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In many swimming and flying animals, propulsion emerges from the interplay of
active muscle contraction, passive body elasticity and fluid–body interaction. Changes
in the active and passive body properties can influence performance and cost of
transport across a broad range of scales; they specifically affect the vortex generation
that is crucial for effective swimming at higher Reynolds numbers. Theoretical models
that account for both active contraction and passive elasticity are needed to understand
how animals tune both their active and passive properties to move efficiently through
fluids. This is particularly significant when one considers the phylogenetic constraints
on the jellyfish mechanospace, such as the presence of relatively weak muscles that
are only one cell layer thick. In this work, we develop an actively deforming model
of a jellyfish immersed in a viscous fluid and use numerical simulations to study
the role of active muscle contraction, passive body elasticity and fluid forces in the
medusan mechanospace. By varying the strength of contraction and the flexibility of
the bell margin, we quantify how these active and passive properties affect swimming
speed and cost of transport. We find that for fixed bell elasticity, swimming speed
increases with the strength of contraction. For fixed force of contractility, swimming
speed increases as margin elasticity decreases. Varying the strength of activation in
proportion to the elasticity of the bell margin yields similar swimming speeds, with
a cost of transport is substantially reduced for more flexible margins. A scaling study
reveals that performance declines as the Reynolds number decreases. Circulation
analysis of the starting and stopping vortex rings showed that their strengths were
dependent on the relative strength of activation with respect to the bell margin
flexibility. This work yields a computational framework for developing a quantitative
understanding of the roles of active and passive body properties in swimming.
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1. Introduction
With a fossil record dating to the Middle Cambrian (Cartwright et al. 2007),

jellyfish are one of the earliest examples of an active motile, multi-cellular organism
and provide a window into the origins of muscle driven swimming. Lacking an
agonist–antagonist muscle pairing, jellyfish propulsion emerges from interactions
between the active contraction of the swimming muscles, the passive elastic
re-expansion of the bell, and the forces acting on the organism from the surrounding
fluid (Demont & Gosline 1988b; Megill 2002; Megill, Gosline & Blake 2005; Hoover
& Miller 2015). Jellyfish begin their swimming cycle by contracting their coronally
oriented subumbrellar swimming muscles, which deform their bell and expel fluid
from the inner cavity of the bell. The mesoglea, an extracellular matrix composed
of fibres of a collagen-like protein, stores the potential elastic energy generated by
contraction and drives re-expansion of the bell when the swimming muscles relax.
Because the resting shape of the bell depends on the mesogleal matrix, jellyfish
propulsion has been viewed as a process of active deformation and elastic recoil.

Recently, the wake structure generated during jellyfish swimming was found to be
dependent upon the fineness ratio of the bell, which is the ratio of bell height to bell
diameter. Prolate jellyfish, which have higher fineness ratios, use jet propulsion to
generate thrust, whereas oblate jellyfish, with a lower fineness ratio, use a paddling
mechanism that exploits the vortex rings generated during the expansion of the bell
(Dabiri, Colin & Costello 2007). This finding resolved the question of how jellyfish
generate significant thrust at larger body sizes while maintaining only a monolayer of
muscles (Daniel 1983; McHenry & Jed 2003; McHenry 2007). Dabiri et al. (2007)
also found that significant thrust is generated among paddlers independent of size so
long as the fineness ratio is less than approximately 0.265. In the case of paddling,
during the contraction of the bell and subsequent expansion, the oppositely rotating
starting and stopping vortex rings travel away from each other, with the starting
vortex moving away from the bell and the stopping vortex moving into the bell
cavity; see figure 1. Secondary thrust is generated from the stopping vortex present
in the bell cavity at no additional metabolic cost. During the next pulse, the new
starting vortex advects away from the bell with the previously formed stopping vortex.
The interaction of these alternating vortex pairs augments the net transport of fluid
away from the jellyfish, providing an augmented push.

In addition to the fluid dynamics, the elastic properties of the bell are also
important to the swimming performance of jellyfish. Recent work by Lucas et al.
(2014) sampled a large number of flexible appendages and revealed bending laws for
enhanced thrust production that transcend fluid medium, animal size and phylogenetic
background. Using experimental observations of Aurelia spp. and mechanical models,
the flexibility of the jellyfish’s bell margin has also been studied in the context of
enhanced thrust generation (Colin et al. 2012; Gemmell, Costello & Colin 2014). In
this work, it was noted that the bell margin played a large role in secondary thrust
generation. Stopping vortices are initially formed on the exumbrellar surface of the
bell during the expansion phase and are subsequently deposited in the bell cavity.
If the bell margin is too rigid, the vortices are not deposited in the bell, and this
reduces passive energy recapture and leads to a higher cost of transport (Gemmell
et al. 2013).

Previous modelling work has also shown that jellyfish swim faster and more
efficiently when their bells are driven at their resonant frequency (Demont & Gosline
1988b; Megill 2002; Megill et al. 2005; Hoover & Miller 2015). In all of these studies,
a sinusoidal force was applied to the bell such that both the contraction and expansion
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Stopping vortex ring(a) (b)

Starting vortex ring

Stopping vortex ring

Starting vortex ring

FIGURE 1. (Colour online) (a) A snapshot of the out-of-plane vorticity of the starting and
stopping vortex rings generated by our computational model of jellyfish swimming. Note
the opposite rotation between the vortex ring pair, where red corresponds to clockwise
vorticity and blue to counterclockwise vorticity. The starting vortex ring is generated
during the contraction phase and travels away from the bell. The stopping vortex ring
is generated during the expansion phase, resulting in secondary thrust. (b) Starting
and stopping vortex rings measured experimentally in Aurelia spp. from Gemmell et al.
(2015b).

phases were actively driven. Hoover & Miller (2015) examined resonant driving in
the context of a two-dimensional prolate bell of uniform stiffness. Swimming speeds
were measured over a wide range of driving frequencies and stiffnesses, and peaks
were found in the forward swimming speed and radial displacement when the bell
was driven at the resonant frequency.

Although computational fluid dynamics has been used extensively to examine
jellyfish locomotion, most prior studies do not directly consider the elasticity of
the bell and instead prescribe its motion (Sahin, Mohseni & Colin 2009; Hamlet,
Santhanakrishnan & Miller 2011; Herschlag & Miller 2011; Alben, Miller & Peng
2013; Hoover & Miller 2015). The primary limitation of this approach is that it cannot
completely account for how material properties, mechanics of muscular contraction,
and bell morphology determine the resulting motion. For example, Alben et al.
(2013) examined jellyfish swimming efficiency over a parameter space of prescribed
kinematics. This study was not able to address questions of how the elastic design
of the bell might efficiently generate such kinematics in either forward swimming or
manoeuvring.

The above questions become important when one considers the phylogenetic
constraints that restrict the jellyfish mechanospace and morphospace. The jellyfish
bell consists of an outer epidermal layer and an inner gastrodermal layer, each of
which are only one cell layer thick. The mesoglea, which is a largely non-cellular
layer composed of a complex network of supporting fibres, is sandwiched between
the two layers. In most Scyphozoans, including moon jellyfish, the coronal swimming
muscles are the predominant muscles used in forward swimming. These are one cell
layer thick myoepithelial cells. The maximum possible force that can be generated to
deform the bell is limited by this constraint, and the bell margin must be relatively
flexible to allow for large deformations.
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To begin to address these fundamental questions focused on elastic and muscular
properties, we develop a fully coupled, three-dimensional model to study the forward
swimming of oblate jellyfish. Forward motion of the bell is solely determined by
the active and passive material properties and the resulting fluid–structure interaction.
The numerical method used to solve this problem is based on an immersed boundary
method using a large deformation continuum mechanics framework to describe the
bell. Motion is driven by an applied active tension that models the contraction of the
coronal swimming muscles. In particular, the motion of the bell is not prescribed nor
is any force applied to correct the bell trajectory. A material model is formulated that
accounts for spatial variations in both active muscular and passive elastic properties
of the bell.

We focus our study on a model of a typical Scyphozoan jellyfish with features
typical of Aurelia aurita. The frequency of free vibration of the bell was kept greater
than the driving frequency, ω, so as to ensure that the bell fully expanded before the
next contraction. Given the predominate role of the coronal muscles in swimming,
we neglect here the radial muscles which are thought to function mostly in turning
for these jellyfish (Gemmell et al. 2015b). We keep the stiffness of the top of the
bell fixed, consistent with the thick layer of mesoglea in this region. Given the
significant constraint that jellyfish muscles are only one cell layer thick, we explore
the relationship between the maximum tension generated by the swimming muscles
and the elasticity of the bell margin. Of particular interest is whether or not there
is a cost associated with using a relatively flexible bell margin that may be slow to
re-expand but is easy to contract.

Finally, this model allows us to consider fully three-dimensional jellyfish that
are neither purely two-dimensional nor axisymmetric. Previous approximations can
change the physics of swimming and do not allow one to consider non-axisymmetric
processes such as turning and manoeuvring. For example, Herschlag & Miller (2011)
found that although flow profiles and swimming velocities of two-dimensional prolate
bell geometries could be validated with experimental data, similar validation failed for
two-dimensional models of oblate bells. Park et al. (2014) accounted for the elastic
properties of an axisymmetric bell in the equations of motion imposed on their model
jellyfish bell, but were not able to explore turns, the effect of cross-flows and shear
or the interactions of jellyfish swimming side by side.

2. Materials and methods
2.1. Fluid–structure interaction

Fluid–structure interaction problems are common to biological systems and have
been examined with a variety of computational frameworks. The immersed boundary
(IB) method (Peskin 2002; Mittal & Iaccarino 2005) is an approach to fluid–structure
interaction introduced by Peskin to study blood flow in the heart (Peskin 1977). Since
then, the IB method has been applied to a variety of fluid–structure interaction systems
in the low to intermediate Reynolds number regime, including undulatory swimming
(Fauci & Peskin 1988; Bhalla et al. 2013), insect flight (Miller & Peskin 2004,
2005, 2009; Jones et al. 2015), lamprey swimming (Tytell et al. 2010), crustacean
swimming (Zhang et al. 2014) and jellyfish swimming (Hamlet et al. 2011; Herschlag
& Miller 2011; Hoover & Miller 2015).

The IB formulation of fluid–structure interaction uses an Eulerian description of
the momentum, viscosity and incompressibility of the coupled fluid–structure system,
and it uses a Lagrangian description of the structural deformations and stresses.
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Let x = (x, y, z) ∈ Ω denote physical Cartesian coordinates, with Ω denoting the
physical region occupied by the fluid–structure system. Let X = (X, Y, Z) ∈U denote
Lagrangian material coordinates that are attached to the structure, with U denoting
the Lagrangian coordinate domain. The physical position of material point X at time
t is χ(X, t) ∈ Ω , so that the physical region occupied by the structure at time t is
χ(U, t)⊂Ω .

