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Abstract

Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate
deviations approximation are used to design importance sampling changes of measure
for stochastic recursive equations. Analogous to what has been done for large deviations
subsolution-based importance sampling, these schemes are shown to be asymptotically
optimal under the moderate deviations scaling. We present various implementations and
numerical results to contrast their performance, and also discuss the circumstances under
which a moderate deviation scaling might be appropriate.
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1. Introduction

Accurately estimating a probability using Monte Carlo can be computationally demanding if
the event is sufficiently rare. What is meant by ‘sufficiently’depends on the context and is related
to the computing resources needed for the generation of a single sample. Importance sampling
can reduce the number of samples needed by changing the distribution of the dynamics, and
then adjusting the estimate using the likelihood ratio. However, one must be careful when
selecting the alternative measure, and poor choices produce inaccurate and misleading results.

In this paper we investigate the effectiveness (including asymptotic optimality) of importance
sampling schemes based on moderate deviations asymptotics for R

d -valued discrete-time
processes of the form

Xn
i+1 = Xn

i + 1

n
b(Xn

i ) + 1

n
ui(X

n
i ), Xn

0 = x0, (1.1)

where {ui(·)}i∈N0 are zero-mean random independent and identically distributed (i.i.d.) vector
fields. We consider the continuous-time piecewise linear interpolation {Xn(t)}0≤t≤T with
Xn(i/n) = Xn

i , which takes values in C([0, T ] : R
d) (see (2.5) for the precise definition).

Importance sampling can also be used to evaluate expected values, which we assume are
expressed in the canonical form Ee−F(Xn(T )), with F a lower-semicontinuous function from R

d

to R that is bounded from below. (While in this paper we consider functionals that depend only
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982 P. DUPUIS AND D. JOHNSON

on Xn(T ), various functionals of the trajectory can be handled by the same adaptations as those
used for the large deviation problem as in, e.g. [10].)

The large deviation theory of the continuous-time linear interpolations Xn ∈ C([0, T ] : R
d)

has been extensively studied; see, e.g. [2], [5], [6], [15], and [20]–[23]. If Ee−F(Xn(T )) is largely
determined by rare events and if the true model can be embedded in a sequence satisfying a
large deviations principle, then it is natural to expect that information contained in the large
deviations rate function can be used to suggest effective changes of measure. (While it is
customary to assume that F includes the large deviation scaling, in which case the problem is
to estimate Ee−nF(Xn(T )); for reasons made clear below, we assume that the problem of interest
takes the form Ee−F(Xn(T )) for a specific value n = n∗.) The first use of large deviation ideas in
the context of rare events appeared in [19]. This inspired a number of related works, and for a
discussion on some nonrigorous (and in some sense misleading) early approaches to the problem
of algorithm design; see [16]. It turns out that a rigorous and systematic approach to design can
be based on subsolutions to a Hamilton–Jacobi–Bellman (HJB) equation associated with the
large deviation rate function [10] (see also the related notion of the Lyapunov inequality [3]).
An important result of these analyses is the observation that, in general, state feedback is needed
for changes of measure to perform well. This approach has been further developed in various
ways and for many different process models; see, e.g. [9]–[13].

Since for complicated process models (e.g. those with state dependence) nonasymptotic
bounds are either not available or too conservative, one typically uses some asymptotic perfor-
mance measure to evaluate and compare difference schemes. In this case, one expects that the
‘true’ process corresponds to some value of the asymptotic parameter (e.g. n∗), and hopes that
the asymptotic approximation is good enough that the scheme based on it is effective for the
true model. With the introduction of a new form of asymptotic optimality (i.e. one based on a
moderate deviation approximation) these issues should be revisited.

Let X0 solve the ordinary differential equation (ODE) Ẋ0 = b(X0), X0(0) = x0. An alter-
native asymptotic approximation is as follows. Let a(n) be a sequence satisfying a(n) → 0 and
a(n)

√
n → ∞, and consider the scaled or amplified difference between Xn and the noiseless

version X0:
Yn .= a(n)

√
n(Xn − X0).

It was shown in [8], under weaker conditions on the noise ui(·) than are necessary when proving
large deviation asymptotics for Xn, that Yn satisfies a large deviation principle on C([0, T ] : R

d)

with a ‘Gaussian’-type rate function. As is customary for this type of scaling, we refer to this
as moderate deviations. In this paper we use the large deviation approximation for Yn (the
moderate deviation approximation for Xn) rather than the large deviation approximation for Xn

to design importance sampling schemes. This will naturally limit the range of functionals F

to those for which a moderate deviations approximation for Xn captures the distributional
properties that are important in determining Ee−F(Xn). Intuitively, these should be functionals
and events determined by trajectories falling somewhere between a functional central limit
approximation and the full large deviation approximation (i.e. rare but not too rare). In exchange
for this restriction on the class of functionals, one has to work with an approximation (i.e. a
rate function) that is typically more tractable than the large deviation rate function.

One may ask if in this situation of ‘rare but not too rare’ events it is really worthwhile to use
importance sampling, rather than standard Monte Carlo. That will depend on the difficulty and
cost of generating samples. One can imagine at least three scenarios where it is worth the effort.
One is when the generation of even a single trajectory of Xn is time consuming, e.g. if, say, Xn

corresponds to a discrete-time approximation of a stochastic partial differential equation, or a
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Moderate deviations importance sampling 983

system with multiple (time or space) scales. The second is when a quantity such as Ee−F(Xn)

must be computed many times, such as when the output is used as part of an optimization
scheme. A third is when the event of interest is only marginally within the moderate deviations
regime, but schemes based on the large deviation rate function are simply intractable, and the
improvement may be sufficient to make the numerical problem feasible.

It is important to note that we do not propose the use of a diffusion approximation followed
by importance sampling. While the diffusion approximation may lead to a simpler process
model, it will also lead to bias in the estimates that cannot be removed. The use of moderate
deviation for purposes of importance sampling makes use of a Gaussian-type approximation to
determine the change of measure, but works with the true dynamics under a change of measure
and thus gives an unbiased estimate. Of course, the moderate deviation approximation is not a
panacea, and there are many situations (e.g. in the analysis of metastability issues) for which it
is simply inadequate. However, for those situations described previously it may have merit.

For both the large deviation and moderate deviation scalings, the approach we consider for
construction of importance sampling schemes is based on subsolutions to a nonlinear partial
differential equation (PDE) associated with the rate function (see [10] for the case of large
deviations). In general, one expects the moderate deviations rate function to involve a linear
approximation of the dynamics and a quadratic approximation of the costs found in the large
deviations rate function, centered around the law of large numbers limit. This corresponds to
a ‘local Gaussian’ approximation, and the PDEs are those associated with the famous ‘linear-
quadratic regulator,’whose solution can be constructed in terms of the solution to an appropriate
Riccati equation [1].

In analogy with the proof of the moderate deviations principle found in [8], proving the
asymptotic properties of importance sampling schemes in the moderate deviations setting
involves challenges not found in the large deviations setting. The main difficulties are due
to issues of tightness. In analyzing the large deviation properties of a process such as {Xn},
one usually assumes that the noise has a finite-moment generating function everywhere, which
implies a tightness result that is used in the proof. With the scaling of moderate deviations this
assumption is not sufficient for the analogous tightness, and alternative methods are needed.

The paper is organized as follows. In Section 2 we provide details on the types of prob-
lems considered, summarize importance sampling based on moderate deviations subsolutions,
and state the asymptotic performance bound for these schemes that will be proved later on.
In Section 3 we describe several different ways importance sampling schemes can be based
on a particular subsolution, all of which result in the same asymptotic performance bound. In
Section 4 we outline a flexible approach to constructing subsolutions with optimal decay rates
in terms of solutions to the linear-quadratic regulator with affine terminal costs. Numerical
examples are provided in Section 5, and Section 6 contains the proof of the result stated in
Section 2 on asymptotic performance.

2. Preliminaries

We consider the processes model

Xn
i+1 = Xn

i + 1

n
b(Xn

i ) + 1

n
ui(X

n
i ), Xn

0 = x0, (2.1)

where the {ui(·)}i∈N0 are zero-mean i.i.d. random vector fields with distribution given by the
stochastic kernel μ(· | x): P{ui(x) ∈ A} = μ(A | x) for A ∈ B(Rd) and x ∈ R

d . We use the
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984 P. DUPUIS AND D. JOHNSON

following assumptions on μ(· | x) and b(x). Define

Hc(x, α)
.= log

(∫
Rd

e〈u,α〉μ(du | x)

)
for α ∈ R

d . (2.2)

The subscript c reflects the fact that this log moment-generating function uses the centered
distribution μ(· | x), rather than the usual H(x, α) = Hc(x, α) + 〈α, b(x)〉.
Condition 2.1. We have the following conditions:

• there exist λ > 0 and Kmgf < ∞ such that

sup
x∈Rd

sup
‖α‖≤λ

Hc(x, α) ≤ Kmgf ; (2.3)

• x → μ(· | x) is continuous with respect to the topology of weak convergence;

• b(x) is continuously differentiable, and the norms of both b(x) and its derivative are
uniformly bounded by some constant Kb < ∞.

Throughout this paper we let ‖α‖2
A

.= 〈α, Aα〉 for any α ∈ R
d and symmetric, nonnegative

definite matrix A. Define

Aij (x)
.=

∫
Rd

uiujμ(du | x), (2.4)

and note that the weak continuity of μ(· | x) with respect to x and (2.3) ensure that A(x) is
continuous in x and its norm is uniformly bounded by some constant KA. Note also that

∂Hc(x, 0)

∂αi

=
∫

Rd

uiμ(du | x) = 0 and
∂2Hc(x, 0)

∂αi∂αj

=
∫

Rd

uiujμ(du | x) = Aij (x)

for all i, j ∈ {1, . . . , d} and x ∈ R
d , and that A(x) is nonnegative definite and symmetric.

