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A joint experimental and theoretical study is made of instability mechanisms of locally
confined internal gravity wave beams in a stratified fluid. Using as forcing a horizontal
cylinder that is oscillated harmonically in the direction of beam propagation makes it
possible to generate coherent finite-amplitude internal wave beams whose spatial profile
comprises no more than a single wavelength. For forcing amplitude above a certain
threshold depending on the driving frequency, such thin wave beams are observed to
undergo an instability that involves two subharmonic perturbations with wavepacket-like
spatial structure. Although it bears resemblance to the triadic resonant instability (TRI)
of small-amplitude sinusoidal waves, the present instability cannot be predicted by TRI
theory as the primary wave is not nearly monochromatic, but instead contains broadband
wavenumber spectrum. In contrast, the experimental observations are in good agreement
with the predictions of a formal linear stability analysis based on Floquet theory. Finally,
experimental evidence is presented that transverse beam variations induce a horizontal
mean flow of the streaming type and greatly subdue the instability.

Key words: internal waves

1. Introduction

The classic experiment by Mowbray & Rarity (1967) of oscillating a cylinder in a
stratified fluid was the first demonstration of the remarkable X-shaped pattern of internal
gravity waves that is now known as ‘St. Andrew’s Cross’. Interestingly, the four arms
of the cross are in the form of time-harmonic plane waves with locally confined spatial
profile, determined by the oscillating cylinder, and stretch along specific directions relative
to gravity set by the dispersion relation. Such beam-like disturbances are fundamental
propagation modes that derive from the inherent anisotropy of internal wave motion,
whereby energy is transported along rather than perpendicularly to surfaces of constant
phase (e.g. Lighthill 1978, § 4.4). Since the original observations of Mowbray & Rarity
(1967), there have been numerous experimental and theoretical investigations of internal
wave beams in connection with forced internal waves by oscillating bodies and related
configurations (see e.g. Kataoka et al. 2017, and references therein). Furthermore, internal
wave beams arise in oceans due to the interaction of the barotropic tide with bottom
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topography (e.g. Lamb 2004; Peacock, Echeverri & Balmforth 2008; Johnston et al. 2011)
and in the atmosphere due to thunderstorms (e.g. Fovell, Durran & Holton 1992).

In an effort to shed light on the dissipation process of oceanic internal waves, a body
of recent work has focused on possible instability mechanisms of internal wave beams
(see e.g. Dauxois et al. 2018, and references therein). Theoretically, the stability of wave
beams can be viewed as an extension of the simpler, but less realistic problem, of the
stability of plane waves with sinusoidal profile. The latter problem has been studied
systematically using Floquet theory, and a wide range of instabilities have been found
for finite-amplitude sinusoidal waves (e.g. Mied 1976; Klostermeyer 1991; Sonmor &
Klaassen 1997). In the small-amplitude limit, these instabilities can be understood in terms
of resonant triad interactions of the primary wave with two subharmonic perturbations
(e.g. Staquet & Sommeria 2002). A particular case of such triadic resonant instability
(TRI) is the widely studied parametric subharmonic instability (PSI), which involves
subharmonic perturbations with half the frequency of the primary wave and very fine
wavelength. In view of the possibility of transferring energy into much smaller scales, PSI
has been suggested as a potentially significant factor in the dissipation of oceanic internal
waves (e.g. Hibiya, Nagasawa & Niwa 2002; MacKinnon & Winters 2005; Young, Tsang
& Balmforth 2008).

It is now recognized, however, that the finite width of an internal wave beam reduces
the efficiency of PSI: subharmonic perturbations travel across the beam with their group
velocity and thus have only limited time to extract energy from the primary wave. On these
grounds, Karimi & Akylas (2014) argued that, in the small-amplitude nearly inviscid limit,
only beams with nearly monochromatic profile are susceptible to PSI. This possibility of
PSI, which requires that the beam profile comprise a large enough number of carrier
wavelengths, is further limited by background mean flows (Fan & Akylas 2019). An
exception arises in the presence of background rotation for beams with frequency close
to twice the inertial frequency. In this instance, which is of geophysical relevance, owing
to the Earth’s rotation, beams with general locally confined profile can suffer PSI because
subharmonic perturbations of near-inertial frequency have group velocity close to zero
(Karimi & Akylas 2017).

On the experimental side, Bourget et al. (2013) examined the stability of wave beams of
finite width comprising approximately three wavelengths of a well-defined carrier, which
were generated in a stratified fluid tank by a stacked-plate wavemaker (Mercier et al. 2010)
specially designed for this purpose. Owing to the increased importance of viscosity under
laboratory flow conditions, rather than PSI, which involves perturbations of very fine
spatial scale, Bourget et al. (2013) observed a form of TRI: the two unstable subharmonic
perturbations formed a resonant triad with the beam carrier but the three waves had
comparable wavelengths. Furthermore, in a follow-up study using a similar set-up, Bourget
et al. (2014) confirmed that the finite beam width weakens this triad resonance instability,
consistent with Karimi & Akylas (2014). In an earlier experiment, however, using a similar
wave generator, but in a relatively wide tank where the generated nearly monochromatic
beams featured significant transverse variations, Bordes et al. (2012) found no evidence of
TRI. Instead, they observed a growing horizontal mean flow of the streaming type which
also impacts the beam itself via refraction. This induced mean flow is of viscous origin
and hinges on the combined effects of transverse variations and nonlinearity (Kataoka
& Akylas 2015; Fan, Kataoka & Akylas 2018; Jamin et al. 2020). However, as noted
by Dauxois et al. (2018), it is unclear whether streaming and TRI can coexist, and the
conditions that would favour one over the other remain largely unexplored.