The immersed boundary formulation of the equations of motion is

ρ

(
∂u(x, t)
∂t

+ u(x, t) · ∇u(x, t)
)
=−∇p(x, t)+µ∇2u(x, t)+ f (x, t) (2.1)

∇ · u(x, t)= 0 (2.2)

f (x, t)=
∫

U
F(X, t) δ(x− χ(X, t)) dX (2.3)∫

U
F(X, t) · V(X) dX =−

∫
U
P(X, t) : ∇X V(X) dX (2.4)

∂χ(X, t)
∂t

=
∫
Ω

u(x, t) δ(x− χ(X, t)) dx (2.5)

in which ρ is the fluid density, µ is the dynamic viscosity, u(x, t)= (ux, uy, uz) is the
Eulerian material velocity field and p(x, t) is the Eulerian pressure field. Here, f (x, t)
and F(X, t) are equivalent Eulerian and Lagrangian force densities. F is defined in
terms of the first Piola–Kirchhoff solid stress in (2.4) using a weak formulation, in
which V(X) is an arbitrary Lagrangian test function. The Dirac delta function δ(x)
appears as the kernel of the integral transforms, equations (2.3) and (2.5), that connect
the Eulerian and Lagrangian frames.

In this study, a hybrid finite difference/finite element version of the IB method is
used to approximate equations (2.1)–(2.5). This IB/FE method uses a finite difference
formulation for the Eulerian equations and a finite element (FE) formulation to
describe the solid body. More details on the IB/FE method can be found in Griffith
& Luo (2012).

2.2. Material model and bell geometry
The structural model accounts for both the passive elastic properties of the bell and
the active tension generated by the muscles. The structural stresses are calculated in
the elastic body using the first Piola–Kirchoff stress tensor

P= Pe + Pa, (2.6)

in which Pe describes the passive elasticity of the body and Pa describes the active
tension generated by the muscle.

The passive elastic properties of the mesoglea are described using a neo-Hookean
material model

Pe = ηtot(F− F−T) (2.7)

in which F = ∂χ/∂X is the deformation gradient and ηtot is the elastic modulus of
the material.

A time-dependent active stress models the muscular activation of the subumbrellar
swimming muscles. This stress is applied over the lower portion of the bell in a
circumferential direction. The active stress is computed via

Pa = JTF f 0 f T
0 (2.8)
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in which J= det(F) is the Jacobian of F, T is the magnitude of prescribed tension and
f 0 is the (fibre) direction vector of the prescribed tension with respect to the reference
configuration. Here f 0 is chosen to model the coronal orientation of the subumbrellar
swimming musculature in the undeformed configuration. An important feature of this
modelling approach is that the bell movement is a consequence of the interplay of the
active tension, passive elasticity and the surrounding fluid.

A three-dimensional model for the bell that accounts for variations in bell
morphology was developed for use in this study. Previous models (Daniel 1983;
McHenry & Jed 2003; Sahin et al. 2009; Herschlag & Miller 2011) have described
the bell geometry as a hemiellipsoid or by using functions fit to digitized bell
shapes. These approaches have been used in IB simulations that model the bell as
a collection of one-dimensional fibres (Herschlag & Miller 2011; Park et al. 2014;
Hoover & Miller 2015). In contrast to fibre-based IB models, the immersed body
model presented here has a finite volume and both exumbrellar and subumbrellar
surfaces, as well as a flexible marginal flap. The bell shape was parametrized using
a hemiellipsoid description for the exumbrellar (ex) and subumbrellar (sub) surfaces
via

(X − Xc)
2 + (Y − Yc)

2

a2
sub,ex

+ (Z − Zc)
2

b2
sub,ex

= 1 for Z > 0, (2.9)

in which Xc = (Xc, Yc, Zc) is the centre of the ellipsoid, asub,ex is the radial axis
of subumbrellar and exumbrellar surfaces of the bell, respectively, and bsub,ex is the
vertical axis. Drawing inspiration from McHenry & Jed (2003) the bell was augmented
with an additional ring of uniform thickness to model the bell margin of length d.

The elastic bell model accounts for differences in stiffness between the flexible bell
margin and other regions of the bell. In this model, the elastic modulus, ηtot, at a
material point X on the bell is dependent upon its height via

ηtot = ηm + ηvarγ (Z), (2.10)

γ (Z)=


(π/2)− tan−1

(√
X2 + Y2/Z

)
π/2

if Z > 0

0 if Z 6 0

(2.11)

in which ηm is the elastic modulus of the bell margin and ηvar is the difference of
the elastic modulus of the top of the bell and the elastic modulus of the bell margin.
The elastic modulus of the bell margin is uniform (see figure 2a).

Care is taken when choosing the region where active tension is applied and the
duration and magnitude of the applied tension such that the application of tension is
continuous in space and time. Our approach is to specify tension, T , as a function
that varies in time, t, and the vertical spatial component of the bell in its reference
configuration, Z, such that

T = Tmaxα(t)β(Z) (2.12)

in which Tmax is the maximum applied tension, α(t) is a temporal parametrization of
the activation and release of muscular tension and β(Z) is a spatial parametrization of
the distribution of the subumbrellar musculature. We remark that 06α(t), β(Z)6 1. A
value of 0 implies that there is no muscle present, or that the muscle is not activated.

The subumbrellar musculature does not extend throughout the bell cavity, so tension
is applied mainly in the margin of the bell. The region of activation is parameterized
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(a) (b)1.00

0.75

0.50

0.25

0

FIGURE 2. (Colour online) Spatial organization of (a) dimensionless and normalized
stiffness, γ , and (b) dimensionless and normalized active tension, β. Note that the effective
stiffness decreases as one moves from the top of the bell to the margin. Also note that
the active portion of the bell covers the lower third of the bell and is a smooth function
such that the tension is zero in the top section.

via

β(Z)=
1.0− 1

1+ exp(−θs(Z − d))
if Z < 0.28L

0 if Z > 0.28L
(2.13)

in which L is the characteristic length of the bell, here set as the exumbrellar diameter,
and θs characterizes the transition from an area of active tension to an area where no
tension is applied (see figure 2b).

Tension is applied to induce the contraction phase of a forward swimming cycle.
The function describing the activation and release of tension draws inspiration from
the recordings of muscular contraction in Aurelia spp. found in the literature (Horridge
1954) and is parametrized via

α(t)= 1
1+ exp(−θaτ)

− 1
1+ exp(−θr(τ − τdur))

(2.14)

τ = φt− bφtc + t0 (2.15)

in which φ is the frequency of the swimming cycle, t0 is an offset time for the initial
function, θa characterizes the speed of muscular activation, θr characterizes the release
of tension and τdur describes the duration of contraction.

2.3. Reynolds number
One component of this work is to quantify scaling effects on swimming speed and
cost of transport. A frequency-based definition of the Reynolds number is used,

Re= ρ(Lradφ)L
µ

(2.16)

in which φ is the driving frequency, Lrad is the characteristic radial displacement
during the contraction phase of our model, L is the diameter of the bell and µ is
the dynamic viscosity of the fluid. We remark that for our model, Lrad/L = 0.32.
Re is fixed at 250, which is within the range of Re found in jellyfish swimming,
particularly that of the moon jellyfish (Colin & Costello 2002; Feitl et al. 2009).
Note that we use a frequency-based Reynolds number such that Re is an input rather
than an output that depends upon forward swimming speed.
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2.4. Cost of transport and Strouhal number
The cost of transport (COT), which is a measure of the energy spent per unit distance
travelled, is quantified for each of the bell models. COT is often used as a measure of
the efficiency of swimming (Schmidt-Nielsen 1972; Videler 1993; Bale et al. 2014).
COT is defined by

COT = |Ē |/Dtop, (2.17)

in which Ē is the energy averaged over the propulsive cycle and Dtop is the vertical
displacement of the top of the bell for the entire propulsive cycle. Here E = |Drad|T ,
where Drad is the radial displacement of the margin and T is the active tension and is
normalized by the area of muscle activation. T and Drad are spatially averaged over
the margin of the bell, defined here as the region where Z 6 0.08 in the undeformed
configuration.

The non-dimensional Strouhal number is

St= φD
rad
max

U top
avg

(2.18)

in which Drad
max is the maximum radial displacement and U top

avg is the average forward
velocity during the eighth propulsive cycle. Swimming and flying animals typically
have peak propulsive efficiencies for 0.2< St< 0.4 (Taylor, Nudds & Thomas 2003).

2.5. Non-dimensionalization of model parameters
The bell’s material parameters are non-dimensionalized using a characteristic length,
L, and time, t̂. We choose L= 0.125 m, which is the diameter of the bell and within
the range of the diameters of an adult Aurelia. Here t̂= 1 s, which is approximately
the duration of the active contraction. The characteristic dimensional elastic modulus,
ηD = 150 kg m−1 s−2, was non-dimensionalized via

η= ηD

ρL2φ2
. (2.19)

The dimensional maximum magnitude of applied tension, TD
max=300 kg m s−2, is non-

dimensionalized via

Tmax = TD
max

ρL2(L2
radφ

2)
. (2.20)

The range of elastic moduli were chosen to be within the range of reported values of
jellyfish mesoglea and synthetic mesogleal materials used to develop jellyfish-inspired
underwater vehicles (Demont & Gosline 1988a; Megill et al. 2005; Gambini et al.
2012; Joshi et al. 2013).

2.6. Software implementation
The numerical model was implemented using IBAMR, which is a distributed-memory
parallel implementation of the IB method that includes Cartesian grid adaptive mesh
refinement (AMR) (IBAMR 2014). IBAMR relies on several open-source libraries,
including SAMRAI (Hornung, Wissink & Kohn 2006; SAMRAI 2007), PETSc (Balay
et al. 1997, 2009), hypre (Falgout & Yang 2002; HYPRE 2011) and libMesh (Kirk
et al. 2006). The computational domain was taken to be a cube of length 8L with
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Parameter Symbol Value

Elastic modulus (margin) ηm 375
Elastic modulus (variation) ηvar 1500
Maximum tension Tmax 48 000
Musculature variable (spatial) θs 350
Musculature variable (activation) θa 16
Musculature variable (release) θr 6
Tension duration variable τlen 0.5
Horizontal axis (exumbrellar) aex 0.5
Horizontal axis (subumbrellar) asub 0.474
Vertical axis (exumbrellar) bex 0.4
Vertical axis (subumbrellar) bsub 0.28
Margin length d 0.09
Reynolds number Re 250

TABLE 1. Table of non-dimensionalized, reference parameters for the bell model. Note that
length is normalized by the bell diameter and time is normalized by the duration of applied
tension. See § 2.5 for more details. The reference values were chosen to approximate
swimming in Aurelia, and each of the parameters were varied above and below the
reference states as specified in each section.

periodic boundary conditions and was discretized using an adaptively refined grid for
which the finest Cartesian grid spacing was h = 8L/512. The non-dimensional time
step size was taken to be 1t= 10−3. Note that the relative domain size with respect
to the bell diameter is 8L × 8L × 8L. The large domain size results in only minor
interaction between the model jellyfish and boundary conditions imposed on the outer
boundary of the computational domain.

