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We establish gradient estimates for solutions to the Dirichlet problem for the
constant mean curvature equation in hyperbolic space. We obtain these estimates on
bounded strictly convex domains by using the maximum principles theory of
Φ-functions of Payne and Philippin. These estimates are then employed to solve the
Dirichlet problem when the mean curvature H satisfies H < 1 under suitable
boundary conditions.
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1. Introduction and statement of the results

In this paper, we consider the Dirichlet problem for the constant mean curvature
equation on a domain of a horosphere in three-dimensional hyperbolic space H

3. In
order to fix the terminology, we consider the upper half-space model of H

3, that is,
R

3
+ = {(x1, x2, x3) ∈ R

3 : x3 > 0} endowed with the hyperbolic metric g = g0/x2
3,

g0 being the Euclidean metric. After a rigid motion of H
3, a horosphere can be

expressed as a horizontal plane Pa of equation x3 = a, a > 0. Let Ω be a domain of
Pa, where we identify Ω with its orthogonal projection Ω × {0} on the plane x3 = 0.
We study the Dirichlet problem

div

(
Du√

1 + |Du|2

)
= − 2

u

(
1√

1 + |Du|2 − H

)
in Ω (1.1)

u = a > 0 on ∂Ω, (1.2)

where u > 0 is a smooth function in Ω, H ∈ R is a constant and D and div denote the
gradient and the divergence operators in the Euclidean plane R

2. The graph Σu =
{(x, u(x)) : x ∈ Ω}, x = (x1, x2), represents a surface in H

3 with constant mean
curvature H computed with respect to the upwards orientation. The study of the
solutions of the Dirichlet problem (1.1)–(1.2) depends strongly of the relationship
between H and the value 1, the modulus of the sectional curvature −1 of H

3. For
example, if H < 1 (H > 1), then Σu lies above the horosphere Pa (respectively
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The constant mean curvature equation in hyperbolic space 3217

below Pa) and the geometric behaviour of Σu in both cases is completely different:
let us observe that in hyperbolic geometry, the translations along the x3-coordinate
are not isometries of H

3.
In this paper, we will use the theory of maximum principles developed by Payne

and Philippin to obtain estimates of the gradient for a solution of (1.1)–(1.2). We
derive estimates of the gradient |Du| in terms of C0 bounds of u.

Theorem 1.1. Let Ω ⊂ R
2 be a bounded strictly convex domain. Let u be a solution

of (1.1)–(1.2) and denote uM = supΩ u and

C =
1

1 − H

u2
M

a2
.

If 0 � H < 1 or if H < 0 with

uM <

√
H − 1

H
a, (1.3)

then

|Du| �
√

C2 − (1 + HC)2

1 + HC
in Ω. (1.4)

If we have estimates for the gradient of solutions of (1.1)–(1.2), it is natural to
address the problem of the existence of solutions of the Dirichlet problem. In the
context of the hyperbolic space, the results of existence require some assumption
on the convexity of the domain Ω. If 0 � H < 1, the convexity of ∂Ω is enough to
ensure the existence of a solution of (1.1)–(1.2): see [9,14]. However, if H < 0, the
mere convexity of Ω does not ensure the existence of solutions and it is required
stronger convexity. More exactly, the solvability of the Dirichlet problem (1.1)–
(1.2) was proved if the curvature κ of ∂Ω satisfies −k < H < 0 [13, theorem 1.1].
For other existence results, see [5,8,10,18]. As a consequence of theorem 1.1, we
establish the following existence result.

Theorem 1.2. Let Ω ⊂ R
2 be a bounded strictly convex domain. Let 2R be the

diameter of ∂Ω. If −1 � H < 0 satisfies

R2 < −2 − 1
H

+ 2

√
H

H − 1
, (1.5)

then there exists a unique solution of (1.1)–(1.2).

We notice that we need to assume that the diameter of Ω is small in relation to
the value of H but, in contrast, it is not necessary strong convexity of ∂Ω and we
allow that the existence of regions of ∂Ω whose curvature is closed to 0.

