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SUMMARY
Control algorithms of many Degrees-of-Freedom (DOFs) systems based on Inverse Kinematics (IK)
or Inverse Dynamics (ID) approaches are two well-known topics of research in robotics. The large
number of DOFs allows the design of many concurrent tasks arranged in priorities, that can be solved
either at kinematic or dynamic level. This paper investigates the effects of modeling errors in oper-
ational space control algorithms with respect to uncertainties affecting knowledge of the dynamic
parameters. The effects on the null-space projections and the sources of steady-state errors are
investigated. Numerical simulations with on-purpose injected errors are used to validate the thoughts.

KEYWORDS: Task-priority control; Operational space control; Model uncertainties.

1. Introduction
The use of robotic structures with a large number of Degrees-of-Freedom (DOFs) is nowadays
common in applications such as humanoids or aerial and underwater robots. Among the various
approaches used to control all the DOFs, a popular one is to design several control variables and
to arrange them in priority, in a sense that will be clarified later. Within the task-priority approach
two frameworks are possible, the Inverse Kinematics (IK) or the Inverse Dynamics (ID). The former
commands the robot at position or velocity level, while the latter at torque level.

This paper discusses the modeling errors analysis of operational space control algorithms, belong-
ing to the ID category, with respect to an uncertain knowledge of the dynamic parameters of the
mathematical model.

Due to the use of the dynamically consistent pseudoinverse of the Jacobian matrix within the
control law, in fact, all the dynamic parameters, including the inertial ones, potentially affect the
steady state. In this paper, it will be shown that the steady-state error is influenced only by the errors
in the dry friction, the gravity terms compensation, that is, the first moment of inertia, and the possible
conflict among the tasks but not by the error in the estimation of the inertial parameters as long as
the mass matrix is positive definite.

The validity of the statement has been shown analytically and extensively tested via numerical
simulations by varying the number and kind of tasks while resorting to models characterized by vari-
ous modeling errors. In this paper, a 7DOF robot in nine case studies, with compatible and conflicting
tasks, is used as testbed.

The next section discusses the relevant literature, Section 3 provides the necessary mathematical
background, Section 4 discusses modeling error issues followed by numerical analysis and finally by
the Conclusions.

This paper is a revised version of ref. [2] taking into account the received comments, with a totally
revised Section 4 and a new numerical case study. In particular, the main claim of the present paper
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remains the same, but it is now better justified as the present paper clarifies how uncertainties affect-
ing the inertia matrix can affect steady-state errors on the primary task even in case of conflicting
secondary task only in presence of uncertainties affecting gravity-related terms. Nevertheless, when
dynamic errors are relevant, for example, in case of impedance control as primary task, uncertain-
ties on the inertia matrix do affect the desired dynamic behavior but the desired stiffness is always
correctly achieved and not influenced by the behavior of the secondary task, conflicting or not.

2. Literature Survey
In ref. [7], the operational space approach was first presented to the community. Starting from that
seminal input, during the years, a huge research activity has been conducted up to its application
to humanoids.18–20 In ref. [15], several task-priority control laws are presented within a unified
approach. The authors show that they all minimize a proper index. The paper also shows an experi-
mental comparison among various techniques in which the resolved rate appears to exhibit superior
performances. This has been interpreted as a possible effect of the uncertainty in the knowledge of
the dynamic parameters; in detail, it is noticed that this might be amplified by the inversion of the
inertia matrix.