3. Results
3.1. Swimming dynamics of the reference case

In this section, we consider forward swimming for the reference case jellyfish model.
The bell’s contraction is initiated by applying a time varying tension to the bell
margin, using the reference dimensionless parameters from table 1 unless otherwise
specified. Recall that when non-dimensionalizing all parameters, the characteristic
length was either set to the bell diameter or the bell height, and the characteristic time
was set to the duration of applied tension. The bell’s expansion phase is initiated by
removing the applied tension such that the stored elastic energy drives the expansion
of the bell. The complete propulsive cycle, including the contraction and expansion
phases, is driven at a frequency of φ = 0.5 s−1. The duration of the contraction was
1 s such that the active contraction was applied for half of the propulsive cycle.
The bell is driven for 8 propulsive cycles for a total of 16 s. The simulations were
conducted at Re= 250. Movies for the reference case simulation can be found in the
supplementary materials available at https://doi.org/10.1017/jfm.2017.3.

When parameters are set to the reference configuration, the bell achieves radial
displacements, R, and forward swimming velocities, Uz, that are similar to those
reported for Aurelia spp. and Polyorchis spp. (Demont & Gosline 1988b; Gemmell
et al. 2013), with the bell travelling 70 % of its height per propulsive cycle. Plotted
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in figure 3(a,b) are the non-dimensional forward swimming velocity,

Ûz = Uz

φLh
, (3.1)

and the spatially averaged non-dimensional radial displacement,

R̂= R
L
, (3.2)

with respect to non-dimensionalized time

t̂= 2tφ. (3.3)

Here Lh is the bell height, such that Lh/L = 0.49. The radial displacement is
averaged over the region of the bell where Z < 0.16L. We note that the initial radial
displacement corresponds with the fast forward swimming speeds generated during
contraction. Figure 3(c) shows the distance travelled, Xz, which is non-dimensionalized
via

X̂z = Xz

Lh
, (3.4)

as a function of time. Notice that during the passive expansion of the bell, the forward
velocity increases as the bell approaches a steady state swimming speed. The power
resulting from the applied active tension, acting on the bell margin, Pm = TUrad, is
non-dimensionalized via

P̂m = Pm

ρL5φ3
. (3.5)

Figure 3(d) shows that power increases rapidly as the active tension is applied to
the bell margin, followed by a rapid decline as tension is gradually released. Power
becomes negative as the bell continues to expands as tension is applied in the opposite
direction. In other words, the passive elastic properties of the bell dominate and drive
the motion during this period.

The vorticity (∇× u=ω= (ωx, ωy, ωz)) is non-dimensionalized with respect to the
driving frequency, φ,

ω̂= ω
φ
= (ωx/φ, ωy/φ, ωz/φ)= (ω̂x, ω̂y, ω̂z). (3.6)

Figure 4 shows the out-of-plane vorticity, ω̂y, during one full propulsive cycle.
Figure 4(a–d) show the vortex dynamics during the contraction of the bell when the
active tension is applied. During this contraction, the movement of the bell and the
conservation of angular momentum of the method generates a shear layer of vorticity
near the surface of the bell. When active tension is removed (figure 4e–i) the bell
expands and generates a stopping vortex ring that spins in the opposite direction of
the starting vortex. Subsequent changes to the vorticity shear layer near the boundary
are due to elastic vibrations of the bell. Our bell’s passive material model does not
account for the full visco-elastic nature of the bell and is underdamped. During the
passive expansion of the bell, low amplitude, high frequency elastic oscillations of
the bell are present as the returns the bell to its resting configuration. The multiple
shear layers during the expansion of the bell are due to interaction between the
conservation of angular momentum and the high frequency oscillations of the bell.
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FIGURE 3. (Colour online) Plotted for the reference case are (a) the forward swimming
speed of the bell (in bell heights per half-cycle), Ûz, during the seventh and eighth
propulsive cycles as a function of time (in half-propulsive cycles), t̂, (b) the spatially
averaged dimensionless radius of the margin (in bell diameters), R̂, during the seventh
and eighth propulsive cycles as a function of time, (c) the displacement of the bell (in
bell heights), X̂z, as a function of time and (d) the dimensionless power associated with
the applied active tension driving the contraction of the bell, P̂m. Note that negative power
implies that the muscles are acting in the direction opposite of motion.

Also of note is the presence of well-defined starting and stopping vortices resulting
from the movement of the bell margin during the contraction and passive expansion,
respectively. Figure 5 shows the out-of-plane vorticity at various times during the
simulation. Distinct starting vortices are seen in the wake for each of the propulsive
cycles, with an exception being the first and second starting vortices. In this case, the
bell is initially at rest and advects the first starting vortex ring at a speed that is slower
than the second starting vortex ring. The second vortex then ‘leap frogs’ through the
first vortex by passing through its centre, becoming one larger vortex ring that sustains
itself longer than the subsequent vortices in the wake of the bell. Though this effect
is observed throughout the simulations of this study, they have not been observed in
real jellyfish wakes. Oblate jellyfish typically swim continuously and do not start from
rest in a quiescent fluid.

Figures 6–8 show isocontours of the non-dimensional vertical velocity, radial
velocity and pressure, respectively, at different snapshots of the first propulsive cycle.
The vertical velocity is non-dimensionalized with respect to the bell height and
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(d ) (e) ( f )

(g) (h) (i)

2.5
0
–2.5
–5.0

FIGURE 4. (Colour online) Plots of the non-dimensional out-of-plane vorticity, ω̂y, during
the first propulsive cycle at times (a) 0, (b) 0.25, (c) 0.5, (d) 0.75, (e) 1.0, ( f ) 1.25, (g)
1.5, (h) 1.75 and (i) 2.0 (given in half-propulsive cycles). The active contraction phase (b–
e) reaches its peak applied tension near d, and is then followed by the expansion phase ( f –
h). During the contraction phase, a starting vortex is shed from the tip of bell margin and
is advected away from the bell. This is followed in turn by the formation of an oppositely
rotating stopping vortex that moves into the bell cavity.

driving frequency

ûz = uz

φLh
, (3.7)

such that it describes the bell heights travelled per half-propulsive cycle. The non-
dimensionalized radial component of vorticity is calculated by

ûrad = sign(y)
(

ux

φLh
cos(θ)+ uy

φLh
sin(θ)

)
, θ = tan−1(x/y), (3.8)

such that it describes the bell diameters travelled per half-propulsive cycle. The non-
dimensionalized vorticity magnitude is

ω̂mag = |ω|
φ
, (3.9)

and non-dimensionalized pressure is

p̂= p
ρφ2L2

. (3.10)
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FIGURE 5. (Colour online) Plots of the non-dimensional out-of-plane vorticity, ω̂y, over
the eight propulsive cycles at times (a) 0, (b) 1.0, (c) 2.0, (d) 3.0, (e) 4.0, ( f ) 5.0, (g) 6.0,
(h) 10.0 and (i) 16.0. In the vorticity plots of the bell after having completed a propulsive
cycle (c,e,g–i), one can note the progression of shedding the starting vortices into the
wake. The vorticity plots (b,d, f ) show the bell near the release of tension for the first
three propulsive cycles. The resulting starting vortices of previous cycles can be seen in
the wake of the final plot (i), although note that the first and second starting vortices
merge to form a large vortex structure (d–g).

Figure 6 shows the isocontours of the non-dimensional vertical velocity (ûz) during
the first propulsive cycle at times (a) 0, (b) 0.5, (c) 1.0, (d) 1.5 and (e) 2.0. The
contraction pushes fluid out of the bell, resulting in a negative (downward) vertical
velocity in the bell wake. The contraction also drives the bell forward, yielding a
positive vertical velocity within the bell. As the bell’s expansion phase begins, a
starting vortex ring forms in the wake, yielding a positive vertical velocity in the
immediate wake of the bell. This region’s positive vertical velocity is sustained after
the expansion by the interaction between the starting and stopping vortex rings. This
interaction has been noted experimentally (Gemmell et al. 2013) as passive energy
recapture, in which the bell continues to generate forward thrust at no additional
metabolic cost.

Figure 7 shows the isocontours of the non-dimensional radial velocity (ûrad) during
the first propulsive cycle at times (a) 0, (b) 0.5, (c) 1.0, (d) 1.5 and (e) 2.0. During
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FIGURE 6. (Colour online) Isocontour plots of the non-dimensional vertical velocity, ûz,
at times (a) 0, (b) 0.5, (c) 1.0, (d) 1.5 and (e) 2.0. Recall that velocity is given as
bell heights travelled per half-propulsive cycle and time is given as half-propulsive cycles.
Initially at rest (a), the contraction (b) pushes fluid out of the bell, resulting in a negative
(downward) vertical velocity in the bell wake. This contraction drives the bell forward,
yielding a positive (upward) vertical velocity at the top of the bell. As the bell contracts,
a starting vortex ring forms in the wake (c), yielding a positive vertical velocity in the
immediate wake of the bell (d). This region’s positive vertical velocity is sustained after
the expansion (e) by the interaction between the starting and stopping vortex rings. This
interaction allows the bell to recapture the energy spent during the contraction.

0.75

(a) (b) (c) (e)(d)

–0.75

0.50

–0.50

0.25

–0.25

0

FIGURE 7. (Colour online) Isocontour plots of the non-dimensional radial velocity, ûrad,
at times (a) 0, (b) 0.5, (c) 1.0, (d) 1.5 and (e) 2.0. Initially at rest (a), the contraction
of the bell (b) pushes fluid downward and away from the centre axis of the bell. The
motion of the bell margin pulls fluid towards the centre axis. The formation of the starting
vortex following the contraction (c) continues to pull fluid towards the centre axis in
the immediate vicinity of the subumbrellar cavity. This radial velocity profile is sustained
following the expansion (d–e) in part by the interaction of the starting and stopping vortex
rings.

contraction (figure 7b), fluid immediately in the wake is pushed away from the
central axis. At the end of contraction and once the starting vortex is fully developed
(figure 7c), fluid near the bell margin is directed towards the central axis. The radial
velocity profile (fluid pulled towards the central axis immediately below the bell
margin) is sustained following the expansion in part by the starting and stopping
vortex ring interaction.

