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1. Introduction

In this paper we analyse the stability properties for positive solutions to the follow-
ing semilinear elliptic boundary-value problem with nonlinear boundary conditions

−∆u = λf(u) in Ω, (1.1)
∂u

∂η
= −g(u) on ∂Ω, (1.2)

where Ω ⊂ R
n is a bounded domain with sufficiently smooth boundary and n � 1,

∆ is the Laplace operator, λ is a positive parameter, ∂u/∂η is the outward normal
derivative, f : [0,∞) → R is a C2+β function with f �≡ 0, g : [0,∞) → (0,∞)
is a C2+β function and β ∈ (0, 1]. In particular, we are interested in stability
properties of classical solutions, i.e. u ∈ C2(Ω) ∩ C1(Ω̄), of (1.1), (1.2). Note that
our assumption on g excludes any constant solutions, i.e. u(x) ≡ C, C ∈ [0,∞),
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of (1.1), (1.2). It is well known that study of the structure of solutions of (1.1),
(1.2) is the consideration of the structure of steady-state solutions for the following
initial–boundary-value problem:

ut =
1
λ

∆u + f(u), x ∈ Ω, t > 0, (1.3)

∂u

∂η
= −g(u), x ∈ ∂Ω, t > 0, (1.4)

u(0, x) = u0(x), x ∈ Ω. (1.5)

In fact, the dynamics of (1.3)–(1.5) are almost completely determined by the struc-
ture of its steady-state solutions (see, for example, [8]). Reaction–diffusion equa-
tions such as (1.3)–(1.5) have been extensively employed to model a variety of
phenomena in several fields, especially combustion theory and population dynam-
ics (see [8, 11, 23, 24, 26]). In a population dynamics context, u(t, x) represents the
population density at time t and location x in the patch Ω. The boundary condi-
tion (1.4) models the tendency of the population to leave the patch at the bound-
ary in such a way that it depends nonlinearly on the population density itself. In
particular, we have recently studied such models with the assumption of negative-
density-dependent dispersal of the population on the boundary (see [12–14,16–18]).
In the context of combustion theory, we studied the structure of positive steady-
state solutions for (1.1), (1.2) in [15] and for a slightly different boundary condition
in [19].

The following definitions of stability and instability presented here come from
Lyapunov stability, which is defined with respect to initial perturbations (see, for
example, [25]). A solution u(x) of (1.1), (1.2) is said to be stable if for every ε > 0
there exists a δ > 0 such that ‖v(t, ·)−u‖∞ < ε for t > 0 whenever ‖u0 −u‖∞ < δ,
where v(t, x) is the solution of (1.3)–(1.5). If, in addition, ‖v(t, ·) − u‖∞ → 0 as
t → ∞, then u is said to be asymptotically stable. The steady state u is said to
be unstable if it is not stable. Finally, u(x) is said to be an isolated steady state if
there exists a neighbourhood Nu of u in C(Ω̄) such that u is the only steady-state
solution in Nu.

In [7], the instability of positive solutions for (1.1) is studied in conjunction with
the linear boundary condition

αhu + (1 − α)
∂u

∂η
= 0 on ∂Ω, (1.6)

where α ∈ [0, 1] is a constant and h : ∂Ω → (0,∞) is a smooth function with h ≡ 1
when α = 1, i.e. the boundary condition may be of Dirichlet, Neumann or mixed
type. They proved that if f(u) is a smooth function satisfying

f(0) < 0, (1.7)
f ′(0) > 0, u > 0, (1.8)
f ′′(u) � 0, u > 0, (1.9)

then every positive solution of (1.1) and (1.6) is unstable. Note that, under the above
assumption, (1.7), (1.1) and (1.6) give rise to what is known as a semipositone
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problem. Boundary-value problems with semipositone structure pose challenging
mathematical problems, as indicated in the celebrated paper by Lions [22]. This
was recently confirmed by the remarkable work of Berestycki et al . [2–6] on the
qualitative behaviour of positive solutions to semilinear equations on unbounded
domains. A review of earlier results for semipositone problems can be found in [9].
This stability result was later extended to the case when (1.8) was relaxed, first by
Tertikas [27] using sub- and supersolutions and then by Chhetri and Shivaji [10]
by reducing the problem to the monotone case through a decomposition of f to a
monotone and linear function. Tertikas [27] also showed that if f(u) satisfies either

f(0) = 0, f ′′(u) < 0, u > 0, (1.10)

or

f(0) > 0, f ′′(u) � 0, u > 0, (1.11)

then every positive solution of (1.1) and (1.6) is stable and unique. Karatson and
Simon [20] later gave a more direct proof of these results. Each of the previous works
made use of the well-known principle of linearized stability (see, for example, [25])
to prove their results. Particularly, stability of a positive solution u of (1.1) and
(1.6) is determined by ascertaining the sign of the principal eigenvalue, σ1, of the
linearized equation associated with (1.1) and (1.6), namely

−∆φ − λfu(u)φ = σφ in Ω, (1.12)

αhφ + (1 − α)
∂φ

∂η
= 0 on ∂Ω, (1.13)

with corresponding eigenfunction φ(x) > 0 in Ω. If σ1 > 0, then the positive
solution u of (1.1) and (1.6) is stable, whereas if σ1 < 0, then u is unstable.