In refs. [12, 13], an interesting theoretical and experimental comparison among various kinds of
task space control with redundancy resolution is presented. Resolution at velocity, acceleration and
torque level is considered for control problems where the primary task is always the end-effector pose
while the secondary is the optimization of a proper functional. In the numerical simulation, under
ideal conditions, all the controllers exhibited the same performance (“in numerical simulation, all
controllers achieved the same excellent performance,. . .”). The following experimental differences
are to be ascribed to the unmodelled dynamics, the uncertainty in the model knowledge, the sensor
noise and quantization. In particular, the authors notice that acceleration and torque based control
requires accurate knowledge of the inertia matrix in order to achieve task decoupling; even if an
accurate modeling and identification procedure were implemented, the secondary and primary tasks
were coupled. The results reported in the present paper allow to better refine the understanding of this,
showing how the uncertainties on the inertia matrix used as weight in the pseudoinverse of the tasks
Jacobian matrices do not couple tasks with a different priority. Moreover, the authors refer to several
cases of instability that, for the acceleration-based control laws, were ascribed to the difficulty of
finding “a tradeoff between filtering of numeric derivative and choosing higher gain parameters”.
However, the instability problems found by the authors could have been also related to the finite
sampling time (unfortunately not reported in the paper) of the digital control implementation and, for
the velocity-based controllers, to the use of actual joint states in the computation of joint references
q̇r in the velocity-based controllers. In fact, when actual joint states are used to compute task space
errors, then the dynamics of the inner velocity loops play a key role in the stability of the overall
system. Both issues, discrete-time implementation and nonideal dynamics of joint velocity loops, are
discussed in detail in refs. [3 and 4], where limits to the task space gain are explicitly found related
to both sampling time and bandwidth of inner motion control loops.

One of the few papers with an experimental implementation of multiple tasks at dynamic level
and their corresponding error representation is provided by ref. [14] where three tasks are arranged
in priority, namely the end-effector position, the orientation and the joint configuration. The experi-
ments show steady-state errors for both the first and second priority tasks, which have been explained
by the authors as caused by the presence of dry friction and uncertainty in the dynamic knowledge
due to the absence of any integral action in their controller. Multiple-task-priority is addressed also
in refs. [9, 17].

In ref. [14], the asymptotic stability for an arbitrary number of priority tasks for the particular
case of compliance control has been proven. Later, in ref. [6], a formal proof of asymptotic stability
for the regulation case of a passivity-based task-priority ID controller is provided making use of the
conditional stability theory. Stability of the self-motions has also been studied in refs. [16, 21] in the
context of whole-body compliant control of wheeled humanoid robots.

One crucial control aspect is the interaction control. Techniques based on ID may be relatively
easily adapted to implement impedance control. In the latter, the design focuses the objective in
assigning a desired second-order dynamic behavior with respect to the external force. Access to the
joint torques is needed to implement such an approach. In absence of that feature, that is, when
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the joints are position or velocity-controlled, one can implement an interaction control defined as
admittance or position-based impedance control. An interesting comparison between impedance and
admittance control schemes is made in ref. [24]. The strong dependency of the impedance control
from the model knowledge is stressed. On the other hand, the admittance control relies on the use
of a wrench sensor and, when the interaction is not detected, the controller does not behave with
the assigned interaction dynamics but with the low-level one, typically characterized by a larger
bandwidth and, in turn, by small compliance to external forces. In the 1-DOF case of impedance
control, it is recognized that the sensitivity from the model knowledge increases with a low desired
bandwidth. The latter case, that is, a soft interaction with the environment or the operator, is thus
critical in both the schemes for different reasons. It is worth noticing that, in ref. [24], the comparison
is made adopting a model-based controller also for the low-level loop which is not strictly needed.

3. Background

3.1. Joint-space dynamics
Equations of motion for serial-chain rigid-body dynamic systems can be written in matrix form
as ref. [22]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ . (1)

Denoting with n the number of joints, q ∈R
n is the joint position vector, the dot operator represents

the time derivative, thus, q̇ ∈R
n and q̈ ∈R

n are the vectors of joint velocities and accelerations,
respectively, τ ∈R

n is the joint torque vector, M(q) ∈R
n×n is the inertia matrix, C(q, q̇)q̇ ∈R

n is
the Coriolis and centripetal torque vector and g(q) ∈R

n is the gravity torque vector. By posing

n(q, q̇) = C(q, q̇)q̇ + g(q), (2)