Theorems 1.1 and 1.2 will be proved in § 3. In the proof of these results, we need
to show the uniqueness of critical points of solutions of (1.1)–(1.2). Although this
may be expected because the resemblance of (1.1) with other quasilinear elliptic
equations, as for example, the capillary equation [1,2,6] or the singular minimal
surface equation [12], we prove this uniqueness only in the range of values H < 1,
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which is enough for our purposes: see theorem 2.1 in § 2. Finally, we prove in § 4 an
estimate from below of the global maximum uM of a solution of (1.1)–(1.2) when
H < 1. In general, estimates of u are obtained by comparing u with known solutions
of (1.1), as for example, radial solutions. However, our result establishes a lower
estimate of the value u at the critical point in terms of the curvature of ∂Ω and H:
see theorem 4.1.

2. Uniqueness of critical points

The first result in this paper establishes, under some hypothesis, the uniqueness of
critical points of a solution of the Dirichlet problem. The topic on the number of
critical points of solutions for elliptic equations is a subject of high interest and the
literature is very extensive, especially related to the question of the convexity of
level sets of solutions of elliptic equations. In the context of the constant mean cur-
vature equation in Euclidean space, and if the domain is convex, Sakaguchi proved
the existence of a unique critical point assuming Dirichlet boundary condition or
Neumann boundary condition [19]. In this paper, we address this problem for the
constant mean curvature equation in hyperbolic space when H < 1.

Theorem 2.1. Let Ω ⊂ R
2 be a bounded strictly convex domain and let H ∈ R. If

H < 1, then a solution u of (1.1)–(1.2) has exactly one critical point, which coincides
with the point where u attains its global maximum.

We prove this result as a consequence of the following arguments.
A first step consists of proving the existence of at least one critical point of

a solution u of (1.1)–(1.2). When H � 0, this is achieved by the Hopf maximum
principle. Indeed, because the right-hand side of (1.1) is non-positive, the minimum
of u is attained at some boundary point, proving u > a in Ω. Since Ω is bounded,
the function u has a global maximum at some interior point.

This argument fails if 0 < H < 1. For this range of values of H (also if H � 0)
we will use a comparison principle based in the standard theory of quasilinear
elliptic equations [7, theorem 10.1]. In our context, it can be formulated as follows:
if two surfaces Σ1 and Σ2 have a common interior point p and with constant mean
curvature H1 and H2, respectively, with respect to the orientations that coincide
at p, if Σ1 lies above Σ2 around p, then H1 � H2 (the same conclusion holds if p is
a common boundary point with tangent boundaries at p): see [11, p. 194].

Lemma 2.2. Suppose Ω ⊂ R
2 is a bounded domain. If H < 1, then a solution of

(1.1)–(1.2) satisfies u > a in Ω.

Proof. The proof is by contradiction. Suppose that there exists x0 ∈ Ω such that u
attains the minimum value, u(x0) � a. Let p = (x0, u(x0)). For b < u(x0), consider
the horosphere Pb of equation x3 = b, whose mean curvature is 1 with respect to
the upwards orientation. Then we move up Pb by letting b ↗ ∞, until the first
touching point with Σu at b1 = u(x0). Then the horosphere Pb1 touches Σu at p,
which is an interior point of both Σu and Pb1 . As Σu lies above Pb1 , we arrive a
contradiction with the comparison principle. �

https://doi.org/10.1017/prm.2019.71 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.71


The constant mean curvature equation in hyperbolic space 3219

Once proved this lemma, we follow with the proof of theorem 2.1. Denote
uk = ∂u/∂xk, k = 1, 2, and consider the summation convention of repeated indices.
Equation (1.1) can be expressed as

(1 + |Du|2)Δu − uiujuij +
2(1 + |Du|2)

u
− 2H(1 + |Du|2)3/2

u
= 0.