Figure 8 shows the isocontours of the non-dimensional pressure (p̂) during the first
propulsive cycle. We find that the contraction phase (figure 8a) generates high pressure
regions within the wake and subumbrellar cavity as well as in front of the jellyfish
due to its forward motion. A low pressure region is generated outside of the bell along
its side. The pressure difference between the top and sides of the bell drive the flow
from in front of the jellyfish along the bell. As tension is released (figure 8b), the
high pressure regions becomes low pressure regions and vice versa (figure 8c). Once
the bell has fully expanded (figure 8e), positive pressure regions develop immediately
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FIGURE 8. (Colour online) Isocontour plots of the non-dimensional pressure, p̂, at times
(a) 0, (b) 0.5, (c) 1.0, (d) 1.5 and (e) 2.0. Initially at rest (a), the contraction (b) generates
a high pressure region within and downstream of the subumbrellar cavity as fluid is pushed
out of the bell. There is also a high pressure region on top of the bell resulting from
the forward movement. As tension is released (c), the high pressure regions become low
pressure regions and vice versa. These changes in relative pressure cause changes in the
motion of the fluid. As the bell expands and buckles (d), we note alternating regions of
higher and lower pressure. Once the bell has fully expanded (e), we note the presence
of positive pressure regions in the immediate wake of the bell. The low pressure region
associated with the starting vortex ring is also observed in the wake of the bell.

downstream of the bell margin, which suggests that fluid is pulled towards the bell
cavity due interaction between the starting and stopping vortex rings. This interaction
in turn generates the secondary thrust described as passive energy recapture. Negative
pressure regions are found at the sides of the bell from a combination of the forward
movement of the bell and the stopping and starting vortex ring interaction. The low
pressure region associated with the starting vortex ring is also observed in the wake
of the bell.

Figure 9 shows the isocontours of the non-dimensionalized vertical (a) and radial
(b) components of velocity, the non-dimensional pressure (c), and contours of the
non-dimensional vorticity magnitude (d) at the end of the eighth propulsive cycle.
A comparison of these plots with figures 6–8 reveals how the fluid environment of
the bell evolves as the bell reaches its steady-state swimming speed. In particular,
there are stronger positive vertical and radial velocities at the top of the bell due
to the increased swimming speed. The contour plots also reveal how the fluid
motion is affected by the starting and stopping vortices formed during the previous
propulsive cycles of the bell. Figure 9(a) shows that the interaction of the starting
and stopping vortices continues yield a continuous column of vertical flow away
from the bell. Regions of positive vertical flow are found between the most recent
pairs of starting and stopping vortices and in the region near the starting vortex
formed during the seventh propulsive cycle. As seen in figure 6(e), this positive
vertical flow emerges from the interaction between the starting and stopping vortex
rings. Examining the radial component of the material velocity in figure 9(b), the
complementary directionality of the starting and stopping vortex ring pair is such that
the interaction between the two rings brings fluid towards the centre vertical axis in
the immediate wake of the bell. The strongest radial velocity is found at the point
of interaction between the starting and stopping vortex rings formed during the most
recent propulsive cycle. Comparing this with the vorticity plots of figure 9(d), it is
clear that the region associated with a strong radial velocity is not solely due the
nearest starting vortex ring, which is in a more radially compact region in the wake
of the bell. Examining the pressure contours of figure 9(c), the pattern of low and
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FIGURE 9. (Colour online) Isocontour plots of (a) the non-dimensional vertical velocity
(ûz), (b) the non-dimensional radial velocity (ûrad), (c) the non-dimensional pressure (p̂)
and (d) the non-dimensional vorticity magnitude (ω̂mag) at the end of the eighth propulsive
cycle.

high pressure regions is similar to those generated at the end of the first propulsive
cycle (figure 8e). There are larger regions of strong positive pressure in front and in
the wake of the bell.

Figure 10 shows the velocity vector field and a colour map of the vertical
component of the dimensionless velocity (ûz) in and around the bell cavity during the
eighth propulsive cycle. At the start of the eighth cycle (figure 10a), there is a strong
positive (upward) vertical flow within and immediately below the bell. Negative
(downward) vertical velocity is seen within the stopping vortex ring, as found in
figure 5. Though the bell is fully expanded at this point, the rotation of the stopping
vortex ring generates a positive vertical velocity across the immediate wake. As the
bell contracts (figure 10b,c), a strong downward jet is generated as the fluid is pushed
out of the subumbrellar cavity. Following contraction (figure 10d), negative vertical
velocity is found within the starting vortex ring which then joins the wake formed
by the previous cycles’ starting vortex rings. After the expansion phase of the bell
(figure 10e), the interaction between the starting and stopping vortex rings directs the
motion of the surrounding fluid towards the bell cavity, resulting in strong positive
vertical flow.

The Cartesian grid data for pressure (p), the vertical velocity (uz) and the transverse
velocity (ux) along five different horizontal slices from within the bell cavity to the
wake at the end of the eighth propulsive cycle were compared. In figure 11 we
plotted the non-dimensional pressure (p̂), non-dimensional vertical velocity (ûz) and
non-dimensional transverse velocity,

ûx = ux

φLh
, (3.11)

with respect to the horizontal axis

x̂= x
L
. (3.12)
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FIGURE 10. (Colour online) Plots of the non-dimensional vertical velocity, ûz, in the X–Z-
plane during the final propulsive cycle of the bell at times (a) 14, (b) 14.5, (c) 15, (d) 15.5
and (e) 16. The lengths of the vectors are proportional to the magnitude of the velocity.
Significant vertical flows are generated during both the contraction (b,c) and expansion
of the bell (d,e). During the contraction there is a strong downward (negative) jet in the
wake and a strong upward (positive) flow within the bell as the jellyfish swims forward.
During the expansion phase, the resulting flow field from the stopping vortex in the bell
cavity continues to generate strong flow, augmenting the positive velocities in the bell.

We found the presence of elevated positive pressure in the centre of the bell cavity
in contrast with the low pressure points at the sides. Comparing these readings
with figures 5–10, we note the location of the pressure minimums are found within
the vortex rings. Comparing the vertical velocity readings at the different vertical
coordinates, we found a strong positive flows in the centre of the subumbrellar cavity
and downward flow along the subumbrellar surface. The direction of flow along the
radial axis flips in the wake. Strong negative (downward) flow is observed along
the central axis downstream of the jellyfish. Transverse velocity readings showed
a minimum near the centre axis, with the sides alternating between positive and
negative readings.

Snapshots of the spatial activation and release patterns of the bell can be seen for
the reference configuration in figure 12. The bell contracts following the activation of
tension along the bell margin (figure 12a–e). The bell then expands as the applied
tension is removed (figure 12f –i). As the bell expands, its margin buckles. This effect
is dependent on the material properties of the bell, ηm and ηvar, which are examined
subsequently. Buckling is not observed during the contraction of the bell, where the
stress of the active tension dominates the passive elastic stresses of the deformed body.
If the mesoglea were a homogenous incompressible material, then compression due
to axial strains on the material would lead to an expansion in the transverse axial
directions. The contributions of the bulk modulus, which are absent in our model, in
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FIGURE 11. (Colour online) Plots corresponding to (a) the horizontal line out recordings
of the Cartesian data (fluid velocity and pressure) at different vertical heights in the
bell cavity and its wake at the end of the eighth propulsive cycle. Plotted are (b)
the non-dimensional pressure (p̂), (c) non-dimensional vertical velocity (ûz) and (d)
non-dimensional transverse velocity (ûx) with respect to the distance from the vertical axis.
Recall that dimensionless velocities are given as bell heights travelled per half-propulsive
cycle.

turn could lead to buckling during the contraction phase. It is important to note that
the mesoglea is a heterogeneous material due to the presence of radial fibres (Megill
et al. 2005) and additional work is needed to characterize the bulk modulus of this
biological material (Wainwright 1982) to fully examine mathematically whether or not
the bell deforms in this way.

3.2. Varying the active and passive material properties of the bell
In the following set of simulations, the relationship between the passive and active
material properties of the bell model are explored by varying the non-dimensional
margin rigidity, ηm, and the non-dimensional maximum applied tension, Tmax (see
(2.11), (2.19) and (2.20)). In the first set of simulations, the passive elastic properties
are held fixed and the active properties (e.g. the applied tension) are varied. In
the second set of simulations, we hold the active properties fixed and vary the
passive elastic properties of the margin. In the final set of simulations, both active
and passive properties are varied so that the margin rigidity and maximum applied
tension change in proportion. We then compare the cost of transport and St−1 across
this mechanospace. Movies for the following set of simulations can be found in the
supplementary materials.
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0.25
0

FIGURE 12. (Colour online) Snapshots of the bell during the propulsive cycle of the bell
at times (a) 0, (b) 0.25, (c) 0.5, (d) 0.75, (e) 1.0, ( f ) 1.25, (g) 1.5, (h) 1.75 and (i) 2.0.
Note that time is given in half-propulsive cycles. Bell colour indicates the instantaneous
strength of contraction. During the contraction phase (b–e), active tension is applied to
the margin of the bell. The bell is then allowed to expand ( f –i) passively to its resting
state. Note the buckling of the margin ( f ) when the tension is released.

3.2.1. Varying applied tension
In this set of simulations, the bell’s passive elastic properties are held fixed at their

reference values while the maximum applied tension is varied as Tmax=16 000, 32 000,
48 000, 64 000, 80 000. The goal is to quantify how variations in the tension applied
result in changes in the amount of bell contraction and the resulting swimming
speeds. As the maximum applied tension is increased, the distance travelled by
the bell, X̂z, (figure 13a) and the maximum radial displacement, R̂, (figure 13b)
increase. Figure 13(c) shows the forward swimming speeds as functions of time. We
remark that the oscillations in forward swimming speed that occur during the passive
expansion of the bell maintain a similar profile. The forward swimming velocity,
Uz, which is recorded at the top of the bell, reflects these oscillations following the
rapid rise and decline induced by the activation and release of tension, respectively.
High frequency oscillations are seen for larger values of applied tension from the
larger deformations of the top of the bell. As Tmax increases, so does the steady-state
swimming speed averaged over a propulsive cycle, as seen in figure 13(d). As
Tmax increases, the peak power observed during the contraction phase also increases
(figure 13e).