Eq. (1) is often presented in the more compact form as

M(q)q̈ + n(q, q̇) = τ . (3)

3.2. Task-space dynamics
The control objective is often the position and orientation of the end effector; however, in advanced
robotics and with many DOFs available, several other tasks can be defined. It is then possible to
introduce a generic task as

σ x = σ (q), (4)

with σ x ∈R
mx the task function. It holds

σ̇ x = J x(q)q̇, (5)

σ̈ x = J x(q)q̈ + J̇ x(q, q̇)q̇ (6)

in which the matrix J x(q) ∈R
mx ×n is lower rectangular, that is, with more columns than rows.

Let us recall the equations of motion in the task space. It holds

τ = JT
x (q) f x, (7)

where f x ∈R
mx is the task generalized force vector. The joint accelerations can then be found as

q̈ = M−1(q)
[

JT
x (q) f x − n(q, q̇)

]
, (8)

that, substituted in (6), gives

σ̈ x = J x(q)M−1(q)JT
x (q) f x + (9)

−J x(q)M−1(q)n(q, q̇) + J̇ x(q, q̇)q̇.

By defining

Mx(q) = (
J x(q)M−1(q)JT

x (q)
)−1 ∈R

mx ×mx (10)

https://doi.org/10.1017/S0263574720001411 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001411


Effects of dynamic model errors 1645

and

cx(q, q̇) = Mx(q)
(

J x(q)M−1(q)C(q, q̇)q̇ − J̇ x(q, q̇)q̇
)

gx(q) = Mx(q)J x(q)M−1(q)g(q)

the task space dynamics is described by

Mx(q)σ̈ x + cx(q, q̇) + gx(q) = f x. (11)

Let us further define

Jx(q) = M−1(q)JT
x (q)Mx(q) (12)

= M−1(q)JT
x (q)

(
J x(q)M−1(q)JT

x (q)
)−1 ∈R

n×mx ,

that is, the weighted pseudoinverse where the weight is the inverse of the inertia matrix. This is
defined as the dynamically consistent pseudoinverse.7 It holds

J x(q)J x(q) = Imx . (13)

The relationship (7) is invertible in

f x = J
T
x (q)τ , (14)

where, being n > mx , the null space of J
T
x (q) needs to be taken into account and a more general joint

torque τ corresponding to the task space force f x is

τ = JT
x (q) f x + Nx(q)τ 0 (15)

in which τ 0 is a vector of arbitrary torques and the null-space projector is

Nx(q) = In − JT
x (q)J

T
x (q), (16)

that gives

J
T
x (q)Nx = J

T
x (q) − J

T
x (q) = Omx ×n. (17)

Notice that, due to a different definition of the null-space projector in Eq. (16), part of the literature
exhibits a transpose operator in the Eq. (15) and its derivatives. The result is obviously the same.

Remarkably, Eq. (17) holds for any positive-definite weight matrix used to compute J
T
x (q) in

Nx(q) and, in turn, for inertial parameters affected by uncertainties of any entity as long as the
weight matrix is still positive definite.

In the following, dependencies will be omitted to improve readability.

3.3. Single-task operational space control
In ref. [7], the approach known as “operational space control” is proposed. By assuming that the
subscript d means “desired”, the control objective is to track a desired task trajectory σ x,d(t). If the
symbol ·̃ denotes the error defined by the desired minus the actual value, by choosing

f x = Mx

(
σ̈ x,d + K v

˙̃σ x + K pσ̃ x

)
+ cx + gx (18)

in Eq. (7), with K v > O and K p > O design gains of proper dimensions, one obtains

Mxσ̈ x = Mx

(
σ̈ x,d + K v

˙̃σ x + K pσ̃ x

)
(19)

and thus a second-order error dynamics

¨̃σ x + K v
˙̃σ x + K pσ̃ x = 0. (20)
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The controller at torque level is ref. [7]