Denote vk = uk, k = 1, 2, and we differentiate the above identity with respect to
xk obtaining:

(
(1 + |Du|2)δij − uiuj

)
vk

ij + 2
(

uiΔu − ujuij +
2ui

u
− 3Hui

u
(1 + |Du|2)1/2

)
vk

i

− 2(1 + |Du|2)
u2

(1 − H
√

1 + |Du|2)vk = 0 (2.1)

for k = 1, 2 and where δij is the Kronecker delta. Equation (2.1) is a linear elliptic
equation in vk. We need to apply the Hopf maximum principle [7, theorem 3.5]
to this equation. Then we have to know that the term of vk is non-positive, or
equivalently,

1 − H
√

1 + |Du|2 � 0 in Ω. (2.2)

If H � 0, this inequality is clear. If 0 < H < 1, one needs to estimate |Du| in terms
of H. For this, we prove the next lemma, which is implicitly contained in the proof
of the main result in [13].

Lemma 2.3. Let Ω ⊂ R
2 be a bounded strictly convex domain of R

2 and let 0 <
H < 1. If u satisfies (1.1)–(1.2), then

|Du|2 � 1 − H2

H2
. (2.3)

Proof. Consider the Minkowski model for H
3 (see notation and details in [13]). It

is proved in [13, theorem 4.1] that under the assumptions of lemma 2.3,

H〈p, a〉 + 〈N ′(p), a〉 � 0, p ∈ Σu, (2.4)

where N ′ is the Gauss map of Σu. We write inequality (2.4) in the upper half-space
model of H

3. The relationship between both models establishes

〈p, a〉 =
1
u

, 〈N ′, a〉 = −〈N, (0, 0, 1)〉
u

,

where here N is the Gauss map of Σu as surface in Euclidean space R
3
+. Thus (2.4)

becomes H − 〈N, (0, 0, 1)〉 � 0, that is,

H − 1√
1 + |Du|2 � 0,

which yields (2.3). �
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As a consequence of lemma 2.3, the Hopf maximum principle for equation (2.1)
implies that if vk takes a non-negative maximum in Ω or a non-positive minimum
in Ω, then vk must be a constant function [7, theorem 3.5]. We point out also that
the function u is analytic by standard theory [3,15], and the same holds for the
functions vk.

For each θ ∈ R, let (cos θ, sin θ) be a vector of the unit circle S
1. Since (2.1) is a

linear equation on vk, the function

v(θ) = Du · (cos θ, sin θ) = v1 cos θ + v2 sin θ (2.5)

also satisfies (2.1). Denote n the outward unit normal vector of ∂Ω. Because u is
constant along ∂Ω, we have (v1, v2) = Du = (Du · n)n along ∂Ω, that is,

(v1, v2) =
∂u

∂n
n.

From (2.5),

v(θ) =
∂u

∂n
n · (cos θ, sin θ) along ∂Ω.

On the other hand, since u is constant along ∂Ω, the strong maximum principle
of Hopf [7, theorem 3.6] implies that any outward directional derivative on ∂Ω is
negative and thus,

∂u

∂n
< 0 along ∂Ω.

Fix θ ∈ R. Since ∂Ω is strictly convex, the map n : ∂Ω → S
1 is one-to-one. It follows

that there exist exactly two points of ∂Ω where n(s) is orthogonal to the fixed
direction (cos θ, sin θ). By the definition of v(θ), the function v(θ) vanishes along
∂Ω at exactly two points.

We now follow the argument given by Philippin in [17] to prove the uniqueness of
the critical points. By completeness, we give it briefly. The proof is by contradiction,
and suppose that there are at least two critical points of u in Ω. Let P1 and P2

be two critical points which are fixed in the sequel. The argument consists of the
following steps.

1. The function v(θ) is not constant in Ω because v(θ) only has two zeroes along
∂Ω.

2. As a consequence, the critical points of v(θ) are isolated point of Ω because
v(θ) is analytic.

3. Let Nθ = v(θ)−1({0}) be the nodal set of vθ. Because v(θ) is analytic, stan-
dard theory asserts that near to a critical point of v(θ), the function v(θ)
is asymptotic to a harmonic homogeneous polynomial [3]. Following Cheng
[4], Nθ is diffeomorphic to the nodal set of the homogeneous polynomial that
approximates, in particular, Nθ is formed by a set of regular analytic curves
at regular points, the so-called nodal lines. On the other hand, in a neighbour
of a critical point, the nodal lines form an equiangular system.
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We claim that there does not exist a closed component of Nθ contained in Ω.
This is because if Nθ encloses a subdomain Ω′ of Ω where v(θ) = 0 along ∂Ω′,
the maximum principle implies that v(θ) is identically 0 in Ω′, a contradiction.

