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ON THE ECONOMIC IMPACT
OF MODELING NONLINEARITIES:
THE ASSET PRICING EXAMPLE

PRASAD V. BIDARKOTA
Florida International University

We investigate the economic importance of modeling nonlinearities in the dynamics of
exogenous processes on the implied moments of endogenous variables in the context of
the consumption-based asset pricing model. For this purpose, we model the endowment
process alternatively as a linear autoregression and as a nonlinear threshold
autoregression. The asset pricing model with nonlinear endowment is solved using
quadrature techniques. A comparison of the moments of the model-implied rates of return
in the two cases suggests that the economic impact of modeling nonlinearities is small.
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1. INTRODUCTION

A number of studies have documented statistically significant nonlinearities in
the dynamics of several macroeconomic time-series (Lee, White, and Granger
1993). Within a univariate setting, nonlinearities in U.S. aggregate income-series
have been reported in Neftci (1984), Hamilton (1989), Potter (1995), Bidarkota
(2000), and several others. Although statistical tests widely reject linearity in
macroeconomic series, nonetheless, out-of-sample forecasts obtained from non-
linear models are generally not superior to those from linear models. For instance,
Ramsey (1996) asks, “If nonlinear models cannot forecast, what use are they?”

This paper is an attempt to address whether nonlinear time-series models,
despite their documented lack of superiority in out-of-sample forecasting, can be
useful in macroeconomic modeling. We address this issue by exploring to what
extent the equilibrium implications of macro models differ quantitatively when the
exogenous variables in these models are characterized alternatively as linear and
nonlinear processes. This exercise provides a metric for determining the economic
costs of ignoring nonlinearities in macroeconomic models.
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ECONOMIC IMPACT OF NONLINEARITIES 57

Although nonlinearities have been extensively documented in macroeconomic
series, nonetheless, most macroeconomic studies utilize simple, invariably linear,
stochastic processes for characterizing exogenous variables in the models. For
instance, much of the real business cycle literature uses simple autoregressive tech-
nology processes for driving economic fluctuations. Under special circumstances,
such simplicity affords tractable exact analytical solutions to the endogenous
variables of the model.

Nonlinear forcing processes have been used to a limited extent in macroeco-
nomic models. Most applications, however, involve nonlinearities arising from
conditional heteroskedasticity as modeled by ARCH/GARCH type processes.
An important application of nonlinear forcing processes in macro models (not
involving conditional heteroskedasticity) pertains to the use of Hamilton’s (1989)
Markov switching process. This nonlinear process has been used extensively in
various theoretical macro models, including models of asset pricing, exchange rate
determination, and so forth. An important reason for the use of Hamilton’s model
to characterize the exogenous driving processes in macro models is the analytical
tractability it affords in finding solutions to these models (Cecchetti, Lam, and
Mark 1993, Bonomo and Garcia 1994). However, in general, most nonlinear forc-
ing processes typically prelude the possibility of finding exact analytical solutions
to macro models in most settings.

In this paper, we address the issue of nonlinearities in macro models in the
specific context of the consumption-based asset pricing model of Lucas (1978).
Our main focus is in characterizing the effects of nonzlinearities in the conditional
mean dynamics of exogenous dividends in the model. Accordingly, we solve the
model under two alternative assumptions on the exogenous dividend process. In
the benchmark case, dividends are modeled as a simple autoregression (AR). In
the nonlinear case, dividends are modeled as threshold autoregressive processes
(Tong and Lim, 1980). In the benchmark case, an exact solution to the model is
available (Burnside 1998). In the nonlinear case, an exact analytical solution is
not tractable. In this case, we solve the model numerically, by first using Markov
chain approximations for the dividends process (Tauchen, 1986) and subsequently
solving the Euler equations of the model by quadrature techniques (Tauchen and
Hussey, 1991). Moments of the model-implied endogenous variables, including
rates of return, are then compared across the two cases to evaluate the economic
impact of modeling nonlinearities.

A few other studies on asset pricing have utilized nonlinear driving processes.
For instance, Kandel and Stambaugh (1990), Tauchen and Hussey (1991), and,
more recently, Ebell (2001) use an AR process with autoregressive conditional
heteroskedasticty (ARCH) to model dividends. However, although the focus of
the work in Tauchen and Hussey is to illustrate the quadrature solution technique,
the focus of the work in the other two studies is on drawing out the implications
of ARCH on the conditional moments of asset return dynamics.

A systematic evaluation of the effects of nonlinearities on the economic im-
plications of macro models has so far not been undertaken. We use the standard
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asset-pricing model here to analyze the economic impact of nonlinearities because
of the simplicity that the model affords (it has only one state variable) and because
exact analytical solutions to the equilibrium quantities of interest are available at
least in the benchmark linear endowment case. Our efforts are not to be viewed
as a test of this asset-pricing model. The failure of the standard version of this
model in replicating the empirical features of observed data on equity and bond
returns has been thoroughly established. See Kocherlakota (1996) for a survey of
this literature.