Figure 14 shows the out-of-plane vorticity, ω̂y, at the end of the simulation for the
different tension magnitudes. For Tmax > 48 000, we note the presence of well-defined
starting vortex rings present in the wake, along with a strong stopping vortex present
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FIGURE 13. (Colour online) A comparison of bell displacement and swimming
performance for varying magnitudes of dimensionless applied tension. Plotted are (a) the
displacement of the bell (in bell heights), X̂z, as a function of time (in half-propulsive
cycles), t̂, (b) the spatially averaged radius of the margin (in bell diameters), R̂, during
the seventh and eighth propulsive cycles as a function of time, (c) the forward swimming
speed of the bell (in bell heights travelled per half-propulsive cycle), Ûz, during the
seventh and eighth propulsive cycles as a function of time, (d) the temporally averaged
speed (in bell heights travelled per half-propulsive cycle) as a function of the cycle number
and (e) the non-dimensional power, P̂m, associated with the applied active tension driving
the contraction of the bell. As tension was increased, the forward swimming speed and
radial displacements also increased. Note that the oscillations in forward swimming speed
during the expansion phase were similar for varying levels of tension even if the resulting
swim speeds are different.

in the bell cavity. In the case of Tmax = 16 000, we find a less well-defined vortex
wake, which corresponds to negligible forward swimming speeds.

Comparing the isocontours of the non-dimensional vertical velocity, ûz, in figure 15,
we find that increasing the magnitude of applied active tension increases the positive
vertical velocity present in the immediate wake of the bell. Increasing the applied
active tension yields a larger volume of negative radial velocity in the wake of the
bell, as seen in figure 16.

Figure 17 shows contour plots of the non-dimensional vorticity magnitude, ω̂mag,
after one propulsive cycle for each of the applied tensions. As the maximum applied
tension increases, the distance between the starting vortex ring and the bell increases.
For Tmax = 16 000, we note the absence of a starting vortex, whereas the plot of
Tmax = 80 000 shows a starting vortex present near the inner cavity of the bell.

The cost of transport and St−1 for the different tension magnitudes are reported
in figure 18(a,b), respectively. The cost of transport decreases as the maximum
applied tension increases before plateauing at Tmax= 48 000 and increasing slightly at
Tmax = 80 000. This suggests that increased drag from faster steady swimming speeds
play a role in increasing the cost of transport, since drag is proportional to velocity
squared. Examining St−1, we found that increasing Tmax leads to higher St−1. Note
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FIGURE 14. (Colour online) Plots of the out-of-plane vorticity, ω̂y, at the end of the eighth
propulsive cycle with Tmax equal to (a) 16 000, (b) 32 000, (c) 48 000, (d) 64 000 and (e)
80 000. As tension is increased, the starting vortex rings become more defined and are
advected farther from the bell (d,e). In the low tension case (a), no well-defined vortex
rings are present in the wake of the bell.

0.50
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0.25
0
–0.25
–0.50
–0.75

(a) (b) (c) (d ) (e)

FIGURE 15. (Colour online) Isocontour plots of the non-dimensional vertical velocity,
ûz, at the end of the eighth propulsive cycle with Tmax equal to (a) 16 000, (b) 32 000,
(c) 48 000, (d) 64 000 and (e) 80 000. As tension is increased, the volume of the region
with positive vertical velocity increases in the wake of the bell. At Tmax = 16 000 a small
column of negative vertical velocity is present but there is no significant positive vertical
velocity.

that for Tmax > 48 000, the swimming bell is within the peak propulsive efficiency
range described by Taylor et al. (2003).

3.2.2. Varying margin rigidity
A complementary study to § 3.2.1 is performed by holding the maximum applied

tension fixed at Tmax = 48 000, and varying the margin rigidity, ηm = 125, 250,
375, 500, 625. The stiffness of the top of the bell, ηtot, is held fixed by adjusting
ηvar to account for variations in ηm. As ηm decreases, the distance travelled increases,
figure 19(a), as does the time it takes the bell to expand, figure 19(b). Higher forward
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FIGURE 16. (Colour online) Isocontour plots of the non-dimensional radial component
of velocity, ûrad, at the end of the eighth propulsive cycle with Tmax equal to (a) 16 000,
(b) 32 000, (c) 48 000, (d) 64 000 and (e) 80 000. As tension is increased, the isocontour
volume of the negative radial velocity increases in the immediate wake of the bell.
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FIGURE 17. (Colour online) Isocontour plots of non-dimensional vorticity magnitude,
ω̂mag, at the end of the first propulsive cycle with Tmax equal to (a) 16 000, (b) 32 000,
(c) 48 000, (d) 64 000 and (e) 80 000. Note that for Tmax= 80 000, the starting vortex ring
is advected farther from the bell than for Tmax = 32 000, 48 000 and 64 000. Note that
Tmax = 16 000 lacks a defined starting vortex ring.

swimming speeds and higher average swimming speeds are noted in figure 19(c,d)
for the cases of the more flexible bell margins. Figure 19(e) shows that the maximum
power observed during the propulsive cycle decreases as ηm increases, from the
increased resistance from the passive elastic properties of the bell.

Figure 20 show the out-of-plane vorticity at the end of the simulation for different
margin elasticities. As the elastic modulus of the margin decreases, more defined
starting vortex rings appear in the wake of the bell, along with more defined
complementary stopping vortex rings in the bell cavity. This is due to the fact that
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FIGURE 18. (Colour online) (a) The COT, normalized by the cost of transport for the
reference case (COTref ), and (b) the inverse Strouhal number, St−1, as a function of
the magnitude of applied tension. Note that the cost of transport initially decreases as
the magnitude of applied tension increases. For Tmax > 48 000, we note that the cost
of transport begins to increase slightly, suggesting an increased role of drag as the
bell undergoes larger deformations. St−1 increases as Tmax increases. Note that when
Tmax > 48 000, the bell is in the peak propulsive efficiency range, 0.2< St< 0.4.

the bell is deforming more at lower stiffnesses. For the stiffest case, ηm = 625, the
bell motion does not produce strong stopping vortex rings in the wake, corresponding
with the slowest forward swimming speed.

Comparing the isocontours of the non-dimensional vertical velocity, ûz, in figure 21,
we find that increasing margin flexibility also increases the positive vertical velocity
present in the immediate wake of the bell. Increasing margin flexibility yields a larger
volume of negative radial velocity in the wake of the bell, as seen in figure 22.

Examining the vorticity magnitude after the first propulsive cycle (figure 23), we
note that as the elastic modulus of the margin decreases, the distance of the starting
vortex ring from the bell increases as the jellyfish swims faster. A weak starting vortex
does occur at lower tensions, but it is below the threshold for drawing the vorticity
contours. In general, the swimming speed increases with the strength of the starting
vortex.

The cost of transport and St−1 for the different margin elastic moduli are examined
in figure 24(a,b), respectively. As the margin elastic modulus is increased, the cost
of transport increases as well. A dramatic increase is observed at ηm = 625. St−1

decreases as the margin rigidity increases. At lower margin rigidities, ηm 6 375, the
bell operates in the optimal St range.

3.2.3. Varying the effective margin stiffness
In §§ 3.2.1 and 3.2.2, we varied the maximum applied tension and the margin

elasticity, respectively, to explore their role in swimming performance. In this section,
the maximum applied tension is varied in proportion to the margin elastic modulus,
ηm ∝ Tmax. Using the ratio of the parameters of Tmax and ηm from our reference case,
ηm is varied and Tmax is in turn adjusted to maintain the same proportionality. The
vertical displacement of the bell (figure 25a) and the average forward swimming
speeds (figure 25d) are examined, and we find that for ηm > 250, the bells move
at comparable forward swimming speeds. For ηm = 125, the bell is significantly
slower than the other bells. Note that whereas the average speeds travelled during the
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FIGURE 19. (Colour online) A comparison of bell displacement and different metrics
of swimming performance for varying elastic moduli of the bell margin with a fixed
magnitude of applied tension. Plotted are (a) the displacement of the bell (in bell heights),
X̂z, as a function of time (in half-propulsive cycles), t̂, (b) the spatially averaged radius
of the margin (in bell diameters), R̂, during the seventh and eighth propulsive cycles as a
function of time, (c) the forward swimming speed of the bell (as bell heights travelled per
half-propulsive cycle), Ûz, during the seventh and eighth propulsive cycles as a function of
time, (d) the temporally averaged speed (as bell height travelled per half-propulsive cycle)
as a function of the cycle number and (e) the non-dimensional power, P̂m, associated with
the applied active tension driving the contraction of the bell. As the stiffness of the bell
margin, ηm, decreases, the forward swimming speed increases and the maximum radial
displacement increases.
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FIGURE 20. (Colour online) Plots of the non-dimensional out-of-plane vorticity, ω̂y, after
the eighth propulsive cycle with ηm equal to (a) 125, (b) 250, (c) 375, (d) 500 and
(e) 625. As margin flexibility is increased, the starting vortex rings shed during the
contraction become more defined and are advected farther downstream. For ηm = 625, no
clear stopping vortex ring is present in the bell cavity.
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FIGURE 21. (Colour online) Isocontour plots of the non-dimensional vertical velocity, ûz,
at the end of the eighth propulsive cycle with ηm equal to (a) 125, (b) 250, (c) 375,
(d) 500 and (e) 625. As margin flexibility increases, the volume of fluid moving with
substantial positive vertical velocity increases in the immediate wake of the bell. The
strength and volume of fluid moving in the wake with negative vertical velocity also
increases.
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FIGURE 22. (Colour online) Isocontour plots of the non-dimensional radial velocity, ûrad,
at the end of the eighth propulsive cycle with ηm equal to (a) 125, (b) 250, (c) 375,
(d) 500 and (e) 625. As margin flexibility increases, the volume of fluid moving with
significant negative radial velocity increases in the immediate wake of the bell.

propulsive cycle are similar for ηm > 250, the forward swimming profiles (figure 25c)
following contraction and expansion of the bell vary significantly. Examining the
radial displacement of the bell in figure 25(b), one notes the low radial displacement
for ηm= 125 and the more gradual passive expansion following the release of tension
relative to the other cases. This result suggests that the force required to push the fluid
out of the bell outweighs the force required to deform the elastic bell. Figure 25(e)
shows that as ηm increases, the magnitude of the maximum and minimum power
during the propulsive cycle increases substantially.