In contrast to nearly monochromatic beams, there have been only a few reports
of instability in the original St. Andrew’s Cross, which features internal wave beams
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whose typical width is only one or two wavelengths. Importantly, such ‘thin’ beams
with a broadband spectrum of spatial wavenumbers are not only readily generated in
the laboratory by oscillating bodies, but also typify beams that arise in oceans and
the atmosphere (e.g. Fovell et al. 1992; Lamb 2004; Johnston et al. 2011). Most prior
laboratory experiments that used an oscillating cylinder as forcing, in particular, were
concerned with small-amplitude beams. Specifically, the typical ratio of oscillation
amplitude (half peak-to-peak) to cylinder radius was less than 0.2, and the generated beams
agreed well with linear theory (e.g. see Sutherland & Linden 2002). Thus, considering
the theoretical findings of Karimi & Akylas (2014) for small-amplitude thin beams, it
is not surprising that no instabilities have been observed under these laboratory flow
conditions. At a larger amplitude-to-radius ratio of 0.66, Clark & Sutherland (2010) report
an instability that resembles PSI, but experimental limitations of their synthetic schlieren
technique precluded detailed quantitative measurements regarding this instability. Finally,
Ermanyuk & Gavrilov (2008) used amplitude-to-radius ratios of up to 1.2. However, they
did not observe instability probably because of the large viscous effects introduced by their
small cylinder radius of 1 cm. The only significant nonlinear effect noted in this study was
the radiation of a second-harmonic beam when the cylinder driving frequency is less than
half the buoyancy frequency.

Apart from the St. Andrew’s Cross, thin internal wave beams arise also in the so-called
‘internal wave attractor’ (e.g. Hazewinkel et al. 2008; Scolan, Ermanyuk & Dauxois
2013; Brouzet et al. 2016), which forms by the focusing of wave energy via wall
reflections. In this setting, there have been observations of an instability of thin beams
that appears to resemble TRI (i.e. satisfy the triad resonance conditions in an approximate
sense). However, it remains unclear whether the observed instability can be predicted
using TRI theory, which was originally developed for small-amplitude sinusoidal waves,
and whether this instability persists outside of the strict geometric constraints of the
attractor set-up.

The present joint experimental and theoretical investigation aims to improve the current
understanding of instability mechanisms of isolated thin internal wave beams, akin to
those originally observed by Mowbray & Rarity (1967). Specifically, we experimentally
study internal wave beams due to a horizontal cylinder that is oscillated harmonically
in the direction of propagation of the generated beam. This forcing arrangement permits
the generation of coherent, finite-amplitude wave beams, which are then measured using
particle image velocimetry (PIV). We present novel observations of instability above a
threshold forcing amplitude-to-radius ratio depending on the driving frequency, which are
compared against the predictions of a formal linear stability analysis based on Floquet
theory. Although it bears resemblance to TRI, the observed instability cannot be predicted
by TRI theory since thin wave beams have no well-defined carrier wavevector. This is
in contrast to the predictions of the Floquet stability analysis, which agree well with the
experimental observations. Finally, we present experimental evidence that transverse beam
variations induce a horizontal mean flow of the streaming type and significantly weaken
the observed instability.

2. Experimental set-up

Laboratory experiments were performed in a glass wave tank 5.46 m long and 0.51 m
wide, filled to a depth of 0.54 m with salt water. Using the double-bucket method,
a linear density stratification was set up with buoyancy frequency N = 0.94 s−1.
The final stratification was measured using a Precision Measurements Engineering
conductivity/temperature probe. Waves were generated by oscillating a 0.5 m long
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FIGURE 1. Schematics of the experimental set-up. (a) Side and transverse view of the wave
tank and horizontal cylinder. The cylinder is harmonically oscillated at frequency ω0 and angle
θ relative to the horizontal such that ω2

0 = N2 sin2 θ . The laser sheet is in the xy-plane at z =
4.3 cm. (b) Sketch of the uniform cylinder and (c) non-uniform cylinder used for the experiments.
Dimensions are given in § 2. (d) Sketch of the generated wave beams (in grey), which reflect
off the free surface and tank bottom. The dotted-line box shows the PIV window, with the
primary beam of interest propagating from the upper right to the bottom left. The beam-oriented
coordinate system (ξ, η, ζ ) is defined by the along-beam, cross-beam and transverse horizontal
coordinates, respectively.

horizontal cylinder (see schematic in figure 1) whose length spanned the transverse width
of the tank with approximately 5 mm clearance between the ends of the cylinder and the
tank walls on each side. Two thin metal rods attached to opposing ends of the cylinder were
connected to a National Instruments/Axis New England-based motion control system,
which used a lead screw traverse to drive the cylinder oscillations. Cylinders were 3-D
printed using ABS plastic, allowing for precise control of the cylinder diameter along
its length. We used two types of cylinders: (i) a uniform cylinder with radius 22.2 mm
(figure 1b); and (ii) a non-uniform cylinder comprised of three cylindrical sections of
equal length whose radii were 15.6 mm, 22.2 mm and 15.2 mm (figure 1c). We shall use
L = 22.2 mm, the common radius in the centre section of the two types of cylinders, as
the characteristic length scale for all experiments.

Cylinders were harmonically oscillated at angle θ to the horizontal with frequency ω0
and half peak-to-peak amplitude A (figure 1a). For each experiment, θ was chosen to match
the angle of inclination to the horizontal of the generated wave beams (see figure 1d), set
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by the linear dispersion relation

ω2
0 = N2 sin2 θ. (2.1)

This arrangement allows for complete forcing of the fluid velocity in two of the four
generated beams, since the motion of the cylinder is then exactly parallel to the direction
of fluid motion. Our interest centres on one of these two preferentially excited beams (see
figure 1d), which reach higher amplitude as compared with the four symmetric beams
that would be generated by vertical (θ = 90◦) cylinder oscillations at the same forcing
amplitude A. We note that an analogous result was found by Mercier et al. (2010) in their
analysis of the forcing efficiency of a wavemaker comprised of stacked plates. In our
experiments, θ ∈ {35◦, 40◦, 45◦, 50◦, 55◦} and 0.36 ≤ A/L ≤ 1.26. For all these forcing
conditions, the wave beam amplitudes were below the threshold for overturning (see § 5.2).
Finally, the size of our wave tank was large enough to ensure that reflections of the other
three beams from the tank walls and free surface do not interfere with the primary beam
of study.