The major aim of this work is to prove stability and instability results for (1.1),
(1.2) under analogous hypothesises on f(u) and g(u). To this end, we first present
a principal of linearized stability for (1.1), (1.2).

Theorem 1.1. Let σ1 be the principal eigenvalue of the linearized equation associ-
ated with (1.1), (1.2), namely

−∆φ − λfu(u)φ = σφ in Ω, (1.14)
∂φ

∂η
+ gu(u)φ = σφ on ∂Ω, (1.15)

with corresponding eigenfunction φ chosen such that φ(x) > 0 in Ω̄, where u is any
solution of (1.1), (1.2). Then the following hold.

(a) If σ1 > 0, then u is stable. Moreover, if u is isolated from other steady-state
solutions, then u is asymptotically stable.

(b) If σ1 < 0, then u is unstable.
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Remark 1.2.

(a) The eigenvalue problem (1.14), (1.15) has a smallest (principal) eigenvalue
due to [1, theorem 2.2]. The corresponding eigenfunction can also be chosen
to be positive in Ω̄.

(b) Umezu first proved this principle of linearized stability in the context of a
specific population model where f(x, u) is a spatially heterogenous logistic
growth function and (1.2) is replaced with a different nonlinear boundary
condition modelling an influx of the population into the patch Ω (see [29]).

For completeness, we provide a proof of theorem 1.1 in § 2. We now present the
main stability/instability results. First, we list several essential hypotheses dealing
with the relationship between the reaction term f(u) and the boundary nonlin-
earity g(u). In the following theorems we will always assume one of the following
hypotheses:

(FG1)
d
du

[
f(u)
g(u)

]
< 0 for u > 0,

(FG2)
d
du

[
f(u)
g(u)

]
> 0 for u > 0,

(FG3)
d
du

[
f(u)
g(u)

]
= 0 for u > 0.

Note that

d
du

[
f(u)
g(u)

]
=

fu(u)g(u) − f(u)gu(u)
[g(u)]2

. (1.16)

Thus, (FG1) implies that fu(u)g(u) − f(u)gu(u) < 0 for u > 0 and (FG2) implies
fu(u)g(u) − f(u)gu(u) > 0 for u > 0. Also, (FG3) is equivalent to the fact that
there exists a C ∈ R such that f(u) = Cg(u) for u > 0.

We now present results on the stability properties of positive solutions for (1.1),
(1.2), making explicit assumptions only on the concavity/convexity of the boundary
nonlinearity g(u). Given the hypotheses

(G1) guu(u) < 0 for u > 0,

(G2) guu(u) > 0 for u > 0,

(G3) guu(u) = 0 for u > 0,

we prove the following theorems. Note that (G3) is equivalent to the fact that g(u)
is linear.

Theorem 1.3. The following hold.

(a) If (G1) and (FG1) both hold, then every positive solution of (1.1), (1.2) is
stable. Moreover, if u is an isolated positive solution of (1.1), (1.2), then u is
asymptotically stable.
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(b) If (G2) and (FG2) both hold, then every positive solution of (1.1), (1.2) is
unstable.

Theorem 1.4. Suppose that (G3) holds. Then we have the following.

(a) If (FG1) also holds, then every positive solution of (1.1), (1.2) is stable. More-
over, if u is an isolated positive solution of (1.1), (1.2), then u is asymptoti-
cally stable.

(b) If (FG2) also holds, then every positive solution of (1.1), (1.2) is unstable.

Remark 1.5. These results require neither an explicit sign condition on f(0) nor
a monotonicity or even concavity/convexity condition on the reaction term f(u),
other than what is implied by (FG1) or (FG2). This is in stark contrast with previ-
ous results such as [20], where the sign condition on f(0) was shown to be necessary
for a similar result to hold in the case of the linear boundary condition (1.6).

Theorems 1.3 and 1.4 are proved in § 3. We now list results on the stability
properties of positive solutions of (1.1), (1.2) by making assumptions on the reaction
term f(u).

(F1) f(u) > 0 for u > 0; fuu(u) < 0 for u > 0.

(F2) f(u) > 0 for u > 0; fuu(u) > 0 for u > 0,

(F2A) f(u) < 0 for u ∈ [0, β) for some β > 0; f(u) > 0 for u > β; fuu(u) > 0 for
u > 0, or

(F3) f(u) > 0 for u > 0; fuu(u) = 0 for u > 0.

Also, note that, under (F3), f(x) is necessarily linear.

Theorem 1.6. The following hold.

(a) If (F1) and (FG1) both hold, then every positive solution of (1.1), (1.2) is
stable. Moreover, if u is an isolated positive solution of (1.1), (1.2), then u is
asymptotically stable.

(b) If (F2) and (FG2) both hold, then every positive solution of (1.1), (1.2) is
unstable.

Theorem 1.7. Suppose that (F2A) and (FG2) hold. Then every positive solution
of (1.1), (1.2) is unstable.

Theorem 1.8. Suppose that (F3) holds. Then we have the following.

(a) If (FG1) also holds, then every positive solution of (1.1), (1.2) is stable. More-
over, if u is an isolated positive solution of (1.1), (1.2), then u is asymptoti-
cally stable.

