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Thermoacoustic instability is the result of a positive coupling between the acoustic
field in the duct and the heat release rate fluctuations from the flame. Recently, in
several turbulent combustors, it has been observed that the onset of thermoacoustic
instability is preceded by intermittent oscillations, which consist of bursts of periodic
oscillations amidst regions of aperiodic oscillations. Quantitative analysis of the
intermittency route to thermoacoustic instability has been performed hitherto using
the pressure oscillations alone. We perform experiments on a laboratory-scale
bluff-body-stabilized turbulent combustor with a backward-facing step at the inlet
to obtain simultaneous data of acoustic pressure and heat release rate fluctuations.
With this, we show that the onset of thermoacoustic instability is a phenomenon
of mutual synchronization between the acoustic pressure and the heat release rate
signals, thus emphasizing the importance of the coupling between these non-identical
oscillators. We demonstrate that the stable operation corresponds to desynchronized
aperiodic oscillations, which, with an increase in the mean velocity of the flow,
transition to synchronized periodic oscillations. In between these states, there exists
a state of intermittent phase synchronized oscillations, wherein the two oscillators
are synchronized during the periodic epochs and desynchronized during the aperiodic
epochs of their oscillations. Furthermore, we discover two different types of limit
cycle oscillations in our system. We notice a significant increase in the linear
correlation between the acoustic pressure and the heat release rate oscillations during
the transition from a lower-amplitude limit cycle to a higher-amplitude limit cycle.
Further, we present a phenomenological model that qualitatively captures all of the
dynamical states of synchronization observed in the experiment. Our analysis shows
that the times at which vortices that are shed from the inlet step reach the bluff body
play a dominant role in determining the behaviour of the limit cycle oscillations.

Key words: acoustics, nonlinear dynamical systems, turbulent reacting flows

1. Introduction
Characterization of the transition of combustion systems from stable to unstable

operation has been a topic of intense research during recent times (Lieuwen 2002;
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Gotoda et al. 2011; Kabiraj et al. 2012a; Nair, Thampi & Sujith 2014). The unstable
operation, which corresponds to large-amplitude self-sustained periodic oscillations,
goes by the name of thermoacoustic instability. Such instabilities arise as a result
of a positive feedback between hydrodynamics, acoustics and combustion processes
occurring in a combustor (Lieuwen & Yang 2005). The coupled interaction of these
processes plays a major role in both the generation and the sustenance of these
instabilities (McManus, Poinsot & Candel 1993; Sujith, Juniper & Schmid 2016).
Researchers have attempted to understand the intricacies involved in such interactions,
and have subsequently exploited the acquired knowledge to devise techniques that
either mitigate the strength of such oscillations (Putnam 1971; Schadow & Gutmark
1992; McManus et al. 1993) or forewarn their onset (Lieuwen 2005; Nair et al. 2013;
Gotoda et al. 2014; Nair & Sujith 2014).

Nonlinearities play a significant role in the genesis of thermoacoustic instabilities
of gas turbine combustors (Culick 1976; Lieuwen 2003a). Due to the small amplitude
of the acoustic oscillations in the combustor relative to the mean pressure, the
acoustic oscillations in the duct are presumed to behave in a linear fashion (Dowling
1997). The nonlinearity, then mainly stems from the nature of the interaction
between the heat release rate fluctuations and the acoustic field (Dowling 1997). The
nonlinear behaviour of these coupled processes is evident in the unstable operation of
combustors, which is known to be limit cycle oscillations (Culick 1994). Dynamical
systems theory has fostered the understanding of such nonlinear phenomena. Using
this theory, the diverse dynamical behaviour exhibited by a thermoacoustic system
has been brought to light (Sterling 1993; Jahnke & Culick 1994; Datta et al. 2009;
Gotoda et al. 2011; Kabiraj & Sujith 2012; Kabiraj et al. 2012a). In the parlance
of dynamical systems theory, the transition of combustion systems from stable to
unstable operation is the result of a bifurcation (Lieuwen 2002; Ananthkrishnan, Deo
& Culick 2005; Subramanian et al. 2010; Gotoda et al. 2011; Kabiraj et al. 2012a).

Jahnke & Culick (1994), in their model of a solid rocket motor, were the first to
observe the bifurcation of limit cycle oscillations to a quasiperiodic state through
the birth of a torus. The period doubling route to chaos was observed by Sterling
(1993), Datta et al. (2009) and Lei & Turan (2009) in their modelling studies, by
incorporating different models for combustion. Kabiraj and co-workers performed an
experimental analysis that showed different dynamical states (2012; 2012a) and the
route to chaos (2012b) in a thermoacoustic system. They witnessed the presence of
period-k, quasiperiodic, frequency locked, chaotic and limit cycle oscillations in a
ducted laminar flame combustor. Furthermore, Subramanian (2011) and Kashinath,
Waugh & Juniper (2014) reported similar results in their numerical simulation of a
premixed flame system, for different choices of control parameters.

In the case of turbulent combustion systems, the passage to thermoacoustic
instability has traditionally been reported as a transition of the combustor from a
stable (combustion noise) to an unstable (limit cycle) state (Lieuwen 2002). Nair
& Sujith (2013), however, reported the presence of a state called intermittency
prior to the onset of limit cycle oscillations in their system. Intermittency here
is a dynamical state consisting of an apparently irregular appearance of bursts of
large-amplitude periodic oscillations among regions of aperiodic oscillations (Nair
et al. 2014). Thenceforth, numerous studies have reported the presence of such
intermittent oscillations prior to the onset of limit cycle oscillations in a variety of
turbulent combustion systems (Gotoda et al. 2014; Murugesan & Sujith 2015b; Unni
& Sujith 2015; Pawar et al. 2016; Wilhite et al. 2016).

Since the emergence of limit cycle oscillations is of prime concern in combustion
systems, there are studies dedicated to understanding the nature of the transition to
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periodic oscillations. Lieuwen (2002) viewed such a transition of a thermoacoustic
system as the loss of stability of a stable fixed point, along with the generation of a
noisy elliptic structure in the phase space. Nair & Sujith (2014) viewed the transition
of combustion noise to limit cycle oscillations as the loss of the multifractal signature
of the system upon the emergence of order. Murugesan & Sujith (2015a), on the
other hand, analysed the transition behaviour of combustion dynamics using complex
network theory. They discovered that the scale-free nature of the network observed
during combustion noise vanishes upon the onset of thermoacoustic instability.

Despite achieving some success in characterizing the transition, all of these studies
relied on analysing the acoustic pressure oscillations alone. However, it is well known
that the generation of thermoacoustic instability is a coupled response of the acoustic
oscillations and the heat release fluctuations present in the combustor (Rayleigh
1878). The inherent fluctuations present in the turbulent flow field perturb the flame.
The resultant fluctuations in the heat release rate affect the acoustic waves, which,
after reflection from the boundaries, alter the heat release rate further, establishing a
feedback loop (Lieuwen & Yang 2005).

In some systems, the presence of vortex shedding enhances this feedback (Smith
& Zukoski 1985; Poinsot et al. 1987). Such coupled interaction between the duct
acoustics and the flame dynamics or the heat release rate fluctuations in a turbulent
combustor has been analysed by various researchers (Rogers 1956; Keller et al. 1982;
Smith & Zukoski 1985; Poinsot et al. 1987; Sterling & Zukoski 1987; Yu, Trouve
& Daily 1991; Macquisten & Dowling 1993; Broda et al. 1998; Venkataraman et al.
1999; Guethe & Schuermans 2007; Sivakumar & Chakravarthy 2008). It is evident
from these studies that the coupling between these phenomena is at the core of
what gives rise to the observed dynamics. The focus of these studies, however, was
limited to just stable and unstable operation of the combustor. None of the studies
quantitatively analysed the relationship between the acoustic field and heat release
rate fluctuations during the transition from combustion noise to limit cycle oscillations.
The observation of locking of the acoustic and heat release rate fluctuations at the
onset of limit cycle oscillations naturally motivates one to examine the presence of
synchronization in the system. In order to investigate the coupled behaviour of these
components of a thermoacoustic system, we adopt the framework of synchronization
theory.

Synchronization, in simple terms, is the matching of the rhythm of oscillators upon
coupling. In the seventeenth century, Huygens discovered this universal phenomenon
while observing the locking of beats of two pendulum clocks hung over a wall
(Pikovsky, Rosenblum & Kurths 2003). In the ensuing years, this phenomenon
has been observed in a variety of disciplines ranging from biology (Leon 2001),
ecosystems (Blasius, Amit & Lewi 1999), chemistry (Schreiber & Marek 1982),
communication (Kocarev & Parlitz 1995) to various types of engineering systems
(Heagy, Carroll & Pecora 1994; Roy & Thornburg 1994). The strength of the mutual
interaction between the coupled oscillators is a crucial parameter that determines their
arrival at a common frequency or at a constant phase difference.