This paper is organized as follows. In Section 2, we briefly sketch the asset
pricing model, outline its solution under a linear endowment process, and describe
the solution under a nonlinear endowment process. In Section 3, we evaluate the
accuracy of discrete-valued Markov chains in approximating continuous-valued
linear and nonlinear stochastic processes with a simulation study. In Section 4,
we evaluate the accuracy of the numerical solution to the asset pricing model and
also undertake an empirical analysis of the asset pricing model with linear and
nonlinear endowment processes. We also evaluate the impact of nonlinearities
on model-implied rates of return. In Section 5, we explore the robustness of our
findings in Section 4 to conditional heteroskedasticity in the forcing process, to
alternative functional forms for nonlinearity, and to alternative data proxies. In the
final section, we conclude with a summary of the implications of nonlinearities
emerging from our study.

2. THE MODEL AND ITS SOLUTIONS

Subsection 2.1 sketches the asset pricing model, Subsection 2.2 outlines the exact
solution to the model with a linear autoregressive endowment process, and Sub-
section 2.3 describes a numerical solution to the model with a nonlinear threshold
autoregressive endowment process.

2.1. The Asset Pricing Model

In a single good Lucas (1978) economy, with a representative maximizing agent
and a single asset that pays exogenous dividends of nonstorable consumption
goods, the first-order Euler condition is:

PtU
′(Ct ) = θEtU

′(Ct+1)[Pt+1 + Dt+1]. (1)

Here,

Pt is the real price of the single asset in terms of the consumption good
U ′(C) is the marginal utility of consumption C for the representative agent
θ is a subjective discount factor, assumed nonstochastic and constant
D is the dividend from the single productive unit
Et is the mathematical expectation, conditioned on information available at time t .
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Assume a constant relative risk aversion (CRRA) utility function:

U(C) = (1 − γ )−1C(1−γ ), γ ≥ 0. (2)

Since consumption simply equals dividends in this simple model, that is, C = D

every period, (1) reduces to:

PtD
−γ
t = EtθD

−γ

t+1[Pt+1 + Dt+1]. (3)

On rearranging, this yields:

Pt = Etθ

(
Dt+1

Dt

)−γ

[Pt+1 + Dt+1]. (4)

Let vt denote the price-dividend ratio, that is, vt = Pt/Dt . Then, we can rewrite
(4) in terms of vt as:

vt = Etθ

(
Dt+1

Dt

)1−γ

[vt+1 + 1]. (5)

Thus, this equation implicitly defines the solution to the asset pricing problem
in this model. One specifies an exogenous stochastic process for dividends and
solves for the price dividend ratio vt .

Using yt = ln(Dt/Dt−1) to denote the dividend growth rate, we can express (5)
as:

vt = Etθ exp [(1 − γ )yt+1] (vt+1 + 1). (6)

Defining mt+1 ≡ θ exp[(1 − γ )yt+1], we can rewrite (6) as:

vt = Etmt+1[vt+1 + 1]. (7)

Thus, (7) is the first order Euler condition for the asset pricing problem. In the
following subsections, we show how to solve this equation under alternative
assumptions about the evolution of exogenous dividends.

2.2. Asset Pricing Solution under AR(1) Dividend Growth Rates

As a benchmark case, we assume that the dividend growth rates stochastically
evolve according to:

yt = µ + ρ(yt−1 − µ) + ηt , ηt ∼ iid N
(
0, σ 2

η

)
. (8)

Here, |ρ| < 1 to impose stationarity of the dividends process.
Under such an AR(1) endowment process, Burnside (1998) derives an exact

analytical solution to the price-dividend ratio in the asset pricing model. On
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forward iteration, the first-order Euler condition in (7) yields:

vt =
∞∑
i=1


Et

i∏
j=1

mt+j


 + lim

i→∞
Et

i∏
j=1

mt+j vt+i . (9)

One solution to the above difference equation in vt is obtained by imposing the
transversality condition:

lim
i→∞


Et

i∏
j=1

mt+j vt+i


 = 0. (10)

This condition rules out solutions to the asset pricing model that imply intrinsic
bubbles (Froot and Obstfeld 1991). Imposing the transversality condition on (9)
gives:

vt =
∞∑
i=1


Et

i∏
j=1

mt+j


. (11)

Burnside (1998) shows that under an AR(1) process for dividend growth rates,
the price-dividend ratio is given by:

vt =
∞∑
i=1

θ i exp[ai + bi(yt − µ)]. (12)

In this solution, the constants ai and bi are given by:

ai = i (1 − γ )µ + 1

2
(1 − γ )2 σ 2

(1 − ρ)2

[
i − 2

ρ

(1 − ρ)
(1 − ρ)i + ρ2 1 − ρ2i

1 − ρ2

]
,

(13)

bi = (1 − γ )
ρ

(1 − ρ)
(1 − ρi). (14)

Burnside (1998) further shows that the infinite series in (12) converges if and only
if θ exp[(1 − γ ) µ + 1

2 (1 − γ )2 σ 2

(1 − ρ)2 ] < 1.

2.3. A Nonlinear Model—SETAR(1,1) Process

To assess the impact of nonlinearities, we assume that the dividend growth rates
stochastically evolve as a self-exciting threshold autoregressive (SETAR) process.
Threshold autoregressions were introduced in Tong and Lim (1980), and versions
of these models were fit to U.S. GNP series by Potter (1995), Bidarkota (2000),
and others.
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FIGURE 1. Sample path of a simulated SETAR process.