(b) If (FG2) also holds, then every positive solution of (1.1), (1.2) is unstable.

Theorems 1.6–1.8 are proved in § 4, along with the following result in the case
when (FG3) holds.
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Theorem 1.9. Suppose that (FG3) holds. Then we have the following.

(a) If either (F1) or (G1) also holds, then every positive solution of (1.1), (1.2)
is stable. Moreover, if u is an isolated positive solution of (1.1), (1.2), then u
is asymptotically stable.

(b) If either (F2A), (F2), or (G2) also holds, then every positive solution of (1.1),
(1.2) is unstable.

In § 5, we discuss various examples satisfying our various hypotheses for stability
results in dimension 1, i.e. n = 1 and Ω = (0, 1). In particular, for these examples we
provide complete bifurcation curves for positive solutions via a time map analysis
(see [21], in which such an analysis was introduced for boundary-value problems
with Dirichlet boundary conditions).

2. Proof of theorem 1.1

To prove theorem 1.1, assume that ũ is a positive solution of (1.1), (1.2) and that
σ1 is the principal eigenvalue of (1.14), (1.15) with corresponding eigenfunction φ
chosen to be positive in Ω̄ and scaled such that ‖φ‖∞ = 1. Note that by Taylor’s
theorem we have

f(ũ + v) = f(ũ) + fu(ũ)v + 1
2fuu(Cv)v2, (2.1)

g(ũ + v) = g(ũ) + gu(ũ)v + 1
2guu(C∗

v )v2 (2.2)

for some Cv, C∗
v between ũ and ũ + v. Let ε > 0 and define ψ1 := ũ − εφ and

ψ2 := ũ + εφ. We now show that ψi, i = 1, 2, are sub- or supersolutions of (1.1),
(1.2) depending on the sign of σ1.

For x ∈ Ω,

−∆ψ1 − λf(ψ1) = −∆ũ + ε∆φ − λf(ũ − εφ)

= −∆ũ − λf(ũ) − ε[−∆φ − λfu(ũ)φ]

− λ[f(ũ − εφ) − f(ũ) − fu(ũ)(−εφ)]

= εφ[−σ1 − 1
2λεφfuu(Cεφ)], (2.3)

since ũ is a solution of (1.1), (1.2), φ is a solution of (1.14), (1.15), and by (2.1). Thus,
there exists an ε1 > 0 such that for ε < ε1 we have that sgn(−∆ψ1 − λf(ψ1)) =
sgn(−σ1).

For x ∈ ∂Ω,

∂ψ1

∂η
+ g(ψ1) =

∂ũ

∂η
− ε

∂φ

∂η
+ g(ũ − εφ)

=
∂ũ

∂η
+ g(ũ) − ε

[
∂φ

∂η
+ gu(ũ)φ

]

+ g(ũ − εφ) − g(ũ) − gu(ũ)(−εφ)

= εφ[−σ1 + 1
2εφguu(C∗

εφ)] (2.4)
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again since ũ is a solution of (1.1), (1.2), φ is a solution of (1.14), (1.15), and by
(2.2). Hence, there exists an ε2 > 0 such that for ε < ε2 we have that

sgn
(

∂ψ1

∂η
+ g(ψ1)

)
= sgn(−σ1).

A similar argument gives that there exists an ε3 > 0 such that for ε < ε3 we have
that

sgn(−∆ψ2 − λf(ψ2)) = sgn(σ1) and sgn
(

∂ψ2

∂η
+ g(ψ2)

)
= sgn(σ1).

Now, let ρ ∈ (0, min{ε1, ε2, ε3}) and denote by U1, U2 the solutions of (1.3)–
(1.5) with U1(0, x) = ψ1 = ũ − ρφ and U2(0, x) = ψ2 = ũ + ρφ. In the case when
σ1 > 0, we have that ψ1 and ψ2 are strict sub- and supersolutions of (1.1), (1.2),
respectively. From [25, § 5.6, lemma 6.1], we have that U1 is increasing in t, U2 is
decreasing in t and

ũ − ρφ � U1(t, x) � ũ � U2(t, x) � ũ + ρφ, t > 0, x ∈ Ω.

Therefore, for ε < ρ, if u is the solution of (1.14), (1.15) with u(0, x) = u0(x)
in Ω and u0 is such that ‖u0 − ũ‖∞ < ε, then ũ − εφ � u0 � ũ + εφ, and thus
‖u(t, ·)− ũ‖∞ < ε for t > 0. Hence, ũ is stable. Moreover, if ũ is isolated from other
steady-state solutions, u is the solution of (1.14), (1.15) with u(0, x) = u0(x) in Ω
and u0 is such that ‖u0 − ũ‖∞ < ε, then ‖u(t, ·) − ũ‖∞ → 0 as t → ∞.

In the case when σ1 < 0, we have that ψ1 and ψ2 are strict super- and subsolutions
of (1.1), (1.2), respectively. Again from [25], we have that U1 is decreasing in t and
U2 is increasing in t. For any ε > 0 arbitrarily small we have that for all δ > 0 with
‖Ui(0, ·) − ũ‖∞ < δ, i = 1, 2, there exists a t∗ > 0 such that ‖Ui(t, ·) − ũ‖∞ > ε for
t > t∗ for i = 1, 2. Hence, ũ is unstable.