Definition 2.1. For a symmetric, nonnegative definite matrix A we can write A = Q�Q�,
where Q is an orthogonal matrix whose columns are the eigenvectors of A and � is the
diagonal matrix consisting of the nonnegative eigenvalues of A. Throughout the paper we
use the convention that A1/2 = Q�1/2Q�, where �1/2 is the diagonal matrix consisting
of the positive square roots of the nonnegative eigenvalues of A. In addition, let ‖α‖2

A =
〈Qα, �Qα〉, and let ‖α‖2

A−1 = 〈Qα, �−1Qα〉, where �−1 is a diagonal matrix consisting of
the inverse of the eigenvalues for the positive eigenvalues and ∞ for the zero eigenvalues.
Consequently, 〈Qα, �−1Qα〉 has a well-defined and finite value for α in the span of the
eigenvalues corresponding to positive eigenvalues, and is equal to ∞ for α outside of that
linear span.

Define the continuous-time linear interpolation of Xn
i by Xn(i/n) = Xn

i for i ∈ N0 and

Xn(t) = (i + 1 − nt)Xn
i + (nt − i)Xn

i+1 for t ∈ (i/n, i/n + 1/n). (2.5)

In addition, define

X
n,0
i+1 = X

n,0
i + 1

n
b(X

n,0
i ), X

n,0
0 = x0

and let Xn,0(t) be the analogously defined continuous-time linear interpolation. Then as is well
known, Xn,0 → X0 in C([0, T ] : R

d), where

X0(t) =
∫ t

0
b(X0(s)) ds + x0.
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Since Eui(x) = 0 for all x ∈ R
d , we know that Xn → X0 in C([0, T ] : R

d) in probability [17,
Theorem 3.3.1]. Under stronger assumptions, including the assumption that

sup
x∈Rd

sup
α∈Rd

Hc(x, α) < ∞,

it has been shown that Xn satisfies the large deviation principle on C([0, T ] : R
d) with sequence

r(n) = 1/n and rate function

IL(φ)
.= inf

{∫ T

0
Lc(φ(s), u(s)) ds : φ(t) = x0 +

∫ t

0
b(φ(s)) ds +

∫ t

0
u(s) ds, t ∈ [0, T ]

}
,

where
Lc(x, β)

.= sup
α∈Rd

{〈α, β〉 − Hc(x, α)}
is the Legendre transform of Hc(x, α) [2], [5], [6], [15], [20]–[23]. When stated in terms of the
equivalent Laplace principle [6, Section 1.2], this means that for any bounded and continuous
function M on C([0, T ] : R

d),

lim
n→∞ −1

n
log Ee−nM(Xn) = inf

φ∈C([0,T ] : Rd )
{M(φ) + IL(φ)}.

Assume that a(n) satisfies

a(n) → 0 and a(n)
√

n → ∞ as n → ∞.

We define the rescaled difference

Yn(t)
.= a(n)

√
n(Xn(t) − Xn,0(t)). (2.6)

Note that

Yn
i+1 = Yn

i + a(n)√
n

(b(Xn
i ) − b(X

n,0
i )) + a(n)√

n
ui(X

n
i ), Y n

0 = 0.

Let Dxb(x) be the matrix whose kth row is (∂bk(x)/∂x1, . . . , ∂bk(x)/∂xd). It was shown in [8]
that Yn satisfies the large deviations principle on C([0, T ] : R

d) with sequence r(n) = a(n)2

and rate function

IM(φ)
.= inf

{
1

2

∫ T

0
‖u(t)‖2 dt :

φ(t) =
∫ t

0
Dxb(X0(s))φ(s) ds +

∫ t

0
A1/2(X0(s))u(s) ds, t ∈ [0, T ]

}
,

where A1/2(x) is specified in Definition 2.1. Due to the scaling, this is typically referred to as
a moderate deviations principle. For some lower-semicontinuous function G that is bounded
below, let

V (t, y)
.= inf

{
1

2

∫ T

t

‖u(s)‖2 ds + G(φ(T )) :

φ(r) = y +
∫ r

t

Dxb(X0(s))φ(s) ds

+
∫ r

t

A1/2(X0(s))u(s) ds, r ∈ [t, T ]
}

(2.7)

for all (t, y) ∈ [0, T ] × R
d .
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986 P. DUPUIS AND D. JOHNSON

The goal of the numerical procedures to be developed is the approximation of a functional of
the form Ee−F(Xn(T )) for a specific value n = n∗. To do this, we must rewrite the functional in
terms of Yn and with the moderate deviations scaling. Since the original problem was of interest
for n = n∗, Ee−F(Xn(T )) should be replaced by Ee−G(Yn(T ))/a(n)2

, where G is defined by

F(·) = G(a(n∗)
√

n∗[· − X0(T )])
a(n∗)2 . (2.8)

Thus, G implicitly depends on n∗. However, it is important to note that an analogous issue arises
when applying large deviations approximations to the design of importance sampling, since
Ee−F(Xn(T )) would have to be replaced by Ee−nF̄ (Xn(T )) with F̄ defined by F(·) = n∗F̄ (·).
Fortunately, it can be shown that the choice of embedding, meaning the choice of {a(n)} and G

such that (2.8) is satisfied, does not affect in any way the importance sampling schemes that
result from a moderate deviations approximation. The details are omitted for brevity because
the notation is cumbersome and the proof is straightforward [18]. Consequently, the choice
of embedding can be based on convenience, and with this in mind we use the convention
a(n∗)

√
n∗ = 1 for the numerical examples of Section 6 to make the comparison to large

deviations-based schemes more straightforward.
We next give the construction of an importance sampling scheme and introduce notation

that will be used throughout the paper. In the construction, various processes are defined that
depend on a control. The explicit dependence on the control is suppressed in the notation, save
for the appearance of an overbar or related notation. Thus, whenever objects using an overbar
are present, the reader is warned that a control such as η introduced below has been used in
their construction. The particular control used will be spelled out. Let �a denote the smallest
integer greater than a.

Construction 2.1. Given a probability measure η ∈ P ((Rd)�nT ), let (ūn
0, . . . , ūn

�nT −1) be
random variables with distribution η. Define

X̄n
i+1 = X̄n

i + 1

n
b(X̄n

i ) + 1

n
ūn

i , X̄n
0 = x0.

Define also the continuous-time linear interpolations X̄n(t) as in (2.5) and the scaled difference

Ȳ n(t)
.= a(n)

√
n(X̄n(t) − Xn,0(t)).

Let ηi(du | ūn
0, . . . , ūn

i−1) denote the conditional distribution of ūn
i given (ūn

0, . . . , ūn
i−1) with

the understanding that we generally suppress the dependence on (ūn
0, . . . , ūn

i−1) in the notation.
Define the conditional means

wn(t)
.=

∫
Rd

uηi(du) for t ∈ [i/n, i/n + 1/n),

the amplified conditional means w̄n(t)
.= a(n)

√
nwn(t), and the associated random measures

on R
d × [0, 1]:

ς̄n(dw × dt)
.= δw̄n(t)(dw) dt = δa(n)

√
nwn(t)(dw) dt.

Construction 2.1 involves the use of new driving noises. With respect to the original system, η
corresponds to the measure on (Rd)�nT  given by

μn(u0, . . . , un−1) =
n−1∏
i=0

μ(dui | xn
i ),
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where xn
i is the position given recursively by

xn
i+1 = xn

i + 1

n
b(xn

i ) + 1

n
ui, xn

0 = x0.

Let dμn/dηn be the Radon–Nikodym derivative of μn with respect to ηn and let Ȳ n be as in
Construction 2.1 for ηn. We consider the unbiased estimate of E exp{−G(Yn(T ))/a(n)2} given
by averaging a number (say K) of independent copies of exp{−G(Ȳ n(T ))/a(n)2}(dμn/dηn).
Thus, the variance of the average is proportional to the variance of a single sample, and since
unbiasedness implies that minimizing the variance is equivalent to minimizing the second
moment, we can characterize the performance by the magnitude of the second moment. To
study asymptotic performance, we consider the decay rate of the second moment under a
moderate deviations scaling, i.e. the limit as n → ∞ of

−a(n)2 log E

[(
exp

{
− 1

a(n)2 G(Ȳ n(T ))

}
dμn

dηn

)2]
.

As usual, Jensen’s inequality gives an a priori bound on the best possible rate:

lim sup
n→∞

−a(n)2 log E

[(
exp

{
− 1

a(n)2 G(Ȳ n(T ))

}
dμn

dηn

)2]

≤ lim sup
n→∞

−2a(n)2 log E

[
exp

{
− 1

a(n)2 G(Ȳ n(T ))

}
dμn

dηn

]

≤ 2 lim sup
n→∞

−a(n)2 log E

[
exp

{
− 1

a(n)2 G(Yn(T ))

}]
≤ 2V (0, 0),

where the last inequality comes from the large deviations principle for the moderate deviations
scaling [8, Theorem 2.3] and the definition of V (t, y) in (2.7). With Df indicating the gradient
of f , we note that V is a weak sense solution to the HJB PDE

Vt (t, y) = 1
2‖DyV (t, y)‖2

A(X0(t))
− 〈DyV (t, y), Dxb(X0(t))y〉 (2.9)

and
V (T , y) = G(y). (2.10)

By a smooth subsolution to (2.9) and (2.10), we mean a function W : R
d × [0, 1] → R that

is C1 and satisfies

Wt(t, y) ≥ 1
2‖DyW(t, y)‖2

A(X0(t))
− 〈DyW(t, y), Dxb(X0(t))y〉 (2.11)

and
W(T, y) ≤ G(y). (2.12)

In the next section we generalize the notion of subsolutions and describe several different
implementations of importance sampling schemes based on a subsolution, but the general idea is
always the following. As in the previous papers on the use of subsolutions (e.g. [10]), changes
of measure are suggested by each subsolution through the associated HJB equation, and, in
particular, through feedback controls defined through the duality formula

1
2‖p‖2

A(X0(t))
= inf

u

{〈p, A1/2(X0(t))u〉 + 1
2‖u‖2}
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988 P. DUPUIS AND D. JOHNSON

that relates (2.7) and (2.9) via dynamic programming. As we will discuss later on, a verification
argument shows that if {ηn} is a sequence of importance sampling changes of measure based
on a subsolution W satisfying (2.11) and (2.12), then the asymptotic decay rate of the second
moment of the corresponding importance sampling estimate satisfies

lim inf
n→∞ −a(n)2 log E

[(
exp

{
− 1

a(n)2 G(Ȳ n)

}
dμn

dηn

)2]
≥ V (0, 0) + W(0, 0),

where V is given by (2.7). In general, W(0, 0) ≤ V (0, 0), and an optimal rate of decay
is obtained if W(0, 0) = V (0, 0). In the next section we present a generalized definition
of subsolutions, as well as two importance sampling schemes associated with each such
subsolution.