A SETAR(1,1) process can be written as follows. In regime 1, the process
evolves as the following first-order autoregression:

yt = µ1 + ρ1(yt−1 − µ1) + η1t , η1t ∼ iid N
(
0, σ 2

η1

)
. (15.1)

In regime 2, the process evolves as the following alternative first-order autoregres-
sion:

yt = µ2 + ρ2(yt−1 − µ2) + η2t , η2t ∼ iid N
(
0, σ 2

η2

)
. (15.2)

In order to facilitate comparison with the linear AR(1) process and a statistical
test for linearity later, we use first-order autoregressions in the two regimes.

The switch between the two regimes is governed by past values of yt . This
feature makes these processes self-exciting. For instance, the switch could be gov-
erned by the criterion yt−l > s, and l and s estimated along with other parameters
of the model. Potter (1995) reports estimates of the delay parameter l and the
threshold parameter s of 2 and 0, respectively, for quarterly U.S. GNP series. As
discussed by him, these estimates closely match those obtained by other scholars.
We therefore simply set l = 2 and s = 0 in our empirical work that follows. Thus,
we get regime 1 whenever yt−2 > 0, and we get regime 2 whenever yt−2 ≤ 0.

Figure 1 shows simulated realizations from such a SETAR(1,1) process. The
mean in regime 1 is 5 and in regime 2 is −5. The AR coefficients and error standard
deviations in the two regimes are identical and equal to 0.5 and 1.5, respectively.
The figure clearly shows a readily interpretable type of nonlinearity captured by
this version of a SETAR process. The sample skewness for the simulated data is
estimated to be −0.52, with a p-value of 1 indicating strong asymmetries. If the
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AR coefficients and error variances also differ across the two regimes in addition
to the mean, further nonlinearities are generated by such a process.

In order to further demonstrate that the SETAR(1,1) process can exhibit sig-
nificant nonlinearities, we undertake the following exercise. We fit by maximum
likelihood the AR(1) process given in (8) and a SETAR(1,1) process given in
Equations (15.1) and (15.2), assuming that the correct switching criterion between
regimes is known, to the simulated data plotted in Figure 1. The maximized log-
likelihood value in the AR(1) and SETAR(1,1) cases is −9929.29 and −9244.13,
respectively. Thus, the SETAR(1,1) model shows large improvement in the max-
imized log-likelihood value. Values of the Akaiki Information Criterion (AIC) in
the two cases are 19864.59 and 18500.27, respectively. Values of the Schwarz
Bayesian Criterion (SBC) in the two cases are 19884.14 and 18539.37, respec-
tively. Thus, both model selection criteria pick the SETAR model over the linear
AR(1).

The null hypothesis of a single regime (the null of linearity) can be tested by
testing for equality of the parameter values in the two regimes. The likelihood
ratio (LR) test statistic shows a p-value of 0.000 for the test. Thus, single regime
(linearity) is overwhelmingly rejected in favor of a two regime nonlinear process.

2.4. Asset Pricing Solution under SETAR(1,1) Dividend Growth Rates

Exact analytical solutions to the Lucas (1978) asset pricing model are available
only in a handful of special cases, typically with a simple endowment process
(Burnside 1998, Bidarkota and McCulloch 2003, Tsionas 2003). When an exact
analytical solution is not tractable, we need to resort to numerical techniques
for finding approximate solutions to the model-implied price-dividend ratio. This
involves solving the integral (7).

Tauchen and Hussey (1991) provide one method for finding an approximate
solution to (7). Intuitively, their method is simple and very appealing. The method
involves first approximating the (typically) continuous-valued state vector in the
model by a discrete-valued Markov chain. Once the Markov chain approximation
is found, the integral asset pricing (7) reduces to a system of linear simultaneous
equations. The solution to these equations gives the price-dividend ratios at the
discretized state space of the approximating Markov chain. The solution can then
be extended to the entire continuous-valued domain of the true state vector using
techniques such as Nystrom’s extension (see Tauchen and Hussey, 1991).

A Markov Chain approximation can be found to any continuous-valued process
(linear or nonlinear) in the following way. Let yt follow an arbitrary continuous-
valued process:

yt = �(yt−1) + ηt , ηt ∼ iid
(
0, σ 2

η

)
, (16)

where �(.) is some continuous function, and the error term has the distribution
Pr[ηt ≤ u] = F(u/ση) with F(.) being the cumulative distribution function with
unit variance.
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Let ỹt be a discrete-valued approximating process to (16). Let ȳ1 < ȳ2 < · · · <

ȳN be the values taken by ỹt . For instance, we could choose ȳN = mσy for some
m > 0 and ȳ1 = −ȳN . The rest of the nodes could be equispaced on the interval
[ȳ1, ȳN ]. Let w denote the interval between any two nodes.