3. Proof of theorems 1.3 and 1.4

Before providing a proof of theorems 1.3 and 1.4, we first present a necessary lemma
that provides a connection between the boundary nonlinearity g, conditions (FG1)–
(FG3) and σ1.

Lemma 3.1. If u is a positive solution of (1.1), (1.2), then

−σ1

[ ∫
∂Ω

g(u)φ ds +
∫

Ω

g(u)φ dx

]
=

∫
Ω

guu(u)|∇u|2φ dx

+
∫

Ω

λ[fu(u)g(u) − f(u)gu(u)]φ dx, (3.1)

where σ1 is the principal eigenvalue of (1.14), (1.15) with corresponding eigenfunc-
tion φ.

Proof of lemma 3.1. Suppose that u is a positive solution of (1.1), (1.2) and σ1 is
the principal eigenvalue of (1.14), (1.15) with corresponding eigenfunction φ chosen
to be positive on Ω̄. Note that

∆g(u) = div(gu(u)∇u) (3.2)
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and

∆g(u) = guu(u)|∇u|2 + gu(u)∆u. (3.3)

Now, by (3.2) and Green’s second identity we have∫
Ω

[(−∆φ)g(u) + (∆g(u))φ] dx =
∫

∂Ω

−∂φ

∂η
g(u) + gu(u)

∂u

∂η
φ ds

=
∫

∂Ω

[gu(u) − σ1]g(u)φ − g(u)gu(u)φ ds

= −σ1

∫
∂Ω

g(u)φ ds, (3.4)

since φ is a positive eigenfunction to σ1 of (1.14), (1.15). But, using (3.3) and the
fact that φ is a positive eigenfunction to σ1 of (1.14), (1.15) and u is a positive
solution of (1.1), (1.2), we have that∫

Ω

[(−∆φ)g(u) + (∆g(u))φ] dx

=
∫

Ω

[λfu(u) + σ1]g(u)φ dx +
∫

Ω

[guu(u)|∇u|2 + gu(u)∆u]φ dx

=
∫

Ω

λ[fu(u)g(u) − f(u)gu(u)]φ dx + σ1

∫
Ω

g(u)φ dx

+
∫

Ω

guu(u)|∇u|2φ dx. (3.5)

Finally, combining (3.4) and (3.5) gives the desired result, namely

−σ1

[ ∫
∂Ω

g(u)φ ds +
∫

Ω

g(u)φ dx

]
=

∫
Ω

guu(u)|∇u|2φ dx

+
∫

Ω

λ[fu(u)g(u) − f(u)gu(u)]φ dx. (3.6)

Using lemma 3.1, we now present the proofs of theorems 1.3 and 1.4.

Proof of theorem 1.3. Assume that u is a positive solution of (1.1), (1.2) and σ1 is
the principal eigenvalue of (1.14), (1.15) with corresponding eigenfunction φ chosen
to be positive on Ω̄.

Suppose that (G1) and (FG1) both hold. Then by lemma 3.1 we have

−σ1

[ ∫
∂Ω

g(u)φ ds +
∫

Ω

g(u)φ dx

]

=
∫

Ω

guu(u)|∇u|2φ dx +
∫

Ω

λ[fu(u)g(u) − f(u)gu(u)]φ dx < 0, (3.7)

since g(u) > 0 for u > 0, guu(u) < 0 for u > 0, φ > 0 in Ω̄ and fu(u)g(u) −
f(u)gu(u) < 0 for u > 0 from (FG1). Thus, σ1 > 0 and the result follows from
theorem 1.1.
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On the other hand, if we suppose that (G2) and (FG2) both hold, then lemma 3.1
again gives that

−σ1

[ ∫
∂Ω

g(u)φ ds +
∫

Ω

g(u)φ dx

]

=
∫

Ω

guu(u)|∇u|2φ dx +
∫

Ω

λ[fu(u)g(u) − f(u)gu(u)]φ dx > 0, (3.8)

since g(u) > 0 for u > 0, guu(u) > 0 for u > 0, φ > 0 in Ω̄ and fu(u)g(u) −
f(u)gu(u) > 0 for u > 0 from (FG2). Thus, σ1 < 0 and the result follows from
theorem 1.1.

Proof of theorem 1.4. Suppose that (G3) holds, u is a positive solution of (1.1),
(1.2) and σ1 is the principal eigenvalue of (1.14), (1.15) with corresponding eigen-
function φ chosen to be positive on Ω̄.

By lemma 3.1 and (G3) we have

−σ1

[ ∫
∂Ω

g(u)φ ds +
∫

Ω

g(u)φ dx

]
=

∫
Ω

λ[fu(u)g(u) − f(u)gu(u)]φ dx. (3.9)

Since g(u) > 0 for u � 0 and φ > 0 in Ω̄, if (FG1) holds, then fu(u)g(u) −
f(u)gu(u) < 0 for u > 0, and thus (3.9) implies that σ1 > 0. On the other hand, if
(FG2) holds, then fu(u)g(u)− f(u)gu(u) > 0 for u > 0, and thus (3.9) implies that
σ1 > 0. The result now follows from theorem 1.1.