Flow visualization was performed using a LaVision PIV system. A pulsed Nd:YAG laser
located beneath the wave tank was used to generate a vertical laser sheet in the xy-plane
located at z = 4.3 cm (unless otherwise noted), where z = 0 specifies the midline of the
tank (see figure 1a). The density stratification was seeded with Sphericel hollow glass
oxide particles of diameter 8–12 μm and densities ranging from 1000 to 1050 kg m−3.
Images were captured using an Imager Pro X CCD camera at a resolution of 2048 × 2048
pixels from the start of forcing to 8–20 min later. The camera frame rate was 8 Hz,
which corresponds to a minimum of 64 images per forcing period for the range of
forcing frequencies used. Images were processed using LaVision DaVis software to obtain
two-dimensional velocity fields in the plane of the laser sheet.

3. Stable versus unstable beams: experimental observations

Figure 2 compares the horizontal (x) velocity field of the internal wave beam generated
using the uniform cylinder for θ = 45◦ at two forcing amplitudes, A/L = 0.45 and 0.63.
For both amplitudes, at t = 8T0 after start of forcing (figure 2a,b), where T0 = 2π/ω0
is the oscillation period, the wave beam has propagated across the observation window
from the upper right to the lower left (phase travelling from lower right to upper left) and
has reached a quasi-steady state. At the later time t = 36T0, the lower-amplitude beam
(at A/L = 0.45) remains uniform in the along-beam direction aside from the effects of
viscous dissipation, which cause slight broadening and decay of the wave profile far from
the cylinder (figure 2d), and this steady state persisted even for larger times, e.g. t = 120T0,
with no noticeable instability. In contrast, at the larger forcing amplitude A/L = 0.63 after
36T0 of forcing, an instability is visibly apparent (figure 2e), causing breakdown of the
primary wave beam. These observations are also consistent with a time series of the
horizontal velocity at a position along the beam centreline roughly 20 cm away from the
cylinder: the lower-amplitude forcing produces a steady time-harmonic signal (figure 2f ),
while the higher-amplitude forcing eventually results in a modulated, multifrequency
signal due to instability (figure 2g).

Figure 3(a) compares the spatially averaged frequency spectra of the stable and unstable
beams, obtained by calculating the time-frequency spectrum at each spatial point and
averaging over the region of the primary wave beam. Both spectra feature a dominant
peak at the primary wave frequency ω0/N, as well as smaller peaks corresponding
to the second and third harmonic. As 2ω0 > N for all experiments reported in this
study, these higher harmonics exist only within the primary beam and do not propagate.
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FIGURE 2. (a) Horizontal (x) velocity for beam inclination angle θ = 45◦ and forcing
amplitude A/L = 0.45 at t = 8T0 after start of forcing. The grey box corresponds to the region
around the cylinder that is masked out. (b) Same as panel (a) but for A/L = 0.63. (c) Theoretical
beam profile used in the linear stability analysis of § 5 to approximate the experimental beam in
panel (b). (d) Same as panel (a) but at t = 36T0 after start of forcing. (e) Same as panel (d) but
for A/L = 0.63. ( f ) Time series of the horizontal velocity for A/L = 0.45 at the location marked
with the cross in panels (a,d). The vertical lines indicate the times t = 8T0 and 36T0. (g) Same
as panel ( f ) but for A/L = 0.63 and at the location marked with the cross in panels (b,e).

Given that a uniform inviscid beam involves a single harmonic (Tabaei & Akylas 2003,
see also (4.2) below), the observed higher harmonics arise from nonlinear self-interactions
of the primary wave brought about by along-beam variations in the beam profile due to
the effects of viscosity. In contrast to the lower-amplitude, stable beam (at A/L = 0.45),
however, the frequency spectrum of the higher-amplitude, unstable beam (at A/L = 0.63)
features several additional peaks, corresponding to multiple daughter waves spontaneously
generated via instability. According to figure 3(a), the strongest of these peaks occur
at the subharmonic frequencies ω1/N = 0.26 and ω2/N = 0.45. The corresponding
spatial disturbances, obtained by filtering the experimental wave field about the selected
frequency with a window of ±0.05 rad s−1, are plotted in figure 3(b,c). Both subharmonic
waves have wavepacket-like spatial structure with smaller carrier wavelength than the
width of the primary beam (carrier wavelengths measured to be approximately 44 mm for
ω1/N = 0.26 in figure 3b and 29 mm for ω2/N = 0.45 in figure 3c), and they propagate
in opposite directions with respect to the primary beam. Furthermore, upon estimating
the inclination angle to the horizontal of their wave crests (θ1 ≈ 15◦ for ω1/N = 0.26 and
θ2 ≈ 27◦ for ω2/N = 0.45), it is concluded that the subharmonic waves approximately
satisfy the internal wave dispersion relation, ω2 = N2 sin2 θ .