Figure 26 shows the deformation of the bell and the activation pattern of the
applied tension during the expansion phase at t= 1.25 for the different values of ηm.
Snapshots of the tip of the bell margin during the expansion cycle for different ηm
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FIGURE 23. (Colour online) Isocontour plots of non-dimensional vorticity magnitude,
ω̂mag, at the end of the first propulsive cycle with ηm equal to (a) 125, (b) 250, (c) 375,
(d) 500 and (e) 625. Note that for ηm = 125, the starting vortex ring is advected farther
downstream after one propulsive cycle than for ηm = 250, 375, 500, 625.
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FIGURE 24. (Colour online) (a) The COT normalized by the cost of transport of the
reference configuration (COTref ), and (b) the inverse Strouhal number, St−1, as a function
of elastic moduli of the bell margin with a fixed magnitude of applied tension. Note
that the cost of transport dramatically increases as ηm increases. As ηm increases, St−1

decreases. The bell is pumping in the optimal St range when ηm 6 375.

are shown in figure 27. A movie comparing the movement of the bell margin for the
total length of the simulation has been provided in the supplementary materials. The
buckling patterns of the bell margin observed during the expansion of the bell result
from the interaction between the elastic restorative force of the bell, any remaining
active tension, and the force applied by the surrounding fluid. As ηm decreases, we
note the presence of high frequency buckling modes at the bell margin. We also note
that maximum buckling deformations occur later in the expansion phase. Finally, the
amplitude of the buckling pattern increases as ηm increases.

Examining the cost of transport for the different choices of ηvar and Tmax
(figure 28a), we note that as both the bell margin elastic modulus and maximum
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FIGURE 25. (Colour online) A comparison of bell displacement and swimming
performance when the magnitude of applied tension is held proportional to the
non-dimensionalized elastic modulus. Plotted are (a) the displacement of the bell (in
bell heights travelled), X̂z, as a function of time (in half-propulsive cycles), t̂, (b) the
spatially averaged radius of the margin (in bell diameters), R̂, during the seventh and
eighth propulsive cycles as a function of time, (c) the forward swimming speed of
the bell (as bell height travelled per half-propulsive cycle), Ûz, during the seventh and
eighth propulsive cycles as a function of time, (d) the temporally averaged speed (as
bell height travelled per half-propulsive cycle) as a function of the cycle number and
(e) the non-dimensional power, P̂m, associated with the applied active tension driving
the contraction of the bell. As margin stiffness was increased, the ratio between the
magnitude applied tension and the elastic modulus was maintained. For ηm = 250, 375,
500, 625, the forward swimming speeds are similar to one another, even though there
were some differences in radial displacement. The exception was ηm = 125, where the
radial displacement and forward swimming speed were much less than the other cases.

applied tension increase, the cost of transport increases as well. This follows from
the idea that more energy is required to deform the bell as ηm increases, even though
the resulting speeds remain relatively similar for values of ηm > 125. Examining
St−1 for the different parameters in figure 28(b), we find that ηm = 250 375 have the
peak performance. Since there are many metrics of efficiency and performance that
have been used to describe animal locomotion, our use of two of the more common
choices shows how the ‘best’ design may vary depending upon the metric used.
While ηm = 125 may have the lowest cost of transport, it is not swimming within
the St−1 range characterized as yielding optimal propulsive efficiency. On the other
hand, ηm= 250 375 have a relatively low cost of transport and are in the optimal St−1

range.

3.3. Varying the Reynolds number
The swimming performance of the model is also dependent on the Reynolds number
regime in which it swims. In this set of simulations, we examine the swimming
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(a) (b) (c)

(d ) (e)
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FIGURE 26. (Colour online) The bell during the expansion phase (time = 1.25) for ηm
equal to (a) 125, (b) 250, (c) 375, (d) 500 and (e) 625. Tmax was varied in proportion to
the elastic modulus. The spatial activation of tension is mapped onto the bell. Note that
buckling modes present as ηm is varied.

performance at Re= 0.5, 2.5, 5, 25, 50, 250, 500, 2500. Reynolds number is adjusted
by only modifying the dynamic viscosity, µ, of the fluid. Note that in the previous
studies, the model bell swims at Re = 250. The material parameters of the bell are
set to the reference configuration. We find that as Re decreases, the distance travelled
by the bell decreases dramatically (figure 29a) and the cases where Re 6 5 do not
generate any significant net forward movement. We also find that decreasing Re results
in a significant reduction in the radial displacement of the bell margin, figure 29(b).
Model bells swimming at higher Re exhibit nearly identical radial displacements,
while the forward swimming speed (figure 29c) increases as Re increases. Examining
the average speed per propulsive cycle (figure 29d) we find that substantial average
swimming speeds are only generated for Re > 25. Figure 29(e) shows that the
maximum power decreases as Re decreases.

The strength and advection of the vortices generated during the propulsive cycle
are also affected by Re. Examining the out-of-plane vorticity for Re= 25 (figure 30),
we find that the wake of the bell lacks the presence of well-defined starting vortex
rings. Though significant vorticity is generated during the contraction of the bell, the
increased amount of fluid damping leads to rapid dissipation of the starting vortices.
Forward movement is generated almost entirely during the contraction phase of the
propulsive cycle. Examining the vorticity generated for Re = 2.5 (figure 31), we
find that the viscous forces nearly balance the inertial forces generated during the
propulsive cycles, and vortices dissipate before they separate from the bell. The flows
generated are nearly reversible, and no significant forward swimming is seen. As the
Re increases to 2500, the vorticity generated during the propulsive cycle (figure 32)
is similar to the reference case, with the presence of separated starting vortex ring in
the wake and a stopping vortex ring in the bell following the expansion phase. The
decrease in fluid damping results in stronger buckling of the margin.
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FIGURE 27. (Colour online) Snapshots of the bell margin deformation during the
expansion phase of the first propulsive cycle for ηm equal to (a) 125, (b) 250, (c) 375, (d)
500 and (e) 625. A movie comparing the movement of the bell margin for the total length
of the simulation has been provided in the supplementary materials. Note that peak applied
tension occurs near a time equal to 0.75, though the margin may continue to contract
if the fluid forces from the surrounding environment are greater than the passive elastic
forces. As ηm decreases, we note the appearance of higher buckling modes at the bell
margin. The timing of peak buckling amplitudes is also dependent on ηm. As ηm increases,
the time it takes for the bell to fully expand decreases.

Figure 33 shows isocontours of the non-dimensional vertical velocity, ûz. Significant
differences are seen in the wake as Re increases. At Re = 2.5, the nearly reversible
flows generated during the propulsive cycle lead to regions of positive vertical velocity
in the wake of the bell during the expansion phases. As Re increases, a strong column
of negative vertical velocity is found in the wake of the bell, as seen with previous
higher Re simulations. When Re = 25, there is a smaller region of positive vertical
velocity in the immediate wake of the bell.

Comparing the cost of transport for different Re (figure 34a) we find that the cost of
transport increases as Re decreases. This implies that as Re decreases and the viscous
forces begin to balance the inertial forces generated during the bell contraction, the
bell’s swimming performance decreases. At intermediate Re, secondary thrust is lost
as the bell comes to rest between the end of the contraction and the beginning of
the next contraction. At lower Re, the bell moves backwards during the expansion.
Examining St−1, we see that St−1 increases with Re (figure 34b). When Re> 250, the
bell swims within the range of peak propulsive efficiency. Note that St−1 levels off for
the higher Re because the relative change of viscous effects in the higher Re cases is
relatively small.
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FIGURE 28. (Colour online) (a) The COT normalized by the cost of transport of the
reference case (COTref ) and (b) the inverse Strouhal number, St−1, as a function of the
elastic modulus of the margin with a proportional magnitude of applied tension. Note that
the cost of transport increases as the margin elastic modulus and applied tension increase.
Though ηm= 125 has the lowest cost of transport, it is not in the range of St characterized
as giving peak propulsive performance. Here ηm = 250, 375 are in this optimal St range
before decreasing in performance as ηm increases.

3.4. Circulation analysis
To quantify how the fluid is affected by variations in the medusan mechanospace, an
analysis of the circulation of the vortex rings was performed. Following the methods
of Colin et al. (2012), we calculated circulation, Γ , as the integral of vorticity over
the area of the vortex ring along the central plane as

Γ =
∫
ωy(x, 0, z, t) dx dz, (3.13)

which was then non-dimensionalized with respect to the characteristic length, L, and
driving frequency, φ,

Γ̂ = Γ

L2φ
. (3.14)

The temporal evolution of the non-dimensional circulation of the starting and
stopping vortex rings during the final propulsive cycle was recorded (figure 35). Both
the starting and stopping vortex rings exhibit the most circulation when they initially
form. We found that the peak circulation of the stopping vortex was substantially
greater that the peak circulation of the starting vortex, confirming the experimental
observations of Gemmell et al. (2013). The starting vortex ring’s circulation decays
in time in a linear manner, with a steady decline following the initial peak. The
circulation of the stopping vortex initially declines. The circulation then plateaus
such that the stopping vortex ceases to substantially decay in time. This points to
the continued role of the stopping vortex in producing secondary thrust during the
passive energy recapture phase of the propulsive cycle.

The evolution of the non-dimensional circulation over each cycle was recorded
for different effective margin stiffnesses, ηm, at the end of each propulsive cycle
(figure 36). In figure 36(a,b), the evolution of the circulation of the starting and
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FIGURE 29. (Colour online) A comparison of bell displacement and swimming
performance as Re is varied. Plotted are (a) the displacement of the bell (in bell heights),
X̂z, as a function of time (in half-propulsive cycles), t̂, (b) the spatially averaged radius
of the margin (in bell diameters), R̂, during the seventh and eighth propulsive cycles as a
function of time, (c) the forward swimming speed of the bell (in bell heights travelled per
half-propulsive cycle), Ûz, during the seventh and eighth propulsive cycles as a function of
time, (d) the temporally averaged speed (in bell heights travelled per half-propulsive cycle)
as a function of the cycle number and (e) the non-dimensional power, P̂m, associated
with the applied active tension driving the contraction of the bell. Note that decreasing
Re resulted in lower forward swimming speeds and reduced contractions of the bell.

stopping vortex ring, respectively, are shown for each propulsive cycle. We note
that the circulation for the starting and stopping vortex rings remains fairly stable
from one propulsive cycle to another. We also note that in all cases the stopping
vortex ring has a higher circulation at the end of the cycle than the starting vortex
ring. In figure 36(c), the circulation associated with the wake of the bell was also
recorded by summing the circulation of each of the vortex rings present in the wake
of the bell from previous propulsive cycles, including the most recent propulsive
cycle. This measure allows us to quantify the contribution of all of the vortex rings
in maintaining of the column of negative vertical velocity that pulls fluid away from
the bell, as described in Dabiri et al. (2005). We find the circulation of the wake
initially increases as more vortex rings are formed with each propulsive cycle, but
that the recorded circulation plateaus later in the simulation as the rate of additional
circulation from the most recent propulsive cycle is balanced by the loss of circulation
in the vortex structures due the viscous dissipation.