Tauchen (1986) provides a simple method for finding the transition probabilities
of the approximating Markov chain. Let πjk = Pr[ỹt = ȳk|ỹt−1 = ȳj ] be a typical
element of the transition matrix. Then, one could choose

πj1 = F

(
ȳ1 − �(ȳj ) + w/2

ση

)
, (17.1)

πjN = 1 − F

(
ȳN − �(ȳj ) − w/2

ση

)
, (17.2)

and for 2 ≤ k ≤ N − 1

πjk = F

(
ȳk − �(ȳj ) + w/2

ση

)
− F

(
ȳk − �(ȳj ) − w/2

ση

)
. (17.3)

Once an approximating Markov chain is found to the continuous-valued process,
Tauchen and Hussey (1991) provide a way to obtain a solution to the first-order
Euler equation in the asset pricing model. Consider the Euler equation (7) at time
t − 1:

vt−1 = Et−1mt [vt + 1]. (18)

Let x ≡ {yt−1, yt−2, . . . , yt−L} denote the state vector at time t − 1. Let x− ≡
{yt−1, yt−2, . . . , yt−L+1} and y ≡ {yt }. Then the state vector at time t is {yt , x

−}.
The first-order Euler condition can then be written as

v(x) =
∫

[1 + v(y, x−)]m(y)f (y | x) dy, (19)

where f (.|x) is the conditional density given the state vector x.
Let ṽ be the approximate solution. Then the first-order condition can be approx-

imated with

ṽ(ȳj ) =
N∑

k=1

[1 + ṽ(ȳk)]m(ȳk)πjk (20)

Let v̄j = ṽ(ȳj ) be the values of ṽ at each of the abscissa. The first-order condition
can be written as

v̄j =
N∑

k=1

[1 + v̄k] m(ȳk)πjk. (21)

These are N linear equations in v̄j . Solving these N equations gives the values
of the price-dividend ratios at the discretized values of the state space. We can
then extend the solution ṽ to the entire domain of the state space through some
interpolation techniques.
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One can gauge the accuracy of the approximate solution by comparing it to the
exact solution available under special cases. For instance, we can solve the asset
pricing model for the price-dividend ratio when the dividend growth rates evolve
as a first-order autoregression using Burnside’s (1998) exact solution and Tauchen
and Hussey’s (1991) approximate solution, and compare the two to get a sense of
the approximation errors.

3. ASSESSING THE ACCURACY OF MARKOV
CHAINS APPROXIMATIONS

In this section, we provide a measure of the accuracy involved in approximating
a continuous-valued stochastic process with a discrete-valued Markov chain. We
do this for two different stochastic processes. One is a linear first-order Gaussian
autoregression and the second is a nonlinear conditionally Gaussian SETAR(1,1)
process.

In order to assess the accuracy of the Markov chain approximation technique,
we conducted the following two exercises. First, we simulated a simple first-order
Gaussian autoregressive process and obtained a sample of 5,000 observations. We
estimated an AR(1) process by maximum likelihood (ML) with this simulated
data. We then fit a Markov chain approximation to the simulated AR process
using Tauchen’s (1986) approximation method, using 75 nodes. Subsequently,
we obtained a simulated sample of 5,000 observations from this approximating
Markov chain. We then estimated an AR(1) process by maximum likelihood with
this simulated data. The ML estimates of the AR(1) process obtained with the two
simulated samples are reported in Table 1, along with the true parameters values.
The table shows that the Markov chain approximates an AR(1) process quite well.

In the second exercise, we repeated the above with a Gaussian SETAR(1,1)
process. The switch is governed by the value of the variable two periods earlier.
If it is positive, the process is in regime 1, otherwise the process is in regime
2. We first simulated 5,000 observations from such a SETAR(1,1) process, and
estimated a similar SETAR(1,1) model by ML with the simulated data. We then
obtained a Markov chain approximation to the SETAR(1,1) process, simulated

TABLE 1. Assessing the accuracy of Markov chain approximations

yt = µ + ρ(yt−1 − µ) + ηt , ηt ∼ iid N
(
0, σ 2

η

)
. (8)

µ ρ ση

True parameter values 1.5 0.25 2.5
Simulated data from AR process 1.5234 0.2672 2.5084

(0.0484) (0.0136) (0.0251)
Simulated data from approximating 1.5135 0.2457 2.4926

Markov Chains (0.0468) (0.0137) (0.0249)

1. Numbers in parentheses for the parameter estimates are the Hessian-based standard errors.

https://doi.org/10.1017/S136510050605005X Published online by Cambridge University Press

https://doi.org/10.1017/S136510050605005X


ECONOMIC IMPACT OF NONLINEARITIES 65

TABLE 2. Assessing the accuracy of Markov chain approximations

In regime 1, yt = µ1 + ρ1(yt−1 − µ1) + η1t , η1t ∼ iid N
(
0, σ 2

η1

)
(15.1)

In regime 2, yt = µ2 + ρ2(yt−1 − µ2) + η2t , η2t ∼ iid N
(
0, σ 2

η2

)
(15.2)

µ1 ρ1 ση1 µ2 ρ2 ση2

True parameter values 5 0.5 1.5 −5 0.5 1.5
Simulated data from 5.0100 0.4807 1.5312 −4.9832 0.5250 1.5512

SETAR process (0.0518) (0.0151) (0.0190) (0.0778) (0.0194) (0.0261)
Simulated data from 5.1250 0.5320 1.4890 −4.9659 0.5105 1.5034

approximating (0.0939) (0.0258) (0.0311) (0.0495) (0.0140) (0.0171)
Markov chains

1. When yt−2 > 0, we get regime 1 and when yt−2 ≤ 0, we get regime 2.
2. Numbers in parentheses for the parameter estimates are the Hessian-based standard errors.

5,000 observations from this approximating process, and then fit a SETAR(1,1)
model by ML to this data. The ML estimates of the SETAR(1,1) process fit to
the two simulated samples are presented in Table 2, along with the true parameter
values. Once again, this table shows that the ML estimates from the two samples
are quite close to their true parameter values.