4. Proof of theorems 1.6–1.9

We begin by presenting a lemma that provides a connection between the reaction
nonlinearity f , conditions (FG1), (FG2) and (FG3) and σ1. Note that this result
was first proved in [28, lemma 2.1].

Lemma 4.1. If u is a positive solution of (1.1), (1.2), then

−σ1

[ ∫
∂Ω

f(u)φ ds +
∫

Ω

f(u)φ dx

]
=

∫
Ω

fuu(u)|∇u|2φ dx

+
∫

∂Ω

[fu(u)g(u) − f(u)gu(u)]φ dx, (4.1)

where σ1 is the principal eigenvalue of (1.14), (1.15) with corresponding eigenfunc-
tion φ.

Proof of lemma 4.1. Suppose that u is a positive solution of (1.1), (1.2) and σ1 is
the principal eigenvalue of (1.14), (1.15) with corresponding eigenfunction φ chosen
to be positive on Ω̄. Calculating (1.1)fu(u)φ − (1.14)f(u) and integrating over Ω
we have ∫

Ω

[(−∆u)fu(u)φ + (∆φ)f(u)] dx = −σ1

∫
Ω

f(u)φ dx. (4.2)
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But, by Green’s first identity,∫
Ω

[(−∆u)fu(u)φ] dx =
∫

Ω

∇u · ∇(fu(u)φ) dx −
∫

∂Ω

∂u

∂η
fu(u)φ ds

=
∫

Ω

fuu(u)|∇u|2φ dx +
∫

Ω

fu(u)∇φ · ∇u dx

+
∫

∂Ω

fu(u)g(u)φ ds (4.3)

and ∫
Ω

[(∆φ)f(u)] dx = −
∫

Ω

∇φ · ∇(f(u)) dx +
∫

∂Ω

∂φ

∂η
f(u) ds

= −
∫

Ω

fu(u)∇φ · ∇u dx +
∫

∂Ω

[σ1 − gu(u)]f(u)φ ds. (4.4)

Combining (4.2)–(4.4) gives

−σ1

[ ∫
∂Ω

f(u)φ ds +
∫

Ω

f(u)φ dx

]
=

∫
Ω

fuu(u)|∇u|2φ dx

+
∫

∂Ω

[fu(u)g(u) − f(u)gu(u)]φ ds (4.5)

as desired.

We now prove theorems 1.6–1.9.

Proof of theorem 1.6. Suppose u is a positive solution of (1.1), (1.2), and σ1 is the
principal eigenvalue of (1.14), (1.15) with corresponding eigenfunction φ chosen to
be positive on Ω̄. If (F1) and (FG1) both hold, then by lemma 4.1 we have that

−σ1

[ ∫
∂Ω

f(u)φ ds +
∫

Ω

f(u)φ dx

]

=
∫

Ω

fuu(u)|∇u|2φ dx +
∫

∂Ω

[fu(u)g(u) − f(u)gu(u)]φ ds

< 0, (4.6)

since fuu(u) < 0 for u > 0, φ > 0 in Ω̄ and fu(u)g(u) − f(u)gu(u) < 0 for u > 0
from (FG1). Thus, σ1 > 0, since f(u) > 0 for u > 0, and the result follows from
theorem 1.1. On the other hand, if (F2) and (FG2) both hold, then lemma 4.1 again
gives that

−σ1

[ ∫
∂Ω

f(u)φ ds +
∫

Ω

f(u)φ dx

]

=
∫

Ω

fuu(u)|∇u|2φ dx +
∫

∂Ω

[fu(u)g(u) − f(u)gu(u)]φ ds

> 0, (4.7)

since fuu(u) > 0 for u > 0, φ > 0 in Ω̄, and fu(u)g(u) − f(u)gu(u) > 0 for u > 0
from (FG2). Thus, σ1 < 0 since f(u) > 0 for u > 0, and the result follows from
theorem 1.1.
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Before proving theorem 1.7, we first establish the following lemma, which is cru-
cial to the proof of this theorem.

Lemma 4.2. If (F2A) holds and u is a positive solution of (1.1), (1.2), then

−σ1

[ ∫
∂Ω

f̄(u)φ ds +
∫

Ω

f̄(u)φ dx

]

=
∫

Ω

f̄uu(u)|∇u|2φ dx − λf(0)
∫

Ω

f̄u(u)φ dx

+ λ|f̄u(0)|
∫

Ω

[uf̄u(u) − f̄(u)]φ dx +
∫

∂Ω

[f̄u(u)g(u) − f̄(u)gu(u)]φ ds,

(4.8)

where σ1 is the principal eigenvalue of (1.14), (1.15) with corresponding eigenfunc-
tion φ and f̄(u) := f(u) − f(0) + |fu(0)|u.

Proof of lemma 4.2. Suppose that (F2A) and (FG2) both hold, u is a positive solu-
tion of (1.1), (1.2) and σ1 is the principal eigenvalue of (1.14), (1.15) with corre-
sponding eigenfunction φ chosen to be positive on Ω̄. Define f̄(u) := f(u) − f(0) +
|fu(0)|u. Thus, f̄(0) = 0, f̄u(u) = fu(u) + |fu(0)| and f̄uu(u) = fuu(u) > 0. This
implies that f̄u(u) > 0 for u > 0, and thus f̄(u) > 0 for u > 0.