Noting the relative stability of the recorded circulation when the bell has reached a
steady state, the non-dimensional circulation of the vortex structures at the end of the
eighth propulsive cycle for the other simulations in this study are plotted in figure 37.
In figure 37(a), the circulation of the starting vortex ring, stopping vortex ring and
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(a)
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(d) (e) ( f )
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FIGURE 30. (Colour online) Plots of the non-dimensional out-of-plane vorticity, ω̂y, for
Re = 25 at times (a) 0, (b) 1.0, (c) 2.0, (d) 3.0, (e) 4.0, ( f ) 5.0, (g) 6.0, (h) 10.0 and
(i) 16.0. Recall that time is given in half-propulsive cycles so that eight pulses are shown.
Note that while significant vorticity is generated during the contraction of the bell, the
increased effective viscosity of the fluid leads to rapid dissipation of the starting vortices.

wake for the simulations of the varying tension study (§ 3.2.1) are plotted with respect
to the maximum applied tension, Tmax. We note that the circulation increases as Tmax

increases. Figure 37(b) similarly shows the circulation of the vortex rings in the
fixed tension study (§ 3.2.2) with respect to the margin’s elastic modulus, ηm. We
found that as ηm decreases and Tmax is held constant, the circulation of the wake and
the circulation of the starting vortex rings increase, while the stopping vortex ring
circulation increases to a lesser degree. In the Reynolds number study, figure 37(c),
increasing fluid damping, such as in the Re= 25 case, reduces the circulation. Note
that in this case the wake’s circulation is nearly identical to that of the starting
vortex ring. Due to the high amount of viscous dissipation, the wake’s circulation has
negligible contributions from the vortex rings of previous cycles. Circulation increases
as Reynolds number increases.
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FIGURE 31. (Colour online) Plots of the non-dimensional out-of-plane vorticity, ω̂y, for
Re= 2.5 at times (a) 0, (b) 1.0, (c) 2.0, (d) 3.0, (e) 4.0, ( f ) 5.0, (g) 6.0, (h) 10.0 and (i)
16.0. Eight pulses are shown. As viscous forces nearly balance inertial forces, the flows
generated are nearly reversible and no significant forward swimming is seen.

4. Discussion
In the computational studies reported herein, we found: (i) our model jellyfish with

fixed elastic properties swims faster when more tension is applied; (ii) for a fixed
applied tension, more flexible bell margins result in faster swimming speeds and lower
costs of transport; (iii) similar swimming speeds can be obtained when the stiffness of
the bell margin and the applied tension (above some minimum threshold) are varied in
proportion for sufficiently large stiffnesses; (iv) although similar swimming speeds are
generated when tension and stiffness are varied proportionally, the cost of transport
increases with stiffness; (v) different buckling patterns occur for different bell margin
stiffnesses; (vi) the swimming performance of the oblate bell decreases dramatically
for Re below 250; and (vii) a circulation analysis of the starting and stopping
vortex rings showed that their strengths were dependent on the relative strength of
activation with respect to the bell margin flexibility. Overall, our results demonstrate
that flexible margins with sufficient tension to generate large deformations result in
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(a) (b) (c)

(d) (e) ( f )
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FIGURE 32. (Colour online) Plots of the non-dimensional out-of-plane vorticity, ω̂y, for
Re= 2500 at times (a) 0, (b) 1.0, (c) 2.0, (d) 3.0, (e) 4.0, ( f ) 5.0, (g) 6.0, (h) 10.0 and
(i) 16.0. Decreasing the effective fluid viscosity results in a larger contribution of the
margin buckling to the vortex wake.

fast swimming at a low cost of transport. This helps to explain how jellyfish with
swimming muscles that are only one cell layer thick are able to swim effectively: very
flexible bell margins that undergo large deformations under small applied tensions are
still effectively stiff enough to re-expand before the next contraction.

Oblate jellyfish have a relatively low cost of transport when compared to other
swimming animals (Gemmell et al. 2013). With a muscle mass that compromises
<1 % of their body mass (Costello, Colin & Dabiri 2008), the slow but low energetic
cost of paddling jellyfish swimming compares favourably to faster swimming in fish.
It should be emphasized that this does not apply to jetting jellyfish, which have
relatively high cost of transport on par with flying (Daniel 1985). While exploring
the active and passive material properties of our model, we find that increasing the
ratio of the strength of muscular output to margin flexibility does decrease the cost
of transport (figures 24a and 18a). Holding this ratio fixed while varying margin
stiffness shows that decreasing margin stiffness results in lower cost of transport as
long as the stiffness is sufficiently high (figure 28a). It is also important to note that
drag plays an increased role in raising the cost of transport as the deformation of the
bell increases.
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FIGURE 33. (Colour online) Plots of the non-dimensional vertical velocity, ûz, at the end
of the eighth propulsive cycle with for Re equal to (a) 2.5, (b) 25, (c) 250 and (d) 2500.
At Re= 2.5 we note the loss of central column of negative vertical velocity in the wake of
the bell, as had been seen in previous simulations. Decreasing the effective fluid viscosity,
for Re> 25, yields a larger of column of negative vertical velocity in the wake increases
and a region of positive vertical velocity near the bell cavity.

10–1

100

101

102

103

100 101 102 103100 101

Re Re
102 103

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0(a) (b)

FIGURE 34. (Colour online) (a) The COT normalized by the cost of transport for the
reference case (COTref ), and (b) the inverse Strouhal number, St−1, as function of Reynolds
number, Re. As Re decreases, the cost of transport increases dramatically. At Re > 250,
the bell is swimming in the peak propulsive St range.

Our results are consistent with the experimental results of Gemmell et al. (2013)
who recorded the swimming speeds of different species of jellyfish. They note that
significant distances are travelled during the passive phases of the jellyfish swimming
cycle. The first passive phase, called the passive expansion phase, occurs after
contraction when the bell re-expands as a result of stored elastic energy. The second
passive phase, called the passive energy recapture phase, occurs at the end of the bell
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FIGURE 35. (Colour online) Plots of the temporal evolution of the circulation, Γ̂ , of
the starting (red) and stopping (blue) vortex rings during the eighth propulsive cycle of
the reference case. The circulation of the starting vortex ring decreases in a fairly linear
manner as it advects away from the bell. The stopping vortex initially experiences a
decline in circulation, followed by a plateau where the circulation does not substantially
decrease. The stopping vortex ring’s peak circulation is substantially higher than that of
the starting vortex ring.
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FIGURE 36. (Colour online) Plots of the non-dimensionalized circulation, Γ̂ , of (a) the
starting vortex ring, (b) the stopping vortex ring and (c) the total wake (i.e. the sum of
the computed circulation of each starting vortex ring present in the wake) at the end of
each propulsive cycle for differing ηm of the varying effective margin stiffness study. We
note that the circulation associated with the starting and stopping vortex rings does not
change substantially when comparing from cycle to cycle. The circulation associated with
the wake, which includes the circulation of every starting vortex ring from previous cycles,
initially increases with each propulsive cycle before plateauing as contributions of the most
recent propulsive cycle are balanced with the viscous dissipation of the previous cycles’
starting vortex rings.

expansion and before the next contraction. Their results suggest that the variation in
swimming speed during both passive phases can be explained by the differences in
bell morphology and mechanics.

In figure 38, we compare the velocity vector field and vorticity at the end of
a propulsive cycle for the reference case with that of the three-dimensional oblate

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.3


1148 A. P. Hoover, B. E. Griffith and L. A. Miller

16 000 32 000 48 000 64 000 80 000

C
ir

cu
la

tio
n

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5Starting vortex

Stopping vortex

Total wake

125 250 375 500 625

Re
25 250 2500

(a) (b)

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5(c)

FIGURE 37. (Colour online) Plots of the non-dimensionalized circulation, Γ̂ , associated
with the eight propulsive cycle’s starting vortex ring (red), stopping vortex ring (blue) and
wake (green), for (a) the varying tension study, (b) the fixed tension study and (c) the
Reynolds number study. The circulation increased as the maximum applied tension, Tmax
increased and margin stiffness was held constant. The circulation increased as the margin
stiffness (ηm) decreased and Tm was held constant. In the Reynolds number study, we
found that the circulation increased as the Reynolds number increased.

(b)(a) (c)

1* 1*
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FIGURE 38. (Colour online) Plots of the velocity vector field and vorticity at the end of
the propulsive cycle for (a) the oblate jellyfish model of Park et al. (2014), (b) our model
and (c) particle image velocimetry (PIV) recordings of an Aurelia spp. from Gemmell
et al. (2013) (note that the vorticity legend colour is flipped). In the labels of (a), 1∗
is the vorticity due to the shear layer of the inner wall, 2∗ is the vorticity from recovery
stroke of the previous expansion phases, and 4∗ is the vorticity resulting from the recovery
stroke of the most recent expansion phase. Our model finds good qualitative agreement in
the flow field and vorticity with the PIV recording from Gemmell.

jellyfish model presented by Park et al. (2014). Also provided are the velocity vector
field and vorticity recorded by Gemmell et al. (2013) of an Aurelia spp. after a
full propulsive cycle. The Park model shows positive vertical velocities in the wake
and cavity of the bell, with vorticity due to the recovery stroke of the expansion
phase and shear contributions from the bell’s boundary layer. The model presented by
Park closely matched the velocity profile recorded in McHenry & Jed (2003). In our
model, we observe the interaction between the starting and stopping vortex ring in
the immediate wake of the bell, with positive vertical velocity in the immediate wake
of the bell and negative vertical velocity farther down the wake. Our model finds
good qualitative agreement with the flow and vorticity observed by Gemmell. The

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.3


Quantifying performance in the medusan mechanospace 1149

novelty of our study is due to the fact that the bell motion and forward swimming
speed emerges entirely from the active and passive material properties of the bell and
its interaction with the fluid.

By examining the vertical and radial velocities of the surrounding fluid environment,
our simulations capture the interaction between the stopping and starting vortex rings
first noted by Dabiri et al. (2005). Figures 9–11 show how the opposing directionality
of the starting and stopping vortices pull fluid away from the bell and towards the
subumbrellar cavity, allowing for passive energy recapture to occur. The simulations
also produce a high pressure region in the cavity and a low pressure region in
the surrounding fluid (figures 11b and 9c), confirming observations by Gemmell
et al. (2015a) post-expansion. The experimental results of their study suggest a
low pressure region upstream of the jellyfish allows the animals to effectively pull
themselves through the fluid via a suction force generated by paddling.