τ = JT
x Mx

(
σ̈ x,d + K v

˙̃σ x + K pσ̃ x

)
+ c′

x + g′
x, (21)

in which g′
x embeds gravity and the term c′

x embeds the velocity terms. A damping term in the joint
and task spaces are then necessary for the redundant case to achieve asymptotic stability.7

It is worth noticing that also the compensation of the Coriolis and centripetal and gravity terms,
that is, the vector n(q, q̇) in Eq. (3), may be also achieved more simply at torque level.12, 22

3.4. Task-priority operational space control
In case of two tasks denoted as a and b, the applied torque is refs. [18, 19]

τ = τ a + Naτ b, (22)

where both τ a and τ b are given by (21) properly modifying the subscripts and the null-space projector
is given by (16).

To better appreciate the control laws, it is useful to rewrite the task dynamics of the generic task x
by properly projecting it as

J
T
x

[
Mq̈ + n = τ

]
, (23)

which implies

Mxσ̈ x + cx + gx = J
T
x τ . (24)

In the a task, thus, the dynamics is described by

Maσ̈ a + ca + ga = J
T
a τ a (25)

while in the b task by

Mbσ̈ b + cb + gb = J
T
b

(
τ a + Naτ b

)
. (26)

Extensions to n tasks can be found in ref. [19].
The work15 proposes a formulation for redundant robots for several control laws. For two tasks

the expression sounds like

τ = τ b + τ a(τ b) (27)

in which τ b is the action of the lower priority task and the higher priority ones are achieved by
canceling the lower priority ones.

Other task-priority ID-based approaches have been proposed in, for example, refs. [9, 17].

3.5. Stability analysis
While the stability of the primary task is deeply discussed for all the techniques above, the same is
not true for the lower priority tasks, even for a simple two-task case. As noticed in, for example,
refs. [12, 13], until recently no analytic discussion existed. The stability of all the tasks for a generic
number of them and for four different velocity-based IK algorithms has been solved in refs. [1, 11],
but only at kinematic level. In ref. [10], it has been extended to the set-based case with the constraint
that the set-based tasks need to stay at higher priority levels.

In ref. [8], the lower priority task Jacobians are modified as, limiting to the second task for
consistency within this document,

Jb|a = Jb N
T
a

and defined as task-consistent secondary Jacobian (as remarked above, due to the definitions of the
variables, here the transpose of the null-space projector matrix is reversed with respect to the original
paper). The authors also define a proper task-consistent secondary matrix as

Mb|a(q) = (
Jb|a(q)M−1(q)JT

b|a(q)
)−1 ∈R

mb×mb .
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In order to understand what happens in the b task space, the projection similar to Eq. (23) is then
obtained by resorting to the matrix J

T
b|a. In ref. [18], there are some reasonable considerations on the

task functions and some textual descriptions of convergence “within the corresponding null space”.
The authors of ref. [15], even though they propose a nice unifying framework for control of

redundant robots, they clearly admit that “the stability of this framework as most related approaches
derivable from this framework cannot be shown conclusively but only in special cases”. They pro-
vide only necessary conditions for stability and prove that the hierarchical composition method of
multiple tasks does not generate conflicts among tasks at different priorities.

Only recently the first stability results for the task-priority ID approaches appeared in the litera-
ture for particular cases. In ref. [14], stability has been proven for compliance control. In the latter
approach, the limit is that it is not possible to assign the desired inertia but the system will keep its
natural one. A formal proof of asymptotic stability of a passivity-based task-priority ID controller
is provided in ref. [6] for the regulation case and in ref. [5] for the tracking case, making use of the
conditional stability theory. The analysis does not require that the tasks are compatible, that is, their
corresponding augmented Jacobian may be not-full-rank.