3. Subsolutions and importance sampling

We first define the generalized class of subsolutions to be used in constructing importance
sampling schemes. The approach we use involves building subsolutions out of relatively simple
component functions which satisfy the HJB subsolution dynamics condition (2.11), but not
necessarily the terminal condition (2.12). The change of measure based on the subsolution is a
weighted combination of the changes of measure suggested by these component functions (i.e.
a mixture), and the generalized class of subsolutions we define specifies the components and
weights along with the subsolution itself. Throughout the following, if A is a closed subset of
some Euclidean space then f ∈ C1(A : R) means that there is an open neighborhood of A on
which f is continuously differentiable.

The following collection of functions are the components used in building the subsolution.
Let

S
.=

{
W ∈ C1([0, T ] × R

d : R) : W satisfies (2.11) and sup
(t,y)∈[0,T ]×Rd

‖DW‖ < ∞
}

and let

W([0, T ] × R
d) (3.1)

.=
{
ρ ∈ C([0, T ] × R

d : [0, 1]K),

K∑
k=1

ρk(t, y) = 1 for all (t, y) ∈ [0, T ] × R
d

}

be the class of continuous weightings. Finally, we define the subsolutions along with their
component functions and their weightings:

MS
.=

{
(U, ρ, {Wk}Kk=1) : U ∈ S, ρ ∈ W([0, T ] × R

d), {Wk}Kk=1 ∈ S, (3.2)

DyU(t, y) =
K∑

k=1

ρk(t, y)DyW
k(t, y) and Ut(t, y) =

K∑
k=1

ρk(t, y)Wk
t (t, y)

}
.

It follows from Jensen’s inequality that if (U, ρ, {Wk}Kk=1) ∈ MS then (2.11) holds with W

replaced by U , and, thus, (U, 1, U) ∈ MS. In the following subsections we describe two
methods for implementing importance sampling schemes based on subsolutions. Although
the U component of any element of MS always satisfies (2.11), to be used for importance
sampling, U must also satisfy the terminal condition inequality (2.12).
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3.1. Standard importance sampling

We first describe the importance sampling schemes analogous to those of [10] that can be
based on a given subsolution from MS.

Construction 3.1. Given (U, ρ, {Wk}Kk=1) ∈ S with U satisfying (2.12), define the corre-
sponding ‘standard’ importance sampling as follows. The distribution of ūn

i , given ūn
j , j =

0, . . . , i − 1, is defined by

γ n
i (du | X̄n

i )
.=

K∑
k=1

ρk

(
Ȳ n

i ,
i

n

)

× exp

{〈
u, − 1

a(n)
√

n
DyW

k

(
i

n
, Ȳ n

i

)〉

− Hc

(
X̄n

i , − 1

a(n)
√

n
DyW

k

(
i

n
, Ȳ n

i

))}
μ(du | X̄n

i ), (3.3)

where the controlled processes (X̄n, Ȳ n) are defined in terms of the ūn
i as in Construction 2.1.

The unbiased estimator for this change of measure is then defined by

rn .= exp

{
− 1

a(n)2 G(Ȳ n(T ))

}�T n�∏
i=0

(
dγ n

i (· | X̄n
i )

dμ(· | X̄n
i )

(ūn
i )

)−1

.

We refer to a sampling distribution of the form exp{〈u, α〉 − Hc(x, α)}μ(du | x) as an
exponential tilt, and to α as the tilt parameter. The importance sampling change of measure
in Construction 3.1 is a convex combination of exponential tilt changes of measure using the
weights given by ρ. This can be thought of as a mixture distribution. We refer to this as the
‘randomized’implementation of the subsolution U since we randomly choose which component
function determines the change of measure based on the probabilities given by ρ. Recall that
(U, 1, U) ∈ MS. The implementation of (U, 1, U) ∈ MS under Construction 3.1 is a single
exponential tilt which is the average of the tilts given by the {Wk} according to the weights given
by ρ. We call this the ‘deterministic’ implementation of the subsolution U . Thus, two distinct
implementations correspond to each subsolution U when K > 1. In the numerical section of
the paper we use only the deterministic implementation. However, the statement and proof of
performance of the schemes is given for the (more general) randomized implementation. The
randomized schemes can be particularly useful for some classes of problem, e.g. problems with
multiscale aspects [10, Remark 7.1].

3.2. Corrected importance sampling

The HJB equation (2.9) and inequality (2.11) directly relate to a small-noise Gaussian Markov
processes with time-dependent coefficients. They are naturally suggested for the system (2.6)
due to the moderate deviations Gaussian-type rate function. However, the moderate deviation
approximation is an asymptotic result, and it is natural to ask if the impact of prelimit ‘errors’
in the approximation can be reduced in some obvious way.

Note that exactly the same issue could arise for importance sampling based on large deviation
asymptotics. For example, if b is Lipschitz continuous and b̃ε is uniformly bounded, then the
systems

dZε = b(Zε) dt + √
ε dW, Zε(0) = z
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and
dZ̃ε = b(Z̃ε) dt + εb̃ε(Z̃ε) dt + √

ε dW, Z̃ε(0) = z, (3.4)

satisfy a large deviation principle with the same rate function, and this rate function does
not depend on b̃ε. In designing an importance sampling scheme for Z̃ε based on the large
deviation approximation, one could accommodate the b̃ε term in ways analogous to those we
will use to treat such ‘errors’ for the moderate deviation problem. However, systems with such
perturbations do not commonly appear in prior work on the design and analysis of importance
sampling using large deviation ideas. In contrast, the analogous issue is ubiquitous in the
moderate deviations setting.

For reasons discussed at length in [9] and [10], the feedback provided through the subsolution
(see (3.3)) is needed to control the variance when using importance sampling in all but the
simplest of situations. The feedback occurs because a dynamic programming analysis applied
to a control problem associated with the moderate deviation approximation shows that the tilt
parameter should be obtained from the optimization problem

inf
α

{〈DyU(t, y), A(X0(t))α〉 + 1
2‖α‖2

A(X0(t))

}
,

i.e. α(t, y) = −DyU(t, y).
Note that this tilt parameter can be equivalently characterized as the unique tilt parameter

leading to the mean velocity −A(X0(t))DyU(t, y), in that if ς(du | x) is Gaussian with mean
Dxb(x)y and variance A(x), then∫

Rd

u exp
{〈u, α(t, y)〉 − 1

2 〈α(t, y), A(x)α(t, y)〉 − 〈Dxb(x)y, α(t, y)〉}ς(du | x)

= −A(x)DyU(t, y).

When this tilt parameter is applied in the prelimit, a scaling 1/a(n)
√

n is used because the
driving noise appears in the equation for Ȳ in the form a(n)

√
nu. Since the true model need

not be Gaussian, the correct change of measure for the prelimit is thus given by

exp

{〈
u, − 1

a(n)
√

n
DyU

(
i

n
, y

)〉
− Hc

(
X̄n

i , − 1

a(n)
√

n
DyU

(
i

n
, y

))}
μ(du | X̄n

i ), (3.5)

where the term involving Dxb no longer appears because we use Hc rather than H . Differen-
tiating with respect to α in the definition (2.2) of Hc(x, α) yields∫

Rd

u exp{〈u, α〉 − Hc(x, α)}μ(du | x) = DαHc(x, α),

and so the mean of the driving noise a(n)
√

nu under (3.5) is, in fact,

a(n)
√

nDαHc

(
X̄n

i , − 1

a(n)
√

n
DyU

(
i

n
, y

))

rather than −A(X̄n
i )DyU(i/n, y). This ‘error’ is analogous to the b̃ε in (3.4). There is also a

difference between the discrete-time ‘drift’ obtained under the standard construction, which is

a(n)
√

n

[
b

(
X

n,0
i + 1

a(n)
√

n
Ȳ n

i

)
− b(X

n,0
i )

]
,
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and the corresponding drift one would obtain with the limit ‘linear Gaussian’ approximation,
which would be 〈Dxb(X0(i/n)), Ȳ n

i 〉. Due to these errors, the controlled process at the prelimit
follows a path whose mean behavior deviates from what would have been obtained if the controls
had been applied to a true Gaussian and linear system model. There is a mismatch between
what is suggested by the subsolution and what is actually happening with the true dynamics.

The errors just described disappear in the limit, and indeed as expected one obtains asymp-
totic optimality. However, there is an obvious opportunity for improvement at the prelimit
level, which amounts to correcting for these errors. While a detailed analysis, as in [7], might
suggest more elaborate ways to improve performance, the ‘corrected’ scheme introduced below
provides better performance than the standard scheme with essentially no additional analysis
or assumptions. The difference between the two is not always substantial, as in some cases
where G is a smooth functional. However, when G is not continuous and, in particular, in
the problem of estimating escape probabilities where the discontinuity takes the relatively
severe form G(y) = ∞ 1Bc(y), computational accuracy can be significantly improved by this
correction.

Let

An
y,i =

{
ξ ∈ R

d : Hc

(
X

n,0
i + y

a(n)
√

n
, ξ

)
< ∞

}
be the set of feasible tilt parameters at a particular position and time.

Definition 3.1. Given W ∈ S and some positive constant KT ∈ (0, ∞), define the state- and
time-dependent tilt parameter

ξ
n,W,T
i (y)

.= arg min

{∥∥∥∥DαH

(
X

n,0
i + y

a(n)
√

n
, α

)

+ 1

a(n)
√

n
A

(
X0

(
i

n

))
DyW

(
i

n
, y

)
+ θn

i (y)

∥∥∥∥
}
,

where the minimization is over α ∈ An
y,i such that ‖α+DyW(i/n, y)/a(n)

√
n‖ ≤ KT /a(n)2n,

and

θn
i (y)

.= b

(
X

n,0
i + y

a(n)
√

n

)
− b(X

n,0
i ) − 1

a(n)
√

n
Dxb

(
X0

(
i

n

))
y.