Thus, the Markov chain with 75 nodes seems to approximate both a linear
AR(1) and a nonlinear SETAR(1,1) process quite well.

4. ASSET PRICING

In Subsection 4.1, we present empirical results using an AR(1) endowment pro-
cess. In Subsection 4.2, we present results using SETAR(1,1) process. In Subsec-
tion 4.3, we compare model-implied rates of return obtained in the two cases.

4.1. Asset Pricing with Linear AR(1) Endowment

In this section, we first describe the data used to proxy for the endowment in the
model, and provide maximum likelihood estimates obtained by fitting an AR(1)
process to this data series. We then evaluate the model-implied price-dividend
ratios obtained from the exact solution to the model under the AR(1) endowment
process. We go on to compare these price-dividend ratios with those obtained
by solving the model numerically, using the techniques in Tauchen and Hussey
(1991), in order to get a sense of the accuracy of the numerical solution method.

In the standard Lucas (1978) model, because consumption, dividends, and
output are identical, we could estimate our endowment process with observed
data on any of these three variables as proxies for the endowment in the model.
In this study we use GNP. This is primarily because several studies, including
Potter (1995) and Bidarkota (2000), have fit SETAR processes to this version of
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TABLE 3. Maximum likelihood model estimates for lin-
ear AR(1) process

yt = µ + ρ(yt−1 − µ) + ηt , ηt ∼ iid N
(
0, σ 2

η

)
. (8)

µ ρ ση log L

0.0080 0.3581 0.0100 627.457
(0.0011) (0.0665) (0.0005)

1. Numbers in parentheses for the parameter estimates are the Hessian-based
standard errors.
2. logLis the maximized log-likelihood value.

the aggregate income series. We use quarterly U.S. real GNP data obtained from
the Survey of Current Business. The dataset spans the period 1947:1–1996:4.

The discount factor θ was set to 0.97 and the risk aversion coefficient γ to 1.5
throughout the empirical analysis in the rest of the paper.

Table 3 presents ML estimates of a simple first-order Gaussian autoregression
fit to the GNP growth rates. The mean growth rate is estimated to be 0.008
per quarter (or, 3.2 percent per annum). The persistence is quite strong, with
the AR(1) parameter estimated at 0.36 and strongly statistically significant. The
second-order partial autocorrelation coefficient of the growth rates is 0.07. Thus,
an AR(1) process seems adequate for capturing the bulk of the persistence in the
growth rates.

Figure 2a shows the model-implied price-dividend (P/D) ratios obtained from
the asset pricing model with a linear AR(1) endowment process. The P/D ratios
were computed using the exact solution given by Burnside (1998), reproduced in
(12). The infinite summation was truncated to the first 10,000 terms. We verified
that the P/D ratios were indistinguishable at truncations of 1,000 and 10,000
terms, indicating that the infinite summation had converged by the first 1,000
terms.

The mean P/D ratio is about 28.55, and it varies within a range of only about
0.6 of its mean value. This inability of the consumption-based asset pricing model
to generate sufficient variation in the implied P/D ratios is well known in the
literature.

Figure 2b shows the P/D ratios computed using the approximate solution
method of Tauchen and Hussey (1991), after fitting an approximate Markov chain
to the linear AR(1) endowment process using techniques in Tauchen (1986).
Comparing the approximate P/D ratios to their exact values in Figure 2a suggests
that the approximation is generally quite good. The exact and approximate P/D

ratios plotted in Figure 2c are virtually indistinguishable, as they lie almost exactly
on a 45-degree line. Their differences, approximate minus exact P/D ratios as a
percentage of exact P/D ratios, plotted in Figure 2d show a maximum approxi-
mation error of less than 0.12 percent in absolute value. Compared to the mean
P/D ratio of 28.55, the approximation error is quite small.
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FIGURE 2. Asset pricing solution under linear AR(1) endowment—exact and approximate
solutions.

4.2. Asset Pricing with Nonlinear SETAR(1,1) Endowment

In this section, we first provide ML estimates obtained by fitting a SETAR(1,1)
process to the endowment data. We then evaluate the model-implied P/D ratios
in the asset pricing model driven by the estimated SETAR(1,1) endowment pro-
cess. Finally, we compare these P/D ratios with those obtained with the linear
endowment process discussed in Subsection 4.1.

Table 4 presents ML estimates of a SETAR(1,1) process fit to the GNP
growth rates. The difference in the mean growth rates in the two regimes is only
0.0008 per quarter (or, 0.32 percent per annum). The second regime (corresponding
to lower growth rates) is more volatile but less persistent than the first regime
(corresponding to higher growth rates). Overall, the nonlinear effects are
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TABLE 4. Maximum likelihood model estimates for nonlinear SETAR(1,1) process

In regime 1, yt = µ1 + ρ1(yt−1 − µ1) + η1t , η1t ∼ iid N
(
0, σ 2

η1

)
(15.1)

In regime 2, yt = µ2 + ρ2(yt−1 − µ2) + η2t , η2t ∼ iid N
(
0, σ 2

η2

)
(15.2)

µ1 ρ1 ση1 µ2 ρ2 ση2 log L 2� log L

0.0080 0.3843 0.0093 0.0072 0.2742 0.0129 631.275 7.636
(0.0012) (0.0730) (0.0005) (0.0031) (0.1731) (0.0015) (0.054)

1. When yt−2 > 0, we get regime 1 and when yt−2 ≤ 0, we get regime 2.
2. Numbers in parentheses for the parameter estimates are the Hessian-based standard errors.
3. log L is the maximized log-likelihood value.
4. 2� log Lis the likelihood ratio test statistic for the null hypothesis of a single regime. In this case, µ1 = µ2,
ρ1 = ρ2, and ση1 = ση2 . The number in parentheses gives the χ2

3 p-value.

quantitatively weak. This, of course, has an important bearing on the overall
impact of nonlinearities, as we shall see subsequently.