In ref. [17], multi-priority control is addressed at the acceleration level. The authors, moreover,
further show that the lower priority tasks do not affect the higher priority ones, regardless the weight
matrix used in the pseudoinverse computation, that is, also when using the dynamically consistent
one. This result extends their stability analysis to the inverse dynamics case and provides a clue on
the sensitivity considerations made.

4. Modeling Error Analysis
The ID task-priority algorithm implemented in this paper is inspired by the one in Eq. (22) with
control torques for tasks a and b as in Eq. (21), and here explicitly reported by compensating the
nonlinear dynamics directly in the joint space

τ = JT
a M̂a

(
σ̈ a,d + K a,v

˙̃σ a + K a,pσ̃ a − J̇aq̇
)

︸ ︷︷ ︸
τ a

+ N̂a JT
b M̂b

(
σ̈ b,d + K b,v

˙̃σ b + K b,pσ̃ b − J̇bq̇
)

︸ ︷︷ ︸
τ b

+n̂, (28)

where all the matrices depending on the dynamic parameters are considered uncertain, hence denoted
with the symbol ·̂, and the matrices depending on the sole kinematic parameters are considered
perfectly known. Notice that the latter assumption reflects the state of the art in modeling knowledge,
that is, kinematic parameters are known with accuracy order of magnitudes larger than dynamic ones.

In order to understand the dynamics in the higher priority task we re-project (28) according to Ĵ
T

a
yielding

Ĵ
T

a Mq̈ + Ĵ
T

a n = Ĵ
T

a JT
a M̂aσ̈ a,r + Ĵ

T

a N̂aτ b + Ĵ
T

a n̂,

where the definition of σ̈ a,r

σ̈ a,r = σ̈ a,d + K a,v
˙̃σ a + K a,pσ̃ a − J̇aq̇

helps in the equation reading.

Interestingly, the term Ĵ
T

a N̂aτ b disappears due to the specific projection selected. Moreover, given

Ĵ
T

a JT
a = I and exploiting the definition of the various terms yields

(
Ja M̂

−1
JT

a

)−1
Ja M̂

−1
Mq̈ = M̂aσ̈ a,r + Ĵ

T

a ñ,

being ñ = n̂ − n, that is

M̂a Ja M̂
−1

Mq̈ = M̂aσ̈ a,r + Ĵ
T

a ñ,
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which can be rewritten as

Jaq̈ − Jaq̈ + Ja M̂
−1

Mq̈ = σ̈ a,r + M̂
−1
a Ĵ

T

a ñ

and finally, in view of (6), the sought equation

¨̃σ a + K a,v
˙̃σ a + K a,pσ̃ a = Ja

(
M̂

−1
M − I

)
q̈ + Ja M̂

−1
ñ

︸ ︷︷ ︸
ϕ

. (29)

The disturbance term is state-dependent, that is, ϕ = ϕ(q, q̇, q̈) and vanishes for perfect
compensation.

The modeling errors, thus, do not affect the projections from lower to higher priority tasks. They
act with two configuration-dependent terms, one function also of the joint accelerations and the other
of the joint velocities.

With the further assumption that the system reaches a steady-state, that is, q̈ = 0, q̇ = 0, the addi-
tional comment that can be done is that a steady-state error in the task space a is caused by a wrong
gravity compensation since Eq. (29) becomes

σ̃ a = K−1
a,p Ja M̂

−1
g̃. (30)

The above conclusion, however, does not take into account another important dynamic effect, com-
monly ignored in the stability analysis of robot control, the dry friction. The latter is a phenomenon
affecting low/null velocities hard to model and, consequently, to compensate for. From the mathemat-
ical perspective, with certain confidence under the assumptions made, it can be considered as embed
in the error of gravity compensation, that is, a configuration-dependent term not vanishing at steady
state. The conclusion is thus that modeling errors do not distort the projections as long as the mass
still is positive definite while, however, they obviously affect the transient. It seems that the steady-
state experimental errors remarked, for example, in refs. [12–14] are thus to be attributed, beyond
the digitization issues discussed, to the gravity and friction compensation terms. Nevertheless, the
uncertainty of gravity torque is not the only source of steady-state task error, in fact, Eq. (30) clearly
shows how such error is affected by the estimated inertia matrix. In detail, given the uncertainty on
the gravity torque, the steady-state error can be different in case of different uncertainties affecting
the inertia matrix, as it will be shown in Section 5.