The corresponding exponential tilts will be used in what we refer to as the ‘corrected’
subsolution-based importance sampling scheme. The purpose of restricting the tilt parameters
to the set An

y,i is simply to ensure they can be implemented. Forcing them to be close to
DyW

k(i/n, y)/[a(n)
√

n] as n → ∞ guarantees the same asymptotic performance as the
standard scheme. The preasymptotic role of the constant KT is to prevent the corrected scheme
from choosing extremely large exponential tilts, and, in general, if very large exponential tilts
are necessary to obtain the desired conditional mean then the moderate deviation asymptotic
approximation is probably not appropriate for the problem of interest. The corrected approach
presented here is a simple (and effective) way to account for preasymptotic inaccuracies in the
moderate deviations approximation by directly adjusting the dynamics.

Construction 3.2. Given (U, ρ, {Wk}Kk=1) ∈ S with U satisfying (2.12) and KT ∈ (0, ∞),
define the corresponding corrected importance sampling as follows. The distribution of ūn

i ,
given ūn

j , j = 0, . . . , i − 1, is defined by

γ n
i (du | X̄n

i ) =
K∑

k=1

ρk

(
i

n
, Ȳ n

i

)
exp{〈u, ξ

n,Wk,T
i (Ȳ n

i )〉 − Hc(X̄
n
i , ξ

n,Wk,T
i (Ȳ n

i ))}μ(du | X̄n
i ),
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where ξ
n,W,T
i (y) is given by Definition 3.1 and the controlled processes (X̄n, Ȳ n) are defined

in terms of the ūn
i as in Construction 2.1. The unbiased estimator for this change of measure is

then defined by

rn .= exp

{
− 1

a(n)2 G(Ȳ n(T ))

}�T n�∏
i=0

(
dγ n

i (· | X̄n
i )

dμ(· | X̄n
i )

(ūn
i )

)−1

.

In Construction 3.2 we present the randomized implementation, which as noted previously
includes as a special case the deterministic implementation. The proof of the following result
appears in Section 6.

Theorem 3.1. Assume that G is bounded from below and is lower semicontinuous. For any
n ∈ N, let rn be the unbiased estimate of E exp{−G(Yn(T ))/a(n)2} based on the subsolution
(U, ρ, {Wk}Kk=1) ∈ WS, with U satisfying the terminal inequality (2.12) as in either Construc-
tion 3.1 or Construction 3.2 with the deterministic or randomized implementation. Then

lim inf
n→∞ −a(n)2 log E[(rn)2] ≥ U(0, 0) + V (0, 0),

where V is given by (2.7).

4. Constructing subsolutions

According to Theorem 3.1, the lower bound on the decay rate of the second moment
of the importance sampling estimator based on a subsolution U depends on U(0, 0) and,
therefore, subsolutions with larger values at the origin are (at least asymptotically) preferable.
Our approach to the construction of subsolutions is to identify a relatively simple class of
elements satisfying (2.9) (e.g. solutions with an affine terminal condition), and then construct
(U, ρ, {Wk}Kk=1) ∈ MS with Wk selected from this class and U satisfying (2.12) by using the
minimum (and also possibly the maximum) mollification described below in Definition 4.1.
Although this is similar to prior work in the large deviations setting, such as [10], it is typically
easier to find subsolutions to the moderate deviations PDE given by (2.9) and (2.10).

Let �(s, t) be the matrix-valued solution to

d

dt
exp{�(s, t)} = Dxb(X0(t)) exp{�(s, t)} for s < t and �(s, s) = 0.

Given a matrix or vector M , let M� denote its transpose. It is easily verified that

d

dt
exp{�(t, T )�} = −Dxb(X0(t))� exp{�(t, T )�}. (4.1)

There is a large literature concerned with the numerical approximation of �(s, t), such as [4].
Given arbitrary c ∈ R and ξ ∈ R

d , let

Wc,ξ (t, y)
.= 〈e�(t,T )�ξ, y〉 − 1

2

〈
ξ,

(∫ T

t

e�(s,T )A(X0(s))e�(s,T )� ds

)
ξ

〉
+ c. (4.2)

The following theorem asserts that the functions given in (4.2) are classical sense solutions
with an affine terminal condition.

Theorem 4.1. It holds that Wc,ξ (t, y) defined in (4.2 ) is a solution to (2.9) with the terminal
condition Wc,ξ (T , y) = 〈ξ, y〉 + c.
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Proof. Using �(T , T ) = 0,

Wc,ξ (T , y) = 〈exp{�(T , T )�}ξ, y〉 + c = 〈ξ, y〉 + c.

It remains to show that

W
c,ξ
t (t, y) = −〈DyW

c,ξ (t, y), Dxb(X0(t))y〉 + 1
2‖DyW

c,ξ (t, y)‖2
A(X0(t))

.

By (4.2), DyW
c,ξ (t, y) = e�(t,T )�ξ and

W
c,ξ
t (t, y) =

〈
y,

d

dt
e�(t,T )�ξ

〉
+ 1

2
〈ξ, e�(t,T )A(X0(t))e�(t,T )�ξ〉.

When combined with (4.1), these expressions yield

W
c,ξ
t (t, y) = −〈exp{�(t, T )�}ξ, Dxb(X0(t))y〉 + 1

2‖ exp{�(t, T )�}ξ‖2
A(X0(t))

= −〈DyW
c,ξ (t, y), Dxb(X0(t))y〉 + 1

2‖DyW
c,ξ (t, y)‖2

A(X0(t))
,

which proves the result. �
Note that

sup
(t,y)∈[0,T ]×Rd

‖DyW
c,ξ (t, y)‖ ≤ ‖ξ‖ sup

t∈[0,T ]
‖ exp{�(t, T )}‖ < ∞, (4.3)

so Wc,ξ ∈ S. To obtain an approximation to Wc,ξ , we need to approximate exp{�(t, T )�} and∫ T

t

exp{�(s, T )}A(X0(s)) exp{�(s, T )�} ds.

Note that these do not depend on c ∈ R or ξ ∈ R
d . Consequently, we can use a large number

of solutions Wk of the form Wck,ξk to construct (U, ρ, {Wk}Kk=1) ∈ MS without substantially
increasing the numerical work.

Next we define the mollifications that are used, which are smooth approximations of the
pointwise minima of a finite collection of elements of S. It is also possible to use pointwise
maxima [18], which generalizes the framework of [10]. Owing to a closure property of S stated
below in Lemma 4.1, this allows considerable flexibility in approximating the terminal condi-
tion. However, since the examples we consider do not benefit greatly from this generalization,
discussion is limited to the case of pointwise minima to simplify the presentation.

Definition 4.1. Given K functions f k : [0, T ]×R
d → R, define the exponential mollification

of min({f k}Kk=1) with parameter δ > 0 by

Uδ({f k}Kk=1)(t, y)
.= −δ log

{ K∑
k=1

exp

{
−1

δ
f k(t, y)

}}
,

and the associated weightings

ρδ
k({f k}Kk=1)(t, y)

.= exp{−(1/δ)f k(t, y)}∑K
k=1 exp{−(1/δ)f k(t, y)} .

It is not difficult to show that

−δ log K + min({f k}Kk=1) ≤ Uδ({f k}Kk=1) ≤ min({f k}Kk=1).
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In addition, if U(t, y)
.= Uδ({Wk}Kk=1)(t, y) and ρk(t, y)

.= ρδ
k({Wk}Kk=1)(t, y), then

DyU(t, y) =
K∑

k=1

ρk(t, y)DyW
k(t, y) and Ut(t, y) =

K∑
k=1

ρk(t, y)Wk
t (t, y) (4.4)

for all (t, y) ∈ [0, T ] × R
d .

Hence, first derivatives of these mollifications are just weighted averages of the first deriva-
tives of the component functions. The weights are given by ρδ , which belongs to the class of
smooth weightings W given by (3.1), whenever Wk ∈ C1([0, T ] × R

d : R) for k = 1, . . . , K .

Lemma 4.1. Suppose that the {Wk}Kk=1 ∈ S and that Uδ({Wk}Kk=1) is defined as in Defini-
tion 4.1. Then (Uδ, ρ, {Wk}Kk=1) ∈ MS.

Proof. Recall that U and {Wk}Kk=1 satisfy (4.4). Clearly, ρk ∈ C([0, T ] × R
d : [0, 1]) for

k = 1, . . . , K , and since by assumption Wk ∈ C1([0, T ] × R
d : R) for k = 1, . . . , K , it

follows that U ∈ C1([0, T ] × R
d : R). In addition, ‖DyU‖∞ < ∞ follows from the fact that

‖DyW
k‖∞ < ∞ for k = 1, . . . , K and ρ ∈ W([0, T ] × R

d). Also, U automatically also
satisfies (2.11), since the convexity of ‖α‖2

A implies that

Ut(t, y) =
K∑

k=1

ρk(t, y)Wk
t (t, y)

≥
K∑

k=1

ρk(t, y)

(
1

2
‖DyW

k(t, y)‖2
A(X0(t))

− 〈DyW
k(t, y), Dxb(X0(t))y〉

)

≥ 1

2

∥∥∥∥
K∑

k=1

ρk(t, y)DyW
k(t, y)

∥∥∥∥
2

A(X0(t))

−
〈 K∑
k=1

ρk(t, y)DyW
k(t, y), Dxb(X0(t))y

〉

= 1
2‖DyU(t, y)‖2

A(X0(t))
− 〈DyU(t, y), Dxb(X0(t))y〉.

This completes the proof. �
Thus, if one can approximate a given terminal condition well from below in terms of the

minima of affine functions then the mollification will satisfy both the inequality in (2.11) and the
terminal inequality (2.12) and provide good asymptotic performance when used for importance
sampling schemes due to Theorem 3.1. As noted previously, one could also consider maxima
of functions and combinations of maxima and minima if that were useful or necessary [18].

Given any (U, ρ, {Wk}Kk=1) ∈ MS with U satisfying (2.12), it follows that U(t, y) ≤ V (t, y)

for all (t, y) ∈ [0, T ] × R
d , where V is given by (2.7). It is natural to ask if one could use

information about V to assist in constructing a subsolution (U, ρ, {Wk}Kk=1) ∈ MS with U

satisfying (2.12) and with U(0, 0) close to V (0, 0). The following theorem gives an explicit
quadratic form for the minimal point-to-point cost in the control problem (2.7), and can give
information of this sort.