4. We prove that Nθ is formed exactly by one nodal line. Suppose by contradic-
tion that there are two nodal lines L1 and L2. Because both L1 an L2 are not
closed, then the arcs L1 and L2 end at the boundary points where v(θ) van-
ishes, being both points the two end-points of Li. Since Ω is simply-connected,
then the two arcs L1 and L2 enclose at least one subdomain Ω′ ⊂ Ω where
v(θ) vanishes along ∂Ω′. This is impossible by the maximum principle.

5. As a conclusion, the nodal set Nθ is formed exactly by one arc. We now give
an orientation to the arc Nθ for all θ. The chosen orientation in Nθ is that we
first pass through P1 and then through P2. With respect to this orientation,
we are ordering the two boundary points where v(θ) vanishes. More precisely,
denote by P (θ) the initial point of Nθ, which after passing P1 and then P2,
finishes at the other boundary point, which is denoted by Q(θ).

6. Let us consider θ varying in the interval [0, π]. We observe that by the
definition of v(θ) in (2.5), the functions v(0) and v(π) coincides up to the sign,
that is, v(0) = −v(π) and thus the nodal lines N0 and Nπ coincide as sets
of points. However, when θ runs in [0, π], the ends points of N0 interchange
its position when θ arrives to the value θ = π, that is, in the nodal line Nπ.
Consequently, and according to the chosen orientation in Nθ, P (0) = Q(π)
and P (π) = Q(0). Because all the arcs Nθ pass first P1 and then P2, this
interchange of the end points between N0 and Nπ implies the existence of
another nodal line for v(π). This is impossible by item (4): this contradiction
completes the proof of theorem 2.1.

We extend theorem 2.1 in the limit case u = 0 along ∂Ω.

Corollary 2.4. Let Ω ⊂ R
2 be a bounded strictly convex domain. Let H be a real

number with H < 1. If u is a solution (1.1) and u = 0 along ∂Ω, then u has a unique
critical point.

Proof. We consider positive values a sufficiently close to 0 so the set Ωa = {x ∈ Ω :
u(x) > a} is strictly convex. Then theorem 2.1 asserts the existence of a unique crit-
ical point, which must coincide for all a because Ωa′ ⊂ Ωa if a < a′. The argument
finishes by letting a → 0. �

3. Proof of theorems 1.1 and 1.2

In this section, we apply the theory of the maximum principle developed by
Payne and Philippin in [16] for some Φ-functions associated to equation (1.1).
We introduce the notation employed there. Consider an equation of type

div(g(q2)Du) + ρ(q2)f(u) = 0, (3.1)

where ρ, g > 0, g is a C2 function of its argument and ρ and f are C1 functions. Here
q = |Du|. We also assume that (3.1) satisfies the elliptic condition g(ξ) + 2ξg′(ξ) > 0
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for all ξ > 0. We define the Φ-function

Φ(x;α) =
∫ q2

c1

g(ξ) + 2ξg′(ξ)
ρ(ξ)

dξ + α

∫ u

c2

f(η) dη,

where α is a real parameter and c1, c2 ∈ R. Here the functions g and ρ are evaluated
in q2.

We now prove theorem 1.1.

Proof of theorem 1.1. For equation (1.1), we take c1 = 0, c2 = 1 and the functions
g, ρ and f are

g(ξ) =
1√

1 + ξ
, ρ(ξ) =

1√
1 + ξ

− H, f(u) =
2
u

. (3.2)

Following the theory of Payne and Philippin, we require that ρ is positive, which it
is clear if H � 0. On the other hand, in the range 0 < H < 1, the evaluation of ρ at
q2 is non-negative by lemma 2.3. A straight-forward computation of Φ(x;α) gives

Φ(x;α) = log

(
(1 + q2)

(1 − H
√

1 + q2)2
u2α

)
, x ∈ Ω.