Synchronization among oscillators is usually examined by investigating the locking
of phase (or frequency) of their signals (Pikovsky et al. 2003). The phenomenon of
synchronization is common to periodic (Blekhman, Landa & Rosenblum 1995) as
well as chaotic oscillators (Boccaletti et al. 2002). The synchronization of periodic
oscillators may be expected, but the fact that chaotic oscillators can synchronize,
even for different initial conditions, is fascinating and surprising, given their sensitive
dependence on the initial conditions. A system of coupled chaotic oscillators that are
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initially desynchronized can become synchronized by means of varying the coupling
strength (Boccaletti et al. 2002), through periodic forcing, or feedback (Wen, Kiss
& Hudson 2001). However, in real physical systems, different types of coupling
mechanisms can exist simultaneously, due to which it is difficult to identify the effect
of each individual coupling mechanism on the dynamics of the system.

In the case of complex fluid systems, there are instances where the features of
synchronization have been observed (Zdravkovich 1982; Gunnoo, Abcha & Ezersky
2016). The synchronized shedding of large-scale coherent structures with the vibrating
bodies is a well-known phenomenon in studies involving flow-induced vibrations
(Green 1995). When the fluid flows over a bluff body, a vortex street is generated
in its wake region, commonly known as the von Kármán vortex street. The shedding
of a vortex induces vibration in the bluff body, which, in turn, affects the shedding
process. When the frequency of vortex shedding is close to or equal to the frequency
of natural oscillations of the bluff body, the frequency of vortex shedding locks in
with that of the bluff body. Such lock-in results in the synchronized generation of
vortex streets in the wake region of the bluff body. The lock-in mechanism alters
the vortex shedding pattern (Zdravkovich 1982), increases the spanwise correlation in
the wake and shifts the vortex shedding frequency to the frequency of the vibrating
body (Griffin & Ramberg 1974; Blevins 1985; Williamson & Roshko 1988; Griffin &
Hall 1991). Thus, in the region of lock-in, the interaction between the flow and the
vibrating body controls the shedding pattern of the large-scale structures. Although
these studies do not compute the phase to check for synchronization, it seems very
likely that they exhibit phase locking.

Similarly, in the case of a thermoacoustic system with an underlying turbulent
flow field, there seems to be a presence of synchronized behaviour between two
coupled processes, namely the acoustic field in the duct and the turbulent reactive
flow fluctuations present in the system, at the onset of thermoacoustic instability. In
this state, a vortex is shed in the combustor after every acoustic cycle (Crump et al.
1986; Poinsot et al. 1987; Yu et al. 1991). Chakravarthy, Sivakumar & Shreenivasan
(2007) referred to such interaction between the vortex shedding (hydrodynamic)
and the acoustic field during the onset of limit cycle oscillations as a phenomenon
of vortex–acoustic lock-on. During this process, they reported the shifting of the
frequency of acoustic oscillations in the duct to the frequency of vortex shedding in
the system. Bellows, Hreiz & Lieuwen (2008), on the other hand, investigated the
lock-in mechanism of a thermoacoustic system by studying its response to an external
periodic forcing. In this case, when the frequency of external forcing is sufficiently
close to the natural frequency of the system, or when the amplitude of forcing is
high enough, the system dynamics locks in to the external forcing (Bellows et al.
2008; Thumuluru & Lieuwen 2009; Balusamy et al. 2015). These studies, however,
do not focus on the intermittency route observed in a turbulent combustion system,
and neither do they utilize many of the tools used in synchronization theory. We aim
to fill these gaps.

In the present study, we view thermoacoustic instability as a synchronization
phenomenon between two mutually coupled non-identical oscillators, namely the
acoustic field and the turbulent reactive flow present in the combustor. We show
that the two-way coupling between these oscillators results in adjustment of their
rhythm to a common frequency at a particular value of the control parameter. Using
the framework of synchronization theory, we establish a new description for the
intermittency route through which a combustor with a turbulent reacting flow field
transitions from a stable to an unstable state of operation. We believe that the
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approach of viewing thermoacoustic instability, in such systems with turbulent reactive
flow, as synchronization of two mutually coupled oscillators gives more insight into
understanding the complex interactions between the coupled processes of the system.
With the help of this approach, we show that the onset of thermoacoustic instability
is not just a locking of the dominant frequencies of both of the oscillators, but also
the locking of their instantaneous phases. We present a phenomenological model that
qualitatively describes the dynamics of the combustion system used in the present
study. Furthermore, the theoretical analysis sheds light on the role of vortex shedding
in the generation of different states of synchronization in the thermoacoustic system.

The rest of the paper is arranged as follows. In § 2, we briefly describe the analysis
of synchronization of two coupled oscillators. The details of the experimental set-
up and the procedures for analysing the experimental data are provided in § 3. The
results and discussion are presented in § 4. In § 5, the description of the model and
the corresponding results and discussion are presented. Finally, the conclusions of the
present study are summarized in § 6.

2. Synchronization of coupled oscillators
Synchronization of coupled chaotic oscillators has been mainly categorized into

phase synchronization (Rosenblum, Pikovsky & Kurths 1996), lag synchronization
(Rosenblum, Pikovsky & Kurths 1997), complete synchronization (Fujisaka &
Yamada 1983) and generalized synchronization (Rulkov et al. 1995). In phase
synchronization, both of the oscillators of a coupled system show perfect locking
in their phases; however, their amplitudes remain uncorrelated. During lag and
complete synchronization, both the amplitudes and the phases of the signals from the
coupled oscillators display exactly the same behaviour. The only difference is that, in
lag synchronization, the phases of the signals are lagged by a constant value of time,
whereas, in complete synchronization, the signals are in phase with each other. In the
case of generalized synchronization, there exists a functional relationship between the
signals of coupled oscillators. In some cases, the state of perfect synchronization is
preceded by a state of intermittent synchronization, wherein regions of synchronized
and desynchronized oscillations are simultaneously present in the signal (Sungwoo,
Park & Rubchinsky 2011).

2.1. Calculation of instantaneous properties of the signal
The phase of a signal is an important parameter in analysing the synchronization
characteristics of coupled oscillator systems. Various methods are available in the
literature to calculate the instantaneous phase of a signal (Pikovsky et al. 2003);
however, the choice of a specific method depends on the properties of the signal.
One of the ways to calculate the instantaneous quantity (amplitude or phase) of
a signal is to use an analytic signal approach (Gabor 1946) based on the Hilbert
transform (Rosenblum et al. 1996). The analytic signal (ζ (t)) is a complex quantity,
whose real part is the original signal (s(t)) and whose imaginary part is the Hilbert
transform (sH(t)= (1/π) P.V.

∫
∞

−∞
(s(τ )/(t− τ)) dτ) of it, where P.V. is the Cauchy

principal value of the integral. Thus, the analytic signal is defined as

ζ (t)= s(t)+ isH(t)= A(t)eiφ(t), (2.1)

where φ(t) represents the instantaneous phase and A(t) the instantaneous amplitude of
the signal.
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The synchronization feature of coupled oscillators is investigated by analysing the
temporal variation of their relative phase and is calculated as 1φi,j(t)= φj(t)− φi(t).
The condition for phase locking is |1φi,j(t)| = const. (where const. < 2π), which
means that the phase difference between the signals remains bounded during the state
of synchronization. In an ideal case, synchronization leads to a constant value of
the relative phase, which can be zero (for complete synchronization) or some non-
zero value (for other types of synchronization). However, in practice, most of the
signals are contaminated with noise; their relative phases show fluctuations around
some constant value of phase shift.

Although the analytic signal approach is desirable, as it gives us the phase at
every time instant, there are limitations in calculating the instantaneous phase by this
technique. First, it works well only for narrow-band signals and, second, the calculated
phase has physical meaning only if the projection of a signal in the analytic plane
(plot between the real and imaginary parts of the analytic signal) has a unique
centre of rotation (Yalçinkaya & Lai 1997). If the attractor of a signal possesses
a unique centre of rotation in the analytic plane, it is termed a phase-coherent
attractor; otherwise, it is referred to as a non-phase-coherent attractor (Yalçinkaya
& Lai 1997; Lakshmanan & Senthilkumar 2011). In our system, for the signals
acquired during the combustion noise and intermittency state, we notice the presence
of non-phase-coherent attractors (the figures are not shown here). The presence of
multiple centres of rotation makes it difficult to select a single reference point and
thereby define an instantaneous phase around it. Conversely, in the case of limit cycle
oscillations, we observe a single centre of rotation (phase-coherent attractor) in the
analytic plane, and, thus, the instantaneous Hilbert phase is well defined.