The null hypothesis of a single regime (the null of linearity) can be tested by
testing for equality of the parameter values in the two regimes. In general SETAR
models, the switch between regimes is governed by yt−l > s, and l and s are
estimated along with other parameters of the model. In such a case, under the null
hypothesis of a single regime, the parameters l and s are not identified. Standard
asymptotic distribution theory does not go through (Hansen 1996). In our paper,
because we do not estimate the parameters l and s but instead set l = 2 and s = 0
in accordance with the findings in previous studies, our tests do not suffer from this
problem. Our test here is, therefore, carried out with the LR test statistic and critical
values are drawn from the χ2 distribution with appropriate degrees of freedom.

The likelihood ratio (LR) test statistic, reported in Table 4, shows a p-value
of 0.054 for the test. Thus, linearity is not rejected (barely) at the 5 percent
significance level, but it can be rejected at the 6 percent level.

Figure 3a plots the model-implied P/D ratios in the asset pricing model
with SETAR(1,1) endowment. The P/D ratios are computed using the approx-
imate solution method in Tauchen and Hussey (1991), after approximating the
SETAR(1,1) process with discrete Markov chains using the techniques in Tauchen
(1986). The mean P/D ratio is once again about 28.55, the value obtained under
AR(1) endowment.

Figure 3b plots the P/D ratios under SETAR(1,1) endowment, against the
values obtained under AR(1) endowment using the approximate solution method.
This figure summarizes the effects of modeling nonlinearities in the dividend
growth rates on the equilibrium implications of the asset pricing model. Any devi-
ations from a 45-degree line in the figure can be attributed solely to nonlinearities
in the driving process. The figure shows that the variation in the P/D ratios
under SETAR(1,1) endowment is largely similar to that under AR(1) endowment.
Although small deviations are noticeable, the implied P/D ratios largely lie along
the 45 degree line for the most part. SETAR(1,1) minus AR(1) P/D ratios as a
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FIGURE 3. Asset pricing solution under nonlinear SETAR(1,1) endowment—comparison
with approximate solution under linear AR(1) endowment.

percentage of AR(1) P/D ratios, plotted in Figure 3c, show a maximum difference
of less than 0.5 percent. Compared to the mean P/D ratio of 28.55, this difference
is quite small.
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TABLE 5. Model-implied rates of return

Risk-free returns Equity returns Equity premium

AR(1) Exact 17.3197 17.3629 0.0432
2.4057 3.9001 3.0703

AR(1) Approximate 17.3140 17.3630 0.0491
2.3949 3.9018 1.7567

SETAR(1,1) Approximate 17.3089 17.3592 0.0503
2.4225 3.8852 1.7513

1. For each of the three asset pricing solutions in the first column, numbers in the first row of the remaining columns
give the mean rates of return and the numbers in the second row of the remaining columns give the standard deviations
of the rates of return.
2. All rates of return are expressed in percent per annum.

4.3. Implications of Nonlinearities for Model-Implied Rates of Return

Given the model-implied P/D ratios, it is straightforward to compute the model-
implied rate of return on risky assets with both linear and nonlinear endowment.
This will not be derived here but the reader can refer, for instance, to Bidarkota
and McCulloch (2003). Similarly, the rate of return on risk-free assets also can be
easily evaluated. However, although an exact closed-form solution can be easily
derived for the risk-free rate with linear endowment, such a solution is not tractable
with nonlinear endowment. The discretization of the state vector involved in the
Tauchen and Hussey (1991) numerical solution permits computation of the risk
free returns with nonlinear endowment.

Table 5 presents the means and standard deviations of the model-implied rates of
return with both SETAR(1,1) and AR(1) endowments. The table reports statistics
for the implied risk free returns, equity returns, and equity premia. The model
predicts a mean risk free rate of 17.31 percent per annum with the SETAR(1,1)
endowment and an equity return of 17.36 percent per annum. Thus, the equity
premium predicted by the model is only 0.05 percent per annum. This low equity
premium, as compared to the U.S. average in excess of 7 percent per annum over
the last 100 years, is the well-known equity premium puzzle of Mehra and Prescott
(1985).

The model with a linear AR(1) endowment implies mean rates of return that
are within 0.01 percent of those from the model with the nonlinear SETAR(1,1)
endowment. The approximation errors on the rates of return in the linear AR(1)
case associated with the numerical solution techniques of Tauchen (1986) and
Tauchen and Hussey (1991) are even smaller, as evident from the first two rows
of Table 5. The biggest impact of the approximate solution appears to be in the
standard deviation of the equity premium. The model with linear endowment
implies a standard deviation of the equity premium of 3.07 percent per annum
with the exact solution and only 1.76 with the numerical solution.
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Overall, it appears that in the context of the consumption-based asset-pricing
model of Lucas (1978), the effects of modeling nonlinearities in the endowment
process on the model-implied rates of return are miniscule. The mean implied
rates of return in the model with linear and nonlinear endowment are within 0.01
percent per annum of each other.

