using again (B5) gives

β0 = A0 =
∞∑

m=1

1

m(4m2 − 1)2
= 3

2
− ln 4. (B8)

Substitution into (B1) then furnishes (6.21).
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