Among the very few methods available in the literature that characterize the
synchronization features of non-phase-coherent signals (Yalçinkaya & Lai 1997;
Osipov et al. 2003; Romano et al. 2005), we use a method based on recurrence
plots (Romano et al. 2005) in the present study. The advantage of this method over
others is that it does not require a plane over which the state space trajectory has
to rotate about the unique point. In addition, this method can be used for signals
that are non-stationary and ones that are contaminated with noise. The reconstruction
of the phase space ensures that the attractor is untangled, as the trajectories in the
phase space do not intersect with each other. Since this method is based on the
recurrence property of such a trajectory, it eliminates the need to seek a centre of
rotation (Romano et al. 2005).

2.2. Analysis of synchronization using recurrence theory
Recurrence is a fundamental property of a deterministic dynamical system (Eckmann,
Kamphorst & Ruelle 1987). The recurrence in the dynamics of the system can
be effectively represented by using a two-dimensional binary matrix, known as a
recurrence plot (RP) (Marwan et al. 2007). The construction of an RP relies on
reconstruction of the phase space, which is possible on account of Takens’ delay
embedding theorem (Takens 1981). The time series of an experimental observable,
for example unsteady pressure oscillations {p′(t)= p′1, p′2, p′3, . . . , p′N}, measured at a
particular value of the control parameter is embedded in the phase space by choosing
a suitable value of the time delay (T) and a minimum embedding dimension (E)
(Abarbanel 1996). The embedding dimension is obtained from the method suggested
by Cao (1997), whereas the optimum value of the time delay is chosen as the first
minimum of the average mutual information (Fraser & Swinney 1986). The details
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of the phase space reconstruction applied to thermoacoustic systems are available in
Kabiraj et al. (2012a) and Nair & Sujith (2013).

An important parameter required in the construction of an RP is the cutoff threshold
(ε), which is instrumental in deciding the recurrence of the phase space trajectory
(Schinkel, Dimigen & Marwan 2008). We can choose the threshold as a fraction
of the size of the attractor, or assign it values so that there are a fixed number of
nearest neighbours for each point, depending on the applicability of the RP to a
particular type of problem (Marwan 2011). An increase in the size of the threshold
correspondingly increases the number of recurrences in the RP. The equation used in
the construction of the RP is given by (Marwan et al. 2007)

Ri,j =Θ(ε− ‖xi − xj‖); i, j= 1, 2, . . . ,N1, (2.2)

where Θ is the Heaviside step function (i.e. Θ(X)=0 if X<0 and Θ(X)=1 if X >0),
N1 = N − (E − 1)T is the total number of reconstructed vectors, ε is a predefined
threshold and ‖ · ‖ is the Euclidean norm. Whenever the phase space trajectory falls
within the threshold, it is marked as 1 in the recurrence matrix; otherwise, it is marked
as 0. Thus, the RP is a graphical representation of black and white points, where a
black point corresponds to Ri,j = 1 and a white point corresponds to Ri,j = 0.

We now give the gist of the key measure that we use for the analysis of
synchronization in our system. This measure, known as the probability of recurrence
(P(τ )) (or also known as the generalized autocorrelation function) shows the
probability with which the trajectory returns to the neighbourhood of a given point
in the phase space after a time lag τ (Romano et al. 2005). The term P(τ ) is given
by

P(τ )=
1

N1 − τ

N1−τ∑
i=1

Θ(ε− ‖xi − xi+τ‖). (2.3)

The recurrence property of a signal can be related to its phase. Whenever the
trajectory in the phase space recurs, the phase of a signal can be considered to be
increased by 2π (Romano et al. 2005). During synchronization, both the phases and
the frequencies of the signals from the coupled oscillator system are locked, which,
in turn, is reflected in locking of the positions of the peaks corresponding to the two
signals in the plots of P(τ ) against the lag. The locking of the height of the peaks in
the plot of P(τ ) depends on the correlation between the amplitudes of the interacting
signals (Lakshmanan & Senthilkumar 2011). In the case of phase synchronization, the
phases of the signals are perfectly locked; nonetheless, their amplitudes may remain
uncorrelated. This behaviour is manifested in locking of the positions of the peaks but
a mismatch of their heights in the plot of the probability of recurrence. On the other
hand, during generalized synchronization, both of the oscillators are bound together
by a functional relationship. This translates to the circumstance that if two states in
the phase space of one oscillator are close to one another, the states corresponding
to the same time instances on the trajectory of the other oscillator are also close to
one another (Fujisaka & Yamada 1983). The property of recurrence is able to capture
this feature of the proximity of the phase space trajectories. If the two oscillators are
in generalized synchronization, their RPs become nearly identical, and hence their
plots of probability of recurrence also show identical behaviour (Romano et al. 2005;
Lakshmanan & Senthilkumar 2011).
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Air inlet

Settling chamber
Spark plug

Pressure transducer

Bluff body

Burner

Quartz glass for optical access

Photomultiplier tube

Combustion chamber

FIGURE 1. (Colour online) A schematic of the turbulent flame combustor. The partially
premixed air–fuel mixture is burned in a turbulent flow field inside the combustor. The
flame is stabilized using a bluff body located near the dump plane of the combustor.

3. Experimental set-up
The experiments were conducted in a laboratory-scale combustor with a partially

premixed turbulent flame, as shown in figure 1. The experimental set-up consists
mainly of three parts: (i) a settling chamber, (ii) a burner and (iii) a combustor.
The airflow is first passed through the settling chamber, which serves the purpose
of reducing the effect of hydrodynamic fluctuations generated inside the combustor
on the flow at the air inlet. In the burner, fuel (liquefied petroleum gas, propane
40 % and butane 60 % by volume) is partially mixed with the incoming airflow from
the settling chamber at different equivalence ratios. This partially premixed fuel–air
mixture then enters the main combustor section. The combustor is a rectangular duct
which is 1400 mm long and 90 mm × 90 mm wide and has a backward-facing
step (dump plane) at the inlet. A bluff body, a circular disc of diameter 47 mm and
thickness 10 mm, is located at a distance of 4.5 mm from the inlet of the combustor.
The bluff body aids in anchoring the flame in the high-velocity turbulent environment
of the combustor. The air and fuel flow rates are controlled separately by using mass
flow controllers (Alicat Scientific MCR 2000SLPM for air and MCR 100SLPM for
fuel; the uncertainty is ±0.8 % of the measured reading + 0.2 % of the full scale
reading) in the system. The fuel flow rate is maintained at a constant value of 25
slpm and the air flow rate is varied from a value of 400 slpm to 940 slpm such
that the flow field in the system is turbulent (Re = 1.09 × 105 to Re = 2.12 × 105)
throughout the experiment. The estimated uncertainties in Re are ±1.97 × 103 to
±2.71× 103. The equivalence ratios range from 0.95± 0.02 to 0.46± 0.01. For the
purpose of initial ignition, a spark plug (along with a 11 kV ignition transformer
– National Engineering Corporation) fixed at the dump plane is used to ignite the
combustible air–fuel mixture. Quartz windows of size 90 mm × 360 mm, located on
both of the sidewalls of the combustor, provide the optical access required for the
measurement of heat release rate fluctuations from the flame.

We measure the acoustic pressure fluctuations (p′) from the combustor using
a piezoelectric transducer (PCB Piezotronics PCB103B02, with a sensitivity of
223.4 mV kPa−1 and an uncertainty of ±0.15 Pa). The pressure transducer is fixed
on the top wall near the inlet step of the combustor. This position of the transducer
corresponds to a near maximum amplitude of the acoustic pressure in the duct. It is
an appropriate location for the measurement of the acoustic pressure in this combustor,
as it always remains a pressure antinode for all of the acoustic modes of the duct.
The unsteady heat release rate fluctuations (q̇′) are captured by using a photomultiplier
tube (PMT; Hamamatsu H10722-01). A CH∗ band-pass filter (λ= 432 nm and 10 nm
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full width at half maximum (FWHM)), which captures the CH∗ chemiluminescence
intensity from the flame, is used to filter the input to the PMT. The chemiluminescence
intensity thus recorded is a measure of the heat release rate from the flame (Ikeda,
Kojima & Hashimoto 2002; Guethe et al. 2012). The PMT is positioned at a distance
of 500 mm normal to the combustor wall near the location of the bluff body. The
signals of the pressure fluctuations and the heat release oscillations are acquired for
3 s at a sampling frequency of 10 kHz. A 16-bit analog to digital (NI-6143) card
is used for the data acquisition. A frequency resolution of 0.33 Hz is used in the
fast Fourier transform calculation. Since our main objective in the present study is
to analyse the synchronization characteristics of p′ and q̇′, we directly use the raw
(mean subtracted) voltage signals obtained from the pressure transducer and the PMT
throughout our analysis. This further ensures that both p′ and q̇′ fluctuations are
represented in comparable scales of voltage. Welch’s average method (Welch 1967)
is used to smooth the periodogram of the signals. A Hanning window of 5000 data
points with an overlap of 50 % is used in the analysis. This method improves the
spectral representation of signals in the waterfall diagram (shown in figure 3) by
reducing noise from the estimated power spectra.