In §§ 3.2.1 and 3.2.2, we find that increasing the ratio of the strength of muscular
output to margin flexibility, either by increasing the magnitude of applied tension
or increasing the margin flexibility, increases the distance between the starting and
the stopping vortex rings (figures 17 and 23). Note that this distance also increases
during each subsequent contraction as the jellyfish reaches its steady-state swimming
speed. Examining this effect with respect to the vertical and radial component of
velocity (figures 15, 16, 21 and 22), we find that increasing the distance between the
starting and stopping vortex rings entrains more fluid from outside the bell towards the
subumbrellar cavity, which enhances the secondary thrust gained during passive energy
recapture. This effect depends on the relative strength of the muscular output with
respect to the minimum force required to push fluid out of the subumbrellar cavity,
as seen in §§ 3.2.3 and 3.3.

In this study, both the cost of transport and Strouhal number were used as
performance metrics to examine the swimming performance of the bell. The cost
of transport, which is a measure of the energy spent per unit distance travelled,
is calculated as a function of the applied active tension, the speed of the bell’s
radial displacement and resulting distance travelled. The Strouhal number is instead
a function of the driving frequency, radial displacement and forward swimming
speed. Inverting the Strouhal number yields a non-dimensionalization of the forward
swimming speed with respect to the radial displacement of the bell. Both metrics
have been used to examine swimming in the context of animal locomotion (Taylor
et al. 2003; Gemmell et al. 2013; Hoover & Miller 2015). Taylor et al. (2003) found
that optimal animal locomotion occurs at Strouhal numbers that range between 0.2
and 0.4. Gemmell et al. (2013) noted that jellyfish take advantage of the vortex
ring interactions to lower their cost of transport. Generally, we note that increasing
the relative strength of active tension resulted in observed Strouhal numbers that
were within the optimal Strouhal number range described by Taylor (figures 18b and
24b). The cost of transport generally decreased as the relative strength of applied
tension increased (figures 18a and 24a), though we note in § 3.2.1 that the cost of
transport plateaued as the strength of applied tension increased. When varying the
effective margin stiffness in § 3.2.3, the magnitude of the active tension relative to
the margin flexibility was held fixed. As the applied tension was varied in proportion
to the margin flexibility, we found that the cost of transport decreased as margin
stiffness decreased (figure 28a) and the observed Strouhal numbers were only in the
optimal ranges for intermediate values of the margin elastic modulus (figure 28b).
For the bell with the lowest elastic modulus, we note that it had the lowest cost of
transport. In addition, the resulting forward swimming speed was lower and therefore
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yielded a Strouhal number that is outside the optimal range described by Taylor. This
observation highlights the differences between the two metrics and demonstrates how
they can be used to characterize optimal swimming performance.

Our computational results show that the elastic properties of the bell have a notable
effect on the forward swimming speed during the passive re-expansion. In all cases,
the maximum stiffness at the top of the bell, ηtot, was held constant, and the flexibility
of the bell margin was varied by changing ηvar and ηm. In all cases, the forward
swimming velocity initially experiences a rapid rise due the contraction of the bell,
followed by a rapid decrease in velocity once tension is released. During the passive
energy recapture phase, the stopping vortex created during the expansion recaptures
some of the momentum transferred from the bell to the fluid during the contraction
phase. This recapture sustains the velocity of the bell after both the contraction and the
expansion have ended (Gemmell et al. 2013). The dynamics of the passive response is
dependent upon the bell deformation induced by the contraction as well as the spatial
organization of the bell’s elastic properties. After the contraction phase, the bell freely
relaxes back to its resting configuration. Since our model is an underdamped system,
some elastic oscillations of the bell are observed and affect the observed shear layers
of vorticity during the expansion phase.

Similar to experimental results, the elastic properties of the bell affect the gains
from passive energy recapture, resulting in different average steady-state swimming
velocities (figure 25d). Gemmell et al. (2013) found that the 32 % of the total distance
travelled occurs during this passive energy recapture phase. In the computational
model, we find that during passive energy recapture phase the reference bell
travelled 26 % of the total distance travelled (figure 39a). In this case, the passive
energy recapture phase represents 40 % of the total propulsive cycle. We find that
keeping tension proportional to margin rigidity results in similar distances travelled
(figure 39b). In cases where the margin is more flexible and the magnitude of applied
tension is held constant, the bell travels 30 % of the total distance of the propulsive
cycle. Conversely, increasing rigidity while keeping tension fixed reduces the per cent
of distance travelled during passive recapture to as low as 2 %.

In the circulation analysis performed in § 3.13, the peak circulation of the stopping
vortex ring was greater than that of the same propulsive cycle’s starting vortex ring,
as had been observed in Gemmell et al. (2013). Furthermore, we found that while
the starting vortex ring circulation declined linearly during the expansion phase of
propulsive cycle, the stopping vortex ring circulation plateaus following an initial
decline. The sustained circulation of the stopping vortex ring reveals its effectiveness
in generating additional thrust during the passive energy recapture phase. The presence
of this observation highlights the interplay of the roles passive energy recapture in
lowering the cost of transport of forward swimming.

Little variability was observed in cycle-to-cycle changes in the circulation of the
starting and stopping vortex rings (figure 36a,b). The circulation of the wake of the
bell initially increases with each additional starting vortex ring (figure 36c). After
several propulsive cycles, the circulation of the wake ceases the grow at which point
the growth rate of circulation due to additional starting vortex rings is balanced by
the decline in circulation due to viscous dissipation of previous cycles’ vortex rings.
The limited cycle-to-cycle variation of the starting and stopping vortex rings suggest
that steady-state swimming speeds emerge from the inertial contributions and viscous
dissipation of the wake, as described in Dabiri et al. (2005).

Examining the circulation of the eighth propulsive cycle of the varying tension
study (figure 37a) and fixed tension study (figure 37b), we find that circulation
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FIGURE 39. (Colour online) Passive energy recapture comparison. (a) The velocity profile
of the seventh propulsive cycle with regions demarcating the contraction phase (I), the
expansion phase (II) and the passive energy recapture phase (III). The passive energy
recapture phase represents 40 % of the total propulsive cycle. (b) The fraction of distance
travelled during the passive expansion phase over the total distance travelled in the seventh
propulsive cycle as a function of the elastic modulus of the margin. The two curves
represent when the applied tension is held fixed (red, § 3.2.3) and when applied tension
is held proportional to the margin stiffness (blue, § 3.2.2).

increases as the relative magnitude of applied tension increases. When the magnitude
of applied tension is low relative to the margin flexibility, the contributions of the
starting vortex ring to circulation are lower. Furthermore viscous dissipation of the
previous cycles’ vortex rings leads to negligible contributions of circulation from
the far wake of the bell. As the Reynolds number is lowered (figure 37c), we also
note the decrease in circulation. At lower Reynolds numbers, the contributions to
circulation are primarily only from the most recent pair of vortex rings. As the
Reynolds number increases, the circulation due to the stopping vortex ring does not
substantially change, but the contributions of wake and starting vortex rings increase
as there is less viscous dissipation.

In this present study, only the margin rigidity and the strength of applied tension
were varied. The frequency of free vibration of the bell was kept greater than the
driving frequency, φ, so as to ensure that the bell fully expanded before the next
contraction. We also only considered oblate bells, whereas Hoover and Miller showed
resonant driving gains in prolate bells (Hoover & Miller 2015). Furthermore, active
tension was only applied during the contraction stage, whereas other resonant studies
(Demont & Gosline 1988b; Hoover & Miller 2015) apply a sinusoidal force or
prescribe sinusoidal bell deformations such that active force is applied during the
entire swimming stroke. These differences make it difficult to describe the gains
made by resonant driving relative to previous work. Furthermore, passive energy
recapture’s role in lowering of the cost of transport should be examined with respect
to resonant driving to determine the optimal driving frequency of the bell. Future
studies should determine the frequency of free vibration of the different bell models
and measure the resulting swimming speeds when driving over a large range of
frequencies.

Although a comprehensive study on the role of buckling on swimming performance
is outside the scope of this paper, we can still comment on the resulting margin
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buckling patterns that were observed in § 3.2.3. The buckling patterns found in
figures 26 and 27 suggest that the variation in elastic response during the expansion
will impact vortex deposition in the bell cavity, as suggested in previous studies
(Colin et al. 2012; Gemmell et al. 2014). Such changes in vortex deposition alter the
effective Strouhal number. When the ratio of tension to margin rigidity was held fixed
and the margin rigidity was varied (figure 28b), we found that the optimal Strouhal
range is reached for intermediate margin flexibilities. This suggests that there is an
optimal flexibility when the strength of applied tension to margin flexibility ratio
is held fixed. Higher buckling modes could have negative effects on the formation
of stopping vortex rings in the bell. In turn, too flexible of a bell margin leads to
an expansion phase that is too long, reducing the transfer of momentum from the
bell to the fluid. Likewise, a bell margin that is not flexible enough may yield too
short of an expansion phase and reduce the secondary thrust associated with passive
energy recapture, resulting in a lower forward swimming speeds. Scalloping of the
bell margin has also been observed (Colin et al. 2012) and may play role in reducing
the buckling observed during the expansion. The presence of radial musculature in
the bell margin could also play a role in the resulting kinematics of the bell margin
and alter the buckling patterns during expansion (Megill et al. 2005; Gemmell et al.
2015b). Previous studies suggest the presence of radial joints in the interior walls of
the subumbrellar cavity (Gladfelter 1972; Megill et al. 2005) that allow for a robust
mechanism for maintaining low amplitude, regular deformation kinematics during the
contraction and expansion.

In conclusion, the development of this three-dimensional elastic model of jellyfish
allows for future investigations on how manoeuvres are controlled through the
asymmetric contraction of muscles, how the entire elastic bell (including the thick
region of mesoglea at the top) may be tuned for resonant driving, whether or not the
elastic properties of the bell are optimized for efficient swimming and how groups of
jellyfish may enhance or impede feeding currents. Such numerical investigations are
capable of addressing questions related to how the resulting kinematics measured by
experimentalists emerge from the interaction of neurally activated muscles that drive
elastic bells that are fully coupled to water. These answers may provide insight into
the evolution of Cnidarian morphologies and may inform the design of biologically
inspired, flexible underwater vehicles.
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