This aspect is even more relevant taking into account that the modeling errors affecting the inertia
matrix and the gravity-related terms are identified usually with a different accuracy for two reasons.
The first reason is due to the fact that the dynamic parameters affecting the mass matrix are the
link masses and inertia while the dynamic parameters affecting the gravity are the first moment of
inertia, that is, the center of gravity of the links multiplied by the masses. The two different class
of terms, being excited during the experiments by joint accelerations and positions respectively, are
differently affected by the corresponding quality of the data. The joint accelerations being noisier
with respect to the joint positions (in most of the cases accelerations are obtained from positions by
filtering and numerical differentiation) it results that the inertia-related dynamic parameters exhibit
an uncertainty that is larger than the gravity-related ones. In addition to that, the various identification
techniques output models with different properties. Surprisingly enough, most of the techniques do
not guarantee a positive-definite joint-space inertia matrix.23

In refs. [12, 13], the secondary task is an optimization achieved via a gradient operation of a
proper functional. This means that the secondary task control input is always non-null, except in
a local minimum, and thus it always projects a value on the null space of the higher priority task.
This case will be numerically simulated in the next section by defining a secondary task in conflict
with the primary one reaching, thus, a non-null steady-state error. The considerations above remain
confirmed.

5. Numerical Case Studies
In this section, the theoretical results shown in Section 4 are validated via numerical dynamic simu-
lations of the operational space control law in Eq. (28), which have been run by considering a KUKA
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Table I. Steady-state errors for different uncertainty amplitudes in M(q).

Uncertainty in g(q) (%) Uncertainty in M(q) (%) Steady-state task error norm (cm)

50 10 0.77
50 20 0.87
50 30 0.99
50 40 1.14
50 50 1.35

(  )

(  
 )

Fig. 1. Results of the first simulations. The steady-state task error norm grows together with the uncertainty on
the inertia-related terms when a fixed 50% uncertainty affects the gravity term.

LBR III. We have chosen to perform simulations because no experiments would have confirmed the
achieved results due to the absence of the ground truth with experimental data.

Before analyzing the case studies in Table II, we have carried out a specific simulation to show
the effects of uncertainties affecting both gravity and inertia-related terms on the steady-state error
as computed in Eq. (30).

Uncertainties on the gravity term have been modeled as a percentage error on the position of the
center of gravity of the links with respect to the nominal values, while uncertainties on the inertia-
related terms are a percentage error affecting link masses, the center of gravity positions as well as
inertia tensors. In particular, the uncertainty on the gravity term is fixed at 50%, while uncertainty on
the inertia-related terms varies from 10% to 50%, resulting in five simulations. The task taken into
account is

σ = pe(q) ∈R
3,

where pe(q) is the position of the end-effector with respect to the base frame.
The gains of the operational space control law, digitally implemented with a sampling time of

1 ms, are as follows:

K v = 10I3, K p = 10I3.

Figure 1 shows the norm of the position error for the five simulations. It is clear that uncertainties
on the inertial terms affect both the transient and the steady-state as expected, given the imperfect
compensation of the gravity term. In particular, it is possible to notice that the steady-state errors
grow together with the uncertainties on the inertial terms, as reported in Table I.