4. Results and discussion

We investigate the synchronization behaviour of the acoustic pressure (p′) and
the heat release rate (q̇′) oscillations present in a turbulent combustor, as we vary
the mean velocity of the flow (ū). Because a turbulent flow generates sound, there
will always be acoustic oscillations in the duct. Further, the measured heat release
rate fluctuations incorporate the fluctuations from both chemical kinetics and that
induced by the associated flow turbulence present in the system (Shanbhogue,
Husain & Lieuwen 2009). As the resulting effects produced from the fluctuations in
hydrodynamic and combustion processes in the combustor are difficult to separate,
we consider them as a single oscillator, which we call ‘turbulent reactive flow’.
An increase in ū results in a decrease in the equivalence ratio of the combustible
air–fuel mixture from a value close to stoichiometry (φ= 0.98) to a value of fuel lean
condition (φ= 0.49). At lower values of ū (ū= 9.4 m s−1), we observe low-amplitude
aperiodic oscillations in both the acoustic pressure and the heat release rate signals
(see figure 2a). This state of combustion dynamics is traditionally referred to as
combustion noise (Strahle 1978). Recent studies by Nair et al. (2013) and Tony
et al. (2015) have shown that the dynamical features of combustion noise consist of
high-dimensional chaos contaminated with white and coloured noise. With further
increase in ū (ū = 11.9 m s−1), we observe the emergence of bursts of periodic
oscillations from a background of aperiodic oscillations (figure 2b). These bursts
appear to occur randomly, with no apparent pattern. Nair et al. (2014) referred to
this state of combustion dynamics as intermittency. Visual comparison of the acoustic
pressure and heat release rate signals (in the inset of figure 2b) shows that both of
the signals are locked in the burst regions of the periodic oscillations, while unlocked
in the relatively silent regions of the aperiodic oscillations.

At sufficiently high values of ū (ū = 13.2 m s−1), we notice a transition of the
combustion dynamics from a state of intermittency to a state of weakly periodic
oscillations (figure 2c). In this state, we observe wide cycle-to-cycle variation in the
amplitude of the pressure signal. This variation in the amplitude of the limit cycle
oscillations has been postulated to be due to the forcing exerted by background
noise (Lieuwen 2002, 2003b; Noiray & Schuermans 2012). With further increase
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FIGURE 2. (Colour online) (a–d) The time series of the acoustic pressure (p′ – black
colour) and heat release rate (q̇′ – red colour) signals obtained from experiments at ū=
9.4 m s−1, ū = 11.9 m s−1, ū = 13.2 m s−1 and ū = 17.2 m s−1 respectively. Magnified
views of the corresponding signals are shown in the insets above each panel. (a) A low-
amplitude aperiodic state, (b) an intermittency, (c) a weakly periodic limit cycle state and
(d) a strongly periodic limit cycle state of oscillations. (e) The variation of the root mean
square value of the acoustic pressure (p′rms) plotted against the mean velocity of the flow
(ū varies from 9.4 m s−1 to 18.1 m s−1).

in ū (ū = 17.2 m s−1), we observe a transition of the system dynamics to a state
of strongly periodic oscillations (figure 2d), wherein the amplitude of the pressure
oscillations nearly remains the same. Figure 2(e) shows the variation of the root
mean square value of the acoustic pressure (p′rms) acquired for different values of the
mean velocity of the flow (ū). We notice a continuous increase in the amplitude of
the pressure oscillations with an increase of ū in the system. This plot suggests that
the growth in the amplitude of the pressure oscillations is not a linear function of ū,
as the slope of the plot varies differently in different regions of the system dynamics.
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FIGURE 3. (Colour online) (a) The variation of the PSD of both p′ (black colour) and
q̇′ (red colour) for a range of ū from 9.4 m s−1 to 17.2 m s−1. (b) The magnified view
of the PSD for a velocity range from ū= 9.4 m s−1 to ū= 11.1 m s−1. (c) The variation
of the dominant frequency ( fDominant) of both p′ and q̇′ obtained for a range of ū in the
system. The magnified view of the PSD shown in (b) is highlighted by a green colour
in (c). In (b), the separate unlocked frequency bands of p′ and q̇′, obtained for an initial
value of ū= 9.4 m s−1, are shown by green arrows, whereas the frequency corresponding
to the first onset of frequency lock-in is shown by a blue arrow.

In order to investigate the coupled interaction between the acoustic pressure and the
heat release rate oscillations in the system, we plot a waterfall diagram (see figure 3a),
which demonstrates the variation of the power spectral density (PSD) of the signals
obtained at different values of ū. Figure 3(a) shows the emergence of sharp dominant
peaks in the three-dimensional plot of the PSD for both the acoustic pressure and
the heat release rate oscillations at large values of ū. The presence of sharp peaks
in the PSD indicates the existence of periodic oscillations in the dynamics of the
system. The variation of the dominant frequencies of both the acoustic pressure and
heat release rate oscillations, for a range of ū, is plotted in figure 3(c). This plot
reveals the locking behaviour of the dominant frequencies of both of the signals,
which occurs for the first time at ū = 11.1 m s−1. The variation of the dominant
frequencies of these signals prior to the locking of frequencies (the highlighted
portion of figure 3c) is further explored by plotting a zoomed in view of figure 3(a)
and is shown in figure 3(b). At low mean velocities of the flow (ū = 9.4 m s−1),
the plots of the PSD for both p′ and q̇′ show distinct shallow bands of dominant
frequencies, around 130.7 Hz for the acoustic pressure signal and around 25.3 Hz
for the heat release rate signal (marked by green arrows in figure 3b). The dominant
peak in the acoustic pressure spectrum corresponds to the fundamental mode of the
acoustics in the combustor, which is around 125 Hz (the calculation is based on
the assumption of the closed–open geometry of the combustor having a length of
1.4 m, and an approximate value of the speed of sound equal to 700 m s−1). On the
other hand, we observe that the dominant frequency corresponding to 25.3 Hz in the
heat release rate signal is a consequence of the underlying turbulent hydrodynamic
fluctuations present in the reaction zone of the combustor. When the large-scale fluid
structures shed from the dump plane impinge on the bluff body and the sidewalls
of the combustor, there is a sudden release of heat in the system (observations are
based on the high-speed CH∗ chemiluminescence images of the flame; not shown
in this paper). The frequency corresponding to these heat release fluctuations is
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close to 25.3 Hz, which indicates that hydrodynamics has a key role to play in the
low-frequency oscillations observed in the power spectra of the heat release rate
signal.

The existence of different dominant frequencies indicates that these signals are not
locked during the stable operation of the combustor. A close inspection of figure 3(b)
reveals the emergence of a secondary band of frequencies with increasing ū, which is
in between the disparate frequency bands that we had for p′ and q̇′ during aperiodic
oscillations. The magnitude of the secondary band frequencies gradually grows with
ū; yet, the dominant frequencies of the pressure and heat release rate oscillations in
this secondary band still remain different (see the highlighted portion of figure 3c).
The locking of these dominant frequencies occurs at ū = 11.1 m s−1 (around flock =

86.6 Hz). The presence of distinct frequency peaks for low mean velocities, and the
locking of these peaks to a common frequency, which is in between their initial values,
indicates the presence of mutual coupling (Pikovsky et al. 2003) between these two
oscillators of a thermoacoustic system. We further note that such an observation of
switching of the dominant frequencies of p′ and q̇′ to a secondary frequency band,
which is sufficiently away from the natural acoustic mode of the duct, is different
from the problem of forced flame response, wherein the low frequency associated
with heat release rate fluctuations is damped and a single peak arises at the forcing
frequency. However, whether the phenomenon we observe can be termed as merging
or adjustment of frequencies needs to be clarified through further studies.

Frequency analysis of the acoustic pressure and heat release rate oscillations
(figure 3c) reveals an important feature of the locking of dominant frequencies of
these signals in our system: it occurs in the intermittency state (ū = 11.1 m s−1),
long before the onset of limit cycle oscillations (ū = 13.2 m s−1) in the system.
Possible physical mechanisms that bring about the locking of frequencies of p′ and
q̇′ during the onset of intermittency could be the locking of hydrodynamic and
acoustic oscillators during periodic epochs of the intermittent oscillations. To further
explore this proposition, we refer to the study performed by Unni & Sujith (2015),
where they described the behaviour of the flame during intermittency. They observed
that during the periodic segments of intermittency, ring vortices are periodically
shed from the dump plane and convected downstream along the outer shear layer.
This causes periodic fluctuations in the flame surface area, and when the shed vortex
impinges on the obstacles (the bluff body and the sidewalls), we correspondingly have
periodic heat release in the system. On the other hand, during aperiodic epochs of the
oscillations, this periodic shedding of vortices ceases, and the tip of the flame exhibits
oscillations in an aperiodic manner. We further need to keep in mind that the vortex
shedding itself might be influenced by the acoustics and combustion dynamics in the
system. Hence, all three of these processes are likely to play a role in the mutual
synchronization during the periodic epochs of intermittency. The dominant frequencies
of the p′ and q̇′ oscillators remain locked as the system dynamics changes from
intermittency (ū = 11.1 m s−1) to limit cycle oscillations (ū = 17.2 m s−1). During
the onset of limit cycle oscillations, we observe periodic shedding of large-scale
vortices, and hence a periodic heat release rate, during every acoustic cycle. We
further notice that this locked-in frequency of the signals continuously increases with
ū until the final state (see the non-highlighted portion of figure 3c).