It is worth noting that the observed subharmonic instability disturbances along with
the primary beam appear to satisfy, to a rough approximation, the conditions for TRI.
Specifically, according to the classical theory of TRI (e.g. Bourget et al. 2013), a sinusoidal
primary wave of infinitesimal amplitude with frequency ω0 and wavevector k0 can
be unstable to subharmonic perturbations, also in the form of sinusoidal waves, with
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FIGURE 3. (a) Spatially averaged time frequency spectra for the experiments shown in figure 2.
The dotted line corresponds to the stable case at A/L = 0.45 (figure 2a,d) while the solid line
corresponds to the unstable case at A/L = 0.63 (figure 2b,e). The subharmonic frequencies
ω1/N = 0.26 and ω2/N = 0.45 are labelled. (b) Experimentally measured horizontal velocity
field from figure 2(e), filtered at ω1/N = 0.26. (c) Same as panel (b) but filtered at ω2/N = 0.45.
(d) Time frequency spectrum of the fastest-growing Floquet mode. The vertical dotted line
marks the primary wave frequency at ω0/N. (e) Theoretically predicted spatial mode shape
corresponding to the first peak (from the left) in the frequency spectrum in panel (d) at
ω/N = 0.24. ( f ) Same as panel (e) but for the second peak at ω/N = 0.47. Dashed arrows
in panels (b,c,e, f ) indicate direction of phase propagation. Solid arrows in panel (b,c) indicate
direction of group velocity cg. Velocity scale in panels (e, f ) is normalized to have the same
maximum velocity as in panels (b,c).

frequencies (ω1, ω2) and wavevectors (k1, k2), if the three waves form a resonant triad,

ω1 + ω2 = ω0, (3.1a)

k1 + k2 = k0. (3.1b)

Here, the observed subharmonic frequencies ω1/N = 0.26 and ω2/N = 0.45 of the
instability, along with the primary wave frequency ω0/N = 0.71, clearly satisfy to a good
approximation the frequency resonance condition (3.1a). In regard to the spatial resonance
condition (3.1b), the carrier wavevectors of the observed subharmonic disturbances,
calculated using the carrier wavelength and inclination angle estimated above, are given
in the coordinate system (ξ, η) by k1 = (71,−124) m−1 for ω1/N = 0.26 and k2 =
(−67, 206) m−1 for ω2/N = 0.45. Then, taking the primary beam width of roughly
80 mm to correspond to a single wavelength, we find that k0 = (0, 79) m−1, which is
approximately equal to k1 + k2 = (4, 82) m−1.

However, in spite of this apparent resonant triad, the theory for TRI, strictly, is not
applicable in the present setting: the primary wave is not sinusoidal, but rather a thin
beam with a broadband spectrum of wavenumbers and no defined carrier wavevector
k0, so the meaning of (3.1b) is not clear. As noted in § 1, the finite width of the beam
dramatically affects the instability dynamics and adds new physics, namely the group
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904 A16-8 B. Fan and T. R. Akylas

velocity of the perturbations, which is ignored in the classical TRI theory (Karimi &
Akylas 2014). Furthermore, the stability predictions of TRI theory cannot be trusted:
treating our thin beam as one wavelength of a primary sinusoidal wave with ω0/N =
0.71 and k0 = (0, 79) m−1, the most unstable triad according to TRI theory involves
a subharmonic perturbation with wavelength greater than the primary beam width,
contradicting our findings (figure 3b,c). Thus, to make quantitative comparisons with
experimental observations, we turn to a formal stability analysis based on Floquet theory
that takes into account both the finite width and finite amplitude of the primary wave beam.

4. Stability analysis

The analysis assumes an unbounded, incompressible, uniformly stratified Boussinesq
fluid with constant buoyancy frequency N. While in the rest of the paper we use
dimensional variables, here we find it more convenient to work with non-dimensional
variables for ease of notation. Using 1/N as the time scale and the cylinder radius L (see
§ 2) as the length scale, the dimensionless governing equations for the velocity field u, the
reduced density ρ and pressure p are

∇ · u = 0, (4.1a)

ρt + u · ∇ρ = u · j, (4.1b)

ut + u · ∇u = −∇p − ρj + ν∇2u. (4.1c)

Here, j is a vertical unit vector pointing upwards and ν = ν∗/NL2 is the inverse Reynolds
number, where ν∗ denotes the kinematic viscosity.

In the inviscid limit (ν = 0), (4.1) supports time-harmonic plane waves in the form of
uniform beams (Tabaei & Akylas 2003)

u = u0(η, t) = U(η) exp(−iω0t) + c.c., v = v0 = 0, w = w0 = 0, (4.2a)

ρ = ρ0(η, t) = −iU(η) exp(−iω0t) + c.c., (4.2b)

p = p0(η, t) = i cos θ

∫ η

U(η′) dη′ exp(−iω0t) + c.c., (4.2c)

where U(η) describes the beam profile and is related to the wave generation mechanism.
Here, u = (u, v, w) are the velocity components in the beam-aligned coordinate system
(ξ, η, ζ ) defined by the along-beam, cross-beam and transverse horizontal coordinate,
respectively (see figure 1d). These coordinates are related to (x, y, z) by ξ = −x cos θ −
y sin θ , η = −x sin θ + y cos θ and z = −ζ , where θ is the beam inclination angle to the
horizontal, specified by the forcing frequency ω0 via the (non-dimensional) dispersion
relation ω0 = sin θ .

The uniform beam given by (4.2) will be used as the basic state for the ensuing stability
analysis. The choice of U(η) for comparison with experimental observations will be
specified later in § 5.1. As already noted, viscous effects (ν /= 0) introduce along-beam
(ξ ) variations in (4.2), corresponding to broadening and a decrease in amplitude of the
beam profile far from the forcing (Mowbray & Rarity 1967; Thomas & Stevenson 1972).
However, in the interest of simplifying the stability analysis, these effects will be ignored.

To examine the linear stability of the uniform beam (4.2), we now superimpose
infinitesimal perturbations in the form of normal modes,

u = u0(η, t) + {
û(η, t) exp(i(μξ + mζ )) + c.c.