With reference to Table II, the group of numerical simulations in which the inertia matrix M(q) is
uncertain have been simulated by considering amplitude uncertainty factors of 40% of the nominal
value. Moreover, in some case studies, a perfect compensation of the nonlinear terms in Eq. (2)
has been assumed so as to leave only the effects of an uncertain inertia matrix. Dry friction is not
simulated.

https://doi.org/10.1017/S0263574720001411 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001411


1650 Effects of dynamic model errors

Table II. Table of the case studies investigated in the numerical simulations.

Case study Knowledge Knowledge
task a/task b of M(q) of g(q)

(1) Tracking/tracking, comp. Perfect Perfect
(2) Tracking/tracking, comp. Uncertain Perfect
(3) Tracking/tracking, comp. Uncertain Uncertain
(4) Tracking/tracking, confl. Perfect Perfect
(5) Tracking/tracking, confl. Uncertain Perfect
(6) Tracking/tracking, confl. Uncertain Uncertain
(7) Impedance/tracking Perfect Perfect
(8) Impedance/tracking Perfect Uncertain
(9) Impedance/tracking Uncertain Uncertain

The case studies from 1 to 3 concern compatible tasks, in detail,

(a) σ a = pe(q) ∈R
3,

(b) σ b = εe(q) ∈R
3,

where εe(q) and pe(q) are the vector part of the quaternion and the position vector expressing
end-effector orientation and position with respect to the base frame, respectively. The gains of the
operational space control law, are as follows:

K a,v = 100I3, K a,p = 500I3,

K b,v = 100I3, K b,p = 500I3.

The case studies from 4 to 6 concern conflicting tasks. In detail,

(a) σa = dw(q) ∈R,
(b) σ b = pe(q) ∈R

3,

where pe(q) is the end-effector position and dw(q) is the distance from a vertical virtual wall placed
at −0.5 m along the x-axis of the arm base frame. The reference position for the secondary task has
been chosen beyond the virtual wall while the reference distance for the primary task has been set at
10 cm in order to design a case study with conflicting tasks. The gains of the ID control law, are as
follows:

Ka,v = 10, Ka,p = 50,

K b,v = 20I3, K b,p = 100I3.

Figure 2 collects the relevant results of the first six case studies.
The three top plots report the task errors for cases 1–3. In the top-left plot, it can be noticed that

with a perfect compensation of the dynamics and compatible tasks both the errors nicely converge
to zero after the transient. In the second case study, the top-center plot shows that, despite the wrong
compensation of the inertial terms, when the nonlinear compensation n is correct both primary and
secondary tasks converge to zero. The top-right plot shows that the cause of the steady-state error
is due to the wrong compensation of n, in particular, the sole persistent term at steady-state, that
is, the gravity g. Similar plots have been reported in the bottom plots where the task errors of the
conflicting case are reported. The task b error is always different from zero at steady-state, as obvious
due to the filtering action of the null-space projection. The primary task, however, exhibits null
error both for perfect modeling compensation (bottom-left) and uncertainty in the inertia matrix
with perfect compensation of the terms n (bottom-center). The primary task, thus, converges despite

the uncertainty on the compensation of the inertial terms in N̂a supporting the considerations made
in Section 4. The bottom-right plot shows the sole case where there is a steady-state error, that is,
when the gravity compensation is wrong.
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Fig. 2. Case studies 1–6. Top-left: Compatible tasks, perfect compensation of inertial and nonlinear terms.
Top-center: Compatible tasks, imperfect knowledge of the inertia matrix. Top-right Compatible tasks, imper-
fect compensation of both inertial and nonlinear terms. Bottom-left: Conflicting tasks, perfect compensation
of inertial and nonlinear terms. Bottom-center Conflicting tasks, imperfect knowledge of the inertia matrix.
Bottom-right: Conflicting tasks, imperfect compensation of both inertial and nonlinear terms.