To ascertain the synchronization behaviour of the acoustic pressure and heat release
rate oscillations, we use a statistical measure of synchronization based on the RPs.
This is the same measure as we described previously in § 2.2: the probability of
recurrence (P(τ )). We compute P(τ ) for p′ and q̇′, and then compare the coincidence
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FIGURE 4. (Colour online) Plots of probability of recurrence (P(τ )) of a phase space
trajectory at different values of the time lag (τ ) for p′ (green colour) and q̇′ (red colour).
(a–c) P(τ ) corresponding to three states of synchronization, namely desynchronization
(aperiodic oscillations), phase synchronization (periodic oscillations) and generalized
synchronization (periodic oscillations), obtained at ū = 9.4 m s−1, ū = 13.2 m s−1 and
ū = 17.2 m s−1 respectively. The parameters used are embedding dimension = 12, time
delay = 2 ms and recurrence threshold = 25 % of the maximum size of the attractor. The
data set contains 3000 points (shown for 1200 points).

of the peaks of P(τ ) obtained from these signals in order to analyse the synchrony
between them (Romano et al. 2005).

Figure 4(a) shows a plot of P(τ ) as a function of the time lag τ , for both the
acoustic pressure and the heat release rate signals, obtained during the aperiodic state
(as shown in figure 2a). We see from the figure that there is no correspondence
between the peaks of P(τ ) of these signals. This confirms that the two oscillators are
not in synchrony. On the other hand, when the system dynamics undergoes a transition
to limit cycle oscillations (see figure 2c,d), we see a perfect locking of the positions
of the peaks of P(τ ) of both of the signals, as shown in figure 4(b,c). The locking
of the positions of the peaks confirms the synchronization between acoustic pressure
and heat release rate oscillations. Furthermore, the absence of exact locking of the
heights of these peaks in figure 4(b) indicates that we have phase synchronization
(PS) in the system (Romano et al. 2005). Figure 4(c) reveals the perfect coincidence
of the height as well as the position of the peaks of the probability of recurrence
obtained from the acoustic pressure and the heat release rate oscillations, suggesting
the presence of generalized synchronization (GS) in the system (Romano et al. 2005).
Previous studies on synchronization have reported chaotic oscillators synchronizing
in the chaotic state (Boccaletti et al. 2002) or periodic oscillators synchronizing in
the periodic state (Blekhman et al. 1995). However, in our system, chaotic oscillators
transition to the periodic state as they synchronize. This makes the study of such a
synchronization transition quite interesting.

We therefore analyse the synchronization behaviour of acoustic pressure and
heat release rate oscillators during intermittency (see figure 5), as this is the
intermediate state of the transition. Since the intermittent oscillations consist of
alternating occurrences of high-amplitude periodic and low-amplitude aperiodic
oscillations, we plot P(τ ) for short windows of the periodic (figure 5b) and aperiodic
(figure 5c) regions of the signals. The plot of P(τ ) for a periodic window (figure 5b),
corresponding to both p′ and q̇′, shows locking of the positions of the peaks without
locking of their heights, which confirms the phase synchronization of the two signals
during the periodic epoch. On doing the same for the aperiodic region, we see
a mismatch in the locations as well as the heights of the peaks; this depicts the
desynchronized behaviour during the aperiodic phase. The alternate switching of the
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FIGURE 5. (Colour online) (a) Plots of time series of p′ (green colour) and q̇′ (red colour)
acquired during the intermittency state at ū= 11.6 m s−1. (b,c) Plots of P(τ ) shown for
periodic and aperiodic regions of both p′ and q̇′ respectively. The parameters used in
plotting (b,c) are embedding dimension = 12, time delay = 2 ms and recurrence threshold
= 25 % of the maximum size of the attractor. The data set contains 3000 points (shown
for 1200 points).

coupled oscillators between synchronized and desynchronized behaviour describes
the property of intermittent synchronization in the system. Moreover, since the
two oscillators in our system are phase synchronized in the periodic region and
desynchronized in the aperiodic region, such a state of the system is referred to as
intermittent phase synchronization (IPS). This state shows that the oscillators in our
system gradually change their underlying dynamics from aperiodic to periodic as they
synchronize. Recently, Mondal, Unni & Sujith (2017) investigated the spatio-temporal
synchronization behaviour of the local heat release rate in the flame with the
global acoustic field of the duct. During intermittency, their study demonstrated the
coexistence of patches of both synchronized periodic oscillations and desynchronized
aperiodic oscillations in the reaction zone. Furthermore, these patterns of spatial
synchrony and desynchrony interchanged as the flow convected downstream, which
they referred to as a breathing chimera-like state. Therefore, IPS is arguably an
apt intermediate state that we observe during the transition of combustion dynamics
from a state of completely desynchronized oscillations to a state of perfectly phase
synchronized oscillations. Thus, it is evident from figures 4 and 5 that in the turbulent
flame combustor examined in the present study, the desynchronized oscillations pave
the way to PS through IPS, and subsequently to GS with an increase in the mean
velocity of the flow (ū).

As discussed earlier, the unstable operation of a turbulent combustor has been
traditionally perceived in terms of limit cycle oscillations (Lieuwen 2002). We,
however, observe two different types of limit cycle in our system, which exhibit
different dynamical characteristics. We call them weakly correlated (PS) and strongly
correlated (GS) limit cycle oscillations. In order to identify the distinguishing features
of these two states, we compare the temporal variation in instantaneous phase
difference (relative phase) between the acoustic pressure and the heat release rate
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FIGURE 6. (a,b) The temporal variation of the relative phase (1φp′,q̇′) between p′ and
q̇′ calculated using an analytical signal approach based on the Hilbert transform. (a) The
PS (ū = 13.2 m s−1) and (b) the GS (ū = 17.2 m s−1) state of oscillations. (c) A plot
depicting the variation of the mean value of the relative phase (1φp′,q̇′) with the mean
velocities of the flow observed during the PS and GS states.

oscillations. The instantaneous phases of these signals are calculated using the
Hilbert transform (explained in § 2.1). Figures 6(a) and 6(b) show the relative phase
plots (1φp′,q̇′) of these signals obtained during PS and GS states respectively. The
fluctuation of the relative phase around a constant phase shift (as shown in figure 6a,b)
suggests synchronization of the signals of the coupled oscillator system (Pikovsky
et al. 2003). The enlarged view of the relative phase for the PS state shows a noisy
behaviour (figure 6a), while that for the GS state shows an apparently periodic
behaviour (figure 6b). In figure 6(c), we plot the temporal mean value of the relative
phase (1φp′,q̇′), in the interval −180◦ to 180◦, versus different values of the mean
velocities of the flow. The plot shows the velocity range corresponding to PS and
GS states alone. During the PS state, we notice that the mean value of the relative
phase remains close to 50◦, whereas during the GS state (figure 6b), it approaches a
value closer to zero degrees (refer to figure 6c). Thus, we observe a reduction in the
mean phase angle between the acoustic pressure and the heat release rate fluctuations
as the system dynamics transitions from the PS to the GS state.

It should be recalled that when two oscillators are in GS, there exists a functional
relation between the dynamics of these oscillators (Rulkov et al. 1995). Say, for
example, that we have two non-identical oscillators, namely X(t) and Y(t). When
these oscillators are in the state of GS, there exists a functional relationship between
them, which can be expressed as Y(t) = Φ(X(t)). This means that the response of
Y(t) can be uniquely determined from X(t) if the functional form of their relation is
known (Pyragas 1998). However, the determination of the exact functional form for
experimental signals is not straightforward.