Theorem 4.2. Define

C(z, t, y, r)
.= inf

{
1

2

∫ r

t

‖u(q)‖2 dq : φ(r) = y, φ(s) = z

+
∫ s

t

[Dxb(X0(q))φ(q) + A1/2(X0(q))u(q)] dq, s ∈ [t, r]
}

https://doi.org/10.1017/apr.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.31


Moderate deviations importance sampling 995

for 0 ≤ t < r ≤ T and y, z ∈ R
d . Then

C(z, t, y, r) = 1

2

〈
(y −e�(t,r)z),

(∫ r

t

e�(q,r)A(X0(q))e�(q,r)� dq

)−1

(y −e�(t,r)z)

〉
, (4.5)

where we use Definition 2.1 for the inverse of a symmetric, nonnegative definite matrix.

Proof. The proof is straightforward when A(X0(t)) is nondegenerate for all t ∈ [0, T ].
The degenerate case is addressed by approximating with A(X0(t)) + εI and sending ε → 0.
The details are omitted. �

We slightly abuse notation and write C(T , y) for C(0, 0, T , y), i.e. when the initial time
and position are both 0. Recall that the method of building subsolutions approximates G from
below by a function Ḡ that is given as the minimum of affine functions, and then uses the
mollification as given in Definition 4.1 to produce a classical sense subsolution Uδ for PDE
(2.9) with the mollified version of Ḡ instead of G. Note that

V (0, 0) = inf
y∈Rd

{C(T , y) + G(y)}

due to Theorem 4.2. If V̄ denotes the solution to the control problem (2.7) with terminal
condition Ḡ then likewise

V̄ (0, 0) = inf
y∈Rd

{C(T , y) + Ḡ(y)}.

Recall that according to Theorem 3.1, the rate of decay of the second moment of the importance
sampling estimate based on subsolution Uδ is given by Uδ(0, 0) + V (0, 0), and that with the
construction of Uδ just described, Uδ(0, 0) ↑ V̄ (0, 0) as δ → 0. The bound in Theorem 3.1
assumes a fixed subsolution, and, hence, δ > 0 is fixed before sending n → ∞. However, one
can often justify letting δ tend to 0 while n → ∞; see [12], [14]. In any case, the focus here is
on choosing Ḡ (given as the minimum of affine functions) to make V̄ (0, 0) as large as possible,
and recall that V̄ (0, 0) ≤ V (0, 0) because Ḡ ≤ G. The following simple example indicates
how the explicit quadratic form of C(T , y) given by (4.5) can help in this process.

Example 4.1. Consider the case with A(x) = √
2, b(x) = 0, terminal time T = 1, and

G(y) =
{

(y − 1)2 for y > −1,

0 for y ≤ −1.

Thus, there is a discontinuity at y = −1. For this problem, C(1, y) = y2 and

inf
y∈R

{C(1, y) + G(y)} = C
(
1, 1

2

) + G
(
1, 1

2

) = 1
2 .

We would like to construct Ḡ so that

inf
y∈R

{C(1, y) + Ḡ(y)} = 1
2 . (4.6)

Consider the affine function g1(y) = 3
4 − y. Since g1 agrees with G at y = 1

2 and the same
is true of their derivatives, this function satisfies

inf
y∈R

{C(1, y) + g1(y)} = 1
2

with y = 1
2 as the unique minimizer. However, g1(y) > G(y) for y ≤ −1, and so it does not

approximate G from below. As a result, we look for a second affine function g2(y) that will
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Figure 1: Range of slopes possible for g2(y).

intersect G(y) at y = −1 (i.e. g2(−1) = 0), and such that Ḡ(y) = min{g1(y), g2(y)} satisfies
Ḡ(y) ≤ G(y) for all y ∈ R. The requirement g2(−1) = 0 implies that g2(y) = c(y + 1), and
if 0 ≤ c ≤ ∞ then Ḡ(y) ≤ G(y) for all y ∈ R. However, this does not guarantee (4.6), since
a big gap between Ḡ(y) and G(y) for y ≤ −1 might lead to a value that is strictly smaller
than 1

2 . Using the explicit form C(1, y) = y2, if either c < 2 − 21/2 or c > 2 + 21/2 then
infy∈R{C(1, y) + Ḡ(y)} < 1

2 with minimizers in (−1 + 1/21/2, 0] and (−∞, −1 − 1/21/2),
respectively. If 2 − 21/2 < c < 2 + 21/2 then (4.6) applies with a unique minimizer at y = 1

2 .
The range of allowed g2 is depicted in Figure 1.

Remark 4.1. In the moderate deviations control problem, it is always the case that the drift is
linear in the position and the control cost is quadratic (and independent of the position). For
terminal conditions that are quadratic, the classical sense solution to (2.9) and (2.10) is given in
terms of the famous linear-quadratic regulator problem [1]. Hence, it would seem natural for S
to include functions of this form. However, we typically restrict S even further, and consider
only affine terminal conditions. The reason for this, which was made precise earlier in this
section, is that the computations needed to produce a solution for just one terminal condition
immediately give all such solutions since the associated Riccati equation needs to be solved
only once. This is not true (in general) for different quadratic terminal conditions.

5. Numerical examples

In this section we test the performance of importance sampling schemes based on moderate
deviations subsolutions. All the simulations presented here use the deterministic implementa-
tion as opposed to the randomized implementation. An aim of the section is to compare the
performance of the standard importance sampling scheme of Construction 3.1 to that of the cor-
rected importance sampling scheme of Construction 3.2. For convenience, in all of the examples
we use an embedding satisfying a(n∗)

√
n∗ = 1 (see the remarks above Construction 2.1).

In the table of numerical results we use the following notation, where we assume that K is
the number of samples and {ek}Kk=1 are the individual samples. Thus,

(i) estimate: est = (1/K)
∑K

k=1 ek;

(ii) standard deviation estimate: SDe = ((1/(K − 1))
∑K

k=1(ek − est)2)1/2K−1/2;
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(iii) confidence interval: CI = [est −(1.96) × SDe, est +(1.96) × SDe];
(iv) relative error: RE = K1/2(SDe/est);

(v) ratio: ratio = {− log((1/K)
∑K

k=1 e2
k)}/{− log((1/K)

∑K
k=1 ek)}.

Recall that when using an asymptotically optimal scheme, the quantity that ‘ratio’ is estimating
will converge to 2 as n → ∞. The ‘RE’ is normalized to give the ratio of the standard deviation
of a single sample and the estimate.

5.1. One dimension, exponential noise, and linear drift

Recall that results presented under the moderate deviations scaling require only that the
moment-generating function be finite in a neighborhood of the origin. Here we consider an
example where the moment-generating function is not finite everywhere. Although a standard
process-level large deviations theory is not currently available for this model (in particular the
rate function would not have compact level sets in C([0, T ] : R

d)), we can still implement a
scheme based on a formal use of the corresponding equations, and owing to the particular form
of the event of interest, a theoretical justification could be provided. Let Xn

i ∈ R and

Xn
i+1 = Xn

i − 1

n
Xn

i + 1

n
ui, Xn

0 = 5,

where ui = θi −1, and the {θi}∞i=1 are i.i.d. exponential random variables with mean 1. The law
of large numbers limit is X0(t) = 5e−t for t ∈ [0, 1], and we are interested in estimating the
probability

pα
n = P(Xn(1) − X0(1) /∈ (−α, α))

for various values of α > 0 and n∗ = 200. Because we use the embedding a(n∗)
√

n∗ = 1,
and since G(y) should satisfy (2.8), we take F(x) = ∞ 1(5e−1−α, 5e−1+α)(x) and G(y) =
∞ 1(−α,α)(y).

Using Theorem 4.2 to evaluate C(y, 1),

V (0, 0) = inf
y∈R

{∞ 1(−α,α)(y) + C(y, 1)} = inf
y∈R

{∞ 1(−α,α)(y) + y2(1 − e−2)−1},

and clearly the minimizers are y = ±α. We need to approximate ∞ 1(−α,α)(y) from below
by Ḡ, where Ḡ is the minimum of affine functions, in such a way that

inf
y∈R

{∞ 1(−α,α)(y) + C(y, 1)} = inf
y∈R

{Ḡ(y) + C(y, 1)}.

This can be achieved by choosing an affine function (a line since d = 1) for each minimizer
±α equal to 0 at the minimizer and with slope equal to −DyC(y, 1) at the minimizer. Define
classical solutions to (2.9), Wc1,β1(t, y) and Wc2,β2(t, y), as in (4.2) with

β1 = 2α(1 − e−2)−1, c1 = αβ1, β2 = −2α(1 − e−2)−1, c2 = −αβ2.

These functions have terminal values Wci,βi (y, 1) = ci + βiy, i = 1, 2. Note that

Ḡ(y) = min{Wc1,β1(y, 1), Wc2,β2(y, 1)} ≤ ∞ 1(−α,α)(y) for all y ∈ R,

and
inf
y∈R

{Ḡ(y) + y2(1 − e−2)−1} = V (0, 0),
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with minimizers y = ±α. For comparison purposes we also implement a scheme based on a
large deviations subsolution. This large deviations subsolution was created analogously to the
moderate deviations subsolution. It is a mollification of the minimum of two exact solutions
with affine (linear) terminal conditions which have the same value at the origin as the true
solution.

The numerical results in the top half of Table 1 were computed with n∗ = 200, δ = 0.01,
and using 100,000 samples.

The corrected moderate deviations importance sampling substantially outperforms the stan-
dard version for larger values of α. In fact, for α = 0.4 the standard moderate deviations
importance sampling scheme is not at all accurate. This is because the moderate deviations
control problems treat the noise as if it is Gaussian, which for α = 0.4 suggests an exponential
tilt close to 1 (the moment-generating function is finite only for values less than 1), which
results in an enormous conditional mean. The corrected scheme takes into account the true
noise and adjusts for this. The corrected moderate deviations importance sampling scheme
does not perform quite as well as the large deviations counterpart, but does well considering
the limited information regarding the process that is used for its design, and for the fairly broad
range of probabilities.

5.2. Finite-state mean-field interacting particle system

We next consider a process which lies outside the scope of the results proved here, in that the
process model evolves in continuous rather than discrete time. We can still formally apply the
importance sampling approach proposed in this paper, and extending the results on asymptotic
efficiency to this setting would not be difficult. The computational effort needed to generate
samples for the model of this section is substantial for large n. Hence, the moderate deviations
importance sampling might be of interest even if the estimated probabilities are not very small,
so long as there is a significant improvement over standard Monte Carlo. For the three-state
model considered here one could, with some effort, identify a suitable large deviations-based
sampling scheme. However, we have not done so and only compare with standard Monte Carlo.
Depending on the model, it could be difficult to identify a suitable large deviations scheme when
there are more than three states.