When Ω is strictly convex, it is proved in [16, corollary 1] that Φ(x; 2) attains
its maximum at one critical point of u. By theorem 2.1, we know that the function
u has exactly one critical point, which we denote by O, and let uM = u(O), which
coincides with the maximum value of u in Ω. Then we find

1 + |Du|2
(1 − H

√
1 + |Du|2)2 u4 � 1

(1 − H)2
u4

M ,

that is,

1 + |Du|2
(1 − H

√
1 + |Du|2)2 � 1

(1 − H)2
(uM

u

)4

� 1
(1 − H)2

(uM

a

)4

. (3.3)

Recall the value C = u2
M/((1 − H)a2). It follows from (3.3) that

(1 + HC)
√

1 + |Du|2 � C.

Inequality (1.4) is shown provided 1 + HC > 0. This inequality is immediate if
0 � H < 1. In case H < 0, the inequality 1 + HC > 0 is equivalent to (1.3). �

We follow by focusing in theorem 4 of [16]. Inequality (2.39) in [16] can be written
for our functions defined in (3.2) as

(
δij − uiuj

1 + |Du|2
)

Φij + WiΦi �
2(α − 1)

(
2H
√

1 + q2 + (α − 2)q2 − 2
)

u2(1 + q2)
, (3.4)

where Wi is a vector function uniformly bounded in Ω. In order to apply the
First Hopf maximum principle, we require that the right-hand side in (3.4) is
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non-negative. If α ∈ [0, 1], it suffices that the expression in the second parenthe-
ses in (3.4) is non-positive. This is clear if H � 0 independently if Ω is or is not
convex. If 0 < H < 1 and Ω is convex, we deduce from (2.3) that

2H
√

1 + q2 + (α − 2)q2 − 2 � (α − 2)q2 � 0.

Following [16], we deduce that Φ(x;α) attains its maximum at some boundary
point for all α ∈ [0, 1].

In the particular case α = 0, we deduce the following result.

Corollary 3.1. Let Ω ⊂ R
2 be a bounded domain and let H � 0. If u is a solution

of (1.1),

max
Ω

|Du| = max
∂Ω

|Du|.

The same holds when 0 < H < 1 if, in addition, Ω is strictly convex, and u = a > 0
on ∂Ω.

Proof. If we take α = 0 in (3.4), then there exists a boundary point P ∈ ∂Ω such
that

1 + |Du|2
(1 − H

√
1 + |Du|2)2 � 1 + q2

M

(1 − H
√

1 + q2
M )2

,

where qM = |Du|(P ). It follows directly that |Du| � qM , proving the result. �

From theorem 1.1 and corollary 3.1, we prove the existence result of theorem 1.2.

Proof of theorem 1.2. The uniqueness of solutions is a consequence that the right-
hand side of (1.1) is non-decreasing on u by lemma 2.3 [7, theorem 10.2].

For the existence of a solution u of (1.1)–(1.2), we apply a modified version of the
continuity method to the family of Dirichlet problems parameterized by τ ∈ [0, 1]

Pτ :
{

Qτ [u] = 0 in Ω
u = a on ∂Ω,

where

Qτ [u] = div

(
Du√

1 + |Du|2

)
+

2
u

(
1√

1 + |Du|2 − τH

)
.

See [7, theorem 11.4]. The graph Σuτ
of a solution of uτ of Pτ is a graph on Pa

with constant mean curvature τH and boundary ∂Ω. Let us observe that for the
value τ = 0, there is a solution of P0 because ∂Ω is convex [13,14]. As usual, let A
be the subset of [0, 1] consisting of all τ for which the Dirichlet problem Pτ has a
C2,α solution. The proof consists of showing that 1 ∈ A because standard regularity
PDE results guarantee that any solution of Qτ [u] = 0 is smooth in Ω.
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First observe that A 
= ∅ because 0 ∈ A. On the other hand, the set A is open in
[0, 1] because

∂Qτ [u]
∂u

= − 2
u2

(
1√

1 + |Du|2 − τH

)
� 0,

since H < 0.
Finally, the main difficulty lies in proving that A is closed. This follows if we are

able to derive a priori C0 and C1 estimate of uτ for every τ ∈ [0, 1] and depending
only on the initial data. In other words, we have to find a constant M , depending
only on H, a and Ω, such that if uτ is a solution of Pτ , then

sup
Ω

|uτ | + sup
Ω

|Duτ | � M. (3.5)

See [7, theorem 13.8]. However, by using theorem 1.1, it is enough if we find an
upper bound for supΩ |uτ |. We now use a geometric viewpoint of the solutions of Pτ .