Now, u is a positive solution of (1.1), (1.2) rewritten as

−∆u = λ[f̄(u) + f(0) − |fu(0)|u] in Ω, (4.9)
∂u

∂η
= −g(u) on ∂Ω, (4.10)

and σ1 is the principal eigenvalue of (1.14), (1.15), also rewritten as

−∆φ − λ[f̄u(u) − |fu(0)|]φ = σφ in Ω, (4.11)
∂φ

∂η
+ gu(u)φ = σφ on ∂Ω. (4.12)

Integration of (4.9)f̄u(u)φ − (4.11)f̄(u) over Ω gives
∫

Ω

(−∆u)f̄u(u)φ + (∆φ)f̄(u) − λf(0)f̄u(u)φ

+ λ|f̄u(0)|uf̄u(u)φ − λ|f̄u(0)|f̄(u)φ dx

= −σ1

∫
Ω

f̄(u)φ dx. (4.13)

But, by Green’s first identity,∫
Ω

[(−∆u)f̄u(u)φ] dx =
∫

Ω

∇u · ∇(f̄u(u)φ) dx −
∫

∂Ω

∂u

∂η
f̄u(u)φ ds

=
∫

Ω

f̄uu(u)|∇u|2φ dx +
∫

Ω

f̄u(u)∇φ · ∇u dx

+
∫

∂Ω

f̄u(u)g(u)φ ds (4.14)
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and ∫
Ω

[(∆φ)f̄(u)] dx = −
∫

Ω

∇φ · ∇f̄(u) dx +
∫

∂Ω

∂φ

∂η
f̄(u) ds

= −
∫

Ω

f̄u(u)∇φ∇u dx +
∫

∂Ω

[σ1 − gu(u)]f̄(u)φ ds. (4.15)

Combining (4.13)–(4.15) gives

−σ1

[ ∫
∂Ω

f̄(u)φ ds +
∫

Ω

f̄(u)φ dx

]
=

∫
Ω

f̄uu(u)|∇u|2φ dx − λf(0)
∫

Ω

f̄u(u)φ dx

+ λ|f̄u(0)|
∫

Ω

[uf̄u(u) − f̄(u)]φ dx

+
∫

∂Ω

[f̄u(u)g(u) − f̄(u)gu(u)]φ ds. (4.16)

Proof of theorem 1.7. Suppose that (F2A) and (FG2) both hold, u is a positive
solution of (1.1), (1.2), f̄(u) is defined as in lemma 4.2 and σ1 is the principal
eigenvalue of (1.14), (1.15) with corresponding eigenfunction φ chosen to be positive
on Ω̄. We note that since f̄uu(u) > 0 for u > 0 we have∫

Ω

f̄uu(u)|∇u|2φ dx > 0. (4.17)

In addition, note that since f̄(0) = 0 and f̄uu(u) > 0 for u > 0 we must have that
uf̄u(u) − f̄(u) > 0 and f̄u(u) > 0 for u > 0. This fact combined with λ > 0 and
f(0) < 0 yields

−λf(0)
∫

Ω

f̄u(u)φ dx > 0 (4.18)

and

λ|f̄u(0)|
∫

Ω

[uf̄u(u) − f̄(u)]φ dx > 0. (4.19)

Also, (FG2) implies that f̄u(u)g(u) − f̄(u)gu(u) > 0 for u > 0. Combined with the
fact that φ > 0 in Ω̄, this gives∫

∂Ω

[f̄u(u)g(u) − f̄(u)gu(u)]φ ds > 0. (4.20)

Combining lemma 4.2 with (4.17)–(4.20) gives

−σ1

[ ∫
∂Ω

f̄(u)φ ds +
∫

Ω

f̄(u)φ dx

]
=

∫
Ω

f̄uu(u)|∇u|2φ dx − λf(0)
∫

Ω

f̄u(u)φ dx

+ λ|f̄u(0)|
∫

Ω

[uf̄u(u) − f̄(u)]φ dx

+
∫

∂Ω

[f̄u(u)g(u) − f̄(u)gu(u)]φ ds

> 0, (4.21)
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since f̄(u) > 0 for u > 0. We then obtain σ1 < 0, and the result now immediately
follows from theorem 1.1.

We close this section by presenting the proofs of theorems 1.8 and 1.9.

Proof of theorem 1.8. Suppose that (F3) holds, u is a positive solution of (1.1), (1.2)
and σ1 is the principal eigenvalue of (1.14), (1.15) with corresponding eigenfunction
φ chosen to be positive on Ω̄.

Thus, lemma 4.1 gives

−σ1

[ ∫
∂Ω

f(u)φ ds +
∫

Ω

f(u)φ dx

]
=

∫
∂Ω

[fu(u)g(u) − f(u)gu(u)]φ ds. (4.22)

Since f(u) > 0 for u > 0, and φ > 0 in Ω̄, if (FG1) holds, then fu(u)g(u) −
f(u)gu(u) < 0 for u > 0, and thus (4.22) implies that σ1 > 0. On the other hand,
if (FG2) holds, then fu(u)g(u) − f(u)gu(u) > 0 for u > 0, and thus (4.22) implies
that σ1 > 0. The result in these cases now follows from theorem 1.1.