Consider n particles {Zn
i (·)}ni=1 each taking values in the finite space {1, 2, 3}. Let Zn(·)

evolve as a càdlàg {1, 2, 3}n-valued jump Markov process. The associated empirical measure
is Xn(·) = (1/n)

∑n
i=1 δZn

i (·) and Xn(·) is a stochastic process taking values in

S =
{
x ∈ R

3 : xi ≥ 0,

3∑
i=1

xi = 1

}
.

Let the wait times until the next jump of the particles be independent, conditional on the
empirical measure, and let the jump rates of each particle be given by rij (x) = 2 − xi when
Xn(·) = x is the measure the empirical distribution puts on state i. This gives transition rates
for the empirical distribution Xn(·) in the form

R

(
x, x + 1

n
(ej − ei)

)
= nxi(2 − xj ),

where R(x, y) is the transition rate from state x to state y with x, y ∈ S, and ei is the unit
vector in the ith direction in R

3. Given an initial distribution x0 ∈ S, it can be shown that the
law of large numbers limit X0(·) satisfies the ODE

X0
t (t) = 6

(( 1
3 , 1

3 , 1
3

) − X0(t)
)
, X0(0) = x0.
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Table 1.

Corrected moderate deviation importance sampling.

α = 0.2 α = 0.3 α = 0.4

est 3.42 × 10−5 6.69 × 10−9 2.11 × 10−13

SDe 4.40 × 10−7 1.41 × 10−10 5.98 × 10−15

CI [3.33, 3.51] × 10−5 [6.41, 6.97] × 10−9 [1.99, 2.23] × 10−13

RE 4.06 6.67 8.96
ratio 1.72 1.80 1.85

Standard moderate deviation importance sampling.

est 3.40 × 10−5 7.84 × 10−9 7.24 × 10−42

SDe 6.55 × 10−7 2.79 × 10−9 5.15 × 10−42

CI [3.27, 3.53] × 10−5 [2.37, 13.3] × 10−9 [−2.86, 17.3] × 10−42

RE 6.09 1.13 × 102 2.25 × 102

ratio 1.65 1.49 1.89

Large deviation importance sampling.

est 3.32 × 10−5 6.75 × 10−9 2.14 × 10−13

SDe 2.39 × 10−7 5.98 × 10−11 2.20 × 10−15

CI [3.27, 3.37] × 10−5 [6.63, 6.87] × 10−9 [2.10, 2.18] × 10−13

RE 2.27 2.80 3.25
ratio 1.82 1.88 1.92

Corrected moderate deviation importance sampling.

α = 0.12 α = 0.16 α = 0.2

est 9.04 × 10−5 2.14 × 10−7 1.23 × 10−10

SDe 7.78 × 10−7 2.40 × 10−9 1.59 × 10−12

CI [8.89, 9.19] × 10−5 [2.09, 2.19] × 10−7 [1.20, 1.26] × 10−10

RE 2.72 3.54 4.09
ratio 1.77 1.83 1.87

Standard moderate deviation importance sampling.

est 9.13 × 10−5 2.16 × 10−7 1.22 × 10−10

SDe 7.91 × 10−7 2.44 × 10−9 1.62 × 10−12

CI [8.98, 9.29] × 10−5 [2.11, 2.21] × 10−7 [1.19, 1.25] × 10−10

RE 2.74 3.58 4.20
ratio 1.77 1.83 1.87

Standard Monte Carlo.

est 5.00 × 10−5 – –
SDe 2.24 × 10−5 – –
CI [.617, 9.38] × 10−5 – –
RE 1.41 × 102 – –
ratio 1.00 – –

Under the moderate deviations scaling, we consider the quantity Yn(·) = a(n)
√

n(Xn(·) −
X0(·)) ∈ R

3. We use initial condition x0 = (1, 0, 0) and are interested in the probability

pα
n = P(Xn

1 (1) − X0
1(1) /∈ (−α, α))
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for various values of α > 0 and n∗ = 200. Subsolutions to the associated HJB equation must
satisfy (2.11) with

Ai,j (X
0(t)) = −2(X0

i (t) + X0
j (t) − X0

i (t)X
0
j (t)) for i �= j ,

Ai,i(X
0(t)) = 2(1 + (X0

i (t))
2),

and Db(X0(t)) = 6I , where I is the identity matrix.
In the moderate deviations subsolution we base our importance sampling scheme on is the

mollified minimum of two exact solutions to (2.9), Wc1,β1(t, y) and Wc2,β2(t, y), as in (4.2).
We numerically approximated C(y, 1) based on Theorem 4.2 and chose parameters

β1 = (−5.39, 0, 0)α, c1 = −5.39α2 and β2 = (5.39, 0, 0)α, c2 = 5.39α2

so that
Ḡ(y) = min{Wc1,β1(y, 1), Wc2,β2(y, 1)} ≤ ∞ 1(−α,α)(y)

and
inf
y∈R

{Ḡ(y) + C(y, 1)} = V (0, 0).

The numerical results in the lower half of Table 1 were computed with n∗ = 200, δ = 0.01,
and using 100,000 samples.

In this example, the performance is comparable between the corrected and the standard
moderate deviations importance sampling schemes, in part because the moment-generating
function is not infinite at any point. Both schemes have small relative errors for all three values
of α, and standard Monte Carlo is not useful using this sample size. Note that ‘–’ in the results
indicates that no escapes occurred. Hence, for this problem, a scheme based on a moderate
deviation makes the computations quite feasible, even though this is not true for standard Monte
Carlo. At the same time, the effort needed to construct the scheme is less (and in some cases
will be much less) than that which would be needed for an analogous large deviation-based
scheme.

6. Proof of Theorem 3.1

The proof of this theorem differs from its large deviations counterpart found in [10] because
of difficulties with tightness. As in the proof of the moderate deviations principle [8], we can
only obtain tightness of the occupation measure of the conditional means of the controlled
noises, rather than tightness of the occupation measure of the controlled noises themselves.
To obtain this tightness, we use Theorem 6.1 (Theorem 2.5 of [8]), which assumes a bound on
the relative entropy of the control measure with respect to the original measure. This bound is
also required for the tightness proved in [10], however it is attained more easily there since it is
assumed that the moment-generating function of the noise ui(x) is finite everywhere. Without
this assumption, the approach used in [10] becomes significantly more complicated, and we
found it more convenient to use a second change of measure, a technique first used in [13].

The proof given below applies to the importance sampling schemes of both Construction 3.1
and Construction 3.2. We recall that the setup involves a subsolution (U, ρ, {Wk}Kk=1) ∈ MS
(see (3.2)). For the nth process in Construction 3.1, the tilt parameter based on Wk ∈ S is given
by

− 1

a(n)
√

n
DyW

k

(
i

n
, y

)
,
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but in Construction 3.2 it is given by Definition 3.1. To avoid specifying a construction we will
refer in both cases to the tilt parameter based on Wk for the nth process at step i and position y

by ξ
n,k
i (y). Note that because of Definition 3.1, regardless of which construction is chosen,

ξ
n,k
i (y) satisfies ∥∥∥∥ − DyW

k

(
i

n
, y

)
− a(n)

√
nξ

n,k
i (y)

∥∥∥∥ ≤ KT

a(n)
√

n
. (6.1)

We label the importance sampling estimators {rn}, the importance sampling changes of mea-
sure {γ n}, and corresponding process-level random variables {(ūn, X̄n, Ȳ n)}.

Recall that we want to prove that

lim inf
n→∞ −a(n)2 log E[(rn)2] ≥ U(0, 0) + V (0, 0),

where V is given by (2.7). Assuming without loss of generality that lim infn→∞ −a(n)2

log E[(rn)2] = L < ∞, we consider any subsequence n(m) such that

lim
m→∞ −a(n(m))2 log E[(rn(m))2] = L.

We will show that for this subsequence the corresponding process-level random variables are
tight, and that along any convergent subsubsequence (for convenience again labeled by n(m))

lim
m→∞ −a(n(m))2 log E[(rn(m))2] ≥ U(0, 0) + V (0, 0).

The proof is divided into first proving tightness and then weak convergence analysis. We will
use the following to prove tightness. For probability measures η and μ on the same measurable
space let R(η‖μ) denote the relative entropy of η with respect to μ [6, Section 1.4].

Theorem 6.1. Let {ηn} be a sequence of measures with each ηn ∈ P ((Rd)�nT ), and define
the corresponding random variables {(ς̂n, X̂n, Ŷ n)} based on {ηn} as in Construction 2.1. If

lim sup
n→∞

E

[
1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖μ(· | X̂n

i ))

]
< ∞

then {(ς̂n, Ŷ n)} is tight in P ((Rd ×[0, T ]))×C([0, T ] : R
d). In addition, along any convergent

subsequence (maintaining n as the index for convenience) with limit (ς̂ , Ŷ ), the {ς̂n} are
uniformly integrable in the sense that

lim
C→∞ lim sup

n→∞
E

[∫
{w : ‖w‖≥C}

‖w‖ς̂n(dw × dt)

]
= 0. (6.2)

The limit ς̂ has with probability 1 the decomposition ς̂n(dw × dt) = ς̂1 | 2(dw | t) dt , and

Ŷ (t) =
∫ t

0
Db(X0(s))Ŷ (s) ds +

∫ t

0
ŵ(s) ds,

where ŵ(t) = ∫
Rd yς̂1 | 2(dy | t).

Proof. See [8, Theorem 2.5]. �
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Throughout this section we will also use the following inequalities. The bound (2.3) implies
that there exists KDA < ∞ and λDA ∈ (0, λ] (independent of x) such that

sup
x∈Rd

sup
‖α‖≤λDA

max
i,j,k

∣∣∣∣∂3Hc(x, α)

∂αi∂αj ∂αk

∣∣∣∣ ≤ KDA

d3 .