In our system, we can obtain an approximate functional relation between the
acoustic pressure (p′) and the unsteady heat release rate (q̇′) during the GS state,
using the knowledge obtained from experiments. During the GS state (see figure 7a),
visual inspection of the acoustic pressure signal hints at the features of a sinusoidal
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FIGURE 7. (Colour online) (a) A portion of the time series of p′ (black colour) and q̇′ (red
colour) obtained from experiments during the GS state (ū= 17.2 m s−1). (b) A portion of
the signal obtained from an assumed functional form for both acoustic pressure (P′ – black
colour) and heat release rate (Q̇′ – red colour) oscillations. (c,d) The temporal variation
of the relative phase obtained from the Hilbert transform for the signals shown in (a) and
(b) respectively.

function, whereas the heat release rate signal shows the features of a spiky signal.
By saying spiky, we mean that the signal is relatively flat for some time, then rises
up, decays and becomes flat again. The behaviour of these signals can then be
qualitatively mimicked by the following equations:

P′ = [a1 + np1(t)] ∗ sin[ωt±∅1 + np2(t)] (4.1)

and

Q̇′ = [a2 + nq1(t)] ∗ sin[ωt+ a3 sin(ωt±∅2)+ nq2(t)], (4.2)

where P′ and Q̇′ are the assumed functional forms of p′ and q̇′, ω is the angular
frequency of the signals, a1, a2 and a3 are constants and ∅1 and ∅2 are the initial
phases of P′ and Q̇′ respectively. Here, np1, np2, nq1 and nq2 are Gaussian white noise
terms added to the amplitude and phase parts of the signals.

The values of the constants in the assumed functional forms of P′ and Q̇′ are derived
from the statistical properties of the corresponding p′ and q̇′ signals obtained from
experiments. This is to ensure an approximate fit between the data generated from
numerical results and the signals obtained from experiments.

The relative phase between the two signals can then be expressed as

1∅= {ωt+ a3 sin(ωt±∅2)} − {ωt±∅1} +G(t)= a3 sin(ωt±∅2)±∅1 +G(t), (4.3)

where G(t) is the phase noise present in the relative phase of both P′ and Q̇′.
The parameters selected in plotting figure 7(b) are a1 = 0.8, a2 = 0.35, a3 = 0.7,

ω= 120.2 Hz, ∅1 = 0 rad and ∅2 =π/2 rad, and the strength of noise is 0.05.
Figure 7(b) qualitatively simulates the features of the acoustic pressure and the

heat release rate oscillations observed in experiments during the GS state (figure 7a).
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The plot of the relative phase between the two signals obtained from the experiments
(figure 7c) is qualitatively captured by the proposed functional form for these signals
(figure 7d). These analogies between the experimental results and the assumed
functional relation are completely drawn from the characteristics of the acoustic
pressure and the heat release oscillations observed during the GS state. In reality,
the functional relationship may be considerably more complicated, involving different
combinations of sine and cosine functions along with inherent turbulent fluctuations
present in the combustion system. Identification of the exact functional form of these
signals is difficult, mainly because the complex interaction between acoustic pressure
and heat release rate oscillations is still not completely known.

We now try to elucidate the possible physical reason for having separate PS and
GS states in our turbulent flame combustor. Towards this purpose, we calculate
the amplitude difference (figure 8a) and the time difference (figure 8b) between
the consecutive cycle peaks of the acoustic pressure and the heat release rate
oscillations respectively, and subsequently compare them for the PS (figure 8c,d)
and GS (figure 8e, f ) states. The time at which q̇′ reaches a local maximum is
referred to as a kicking time (figure 8b). The reason for using such a terminology
is to relate it to the kicked oscillator model that we propose in § 5. The term kick
refers to the release of heat in a very short time span when the shed vortex from the
dump plane impinges on the bluff body. This sudden generation of heat leads to the
spiky behaviour in q̇′. Figures 8(d) and 8( f ) show the difference in the impingement
time (i.e. the kicking time) of two consecutive vortices (normalized by the period,
T = 1/fDominant) obtained during the PS and GS states respectively. We observe a wide
variation in the kicking times of the vortex during PS compared with what is seen
during GS.

The variation in the kicking times is possibly reflected in the irregular nature of the
amplitudes of the acoustic pressure oscillations observed during PS. Figures 8(c) and
8(e) show plots of the amplitude difference between consecutive cycles of the acoustic
pressure (p′) signal, normalized by the global maximum (p′max) of the respective signal,
for the PS and GS states respectively. We notice that the cycle-to-cycle variation in
the amplitude of p′ is comparatively much larger during the PS state than that during
the GS state. The consequence of such cycle-to-cycle variation in the kicking times
as well as in the amplitudes of the signals observed during PS and GS is further
investigated by plotting a linear measure of correlation between p′ and q̇′ for the whole
range of ū used in this study (see figure 8g). The cross-correlation coefficient (r) (or
Pearson’s coefficient) is a measure of the strength of the linear relation between the
two signals. It further helps in determining the synchronization of amplitudes of the
signals obtained from a coupled oscillator system (Gonzalez-Miranda 2002; Bove et al.
2004), and is given by the following equation:

r=

n
n∑

i=1

xiyi −

n∑
i=1

xi

n∑
i=1

yi
n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2
n

n∑
i=1

y2
i −

(
n∑

i=1

yi

)2


0.5 , (4.4)

where xi and yi are the samples of the bivariate data obtained from the experiments
and n is the total number of samples in the signal.

The values of r range from −1 to +1; r = −1 corresponds to strong negative
correlation and r = 1 corresponds to strong positive correlation between the signals.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

43
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.438


Thermoacoustic instability as mutual synchronization 681

0 0.1 0 0.1

10 2 3 10 2 3

10 2 3 10 2 3

10 12 14 16 18

1.0

0

0.2

0.4

0.6

0.8

C
or

r.
 c

oe
. (

r)

–1

0

1

–1

0

–0.3

0

0.6

1

0

0.6

 0.5

1.0

1.5

 0.5

1.0

1.5

t (s) t (s)

(a) (b)

(c) (d )

(e) ( f )

(g)

FIGURE 8. The portion of (a) acoustic pressure and (b) heat release rate oscillations
depicting the computation procedure for the amplitude difference and the kicking times
respectively. (c,e) The temporal variation of the amplitude difference (normalized by signal
global maxima) between consecutive peaks of the acoustic pressure oscillations obtained
for PS and GS states respectively. (d, f ) The temporal variation of the time difference
(normalized by the signal period T = 1/fDominant) between the consecutive peaks of the
heat release rate oscillations, referred to as kicking times, obtained for PS and GS states
respectively. The PS state corresponds to ū= 13.2 m s−1 and the GS state corresponds to
ū= 17.2 m s−1. (g) The variation of the cross-correlation coefficient (r) between p′ and
q̇′ with different values of the mean velocity of the flow (ū).

The value r = 0 indicates zero linear correlation between the signals. In our system,
we observe values of r greater than zero, suggesting the presence of a positive
correlation between the acoustic pressure and heat release rate oscillations (figure 8g).
We notice an increase in the value of the linear correlation as the system dynamics
transitions from combustion noise to a final state of limit cycle oscillation. During
PS, the weak correlation of the oscillators is reflected in relatively low values of r,
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Bluff body

Vortex

Inlet step

Sound waves

d

L

FIGURE 9. (Colour online) Schematic of the combustor model. The inlet end contains a
step of height d from which vortices are shed. These shed vortices carry reactant mixture
at a fraction of the mean velocity of the flow (ū). The reactant mixture burns when these
vortices impinge on the bluff body, located at a distance Lc from the inlet. The acoustic
waves generated as a result of this burning affect the vortex shedding, and thus establish
a closed loop interaction between hydrodynamic, combustion and acoustic processes.

which are around 0.5–0.6. Although the amplitude of the acoustic pressure oscillations
shows a significant increase for all of the values of ū (ū = 12.9 m s−1–15.4 m s−1)
during PS (figure 2e), the value of r shows a marginal variation during this state
(figure 8g). The transition from PS to GS results in an increase in the value of
r from a value close to 0.5 to a value close to 1. Thus, the oscillators in GS
(ū = 16.1 m s−1–18.5 m s−1) in our system are very strongly correlated. Changes
in the behaviour of both the kicking time and the cycle-to-cycle amplitude variation
have a major impact on the linear correlation during the transition from the PS to
the GS state.