Fix H ∈ R. After a dilation from the origin of R
3
+, which is an isometry of H

3,
we suppose a = 1. Then the diameter of ∂Ω coincides with the Euclidean one. Let
CR ⊂ P1 be the circumscribed circle of ∂Ω, which has a radius equal to R. After
a horizontal translation in R

3
+, if necessary, we suppose that the centre of CR is

(0, 0, 1) and denote DR ⊂ P1 the disc bounded by CR, which contains Ω in its
interior. We know that Σu lies above the plane x3 = 1. On the disc DR, we are
going to place an umbilical surface Σw with the same mean curvature H and being
a graph on DR. Indeed, and from the Euclidean viewpoint, Σw is a spherical cap
which is a graph of a function w on the disc DR. Then we prove that Σu lies in
the interior of the domain determined by Σw and the plane P1, or in other words,
u < w in Ω. This will be proved by doing dilations p → tp, p ∈ R

3
+ from the origin

O of R
3. After that, we have uM < wM , where uM and wM are the global maximum

of u and w respectively. But now, we notice that wM depends only on the initial
data, that is, from Ω, a and H.

The first step is to show the existence of the surface Σw. Consider (part of) the
Euclidean sphere in R

3
+ of radius m > 0 given by

w(r) = c0 +
√

m2 − r2, 0 � r � R,

where

c0 = −mH, m2 = (1 − c0)2 + R2, (3.6)

0 < c0 < 1 and w(R) = 1. The mean curvature of Σw is H with respect to the
upwards orientation. If we see c0 as a parameter varying from 0 to 1, the value of
the mean curvature of Σw goes from 0 to −1/R. It is not difficult to see that the
right-hand side of (1.5) is less than 1/H2. Thus R2 < 1/H2, that is, −1/R < H.
Definitively, given H under the hypothesis of theorem 1.2, we have assured the
existence of Σw.

We now do the argument of comparison between Σu and Σw by dilations. By
dilations of Σw with respect to the origin O of R

3
+, namely, tΣw and t > 1, we

take t sufficiently large so tΣw does not meet Σu. Then let t ↘ 1 until the first
touching point between tΣw with Σu. Because an interior touching point is not
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possible because both surfaces have the same (constant) mean curvature, then the
first touching point occurs at t = 1, that is, when Σw comes back to its initial
position and Σw touches Σu only at some boundary point of Ω. In particular, Σu is
contained inside the domain determined by Σw and the plane x3 = 1. Therefore, we
deduce that the global maximum uM is less than the highest point of Σw, namely,
wM = c0 + m = m(1 − H) and

uM < m(1 − H).

The above argument has been done for the value H, but it holds for τH, τ ∈ [0, 1].
Indeed, we replace H by τH. We now prove the C0 estimates for the problems Pτ .
Fix −1 � H < 0 and let uτ the solution of Pτ , τ ∈ [0, 1]. Let us observe that the
mean curvature of Σuτ

is τH and τH > H for τ ∈ [0, 1). Then the same process of
dilations together the comparison principle proves that for each τ ∈ [0, 1], we find

uτ < wM = m(1 − H). (3.7)

In order to use theorem 1.1, and because H < 0 and a = 1, it suffices to prove

m(1 − H) <

√
H − 1

H
, (3.8)

that is,

m <
1√

H2 − H
. (3.9)

However, from (3.6), we deduce m2 = (1 + mH)2 + R2, which leads to

m =
H +

√
H2 + (1 − H2)R2

1 − H2
.

By using (1.5), we conclude the desired inequality (3.9). Once we have obtained
(3.8), theorem 1.1 applies deducing an a priori estimate for |Du|. Hence, and
together (3.7), we have proved the existence of M in (3.5). This completes the
proof of theorem 1.2. �

Remark 3.2. We compare this result with theorem 1.1 in [13]. In [13], the hypoth-
esis requires that Ω is strongly convex in terms of the boundary data H, namely,
κ > |H|. However in theorem 1.2 we need that the domain Ω is strictly convex but
it may contain regions where the curvature κ of ∂Ω is close to 0. In contrast, the
size of the domain is small in relation to the value of H.