Proof of theorem 1.9. Suppose that (FG3) holds, u is a positive solution of (1.1),
(1.2) and σ1 is the principal eigenvalue of (1.14), (1.15) with corresponding eigen-
function φ chosen to be positive on Ω̄. Now, if (F1) holds, then with (FG3),
lemma 4.1 yields

−σ1

[ ∫
∂Ω

f(u)φ ds +
∫

Ω

f(u)φ dx

]
=

∫
Ω

fuu(u)|∇u|2φ dx < 0. (4.23)

If (G1) holds, then from (FG3) and lemma 3.1 we have

−σ1

[ ∫
∂Ω

g(u)φ ds +
∫

Ω

g(u)φ dx

]
=

∫
Ω

guu(u)|∇u|2φ dx < 0. (4.24)

In either case σ1 > 0, and the result follows from theorem 1.1.
Now, note that if (F2) holds, then by lemma 4.1 with (FG3) we have that

−σ1

[ ∫
∂Ω

f(u)φ ds +
∫

Ω

f(u)φ dx

]
=

∫
Ω

fuu(u)|∇u|2φ dx > 0. (4.25)

Also, if (F2A) holds, then from lemma 4.2 and (FG3) we have that

−σ1

[ ∫
∂Ω

f̄(u)φ ds +
∫

Ω

f̄(u)φ dx

]

=
∫

Ω

f̄uu(u)|∇u|2φ dx − λf(0)
∫

Ω

f̄u(u)φ dx

+ λ|f̄u(0)|
∫

Ω

[uf̄u(u) − f̄(u)]φ dx

> 0. (4.26)

Finally, if (G2) holds, then from (FG3) and lemma 3.1 we have

−σ1

[ ∫
∂Ω

g(u)φ ds +
∫

Ω

g(u)φ dx

]
=

∫
Ω

guu(u)|∇u|2φ dx > 0. (4.27)

In all of these cases σ1 < 0, and the result follows from theorem 1.1.
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Figure 1. The bifurcation curve of positive solutions to (5.1)–(5.3) for (a) f(u) = ln(u+5)
and (b) g(u) = (u + 1)1/2. (c) Bifurcation curve for (5.1)–(5.3) for the case (G1) and
(FG1).

5. Bifurcation curves for the one-dimensional case

Here, we present complete bifurcation curves for the case when n = 1 and Ω = (0, 1),
namely

−u′′ = λf(u) in (0, 1), (5.1)
u′(0) = g(u(0)), (5.2)
u′(1) = −g(u(1)). (5.3)

In [17], the quadrature method of Laetsch was adapted to study (5.1)–(5.3) in
the g(u) ≡ 1 case. Modifying the quadrature method for the g(u) �≡ 1 case, the
bifurcation curve of positive solutions of (5.1)–(5.3) is given by

G(ρ, q) :=
g(q)2

2(F (ρ) − F (q))
= λ, (5.4)

where

F (u) :=
∫ u

0
f(s) ds,

ρ = ‖u‖∞ and q = u(0) = u(1) satisfies

G̃(ρ, q) := 2
∫ ρ

0

ds√
F (ρ) − F (s)

−
∫ q

0

ds√
F (ρ) − F (s)

− g(q)√
F (ρ) − F (q)

= 0. (5.5)
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Figure 2. The bifurcation curve of positive solutions of (5.1)–(5.3) for (a) f(u) = ln(u+5)
and (b) g(u) = (u + 1)1/2. (c) Bifurcation curve for (5.1)–(5.3) for the case (G2) and
(FG2).

In particular, using the mathematics software package Mathematica we obtain
the bifurcation curves of positive solutions for (5.1)–(5.3) shown in the figures. The
bifurcation curves are organized according to the assumptions on f , g and f/g.

5.1. Case (G1) and (FG1)

Setting f(u) = ln(u + 5) and g(u) = (u + 1)1/2, the bifurcation curve of positive
solutions for (5.1)–(5.3) is given in figure 1. The existence of a positive solution indi-
cated by the bifurcation curve combined with theorem 1.3 shows that there exists
an asymptotically stable positive solution for all λ ∈ [λ0, λ1) (some λ0, λ1 > 0).

5.2. Case (G2) and (FG2)

Defining f(u) = u3 + u and g(u) = (u + 1)2, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 2. The existence of a positive solution
indicated by the bifurcation curve combined with theorem 1.3 shows that there
exists an unstable positive solution for λ ∈ (0, λ0] (some λ0 > 0).