}
, (4.3)
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with similar expressions for v, w, ρ and p. Here, μ and m are real parameters that specify
the along-beam and transverse wavenumbers of the perturbation. Inserting (4.3) into (4.1),
linearizing with respect to the perturbations and dropping the hats, we obtain the following
equations governing the perturbations:

0 = iμu + ∂v

∂η
+ imw, (4.4a)

∂ρ

∂t
= −iμu0ρ − dρ0

dη
v − u sin θ + v cos θ, (4.4b)

∂u
∂t

= −iμu0u − du0

dη
v − iμp + ρ sin θ + ν

(
−μ2 + ∂2

∂η2
− m2

)
u, (4.4c)

∂v

∂t
= −iμu0v − ∂p

∂η
− ρ cos θ + ν

(
−μ2 + ∂2

∂η2
− m2

)
v, (4.4d)

∂w
∂t

= −iμu0w − imp + ν

(
−μ2 + ∂2

∂η2
− m2

)
w. (4.4e)

It can be verified by eliminating p that it is sufficient to consider μ ≥ 0 and m ≥ 0 owing
to symmetry (see Fan 2020, for details). It should be noted that (4.4) includes the full
effects of viscosity on the perturbations.

To solve the stability equations (4.4), as the basic state u0(η, t) in (4.2) is periodic in t, it
is necessary to apply Floquet theory. In the widely studied case of a sinusoidal plane wave,
i.e. U(η) = U0 exp(ik0η)/2 in (4.2), this task is carried out (e.g. Mied 1976; Klostermeyer
1991) by expressing (u, ρ, p) as an infinite Fourier series in k0η − ω0t, multiplied with an
exponential term that contains the Floquet exponent. After truncating the Fourier series,
the resulting eigenvalue problem is solved numerically to obtain the Floquet exponents,
which give the instability growth rates. This procedure is then performed over a variety of
parameters μ and m in order to determine the perturbations with the highest growth rate.
In the present setting, however, the primary wave profile U is a general, locally confined
function of η. Thus, in addition to a Fourier expansion in t, separate discretization in η is
also necessary, resulting in an eigenvalue problem that is too large to be solved efficiently.

Instead, we follow the approach recently taken by Onuki & Tanaka (2019) to study
the stability of finite-amplitude internal wave beams under oceanic flow conditions and
by Jouve & Ogilvie (2014) for the stability of inertial wave beams, as well as by earlier
authors for Floquet problems in other contexts (e.g. Schatz, Barkley & Swinney 1995).
Briefly, this approach relies on the monodromy matrix, which can be easily computed
using time-integration. First, we eliminate v and p from (4.4) and discretize in η to obtain
the matrix equation

dχ

dt
= A(t)χ, (4.5)

where χ = {u, w, ρ} is the state vector and A(t) = A(t + T0) is the periodic matrix (with
period T0 = 2π/ω0) that results from the right-hand side of (4.4). Based on Floquet theory,
a fundamental solution matrix to (4.5) is given by X(t) = eBtP(t), where X = {χ1, χ2, . . .}
is composed of linearly independent solutions to (4.5), B is a constant matrix whose
eigenvalues are the Floquet exponents λi and P(t) = P(t + T0) = {P1, P2, . . .} is a periodic
matrix composed of the Floquet modes. Because P is T0-periodic, it follows that X(T0) =
MX(0), where M ≡ eBT0 is called the monodromy matrix and represents the effect of the
operator A over one period (i.e. the linearized Poincaré map). To find M, we set X(0) = I,
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the identity matrix, as the initial condition, integrate (4.5) over one period to obtain X(T0)
and compute M = X(T0). Next, we compute the eigenvalues of M, denoted αi, to obtain the
Floquet exponents λi = (log αi)/T0. By definition of the Floquet exponent, χ ∝ exp(λit)
so Re(λi) > 0 implies instability. Finally, we repeat this procedure for various μ and m
in order to find the instability modes with the highest growth rate. We implemented this
procedure by discretizing (4.4) using a pseudo-spectral method with 512 Fourier modes
in η ∈ [−30, 30] and integrating (4.5) with fourth-order Runge–Kutta time stepping and
a typical �t = 0.02. The ensuing eigenvalue problem was then solved using standard
MATLAB algorithms.

5. Comparison of observations with Floquet analysis

5.1. Instability dynamics
We now make comparisons between the observed instability in § 3 and the predictions
of the linear stability analysis outlined in § 4. Taking into account the experimental
parameters, the inverse Reynolds number ν = 0.0021. In addition, we chose the primary
beam profile U(η) in (4.2) to be

U(η) = 1
2

U0

∫ ∞

0
J1(K) exp(−dK3 + iKη) dK

max
∣∣∣∣
∫ ∞

0
J1(K) exp(−dK3 + iKη) dK

∣∣∣∣
, (5.1)

where J1 denotes the Bessel function of order one. Here, U0 is an amplitude parameter that
corresponds to the maximum non-dimensional along-beam velocity (i.e. max |u0| = U0)
and d controls the shape of the profile. Expression (5.1) is based on the linear viscous
solution by Hurley & Keady (1997) for a beam generated by an oscillating cylinder.
However, rather than using their solution as originally formulated, which would give U0 as
a function of d, we instead independently fit U0 and d using the experimentally measured
beam profile at a cross-beam slice located 20 cm away from the cylinder. This allowed
us to accurately approximate the experimental beam profile and to study the effect of
beam amplitude independently of the profile shape (see § 5.2). It should be noted that the
agreement between the original solution of Hurley & Keady (1997) and the experimental
observations is overall satisfactory, although it varies depending on the beam inclination
angle and forcing amplitude, and our choice to decouple U0 from d is primarily for
convenience. Here, for U0 = 0.25 and d = 0.0137 in (5.1), the basic state (4.2) agrees
nicely with the experimentally generated unstable beam (at A/L = 0.63) discussed in § 3
for all times after the initial transient (due to start-up of the forcing) and prior to the onset
of instability. For comparison, figure 2(c) plots a snapshot of the theoretical beam (4.2)
using the profile (5.1) at the same time as the experimentally observed beam in figure 2(b).
These values of U0 and d were used for the stability results presented in § 5.2 below, as well
as in § 6.1, unless otherwise noted. Furthermore, here we only consider two-dimensional
(m = 0) instability modes. A discussion of the effects of transverse variations (m /= 0) is
presented in § 6.1.