5. Model
Lastly, we introduce a phenomenological model that qualitatively captures the

experimental results. The model takes into account the three important phenomena
vital to the problem at hand – hydrodynamics, combustion of reactants and
propagation of sound waves in the duct (see figure 9). For a set of values of
the control parameter, the interactions between these subsystems intertwine in a
manner that gives rise to self-sustained synchronized oscillations in a thermoacoustic
system. Matveev & Culick (2003) developed a reduced-order model that captures
interactions between the vortex shedding, acoustic field and combustion processes of
such systems. They modelled the interaction of the heat release rate with the acoustic
field as a kicked oscillator system, where the vortices that impinge on the bluff body
impulsively force the acoustic field. Their model was able to capture the stable and
unstable operation of the combustor; however, it did not show intermittency prior to
thermoacoustic instability. Nair & Sujith (2015) extended Matveev’s model to capture
the state of intermittency in the system dynamics. In order to capture the intermittent
dynamics, they added a stochastic noise term in the convection velocity of the vortex.
Seshadri, Nair & Sujith (2016) used a deterministic approach to capture all of the
dynamical states such as combustion noise, intermittency and limit cycle oscillations
of a thermoacoustic system. They suggested that the feedback due to the acoustic
waves, generated as a result of the instantaneous release of heat at the bluff body,
affects the vortex shedding process at the dump plane of the combustor.
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Here, we consider a simplified configuration of the experimental system for
construction of the model (see figure 9) while retaining the key geometrical features
of the real turbulent combustion system. The combustor is of length L, with a step at
the inlet of height d. The combustion of the reactants is assumed to be localized at a
distance Lc from the inlet end (Matveev & Culick 2003). Vortices containing unburnt
reactants are formed at the inlet end, which is due to the build-up of circulation at
the step. This process of build-up of circulation (Γ ) is described by (5.1), where
usep = ū + u′(Ls, t) is the velocity at the step, ū is the mean velocity, u′(Ls, t) is
the acoustic velocity at the step and p′Lc

is the acoustic pressure at the point of
combustion (i.e. at Lc),

dΓ
dt
=

u2
sep

2
+ k

∑
j

p′Lc
(tj)δ(t− tj − τa)+ σ1N(0, 1). (5.1)

Here, tj is the time when the jth vortex reaches the combustion location, k is a
proportionality factor (Seshadri et al. 2016), τa is the time taken by the acoustic
wave to reach the inlet from Lc and σ1 indicates the intensity of the Gaussian white
noise N(0, 1). The second term in the above equation describes the delayed feedback
of acoustics on the vortex shedding process at the step. The form of (5.1) is similar to
that proposed by Seshadri et al. (2016), except that we have additionally incorporated
a noise term; we will soon explain the reason for this.

When the circulation exceeds a critical value (Γcr = Γousep), a vortex is shed from
the step, and the circulation is reset to zero (Matveev & Culick 2003). Here, Γo is
given as d/(2St), where St is the Strouhal number (Matveev & Culick 2003). In the
experiments, the inlet is not a perfectly closed end, as opposed to what has been
assumed in the previous models (note that for a perfectly closed end, usep= ū). Further,
the turbulence of the flow at the inlet affects the circulation building up at the step.
For this reason, we incorporate a noise term, which accounts for the variation in
the velocity at the step (which appears in (5.1)), and correspondingly obtain Γcr as
Γcr=Γousep+ σ2N(0, 1). We note that the source of the noise is same for both dΓ /dt
and Γcr, but it affects them with strengths σ1 and σ2 respectively. The repeated process
of increase in the value of the circulation up to a critical value and its subsequent fall
to zero depicts the oscillatory behaviour of the circulation. The vortex shed from the
inlet convects downstream at a fraction of the mean velocity, and this is captured by
(5.2) (Matveev & Culick 2003),

dxj

dt
= αū+ u′(x, t). (5.2)

Here, α gives the fraction of ū with which the vortex is transported.
When these vortices reach the location of combustion (Lc), a localized and

instantaneous burning of the reactants in the vortex occurs, and, corresponding
to this event, the generated heat release rate (q̇′) is modelled as (Matveev & Culick
2003)

q̇′ = β
∑

j

Γjδ(x− Lc)δ(t− tj). (5.3)

The heat release rate fluctuations (q̇′) affect the acoustic oscillations (p′ and u′) present
in the duct at time instants tj, when the reactants in the vortices burn.
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The acoustic pressure (p′) and velocity (u′) in the duct are decomposed into a
product of time-varying components (ηn, η̇n) with the natural spatial modes (M) of
the duct as follows (Zinn & Lores 1971; Seshadri et al. 2016):

p′/p̄=
M∑

n=1

η̇n(t)
ωn

cos(knx) and u′/(p̄/ρ̄c)=
M∑

n=1

ηn(t) sin(knx), (5.4a,b)

where kn =ωn/c.
Using the energy conservation equation, we obtain an oscillatory equation for the

coefficients of the natural modes (ηn, η̇n),

η̈n + ζnη̇n +ω
2
nηn = bωn cos(knLc)

∑
j

Γjδ(t− tj), (5.5)

where b is a proportionality constant. Here, the damping term has been artificially
introduced, and the damping coefficient (ζn) is modelled as ζn = (2n− 1)2ζ1 (Nair &
Sujith 2015; Seshadri et al. 2016).

When the acoustic oscillations are excited, the sound waves travel upstream and
affect the circulation build-up at the step, after a time delay of τa (Seshadri et al.
2016), which is evident from (5.1). This dependence of the circulation on the acoustic
field closes the feedback loop of interaction between the acoustic oscillations in the
duct, the vortex shedding and the combustion processes. We note that the heat release
rate (q̇′) in the system can be related to the circulation (Γ ) at the step as the shedding
of a vortex is controlled by (5.1). Consequently, we study the synchronization of the
acoustic pressure oscillations (p′) and the circulation (Γ ) obtained from the model.
We remark that the acoustic oscillator described in the model is not a self-sustained
oscillator and hence is not an ideal candidate for the synchronization study. The
turbulent flow in the duct contributes to the production of sound in the actual system,
and thus the acoustic variables would not decay even in the absence of a heat release
rate. This can be captured in this model by adding a noise term to the evolution
equation governing the acoustic modes, or through a more detailed modelling of the
system incorporating turbulent flow. We nevertheless stick to the current model for
studying the synchronization behaviour of acoustics and circulation, as we are only
trying to compare a phenomenological model with the experiments.

Further, given that the model proposed by Seshadri et al. (2016) captures the
transition from combustion noise to thermoacoustic instability via the intermittency
route, a question arises as to what prompted us to incorporate noise into the system.
We here present the motivating reason for such a modification. We observed that the
model by Seshadri et al. (2016) showed desynchronized oscillations, IPS and GS,
but we could not observe the state of PS (note that, in the absence of noise, the
empirical parameters need to be appropriately chosen to obtain the intermittency route
to thermoacoustic instability). In other words, the subsystems in the previous model
are very strongly correlated during the limit cycle oscillations (thus giving rise to GS
but not PS), and, therefore, some aspect that induces a weakly correlated limit cycle
is being overlooked. A plausible reason for not observing PS in the previous model,
as we have explained above, is that the inlet end of the duct is not perfectly closed
(as opposed to what is assumed in that model), and the turbulence in the flow gives
rise to small fluctuations that affect the circulation build-up at the inlet step. This is
not captured in the model presented by Seshadri et al. (2016). We incorporate these
fluctuations as noise in the current model, paving the way to (5.1). We note that our
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FIGURE 10. The time series of the acoustic pressure (p′) obtained from the model
showing (a) low-amplitude aperiodic oscillations at ū = 9.2 m s−1, (b) an intermittency
signal at ū= 10.2 m s−1, (c) low-amplitude periodic oscillations at ū= 10.41 m s−1 and
(d) high-amplitude periodic oscillations at ū= 10.6 m s−1. (a) The desynchronized state,
(b) the IPS state, (c) the PS state and (d) the GS state of oscillations is observed when
the acoustic pressure (p′) is compared with the circulation (Γ ) at the step. The data were
acquired for 3 s and then undersampled to a frequency of 10 kHz.

intention is to effect minimal changes to the previous model so that a qualitative
match with the experimental observation is obtained.

We used the Runge–Kutta method of order 4 for performing the integration of the
deterministic part of the above equations, while the Euler–Maruyama scheme was
employed in integrating the stochastic part. The values of the parameters used in the
computations are dt= 10−5, α= 0.53, γ = 1.4, ζ1 = 29 s−1, Lc = 0.045 m, L= 1.4 m,
d = 0.025 m, c = 700 m s−1, p̄ = 101 325 Pa, M = 10, St = 0.145 (i.e. Γ0 = 0.086),
k = 12.9+ 6.2 ∗ S∗(ū− 9.4), b= 0.003, σ1 = 0.017 and σ2 = 0.0937, where S∗ is the
step function.
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FIGURE 11. (Colour online) (a–c) The probability of recurrence (P(τ )) of the phase
space trajectory for the signals (p′ – green colour; Γ – red colour) obtained from the
numerical model at ū= 9.2 m s−1, ū= 10.41 m s−1 and ū= 10.6 m s−1 respectively. (a)
The desynchronized state, (b) a PS state and (c) a GS state of oscillations. The parameters
used in plotting are embedding dimension = 12, time delay = 2 ms and recurrence
threshold = 20 % of the maximum size of the attractor. The data window contains 4000
points (shown for 1000 points).