5.3. Case (G3) and (FG1)

Defining f(u) = eu/(1+u) and g(u) = 2u + 1, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 3. The existence of a positive solution
indicated by the bifurcation curve combined with theorem 1.4 shows that there
exists an asymptotically stable positive solution for λ � λ0 (some λ0 > 0).
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Figure 3. The bifurcation curve of positive solutions of (5.1)–(5.3) for (a) f(u) = eu/(1+u)

and (b) g(u) = 2u + 1. (c) Bifurcation curve for (5.1)–(5.3) for the case (G3) and (FG1).
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Figure 4. The bifurcation curve of positive solutions to (5.1)–(5.3) for (a) f(u) = u3 + u
and (b) g(u) = 2u + 1. (c) Bifurcation curve for (5.1)–(5.3) for the case (G3) and (FG2).
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Figure 5. The bifurcation curve of positive solutions of (5.1)–(5.3) for (a) f(u) = eu/(1+u)

and (b) g(u) = (u+1)2. (c) Bifurcation curve for (5.1)–(5.3) for the case (F1) and (FG1).

5.4. Case (G3) and (FG2)

Defining f(u) = u3 + u and g(u) = 2u + 1, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 4. The existence of a positive solution
indicated by the bifurcation curve combined with theorem 1.4 shows that there
exists an unstable positive solution for λ ∈ (0, λ0] (some λ0 > 0).

5.5. Case (F1) and (FG1)

Defining f(u) = eu/(1+u) and g(u) = (u + 1)2, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 5. The existence of a positive solution
indicated by the bifurcation curve combined with theorem 1.6 shows that there
exists an asymptotically stable positive solution for λ � λ0 (some λ0 > 0).

5.6. Case (F2A) and (FG2)

Defining f(u) = u3 +u−0.1 and g(u) = (u+1)2, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 6. The existence of a positive solution
indicated by the bifurcation curve combined with theorem 1.7 shows that there
exists an unstable positive solution for λ ∈ (0, λ0] (some λ0 > 0).

5.7. Case (F2) and (FG2)

Defining f(u) = eu and g(u) = (u + 1)1/2, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 7. The existence of a positive solution
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Figure 6. The bifurcation curve of positive solutions of (5.1)–(5.3) for (a) f(u) = u3+u−0.1
and (b) g(u) = (u+1)2. (c) Bifurcation curve for (5.1)–(5.3) for the case (F2A) and (FG2).

0

0

1

1

2

2

3

3

4

4

5

5

6

6

u

0
20
40
60
80

100
120
140

0 2 4 6 8 10 12 14
u

1

2

3

4

f(
u)

g(
u)

(a) (b)

(c)

||u
||

3.02.52.01.51.00.50
λ

λ 0

Figure 7. The bifurcation curve of positive solutions of (5.1)–(5.3) for (a) f(u) = eu and
(b) g(u) = (u + 1)1/2. (c) Bifurcation curve for (5.1)–(5.3) for the case (F2) and (FG2).
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Figure 8. The bifurcation curve of positive solutions of (5.1)–(5.3) for (a) f(u) = 2u + 1
and (b) g(u) = (u+1)2. (c) Bifurcation curve for (5.1)–(5.3) for the case (F3) and (FG1).

indicated by the bifurcation curve combined with theorem 1.7 shows that there
exists an unstable positive solution for λ ∈ (0, λ0] (some λ0 > 0).

5.8. Case (F3) and (FG1)

Defining f(u) = 2u + 1 and g(u) = (u + 1)2, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 8. The existence of a positive solution
indicated by the bifurcation curve combined with theorem 1.8 shows that there
exists an asymptotically stable positive solution for λ ∈ [λ0, λ1) (some λ0, λ1 > 0).

5.9. Case (F3) and (FG2)

Defining f(u) = 2u + 1 and g(u) = (u + 1)1/10, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 9. The existence of a positive solution
indicated by the bifurcation curve combined with theorem 1.8 shows that there
exists an unstable positive solution for λ ∈ (λ0, λ1] (some λ0, λ1 > 0).

5.10. Case (F1) or (G1) and (FG3)

Defining f(u) = (u+1)1/2 and g(u) = 2(u+1)1/2, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 10. The existence of a positive solution
indicated by the bifurcation curve combined with theorem 1.9 shows that there
exists an asymptotically stable positive solution for λ ∈ [λ0, λ1) (some λ0, λ1 > 0).
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Figure 9. The bifurcation curve of positive solutions of (5.1)–(5.3) for (a) f(u) = 2u + 1
and (b) g(u) = (u + 1)1/10. (c) Bifurcation curve for (5.1)–(5.3) for the case (F3) and
(FG2).
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Figure 10. The bifurcation curve of positive solutions of (5.1)–(5.3) for (a) f(u) = (u+1)1/2

and (b) g(u) = 2(u + 1)1/2. (c) Bifurcation curve for (5.1)–(5.3) for the case (F1) or (G1)
and (FG3).
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Figure 11. The bifurcation curve of positive solutions of (5.1)–(5.3) for (a) f(u) = (u+1)2

and (b) g(u) = 2(u + 1)2. (c) Bifurcation curve for (5.1)–(5.3) for the case (F2A) or (G2)
and (FG3).

5.11. Case (F2A) or (G2) and (FG3)

Defining f(u) = (u + 1)2 and g(u) = 2(u + 1)2, the bifurcation curve of positive
solutions for (5.1)–(5.3) is shown in figure 11. The existence of a positive solution
indicated by the bifurcation curve combined with theorem 1.9 shows that there
exists an asymptotically stable positive solution for λ ∈ (λ0, λ1] (some λ0, λ1 > 0).
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