5. EXPLORING ROBUSTNESS OF RESULTS

In this Section, we explore robustness of our results with respect to conditional
heteroskedasticity in Subsection 5.1, with respect to alternative functional forms
for nonlinearity in Subsection 5.2, and with respect to alternative data proxies for
dividends in Subsection 5.3.

5.1. Conditional Heteroskedasticity

In order to explore the sensitivity of our results to conditional heteroskedasticity,
we extend the homoskedastic linear and nonlinear dividend processes to incor-
porate ARCH effects. In order to keep the dimension of the state vector small,
we model conditional heteroskedasticity simply as an ARCH(1) process. This
specification is used in Tauchen and Hussey (1991) as well.

The AR(1) process with ARCH(1) errors is given by:

yt = µ + ρ (yt−1 − µ) + ηt , ηt | 
t−1 ∼ σtzt , zt ∼ iid N(0,1), (22.1)

σ 2
t = α0 + α1|ηt−1|2, (22.2)

where α0 > 0 and 0 ≤ α1 < 1 and 
t denotes the information set available at
time t comprising of {yt , yt−1, . . . , y1}.

The SETAR(1,1) process with ARCH(1) errors can be written as follows:
In regime 1,

yt = µ1 + ρ1(yt−1 − µ1)+ η1t , η1t | 
t−1 ∼ σtz1t , z1t ∼ iid N(0,1), (23.1)

σ 2
t = α0 + α1|ηt−1|2. (23.2)

In regime 2,

yt = µ2 + ρ2(yt−1 − µ2) + η2t , η2t | 
t−1 ∼ δσtz2t , z2t ∼ iid N(0,1), (23.3)

σ 2
t = α0 + α1|η2t−1/δ|2, (23.4)

where δ > 0 is the ratio of error standard deviation in regime 2 versus regime 1.
As in Section 2, we get regime 1 when yt−2 > 0, and regime 2 when yt−2 ≤ 0.

We estimated both the AR and SETAR models with ARCH effects using the
real GNP data from Section 4. ML estimates are presented in Table 6. The ARCH
parameter is estimated to be 0.23 with the AR model and 0.28 with the SETAR
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TABLE 6. ML estimates for AR(1) and SETAR(1,1) processes with ARCH(1)
errors

µ ρ α0 α1 log L

AR(1) Process
0.0046 0.4025 7.857e-5 0.2338 631.009

(0.0010) (0.0818) (1.080e-5) (0.1172)

µ1 ρ1 α0 α1 µ2 ρ2 δ log L

SETAR(1,1) Process
0.0079 0.3696 5.707e-5 0.2844 0.0061 0.3055 1.6808 638.096

(0.0010) (0.0884) (8.976e-6) (0.1113) (0.0035) (0.2227) (0.2549)

1. For the SETAR(1,1) process, when yt−2 > 0, we get regime 1 and when yt−2 ≤ 0, we get regime 2.
2. Numbers in parentheses for the parameter estimates are the Hessian-based standard errors.
3. log L is the maximized log-likelihood value.

TABLE 7. Model-implied rates of return

Risk free returns Equity returns Equity premium

AR(1)–ARCH(1) 17.1895 17.2859 0.0964
2.7058 3.8408 1.6339

SETAR(1,1)–ARCH(1) 17.1736 17.2657 0.0921
2.4462 3.9242 1.6288

1. For each of the two asset pricing solutions in the first column, numbers in the first row of the remaining columns
give the mean rates of return and the numbers in the second row of the remaining columns give the standard deviations
of the rates of return.
2. All rates of return are expressed in percent per annum.

model. A likelihood ratio test would reject homoskedasticity in favor of ARCH
effects.

With ARCH effects, exact analytical solution to the Euler equation does not
exist even in the AR case. The asset pricing model needs to solved using the
Markov chain approximation technique. Table 7 presents model-implied rates of
return for the AR and SETAR models with ARCH effects. When comparing with
the implied rates of return in the homoskedastic case, the most notable difference
is the near doubling of the implied mean equity premium. However, once again,
comparing the rates of return across the AR and SETAR models, differences in
the mean rates of return are less than 0.1 percent per annum. Thus, effects of
nonlinearities in the conditional mean remain small.

5.2. Alternative Functional Forms

In order to explore the sensitivity of our results to alternative functional forms for
modeling nonlinearity in the conditional mean, we entertain two further specifi-
cations of nonlinear dividends process.
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TABLE 8. ML Estimates for ANN(1) and Ad Hoc NL processes with ARCH(1)
errors

ω11 ω12 α0 α1 β ω21 ω22 log L

ANN(1) Process
0.001346 0.4019 7.857e-5 0.2338 0.0065 −0.0211 0.3473 631.010

(1.2125) (0.1328) (1.081e-5) (0.1173) (2.3407) (9.8537) (10.3548)

Ad Hoc NL Process

0.0113 0.4050 7.857e-5 0.2338 −0.0067 0.3708 631.010
(7.7829) (2.7063) (1.082e-5) (0.1177) (7.7829) (17.3352)

1. Numbers in parentheses for the parameter estimates are the Hessian-based standard errors.
2. log L is the maximized log-likelihood value.