Figure 3(d) plots the frequency spectrum of the computed two-dimensional
Floquet mode with the highest growth rate. The theoretical spectrum shows
good quantitative agreement with the experimentally measured frequency spectrum
(figure 3a) across all instability peaks. For instance, the strongest four frequencies,
in order of power, that comprise the experimentally measured instability are
ω/N = {0.45, 0.26, 0.97, 1.17}, while the strongest four instability frequencies predicted
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theoretically are ω/N = {0.47, 0.24, 0.94, 1.18}. Furthermore, the spatial disturbances
associated with the strongest two predicted frequency components at ω/N = 0.24 and
ω/N = 0.47 (figure 3e, f ) are in excellent agreement in both length scale and direction
of propagation with the experimental measurements filtered at ω1/N = 0.26 and ω2/N =
0.45 (figure 3b,c). The filtered experimental observations were obtained using the Hilbert
transform technique (Mercier, Garnier & Dauxois 2008). The velocity scale for the
theoretically predicted spatial disturbances is normalized to have the same maximum
velocity as the experimental measurements.

It is important to note that our theoretical predictions correspond to linear stability
modes, which decay outside the primary wave beam and are valid only for limited
times after the onset of instability, while the experimental observations correspond to
perturbations that evolve according to fully nonlinear dynamics and may eventually
propagate freely. This is evident in figure 3(b,c) as the perturbations extend outside
the primary wave beam in the direction of their group velocity. In addition, our theory
assumes an infinitely long, uniform primary beam, while the experimentally generated
beam is of finite length and features slight along-beam variations in amplitude and profile
shape as a result of viscosity. Accordingly, the theoretically predicted perturbations extend
the entire length of the beam, whereas the experimentally observed perturbations are
locally confined in the along-beam direction. Finally, although the Floquet analysis makes
quantitative predictions of the instability growth rate, it is not possible to make accurate
comparisons with our experimental observations. Figure 2(g) indicates that the initial
(exponential) growth of the perturbations likely lasts no more than 10 periods of oscillation
of the primary wave. As a result, estimation of the observed growth rate using a short-time
Fourier transform yields poor temporal resolution and significant errors, especially since
the observed subharmonic perturbations with frequencies ω1/N = 0.26 and ω2/N = 0.45
have even longer period than the primary wave. Instead, a qualitative discussion of growth
rates is made later in connection with the threshold amplitude for instability (see § 5.2).

Our theoretical results confirm that the Floquet stability analysis captures the observed
instability of a finite-amplitude thin beam: there is excellent agreement between theory
and experiment across the multifrequency spectrum associated with the instability.
Even though the classical TRI theory is not applicable for our system as argued in
§ 3, the observed instability still displays similarities to TRI. Specifically, both our
experimental observations and stability analysis show that the dominant components of the
instability are two subharmonic disturbances in the form of modulated wavepackets. These
disturbances, moreover, satisfy the frequency resonance condition (3.1a) and also very
roughly satisfy the spatial resonance condition (3.1b). The observed instability thus may
be regarded as a finite-amplitude form of TRI, whose dynamics still features subharmonic
disturbances that satisfy triad resonance to some extent, but the finite width and amplitude
of the underlying beam are major controlling factors as well.

5.2. Effects of beam amplitude and angle
We now assess the effects of beam amplitude and propagation angle θ (i.e. forcing
frequency) on the instability dynamics. Figure 4 shows a phase diagram of all stable
and unstable experimental configurations observed across a range of amplitudes and
angles. Here, just as in § 5.1, U0 is the maximum non-dimensional along-beam velocity
(max |u0| = U0) of the observed beam at a slice located 20 cm away from the cylinder and
prior to onset of instability, if present. The stable and unstable beams shown in figure 2
and discussed in §§ 3 and 5.1 correspond to the points located at θ = 45◦ and U0 = 0.18
and 0.25, respectively.
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FIGURE 4. Phase diagram showing the dependence of the instability on the non-dimensional
beam amplitude U0 and beam angle θ . Experimental configurations where instability was visibly
apparent, (�); experimental configurations where instability was not visibly apparent but small
instability peaks could be seen in the time frequency spectrum, (+); stable configurations,
(◦). Overlaid are contour lines of the (non-dimensional) real growth rate σ ≡ maxi,μ Re(λi) as
predicted by Floquet stability analysis.

Figure 4 indicates that for given beam angle there exists a critical amplitude below
which the beam is stable. This is in qualitative agreement with the analysis of Karimi &
Akylas (2014), according to which weakly nonlinear (i.e. U0  1) thin beams are stable to
PSI, although formally, their asymptotic assumption of fine-scale perturbations (relative
to the primary beam) does not hold here. Figure 4 also shows that beams with shallower
angles of propagation (i.e. smaller θ ) require higher amplitudes to undergo instability. It
should be noted that all experimental wave beams were below the overturning amplitude
for density inversions given by dρ0/dy = 1 (e.g. see Kataoka & Akylas 2013), which
occurs at U0 cos θ ≈ 0.47 for the uniform beam (4.2) with the profile (5.1).

Furthermore, figure 4 overlays the non-dimensional growth rate σ ≡ maxi,μ Re(λi),
where λi are the (non-dimensional) Floquet exponents predicted by the Floquet stability
analysis, as a function of θ and U0 for the same primary beam profile (5.1) as in § 5.1. Here,
for simplicity, we take the parameter d, which controls the shape of the beam profile, to
be fixed d = 0.0137 as θ and U0 are varied. In reality, the observed beam profiles show
slight dependence on θ , with the experimentally fitted d ranging between 0.012 and 0.017
at a location 20 cm away from the cylinder; however, these differences do not significantly
affect the predicted growth rate and are ignored.