As noticed in ref. [24] and briefly discussed in Section 2, poor knowledge of the dynamic parame-
ters affects the impedance loop. In the following, the control law (28) has been modified to implement
an impedance scheme as primary task, that is,

τ = JT
a M̂aσ̈ a,r + N̂aτ b + n̂ − JT f , (31)

where σ̈ a,r is defined as

σ̈ a,r = σ̈ a,d + K−1
a,m K a,v

˙̃σ a + K−1
a,m K a,pσ̃ a − K−1

a,m f a − J̇aq̇ (32)

being f ∈R
6 the end-effector wrench, K a,m ∈R

ma×ma , K a,v ∈R
ma×ma , K a,p ∈R

ma×ma the mass,
damping and stiffness matrices of the desired impedance, f a the generalized force in the a task
space and τ b implements a generic secondary task. For the case at hand, the following tasks have
been implemented:

(a) σ a = pe(q) ∈R
3 ,

(b) σ b = q ∈R
7.

A point contact is assumed at the end effector such that the contact force f a is

f a = K env( pe(q) − p0), (33)

where p0 is one point representing the equilibrium position of the environment assumed purely
elastic with semi-positive definite stiffness matrix K env.

Please notice that this version of the controller considers the perfect compensation of the end-
effector contact wrench. Alternative versions without this assumption or with compensation of
contact wrenches along the robotic structure may be implemented as well. The control gains have
been selected as

K a,m = 2I3 K a,v = 45I3 K a,p = 60I3,

while the environment stiffness matrix is

K env = diag ([30 0 0]T) N/m. (34)

https://doi.org/10.1017/S0263574720001411 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720001411


1652 Effects of dynamic model errors

(  
 )

(  
 )

(  
   )

(  
   )

(  
   )

(  
 )

(  
 )

(  )

(  
 )

(  )

(  
 )

(  )

(  ) (  ) (  )

(  ) (  ) (  )

Fig. 3. Case studies 7–9. Left plots: perfect compensation of inertial and nonlinear terms. Center plots: imperfect
knowledge of the sole inertia matrix. Right plots: imperfect compensation of both inertial and nonlinear terms.

The end-effector is asked to track a linear trajectory along the x-axis with a displacement of
5 cm following a trapezoidal velocity profile causing an interaction with the environment, while
the secondary task is a desired position for all the seven joints intentionally in conflict with the
primary task. Figure 3 shows the output of the numerical simulation in terms of task errors and
force exchanged with the environment. The left plots, from top to bottom, represent the perfect
compensation case (case study 7), the center plots the imperfect knowledge of the inertia matrix with
perfect knowledge of n̂ (case study 8) and finally, the right plots the uncertain knowledge of the
whole dynamics (case study 9). It can be appreciated that uncertainty in the knowledge of the inertia
terms affects the transient, that is, the robot behavior in terms of the assigned impedance. On the other

hand, as seen above, the use of a wrong null-space projector N̂a does not couple the primary error
dynamics with the secondary one, chosen conflicting in this simulation, at least at steady state. In
fact, given the environment stiffness of Eq. (34), by comparing the steady-state forces reported in the
middle plots with the steady-state displacements of the end effector reported in the top plots, it can
be appreciated that the desired stiffness is achieved along the constrained direction of the operational
space, except in the case when the gravity is not perfectly compensated (plots on the right); this
happens despite the use of the wrong projector. On the other hand, the results in the middle plots
confirm that the use of an uncertain inertia matrix influences the transient, as expected.

6. Conclusions
This paper investigates the effect of model uncertainty in the implementation of operational space
task-priority control algorithms. Interestingly enough, the steady-state error noticed in the primary
task is not caused by the wrong compensation of the inertial parameters even in combination with a
secondary task error, but by the sole uncertain gravity terms, that is, a wrong knowledge of the first
moment of inertia. Wrong compensation of the inertial terms do affect the transient in all the tasks
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and, obviously, also when an impedance controller in one of the tasks. Future research will concern
a more thorough comparison of the impedance degradation in case of uncertainty, stability analysis
and comparison with IK-based task-priority approaches.
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