4. A lower estimate of the critical point

In this section, for H < 1, we prove an estimate from below of the global maximum
of a solution of (1.1)–(1.2).
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Theorem 4.1. Let Ω ⊂ R
2 be a bounded strictly convex domain with curvature

κ > 0. If H < 1 and u is a solution of (1.1)–(1.2), then

uM � 1 − H

κ0
, (4.1)

where κ0 = max∂Ω κ.

Firstly, we need to prove a minimum principle for the function Φ(x; 1). The next
result is inspired by other similar in the torsional creep problem [17].

Proposition 4.2. Let Ω ⊂ R
2 be a bounded strictly convex domain. Let H be a real

number with H < 1. If u is a non-radial solution of (1.1)–(1.2), then the function
Φ(x;α) attains its minimum value on ∂Ω for any α ∈ [1, 2].

Proof. Following [16, inequality (2.15)], it was proved that if u is a solution of
(1.1)–(1.2), then Φ(x;α) satisfies the next elliptic differential equation

(
δij − uiuj

1 + |Du|2
)

Φij + W̃iΦi =
2(α − 2)(α − 1)

(
2(1 − H

√
q2 + 1) + q2

)
(q2 + 1) u2

,

(4.2)

where W̃i is a vector function which is singular at the critical point of u. It is
not difficult to see that if α ∈ [1, 2], the right-hand side of (4.2) is non-positive
because (α − 2)(α − 1) � 0 and the expression in parentheses 2(1 − H

√
1 + q2) +

q2 is always non-negative: this is immediate for H � 0 and if 0 < H < 1, we use
lemma 2.3.

By the Hopf maximum principle, and since the vector functions W̃i are singular
at the critical points of u, we conclude that Φ(x;α) attains its minimum at the
unique critical point of u or at a boundary point. Recall that by theorem 2.1, the
function u has exactly one critical point O.

The proof of proposition 4.2 finishes if we discard the case that the minimum
occurs at some critical point. The proof follows now the next steps.

1. The function Φ(x;α) is not constant in Ω. The proof is by contradiction. If Φ
is constant, then the left-hand side of (4.2) is 0. If we see the right-hand side
of (4.2), the only possibility to be 0 is that α is 1 or 2. We prove that this is
not possible. We consider the case α = 1 because the argument for α = 2 is
similar. By the expression of Φ(x; 1), we find that

1 + |Du|2
(1 − H

√
1 + |Du|2)2 u2

is constant, in particular, |Du| is constant along ∂Ω. Since u = a along ∂Ω,
then ∂u/∂n is constant along ∂Ω. Then u is a solution of the Dirichlet problem
(1.1)–(1.2) together the Neumann condition ∂u/∂n = ct along ∂Ω. A result
of Serrin establishes that Ω is a round disk and u is a radial function u = u(r)
[20]. This is a contradiction.
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2. After a change of coordinates, suppose that the critical point is O = (0, 0).
Then we deduce u1(O) = u2(O) = 0. A new change of coordinates allows to
assume u12(O) = 0. Since u is a maximum of u, we have u11(O) � 0 and
u22(O) � 0.
Claim: u11(O) < 0 and u22(O) < 0.
The proof is by contradiction and suppose that u11(O) = 0 (the same argu-
ment if u22(O) = 0). Here, we follow the same notation as in the proof of
theorem 2.1. If the function v1 = u1 is constant in Ω, then u depends only on
the variable x2 and the boundary condition (1.2) is impossible. Thus, v1 is a
non-constant analytic function. Since v1 vanishes at O as well as v1

1 and v1
2 ,

the function v1 vanishes at O with a finite order m � 1. Thus, there exist at
least two nodal lines of v1 which form an equiangular system in a neighbour
of O. We have proved in theorem 2.1 that this is impossible because there
exists exactly one nodal line of v1.