Although the contours of constant growth rate in figure 4 appear to qualitatively follow
the observed transition region between stability and instability, we find that the linear
stability analysis predicts instability for all experimental configurations, including those
observed to be stable. According to the Floquet analysis, there is a critical amplitude
for instability in qualitative agreement with observation, but the theoretical amplitude
threshold is smaller than what is observed. For example, at θ = 45◦, the Floquet analysis
predicts the critical amplitude for instability to be U0 ≈ 0.09, whereas the experimental
observations suggest that it is between 0.18 and 0.23. This discrepancy may be attributed
to various factors not accounted for in the stability analysis, including the presence of
along-beam variations in the beam profile, three-dimensional (transverse) effects and
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FIGURE 5. Dependence of the instability growth rate σ on the dimensionless transverse
wavenumber m as predicted by the Floquet analysis for beam angle (a) θ = 35◦, (b) θ = 45◦,
(c) θ = 55◦; and dimensionless beam amplitude U0 = 0.15 (dotted line), U0 = 0.20 (dashed
line), and U0 = 0.25 (solid line). All growth rates are normalized by the two-dimensional
(m = 0) growth rate.

induced mean flows such as streaming. An analysis of the effects of along-beam profile
variations lies outside the scope of this study. The effects of three-dimensional variations
and mean flows on the instability dynamics are discussed below.

6. Three-dimensional effects

6.1. Perturbations with transverse variations
The stability results reported in § 5 assume that the primary wave beam as well
as the perturbations are purely two-dimensional, i.e. there are no variations in the
transverse horizontal (ζ ) direction. While these assumptions are reasonable given the small
radius-to-length ratio (≈0.044) of the uniform cylinder used in the experiments described
thus far, some three-dimensional effects are inevitably introduced by the finite transverse
extent of the tank. First, we consider the effect of m /= 0 in (4.3), corresponding to
infinitesimal perturbations that vary sinusoidally in ζ on a purely two-dimensional primary
beam. Using the same beam profile (5.1) with d = 0.0137, figure 5 plots the theoretically
predicted growth rate as a function of the dimensionless transverse wavenumber m for
various values of beam angle θ and dimensionless beam amplitude U0. These results
indicate that perturbations with transverse variations have lower instability growth rate,
and this effect is more pronounced for shallower beam angles and lower beam amplitudes.
As a crude estimate, by taking the tank width to be half a wavelength of transverse
variation, we find that m ≈ 0.26, which would decrease by � 10 % the growth rates for
35◦ ≤ θ ≤ 55◦ and 0.15 ≤ U0 ≤ 0.25.

6.2. Transverse beam variations and induced mean flows
As pointed out by recent work, transverse variations in the primary wave beam enable
production of mean potential vorticity, which results in a horizontal mean flow (Bordes
et al. 2012; Kataoka & Akylas 2015; Fan et al. 2018; Jamin et al. 2020). This induced
mean flow has two components, one of inviscid and the other of viscous origin. The latter,
known as streaming, grows resonantly in time and is expected to dominate in a laboratory
setting where viscous effects are more pronounced (Fan et al. 2018). It should be noted that
along-beam modulations of a purely two-dimensional inviscid beam can also generate a
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FIGURE 6. Experimental mean horizontal velocity field at t = 300 s, obtained by filtering the
horizontal velocity field around the zero-frequency. The uniform cylinder is used as forcing.
(a) Beam inclination angle θ = 35◦ and forcing amplitude A/L = 0.72, with t = 300 s ≈ 26T0;
(b) θ = 45◦ and A/L = 0.54, with t = 300 s ≈ 32T0. In both cases, the primary wave beam
has non-dimensional maximum along-beam velocity U0 ≈ 0.22 measured 20 cm away from the
cylinder, and did not exhibit any visible signs of instability. Contours of the horizontal velocity
field of the primary wave beam at ±1 mm s−1 are plotted in the dotted lines.

mean flow, but unlike streaming this mean flow is in the along-beam direction and does
not grow resonantly (Tabaei & Akylas 2003).

Throughout our experiments using the uniform cylinder, we indeed observed a slowly
evolving horizontal mean flow within the primary wave beam (e.g. see time-frequency
spectra in figure 3a). Figure 6 plots two examples of this mean flow, obtained by filtering
the horizontal velocity about the zero-frequency. As no vertical mean flows were observed,
this horizontal mean flow suggests that three-dimensional effects due to the finite width
of the tank are indeed present and may play a role in the instability dynamics. It is worth
noting that a mean flow is also generated by near-cylinder boundary-layer effects, but it is
confined to the vertical (y) location of the cylinder (seen as the long horizontal bands at
the top of figure 6) and remains distinct from the mean flow generated within the beam
itself.

In order to more concretely assess the effect of three-dimensional variations on the
instability dynamics, experiments were also conducted using a non-uniform cylinder
whose middle section had the same radius as the straight cylinder, but whose end sections
had smaller radius (see § 2 and figure 1c). Figure 7 plots the experimentally observed
wave fields using the uniform and non-uniform cylinders at θ = 45◦ and forcing amplitude
A/L = 0.63. For the uniform cylinder, these forcing conditions are precisely the ones used
to generate the unstable beam discussed in § 3 and shown in figure 2. Here, however, PIV
measurements were made at two different transverse locations: (i) z = 4.3 cm, where both
the uniform and non-uniform cylinders have radius 22.2 mm; and (ii) z = 14.3 cm, where
the non-uniform cylinder has radius 15.2 mm. The beam generated using the uniform
cylinder undergoes instability (figure 7a,b), just as discussed in § 3. Even so, transverse
variations, introduced by the finite width of the tank, are visible as the instability appears to
be slightly weaker at z = 14.3 cm (figure 7b), which is closer to the lateral tank walls, than
at z = 4.3 cm (figure 7a). The beam generated using the non-uniform cylinder (figure 7d,e)
is noticeably thinner at z = 14.3 cm than at z = 4.3 cm, as a result of the smaller cylinder
radius at z = 14.3 cm. Most importantly, however, in contrast to the beam due to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.682