The first is a neural network model. We know from the literature on neural net-
works that these are universal approximators, that is, they are capable of capturing
nonlinearity of any form that may exist in a data series (Stinchcombe and White
1989). A neural network model, augmented with ARCH(1) errors, takes the form

yt = ω′
1xt + βG(ω′

2xt ) + ηt , ηt | 
t−1 ∼ σtzt , zt ∼ iid N(0,1), (24.1)

σ 2
t = α0 + α1|ηt−1|2, (24.2)

where xt ≡ {1, yt−1}′, G(.) is the logistic function G(x) = 1/{1 + exp(−x)}, and
ωj ≡ {ωj1, ωj2}′, j = 1, 2 is a vector of unknown parameters.

The second nonlinear model is motivated by the neural network literature. This
can be viewed as an ad hoc nonlinear model. It can be represented as follows:

yt = ω′
1xt + β exp(ω22yt−1) + ηt , ηt | 
t−1 ∼ σtzt , zt ∼ iid N(0,1), (25.1)

σ 2
t = α0 + α1|ηt−1|2. (25.2)

ML estimates of the two models are presented in Table 8. Parameter estimates
common with the AR(1)–ARCH(1) model are very similar. The coefficient on
the nonlinear term (logistic or exponential) is estimated to be small (0.007 in the
ANN model and −0.007 in the Ad hoc model). The maximized log-likelihood
value shows no increase compared to the value in the AR(1)–ARCH(1) case.

Model-implied rates of return from solving the Euler equation in the two cases
are presented in Table 9. Once again, comparing these rates of return with those
under AR(1)–ARCH(1) process shows insignificant effects of nonlinearities.

5.3. Alternative Data Proxies for Dividends

Because the Lucas (1978) asset pricing model has dividends being equal to con-
sumption and income, we could proxy the exogenous dividends in the model with
any of these three variables from data. Therefore, we carried out the empirical
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TABLE 9. Model-implied rates of return

Risk-free returns Equity returns Equity premium

ANN(1)–ARCH(1) 17.1916 17.2867 0.0951
2.7032 3.8406 1.6324

Ad Hoc NL–ARCH(1) 17.1897 17.2860 0.0962
2.7048 3.8410 1.6341

1. For each of the two asset pricing solutions in the first column, numbers in the first row of the remaining columns
give the mean rates of return and the numbers in the second row of the remaining columns give the standard deviations
of the rates of return.
2. All rates of return are expressed in percent per annum.

analysis described in Sections 4 through 5.2 using annual per capita real con-
sumption data on nondurables and services in the United States from 1889 to 1997
as well. This data series is commonly used in the equity premium literature (see,
for instance, Campbell and Cochrane 1999).

For the sake of brevity, we only summarize the main results obtained from
the analysis using consumption data. ML estimates indicate negative first-order
autocorrelation in consumption growth rates. Mean consumption growth rate is
twice, and its volatility thrice as much, as that of GNP. A comparison of the
maximized log-likelihood values in the homoskedastic AR and SETAR models
indicates no statistically significant nonlinearities in the conditional mean (p-value
for the LR test statistic is 0.264). Model-implied rates of return differ by less than
0.25 percent per annum in the two cases.

Consumption growth rates exhibit stronger ARCH effects. The ARCH param-
eter is estimated to be 0.363. An LR test for homoskedasticity would reject in
favor of ARCH(1) effects. Unlike with GNP data, the implied equity premium
declines, and is in fact driven to −0.22 percent per annum, in the AR, ANN,
and Ad hoc models once ARCH effects are incorporated. In the SETAR case, the
implied premium rises by 0.15 percent per annum with the introduction of ARCH.
Comparing across the conditionally linear in the mean and conditionally nonlinear
in the mean models with ARCH effects, the effects of nonlinearities are negligible
in the case of ANN and Ad hoc nonlinear models. The SETAR–ARCH model
shows implied rates of return that differ from the AR–ARCH case by as much as
1.15 percent per annum. In the AR–ARCH case, the AR coefficient is estimated
to be −0.179. In the SETAR–ARCH case, the AR coefficient is estimated to be
0.315 in regime 1 and 0.072 in regime 2. This accounts for the larger effects of
nonlinearities in this case.

6. CONCLUSIONS

In this study, we analyzed the economic importance of modeling nonlinearities in
the conditional mean dynamics of exogenous forcing processes on the moments
of endogenous variables in the context of a macroeconomic model. We used the
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popular consumption-based asset pricing model of Lucas (1978) for our analysis. A
linear AR(1) process and a nonlinear SETAR(1,1) process were used alternatively
to model the exogenous endowment sequence. Exact solution to the model with
a linear endowment was used to solve for endogenous quantities of interest,
including the model-implied price-dividend ratio, and risk-free and risky rates of
return. A numerical solution of Tauchen and Hussey (1991) was used to solve the
model with a nonlinear endowment.

Our analysis suggests that the overall impact of modeling nonlinearities in the
conditional mean dynamics of the exogenous endowment sequence on the implied
rates of return in this model is small.

Our finding of weak effects of nonlinearities is in part a result of weak nonlin-
earities in the conditional mean dynamics of GNP data, as noted in Section 4.2.
It is conceivable that in other contexts where the underlying nonlinearities are
stronger, the overall impact of such nonlinearities on the implications of models
may be stronger.
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