Figure 10 shows a plot of the time series of the acoustic pressure obtained at
different states of synchronization from the theoretical model. At low values of the
mean velocities of the flow (ū), we notice low-amplitude aperiodic oscillations in
the system, as shown in figure 10(a). With further increase in ū, we observe the
emergence of bursts of large-amplitude periodic oscillations from the background of
low-amplitude aperiodic oscillations in the system (see figure 10b). Since this type of
oscillation consists of alternate occurrence of both periodic and aperiodic oscillations,
it corresponds to the state of intermittency. At sufficiently large values of ū, the
system dynamics transitions to a state of low-amplitude limit cycle oscillations (see
figure 10c). With further increase in ū, we notice a transition of the system dynamics
to sufficiently large-amplitude limit cycle oscillations (see figure 10d). It should be
noted that the spikes observed in these acoustic pressure signals are the result of
kicking of the acoustic modes due to vortex impingement on the bluff body (see
(5.5)). Although such spikes are a feature of the model, they are not observed in the
experiments. Further, in the model, the vortex impingement and the heat release rate
(i.e. flame response) occur at the same time due to the assumption of a localized
instantaneous heat release rate. These aspects of the model could be improved upon
by incorporating equations that describe flame behaviour and its interaction with
vortices and acoustics, and can be taken up in future studies of the system.

The synchronization features of the signals from the coupled oscillators, namely the
acoustic pressure in the duct (p′) and the circulation at the inlet step (Γ ), obtained
from the model are characterized by using the statistical measure of synchrony based
on the RPs (Romano et al. 2005).

Figure 11 shows plots of the probability of recurrence (P(τ )) of the phase space
trajectory in the embedded phase space at different values of the time lag (τ ). In the
case of an aperiodic state of oscillations (figure 11a), the plot of P(τ ) for both of the
signals shows a mismatch in the locations as well as heights of the peaks, confirming
their desynchronized nature. When the system enters a state of low-amplitude limit
cycle oscillations, we observe the locking of positions of peaks in the plot of P(τ )
of acoustic pressure and circulation. However, the heights of the peaks do not match
perfectly. This shows that the system is likely to be in a state of PS. At the onset of
large-amplitude limit cycle oscillations in the system, we notice almost perfect locking
of both the positions and the heights of the peaks of P(τ ), suggesting the presence
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FIGURE 12. (Colour online) (a) The time series of the acoustic pressure (p′) acquired
during an intermittency state (ū = 10.2 m s−1) from the model. (b,c) Plots of P(τ ),
obtained for p′ (green colour) and Γ (red colour), corresponding to the regions
(highlighted by blue colour) of aperiodic and periodic oscillations respectively. The
parameters used in plotting (b,c) are embedding dimension = 12, time delay = 2 ms
and recurrence threshold = 20 % of the maximum size of the attractor. The data window
contains 4000 points (shown for 600 points).

of GS of the two oscillators in the system. These observations conform to what we
observed in the experiments (refer to figure 4).

Figure 12 shows the synchronization features of the intermittency signal of p′
and Γ obtained from the model. The plots of the probability of recurrence P(τ )
obtained during aperiodic and periodic epochs of the intermittent oscillations are
shown in figures 12(b) and 12(c) respectively. In the model, we observe smaller
durations of the aperiodic oscillations compared with those of the bursts of periodic
oscillations during intermittency (see figure 12a). During the periodic epochs of the
signal (figure 12c), we notice locking of the positions of the peaks of P(τ ) without
locking of their heights, which confirms their PS nature. On the other hand, during
the aperiodic epochs of the signal (figure 12b), locking of the positions as well as
the heights of the peaks of P(τ ) is absent, hinting at their desynchronized nature.
This suggests that the intermittency in the model corresponds to the IPS state, which
is the same as what we observed in the experiments (refer to figure 5).

As before, we study the properties of the limit cycle oscillations observed during
PS and GS states in the model by examining the kicking times (see figure 13).
The kicking time corresponds to the time instant at which a vortex shed from the
step reaches the location of the bluff body (refer to figure 9). It should be recalled
that on the impingement of a vortex, an acoustic wave travels upstream and affects
the vortex shedding process, which affects the subsequent kicking times. Therefore,
kicking times contain information about the dynamics of the system. Figure 13
illustrates the difference in two consecutive kicking times (normalized by the period
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FIGURE 13. (a,b) Plots corresponding to the difference between consecutive kicking times,
normalized by the respective signal period, obtained from the model. Each point in the
plot corresponds to the difference in the kicking time due to two consecutively shed
vortices. The time instant at which a shed vortex reaches the bluff body location is called
the kicking time, as this event leads to impulsive forcing of the acoustic oscillator through
the heat release rate. The plot of kicking times (a) corresponds to the PS state obtained at
ū= 10.41 m s−1 and the plot (b) corresponds to the GS state obtained at ū= 10.6 m s−1.

of the respective signal) observed during PS and GS states in the system. In the case
of PS (figure 13a), we notice more distributed kicking times around the dominant
time period as opposed to what is observed during GS (figure 13b). This reasserts
that when the kicking times are more ordered, i.e. the time of kicking matches
the dominant period of the signal, the system exhibits large-amplitude limit cycle
oscillations. This, in turn, ensures that the acoustic feedback is stronger. These
observations are the same as what we observed in the experiments.

6. Conclusions
In this paper, we describe the dynamical transition of a turbulent bluff-body-

stabilized backward-facing step combustor using a framework of synchronization
theory. We focus on the transition of this system from a state of stable operation
(or combustion noise: low-amplitude aperiodic fluctuations) to a state of unstable
operation (or limit cycle oscillations) in the combustor. Using a measure based on
RPs, we show that the thermoacoustic instability in the system involving turbulent flow
is a synchronization phenomenon of two mutually coupled non-identical oscillators,
namely the acoustic field in the confinement and the turbulent reactive flow present
in the system. We show that a bidirectional coupling exists between these oscillators,
which is responsible for their transition from a non-synchronous state of aperiodic
oscillations to a perfectly synchronous state of periodic oscillations with a variation
in the mean velocity of flow. Using the theory of synchronization, we provide a
new description of the intermittency route to thermoacoustic instability in a turbulent
combustion system. We observe that the system dynamics culminates in a state of
GS, having gone through IPS and PS. During IPS, the oscillators are periodic in the
synchronized phase while harbouring aperiodicity in the desynchronized phase. In
addition, our theoretical model qualitatively captures the features of synchronization
observed in the experiments. Thus, we present experimental and theoretical evidence
of synchronization in a practical combustion system, wherein the desynchronized
coupled chaotic oscillators transition from a chaotic to a periodic state as they
synchronize.

We further characterize the distinguishing features of PS and GS states. We show
that these two states correspond to two different types of limit cycle oscillation: one
that is weakly correlated while the other is strongly correlated. The observation of the
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presence of two types of limit cycle oscillation seems to have been overlooked in the
study of thermoacoustic instability in turbulent combustion systems. Using a measure
of the linear correlation coefficient between the signals of the coupled subsystems, we
show that the transition from the PS to the GS state results in a significant increase
in the linear correlation of the signals. From the observation of kicking times, we
show that, during PS, the difference between two consecutive kicking times is widely
distributed, compared with what is seen during GS. In addition, we observe a wide
variation in the cycle-to-cycle amplitude of the acoustic pressure signals during PS,
whereas the amplitude is nearly constant during GS. Thus, during GS, a stronger form
of lock-in mechanism is observed in the system.

Thus, our approach to viewing thermoacoustic instability in combustors with the
turbulent flow as a synchronization phenomenon is a step towards an understanding
of the complex nonlinear interactions occurring between the coupled subsystems of
such combustors. As a prerequisite for examining the synchronization phenomenon
in a system of coupled oscillators is that the oscillators should be distinct and
self-sustained, it is not clear at the outset whether such an approach of mutual
synchronization could be further extended to thermoacoustic systems involving laminar
flows. In the class of systems with turbulent flow, due to the intrinsic hydrodynamic
fluctuations, there will always be an oscillatory behaviour in the flow. Hence, the
framework of synchronization is valid for such systems, as we show in the present
study. On the other hand, in the case of laminar systems, such as Rijke tube and
ducted laminar premixed flames, we do see synchronous behaviour between the
acoustic field and the heat release rate oscillations at the onset of thermoacoustic
instability. However, in the absence of noise or inherent fluctuations in the flow
during a steady state, the acoustic field is silent (hardly any perceptible pressure or
velocity fluctuations) and the heat release rate field is not oscillatory (no perceptible
oscillations in the flame or the heat release rate). As a consequence, the use of
synchronization theory to describe the route to thermoacoustic instability in laminar
combustors may not be fruitful.

Furthermore, this approach of synchronization theory can probably be used in
other real fluid mechanical systems involving turbulent flow, in which the coupled
response of two or more interacting subsystems leads to an unstable phenomenon of
flow-induced vibrations. In such systems, the quantitative analysis of synchronization
phenomena is still an open topic of research.
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