Consequently, for all ‖α‖ ≤ λDA and all x ∈ R
d ,

1
2‖α‖2

A(x) − ‖α‖3KDA ≤ Hc(x, α) ≤ 1
2‖α‖2

A(x) + ‖α‖3KDA. (6.3)

6.1. Tightness

First note that if lim infn→∞ −a(n)2 log E[(rn)2] = ∞ then the result is true trivially, so we
assume that

lim inf
n→∞ −a(n)2 log E[(rn)2] = L < ∞. (6.4)

We recall the form of rn and the likelihood ratios from either Construction 3.1 or 3.2, and that
in both cases ξ

n,k
i denotes the state- and time-dependent tilt parameters. Since removing one

likelihood ratio amounts to replacing the process under γ n by the original process, it follows
that

E[(rn)2] = E

[
exp

{
− 1

a(n)2 2G(Ȳ n(T ))

}(�T n�∏
i=0

dμ(· | X̄n
i )

dγ n
i (· | X̄n

i )
(ūn

i )

)2]

= E

[
exp

{
− 1

a(n)2 2G(Yn(T ))

}

×
�T n�∏
i=0

( K∑
k=1

ρk

(
i

n
, Y n

i

)
exp{〈ui(X

n
i ), ξ

n,k
i (Y n

i )〉 − Hc(X
n
i , ξ

n,k
i (Y n

i ))}
)−1]

.

This is the first change of measure, which equates the second moment with an expectation under
the measure of the original process. In contrast to the approach taken in [10] (which involves
a large deviations scaling as opposed to a moderate deviations one), we find it convenient to
make a second change of measure to remove the exponential tilt term as in [13]. Note that
Jensen’s inequality yields

K∑
k=1

ρk

(
i

n
, Y n

i

)
exp{〈ui(X

n
i ), ξ

n,k
i (Y n

i )〉 − Hc(X
n
i , ξ

n,k
i (Y n

i ))}

≥ exp

{ K∑
k=1

ρk

(
i

n
, Y n

i

)
(〈ui(X

n
i ), ξ

n,k
i (Y n

i )〉 − Hc(X
n
i , ξ

n,k
i (Y n

i )))

}
.

We now introduce the second change of measure. Define (ũn, X̃n, Ỹ n) in terms of θn as in
Construction 2.1, where the conditional distribution of ũn

i , given ũn
j , j < i, is given by

θn
i (du | X̃n

i ) = exp{〈u, −ξ̄ n
i (Ỹ n

i )〉 − Hc(X̃
n
i , −ξ̄ n

i (Ỹ n
i ))}μ(du | X̃n

i ) (6.5)

and

ξ̄ n
i (y) =

K∑
k=1

ρk

(
i

n
, y

)
ξ

n,k
i (y). (6.6)
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The use of this second change of measure is a technical device to make a term in the exponent
in the expression for rn uniformly bounded. In particular, using Jensen’s inequality for the
inequality and (6.5) for the equality,

E

[
exp

{
− 1

a(n)2 2G(Yn(T ))

} �T n�∏
i=0

( K∑
k=1

ρk

(
i

n
, Y n

i

)
exp{〈ui(X

n
i ), ξ

n,k
i (Y n

i )〉

− Hc(X
n
i , ξ

n,k
i (Y n

i ))}
)−1]

≤ E

[
exp

{
− 1

a(n)2 2G(Yn(T ))

} �T n�∏
i=0

exp

{ K∑
k=1

ρk

(
i

n
, Y n

i

)
(〈ui(X

n
i ), −ξ

n,k
i (Y n

i )〉

+ Hc(X
n
i , ξ

n,k
i (Y n

i )))

}]

= E

[
exp

{
− 1

a(n)2 2G(Ỹ n
i (T ))

}

× exp

{�T n�∑
i=0

Hc(X̃
n
i , −ξ̄ n

i (Ỹ n
i )) +

K∑
k=1

ρk

(
i

n
, Ỹ n

i

)
Hc(X̃

n
i , ξ

n,k
i (Ỹ n

i ))

}]
. (6.7)

We use the following variational formula for exponential integrals. For a proof, see [6,
Proposition 4.5.1].

Lemma 6.1. Let X be a Polish space and let P (X) be the collection of probability measures
on X with the Borel σ -algebra. Let g be a Borel measurable function that is bounded from
below. Then, for any μ ∈ P (X),

− log
∫

X
e−g(x)μ(dx) = inf

η∈P (X)

{
R(η‖μ) +

∫
X

g(x)η(dx)

}
.

Recall that G is assumed to be bounded from below and that, due to (4.3), we have
‖DWk‖∞ < ∞ for all k. Thus, by (6.1) and (2.3),

−
�T n�∑
i=0

K∑
k=1

ρk

(
i

n
, Ỹ n

i

)
Hc(X̃

n
i , ξ

n,k
i (Ỹ n

i )) − Hc(X̃
n
i , −ξ̄ n

i (Ỹ n
i ))

is bounded for sufficiently large n. Consequently, (6.7) and Lemma 6.1 yield

− a(n)2 log E[(rn)2]
≥ inf

η

{
a(n)2R(η‖θn)

+ E

[
2G(Ȳ n,η(T )) − a(n)2

�T n�∑
i=0

K∑
k=1

ρk

(
i

n
, Ȳ

n,η
i

)
Hc(X̄

n,η
i , ξ

n,k
i (Ȳ

n,η
i ))

− a(n)2
�T n�∑
i=0

Hc(X̄
n,η
i , −ξ̄ n

i (Ȳ
n,η
i ))

]}
, (6.8)
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where (ūn,η, X̄n,η, Ȳ n,η) is defined in terms of η as in Construction 2.1. Let

Kξ
.= max{‖DyW

1‖∞, . . . , ‖DyW
K‖∞} + KT (6.9)

and note that, for large enough n,

a(n)
√

n ≥ max

{
1,

2Kξ

λDA

}
, (6.10)

we have

‖ξn,k
i (y)‖ ≤ λDA

2
for all i, k and y ∈ R

d . (6.11)

Given any ε > 0, let {ηn} come within ε of achieving the infimum in (6.8), and let (ûn, X̂n, Ŷ n)

be associated with ηn through Construction 2.1. Then

−a(n)2 log E[(rn)2] + ε ≥ a(n)2R(ηn‖θn)

+ E

[
2G(Ŷ n(T )) − a(n)2

�T n�∑
i=0

Hc(X̂
n
i , −ξ̄ n

i (Ŷ n
i ))

− a(n)2
�T n�∑
i=0

K∑
k=1

ρk

(
i

n
, Ŷ n

i

)
Hc(X̂

n
i , ξ

n,k
i (Ŷ n

i ))

]
,

and, for all n satisfying (6.10) (recall (2.4) and (6.3)),

−a(n)2 log E[(rn)2] + ε + 2T K2
ξ

(
KA

2
+ λDAKDA

)
− 2 inf

y∈Rd
G(y) ≥ a(n)2R(ηn‖θn).

Combining this with (6.4), we can choose a subsequence of {ηn, rn}, retaining n as the index
for convenience, such that

lim sup
n→∞

a(n)2R(ηn‖θn) < ∞ and lim
n→∞ −a(n)2 log E[(rn)2] = L.

The subsequence satisfies

L + ε ≥ lim sup
n→∞

(
a(n)2R(ηn‖θn) + E[2G(Ŷ n(T ))]

− E

[
a(n)2

�T n�∑
i=0

Hc(X̂
n
i , −ξ̄ n

i (Ŷ n
i ))

]

− E

[
a(n)2

�T n�∑
i=0

K∑
k=1

ρk

(
i

n
, Ŷ n

i

)
Hc

(
X̂n

i , ξ
n,k
i

(
Ŷ n

i ,
i

n

))])
. (6.12)

Note that we must keep the linear combination of the Hc(x, ξ
n,k
i ) with weights ρk instead of

replacing it with Hc(x, ξ̄ n
i ), because Hc(x, ·) is convex rather than concave. Using the chain

rule for relative entropy [6, Theorem C.3.1], we can write

a(n)2R(ηn‖θn) = E

[
1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖θn

i (· | X̂n
i ))

]
,
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where ηn
i is the conditional distribution on ûn

i given ûn
j for j < i under ηn as in Construction 2.1

and θn
i is defined in (6.5).

We would like to obtain a bound on

E

[
1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖μ(· | X̂n

i ))

]

from one on

E

[
1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖θn

i (· | X̂n
i ))

]
.

This new bound will allow us to invoke Theorem 6.1. We first need the following, whose proof
is practically identical to that of [8, Lemma 3.1] (which is the same result except it is assumed
in [8, Lemma 3.1] that the noise has zero mean) and is consequently omitted.

Lemma 6.2. Given μ ∈ P (Rd), let

H(α) = log

(∫
Rd

e〈α,y〉μ(dy)

)
and L(β) = sup

α∈Rd

{〈α, β〉 − H(α)}.

If there exists λ > 0 such that sup‖α‖≤λ H(α) < ∞ then, for any η ∈ P (Rd),

R(η‖μ) ≥ L

(∫
Rd

uη(du)

)
.

Lemma 6.3. Let {ηn} be a sequence of measures with ηn ∈ P ((Rd)�T n) and define the cor-
responding random variables based on these measures as in Construction 2.1. Define the
measures θn using (6.5). If

lim sup
n→∞

E

[
1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖θn

i (· | X̂n
i ))

]
< ∞

then

lim sup
n→∞

E

[
1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖μ(· | X̂n

i ))

]
< ∞. (6.13)

Proof. From (6.5), we have

R(ηn
i ‖μ(· | X̂n

i )) =
∫

Rd

log

(
dηn

i

dθn
i (· | X̂n

i )
(u)

dθn
i (· | X̂n

i )

dμ(· | X̂n
i )

(u)

)
ηn

i (du)

=
∫

Rd

log

(
dηn

i

dθn
i (· | X̂n

i )
(u)

)
ηn

i (du) +
∫

Rd

log

(
dθn

i (· | X̂n
i )

dμ(· | X̂n
i )

(u)

)
ηn

i (du)

= R(ηn
i ‖θn

i (· | X̂n
i )) +

∫
Rd

〈u, −ξ̄ n
i (Ŷ n

i )〉ηn
i (du) − Hc(X̂

n
i , −ξ̄ n

i (Ŷ n
i ))

≤ R(ηn
i ‖θn

i (· | X̂n
i )) + 1

a(n)
√

n
Kξ

∥∥∥∥
∫

Rd

uηn
i (du)

∥∥∥∥
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for all n satisfying (6.10), where Kξ is given by (6.9). Therefore,

lim sup
n→∞

E

[
1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖μ(· | X̂n

i ))

]

≤ lim sup
n→∞

E

[
1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖θn

i (· | X̂n
i ))

]

+ Kξ lim sup
n→∞

E

[
1

n

�T n�∑
i=0

a(n)
√

n

∥∥∥∥
∫

Rd

uηn
i (du)

∥∥∥∥
]

and (6.13) follows if

lim sup
n→∞

E

[
1

n

�T n�∑
i=0

a(n)
√

n

∥∥∥∥
∫

Rd

uηn
i (du)

∥∥∥∥
]

< ∞. (6.14)

Using λDA ≤ λ with λ as in (2.3), the fact that the centering implies that Hc ≥ 0 and also (6.5),
we have, for all n satisfying (6.10) (and, hence, also (6.11)),

Kmgf ≥ max
0≤i≤�T n� sup

x∈Rd

sup
‖α‖≤λDA/2

log

(∫
Rd

e〈α−ξ̄ n
i (Ŷ n

i ),u〉μ(du | X̂n
i )

)

≥ max
0≤i≤�T n� sup

x∈Rd

sup
‖α‖≤λDA/2

log

(∫
Rd

e〈α−ξ̄ n
i (Ŷ n

i ),u〉−Hc(X̂
n
i ,−ξ̄ n

i (Ŷ n
i ))μ(du | X̂n

i )

)

= max
0≤i≤�T n� sup

x∈Rd

sup
‖α‖≤λDA/2

log

(∫
Rd

e〈α,u〉θn
i (du | X̂n

i )

)
.