3. Finally, we prove that Φ(x;α) cannot attain its minimum at O. We know
u1(O) = u2(O) = u12(O) = 0. We need the first and second partial deriva-
tives of Φ at O ∈ Ω. Following the notation employed in [16, p. 197], at the
critical point O we have

Φi(O, α) = 0, Φij(O;α) = 2
g + 2q2g′

ρ
uikujk + αfuij .

Hence, and from (1.1),

Φ11(O;α) =
2

1 − H
u11(O)2 +

2α

u(O)
u11(O)

Φ12(O;α) = 0

Φ22(O;α) =
2

1 − H
u22(O)2 +

2α

u(O)
u22(O).

Because O is a minimum of Φ(x;α), we find that Φ11(O;α) � 0
and Φ22(O;α) � 0. Since u11(O), u22(O) < 0 by the previous item, and
1 − H > 0,

2
1 − H

u11(O) +
2α

u(O)
� 0

2
1 − H

u22(O) +
2α

u(O)
� 0.

Then

u11(O) + u22(O) = Δu(O) � −2α(1 − H)
u(O)

. (4.3)

Finally, equation (1.1) at O yields

Δu(O) =
−2(1 − H)

u(O)
. (4.4)
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Comparing (4.3) and (4.4), we conclude, α � 1. Thus, if α ∈ (1, 2], we arrive
at a contradiction and the theorem is proved.
We analyse the case α = 1. Denote by Oα the minimum point of Φ(x;α).
We have proved that Oα lies in ∂Ω for all α ∈ (1, 2]. By continuity, the point
O1 must be a boundary point, because on the contrary, Φ(x;α) would be
constant for some parameter α ∈ (1, 2]. This proves the result for α = 1 and
the proof of proposition 4.2 is completed.

�

Remark 4.3. In case that u is a radial solution, then u can be expressed as

u(r) = −Hm +
√

m2 − r2, 0 � r � R.

It is not difficult to see that if we denote u′ = u′(r), then the functional

Φ(x;α) =
1 + u′2

(1 − H
√

1 + u′2)2
u2α

is constant only when the parameter α is α = 1.

Proof of theorem 4.1. First suppose that u is not a radial solution. By the proof of
proposition 4.2, we know that Φ(x; 1) attains its minimum at some point Q ∈ ∂Ω.
Then if qM = |Du|(Q), we have

1 + |Du|2)
(1 − H

√
1 + |Du|2)2 u2 � 1 + q2

M

(1 − H
√

1 + q2
M )2

a2.

We evaluate this inequality at the only critical point O, obtaining(
uM

a(1 − H)

)2

� 1 + q2
M

(1 − H
√

1 + q2
M )2

. (4.5)

On the other hand, ∂Φ(Q; 1)/∂n � 0 because Q is the minimum of Φ(x; 1). If un

and unn denote the first and second outward normal derivatives of u along ∂Ω, by
the expression of Φi (see [16, p. 197]), we deduce

ununn

(1 + u2
n)(1 − H

√
1 + u2

n)
+

un

u
� 0 at Q. (4.6)

In normal coordinates, and taking into account that u is constant along ∂Ω,
equation (1.1) along ∂Ω becomes

unn

(1 + u2
n)3/2

+
κun√
1 + u2

n

=
−2
u

(
1√

1 + u2
n

− H

)
.

Combining this equation at Q with (4.6) and using that un � 0,

−1
a

� κ(Q)un(Q)
1 − H

√
1 + u2

n(Q)
.
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Hence, and as κ(Q) � κ0,

1
a2κ2

0

� u2
n(Q)

(1 − H
√

1 + u2
n(Q))2

.

As |Du|2 = u2
n at Q, we obtain from (4.5)

(
uM

a(1 − H)

)2

� u2
n(Q)

(1 − H
√

1 + u2
n(Q))2

� 1
a2κ2

0

,

proving the result.
Suppose now that u is a radial solution. Then u(r) = c0 +

√
m2 − r2, where

m > 0, c0 = −Hm and 0 � r � R. Since m > R,

uM = u(0) = (1 − H)m > (1 − H)R =
1 − H

κ0
.

This proves inequality (4.1) and completes the proof of theorem 4.1. �
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