Finite-amplitude instabilities 904 A16-15

–150 –75 75 150

x (mm)

y 
(m

m
)

y 
(m

m
)

x (mm)

0 –150 –75 75 1500

–150

–150

–75

–75

75

75

150

150

0

0

–150

–75

75

150

0

–150

–75

75

150

0

–150

–75

75

150

0

–150 –75 75 1500

x (mm)

–150 –75 75 1500

–150

–75

75

150

0

–150

–75

75

150

0

–150 –75 75 1500

(b) (c)(a)

(e) ( f )(d)

(mm s–1) (mm s–1)

–4
–3
–2
–1

–1

–2

0 0
1

1
2

2

3
4

FIGURE 7. Experimental velocity fields for beam inclination angle θ = 45◦ and forcing
amplitude A/L = 0.63 using the uniform cylinder (a–c) and the non-uniform cylinder (d–e)
at t = 39T0, where T0 is the forcing period. Panels (a,d) show the horizontal velocity field at
z = 4.3 cm while panels (b,e) show the horizontal velocity field at z = 14.3 cm, closer to the
lateral tank wall. Panels (c, f ) show the mean horizontal velocity field at z = 14.3 cm obtained
by filtering panels (b,e), respectively, around the zero-frequency. No significant vertical mean
flows were observed.

uniform cylinder, the beam due to the non-uniform cylinder appears to be essentially
stable, and remained so even at longer times (t = 63T0). This suggests that transverse
variations significantly weaken the TRI-like instability discussed in § 3.

Furthermore, figure 7(c, f ) compares the strength of the induced horizontal mean flow
due to the uniform cylinder against that due to the non-uniform cylinder, at t = 39T0
after start of forcing. As expected, the mean flow generated by the non-uniform cylinder
was much stronger than its counterpart due to the uniform cylinder. For the non-uniform
cylinder, this mean flow was observed to grow approximately linearly (resonantly) in early
times and is therefore likely of the streaming type. Furthermore, in this instance, the strong
mean flow noticeably bends the beam (figure 7e), as was found for streaming (Fan et al.
2018).

Our observations thus indicate that enhancing transverse variations weakens the
TRI-like instability and instead favours streaming, an effect that is likely also dependent
on forcing amplitude and beam angle, as suggested by the results of § 5.2. This provides
a plausible explanation for why Bordes et al. (2012) observed strong streaming but not
TRI: the presence of significant transverse beam variations due to their wavemaker, which
spanned only approximately 1/6 of the tank width, as well as the shallow beam angles
(15◦ ≤ θ ≤ 30◦) used in their study, apparently acted to completely mask TRI.

7. Concluding remarks

Most prior stability studies of internal gravity wave beams focused on subharmonic
instabilities due to resonant triad interactions. This instability mechanism is pertinent
to small-amplitude nearly monochromatic beams – either as PSI in the nearly inviscid
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limit appropriate to oceans (Karimi & Akylas 2014, 2017) or as TRI under laboratory
flow conditions (Bourget et al. 2013). By contrast, the present investigation considered
finite-amplitude wave beams whose profile comprises roughly one wavelength, akin to
those originally observed by Mowbray & Rarity (1967). Such thin beams, generated in
a stratified fluid tank by oscillating a cylinder in the direction of beam propagation,
were observed to be unstable above a threshold wave amplitude to two subharmonic
perturbations with wavepacket-like spatial structure. Despite certain similarities to the
familiar TRI of small-amplitude nearly monochromatic wave beams, this novel instability
can be treated theoretically only via formal stability analysis of a finite-amplitude beam
based on Floquet theory. Adapting to our experimental flow conditions the computational
procedure used by Onuki & Tanaka (2019) for finite-amplitude oceanic internal wave
beams, the computed most unstable Floquet modes are in very good agreement with the
observed subharmonic disturbances.

Our observed instability bears resemblance to recent observations of instability in
internal wave attractors (Scolan et al. 2013; Brouzet et al. 2016), which also involve thin
beams that feature no more than a single wavelength. In these studies, the authors report
that the observed instability appears to satisfy the triad resonance conditions. However,
as discussed at the end of § 3, the TRI theory is not strictly applicable for these thin
beams, and it is unclear whether the most unstable triad predicted by TRI theory matches
their observed instability. In view of the results presented here, it is possible that Floquet
stability analysis, which takes into full account the finite width and amplitude of the beam,
may be used to predict the observed instability frequencies and wavevectors of the attractor
system. This approach has been used by Jouve & Ogilvie (2014) to predict theoretically
the instability found in numerical simulations of an inertial wave attractor.

We also explored the significance of three-dimensional effects on the observed
subharmonic instability. According to our Floquet stability analysis, under the
experimental flow conditions, infinitesimal perturbations with sinusoidal dependence in
the transverse direction generally have smaller growth rates than their two-dimensional
counterparts. Furthermore, finite transverse beam variations, introduced by using as
forcing a cylinder with non-uniform radius, were observed to weaken the subharmonic
instability and, in addition, to induce a horizontal mean flow of the streaming type. Thus,
although it is possible for TRI-like subharmonic instability and streaming to coexist, in
the presence of significant transverse variations the latter effect is expected to dominate,
consistent with the observations of Bordes et al. (2012). However, in more complex
three-dimensional geometries, such as in the thin beams generated by an oscillating torus
(Shmakova & Flór 2019), instability of the TRI-type may still be important, particularly in
the intersection region of various wave beams.

In the nearly inviscid oceanic context, the strength of streaming probably would be
greatly diminished as it hinges on the generation of mean potential vorticity by dissipative
processes. On the other hand, as also hinted by the nearly inviscid stability computations of
Onuki & Tanaka (2019), the finite-amplitude TRI-like instability of thin beams discussed
here is likely to persist. However, as we find that the beam propagation angle θ plays an
important part in the instability dynamics, a complete stability analysis for θ in the range
3◦ � θ � 5◦, appropriate to oceanic beams, is necessary and is left to future studies.
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