When combined with Lemma 6.2, the last display yields

R(ηn
i ‖θn

i (· | X̂n
i )) ≥ sup

α∈Rd

{〈
α,

∫
Rd

uηn
i (du)

〉
− log

(∫
Rd

e〈α,u〉θn
i (du | X̂n

i )

)}

≥ sup
α∈Rd

{〈
α,

∫
Rd

uηn
i (du)

〉
− Hc(X̂

n
i , α − ξ̄ n

i (Ŷ n
i ))

}
. (6.15)

Let ei denote the ith unit vector. For all n satisfying (6.10) and for all x, y ∈ R
d and i,

a(n)2n sup
α∈Rd

{〈α, β〉 − Hc(x, α − ξ̄ n
i (y))}

≥ a(n)2n

{〈
± Kξ

a(n)
√

n
ei, β

〉
− Hc

(
x, ± Kξ

a(n)
√

n
ei − ξ̄ n

i (y)

)}

= ±Kξa(n)
√

nβi − a(n)2nHc

(
x, ± Kξ

a(n)
√

n
ei − ξ̄ n

i (y)

)
≥ ±Kξa(n)

√
nβi − KAK2

ξ − λDAKDAK2
ξ ,

where for the last inequality we used (2.3) and (6.3). Therefore,

a(n)2n
d

Kξ

sup
α∈Rd

{〈α, β〉 − Hc(x, α − ξ̄ n
i (y))} + KAKξd + λDAKDAKξd ≥ a(n)

√
n‖β‖
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and combining this with (6.15) yields

d

Kξ

E

[
1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖θn

i (· | X̂n
i ))

]
+ KAKξd + λDAKDAKξd

≥ E

[
1

n

�T n�∑
i=0

a(n)
√

n

∥∥∥∥
∫

Rd

uηn
i (du)

∥∥∥∥
]

for all n satisfying (6.10). Hence, (6.14) and, thus, also (6.13) are valid, which concludes the
proof of the lemma. �
6.2. Weak convergence

Let ς̂n and Ŷ n be associated as in Construction 2.1 with the measures ηn. Lemma 6.3 allows
us to apply Theorem 6.1 and choose a (further) subsequence of {(ς̂n, Ŷ n)} (we retain n as
the index for convenience) along which {(ς̂n, Ŷ n)} converges weakly to some limit (ς̂ , Ŷ ) in
P ([0, T ] × R

d) × C([0, T ] : R
d). We can express relative entropy with respect to the second

change of measure (recall (6.5)) as

a(n)2nR(ηn
i ‖θn

i (· | X̂n
i ))

= a(n)2nR(ηn
i ‖μ(· | X̂n

i )) +
〈
a(n)

√
n

∫
Rd

uηn
i (du), a(n)

√
nξ̄n

i (Ŷ n
i )

〉
+ a(n)2nHc(X̂

n
i , −ξ̄ n

i (Ŷ n
i )).

Thus, we can write the lower bound on the decay rate obtained in (6.12) once again in terms of
the original distribution μ:

E

[
2G(Ŷ n(T )) + 1

n

�T n�∑
i=0

[
a(n)2nR(ηn

i ‖θn
i (· | X̂n

i )) − a(n)2nHc(X̂
n
i , −ξ̄ n

i (Ŷ n
i ))

− a(n)2n

K∑
k=1

ρk

(
i

n
, Ŷ n

i

)
Hc(X̂

n
i , ξ

n,k
i (Ŷ n

i ))

]]

= E

[
G(Ŷ n(T )) + 1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖μ(· | X̂n

i ))

]
+ E[G(Ŷ n(T ))]

− E

[
1

n

�T n�∑
i=0

〈
a(n)

√
n

∫
uηn

i (du), −a(n)
√

nξ̄n
i (Ŷ n

i )

〉]

− E

[
1

n

�T n�∑
i=0

a(n)2n

K∑
k=1

ρk

(
i

n
, Ŷ n

i

)
Hc(X̂

n
i , ξ

n,k
i (Ŷ n

i ))

]
. (6.16)

We next use the weak convergence to obtain lower bounds on all terms in (6.12) as now
expressed in (6.16). Lemma 6.1 combined with the chain rule for relative entropy [6, Theorem
C.3.1] yields (recall that (ūn,η, X̄n,η, Ȳ n,η) is defined in terms of η as in Construction 2.1)

−a(n)2 log E[rn] = inf
η

{
EG(Ȳ n,η(T )) + 1

n

�T n�∑
i=0

a(n)2nR(ηi‖μ(· | X̄
n,η
i ))

}
.
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For the particular choice η = ηn, this and the fact that rn is an unbiased estimator yield

lim inf
n→∞ E

[
G(Ŷ n(T )) + 1

n

�T n�∑
i=0

a(n)2nR(ηn
i ‖μ(· | X̂n

i ))

]
≥ lim inf

n→∞ −a(n)2 log E[rn]

≥ V (0, 0). (6.17)

This gives a lower bound on the first expected value on the right-hand side of (6.16), and we
now consider the remaining terms. Because Ŷ n → Ŷ weakly and G is bounded from below
and is lower semicontinuous, we can apply the weak convergence version of Fatou’s lemma
to obtain lim infn→∞ E[G(Ŷ n(T ))] ≥ E[G(Ŷ (T ))]. In addition, (6.1) and (6.2) yield (recall
also (6.6))

E

[
1

n

�T n�∑
i=0

〈
a(n)

√
n

∫
Rd

yηn
i (dy), −a(n)

√
nξ̄n

i (Ŷ n
i )

〉]

− E

[∫
[0,T ]×Rd

〈
w, DyU

(�nt�
n

, Ŷ n

(�nt�
n

))〉
ς̂n(dw × dt)

]
→ 0 as n → ∞,

where

DyU(t, y) =
K∑

k=1

ρk(t, y)DyW
k(t, y).

Using (6.2), the continuity and boundedness of DyU , and the fact that (ς̂n, Ŷ n) → (ς̂ , Ŷ )

weakly, it follows that

lim
n→∞ E

[∫
[0,T ]×Rd

〈
w, DyU

(�nt�
n

, Ŷ n

(�nt�
n

))〉
ς̂n(dw × dt)

]

= E

[∫
[0,T ]×Rd

〈w, DyU(t, Ŷ (t))〉ς̂ (dw × dt)

]

= E

[∫ T

0
〈ŵ(t), DyU(t, Ŷ (t))〉 dt

]
.

Finally, (6.3), (6.1), the continuity and boundedness of DyW
k , and the weak convergence of Ŷ n

to Ŷ imply that

lim
n→∞ E

[
1

n

�T n�∑
i=0

a(n)2n

K∑
k=1

ρk

(
i

n
, Ŷ n

i

)
Hc(X̂

n
i , ξ

n,k
i (Ŷ n

i ))

]

= E

[ K∑
k=1

∫ T

0
ρk(t, Ŷ (t))

1

2
‖DyW

k(t, Ŷ (t))‖2
A(X0(t))

dt

]
.

Consequently, along this subsequence (recall (6.6))

lim inf
n→∞

(
E[G(Ŷ n(T ))] − E

[
1

n

�T n�∑
i=0

〈
a(n)

√
n

∫
yηn

i (dy), a(n)
√

nξ̄n
i (Ŷ n

i )

〉]

− E

[
1

n

�T n�∑
i=0

a(n)2n

K∑
k=1

ρk

(
i

n
, Ŷ n

i

)
Hc(X̂

n
i , ξ

n,k
i (Ŷ n

i ))

])
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≥ E

[
G(Ŷ (T )) −

K∑
k=1

∫ T

0
ρk(t, Ŷ (t))

[
〈ŵ(t), DyW

k(t, Ŷ (t))〉

+ 1

2
‖DyW

k(t, Ŷ (t))‖2
A(X0(t))

]
dt

]
.

Since (U, ρ, {Wk}Kk=1) ∈ MS (recall (3.2)) and U satisfies (2.12), we can continue this ine-
quality as

≥ E

[
G(Ŷ (T )) −

∫ T

0

〈
ŵ(t),

K∑
k=1

ρk(t, Ŷ (t))DyW
k(t, Ŷ (t))

〉
dt

−
∫ T

0

〈 K∑
k=1

ρk(t, Ŷ (t))DyW
k(t, Ŷ (t)), Dxb(X0(t))Ŷ (t)

〉
dt

−
∫ T

0

K∑
k=1

ρk(t, Ŷ (t))Wk
t (t, Ŷ (t)) dt

]

= E

[
G(Ŷ (T )) −

∫ T

0

d

dt
U(t, Ŷ (t)) dt

]
≥ U(0, 0).

Together with (6.17) and (6.16), this yields

lim inf
n→∞ −a(n)2 log E[(rn)2] + ε ≥ V (0, 0) + U(0, 0).

Since ε > 0 is arbitrary this completes the proof of Theorem 3.1. �
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