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1. Introduction

The Khovanov cohomology of knots and links was introduced by Mikhail Khovanov
at the end of last century (see [9]) and nicely explained by Bar-Natan in [2]. In [14]
Viro interpreted it in terms of enhanced states of diagrams (these states are the
well-known Kauffman states [8] enhanced with a sign assignment). Using Viro’s
point of view, in this paper we will prove that the hypothetical extreme Khovanov
cohomology of a link coincides with the cohomology of the independence simplicial
complex of its Lando graph.

The Lando graph [5] of a link diagram was studied by Morton and Bae in [1],
where they proved that the hypothetical extreme coefficient of the Jones polynomial
coincides with a certain numerical invariant of the graph, named in this paper as
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Figure 1. (a) Our convention of signs. (b) The smoothing of a crossing according to its A
or B-label. A-chords (B-chords) are represented by dark (light) segments.
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(d)
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D s sD

Figure 2. The figure shows (a) a diagram D representing 31, (b) a state s, and (c) sD.
Here |s| = 2. The four related enhanced states are shown in (d). From left to right the
values of τ are 2, −2, 0, 0.

its independence number. Now, on one hand the Jones polynomial can be seen
as the bigraded Euler characteristic of the Khovanov cohomology. On the other
hand, the formula for the independence number certainly suggests the formula of
an Euler characteristic. Both ideas together have led us to a way of understanding
the extreme Khovanov cohomology in terms of this graph. This is what we develop
in this paper and reflect in theorem 4.4.

In [12] it was proved that the independence number can take any value, and
hence there are links (in fact knots) with arbitrary extreme coefficients. This idea
is also extended here to Khovanov cohomology by proving that there are links (in
fact knots) with an arbitrary number of non-trivial extreme Khovanov cohomology
modules (see theorem 6.2), which are of course examples of H-thick knots (see
[10]). The basis of these examples is a link with exactly two non-trivial extreme
Khovanov cohomology modules, constructed in theorem 5.7. However, we think that
the construction of the example is more interesting than the example itself. The
example is constructed using theorem 4.4, the Alexander duality and a construction
by Jonsson [7].

There are many other interesting constructions of graphs starting with a link
diagram (see, for example, [6]), not to be confused with the Lando graph. In addi-
tion, there are other very interesting ways of trying to understand the Khovanov

https://doi.org/10.1017/S0308210517000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000300


A geometric description of the extreme Khovanov cohomology 543

cohomology as the cohomology of a chain complex. For example, in [11] Lipshitz
and Sarkar construct, in an explicit and combinatorial way, a chain bicomplex that
produces the Khovanov cohomology.

The paper is organized as follows. In § 2 we review the definition of the Kho-
vanov cohomology of links, by using the notion of an enhanced state of a diagram,
and explain what we understand by the potential extreme Khovanov complex and
cohomology modules. In § 3 we review the notion of the Lando graph of a link dia-
gram, and define the independence simplicial complex of this graph. We will refer
to the corresponding cochain complex as the Lando cochain complex, and to the
corresponding cohomology modules as the Lando cohomology. Indeed, we will note
that the independence number of the Lando graph is the Euler characteristic asso-
ciated with the Lando cohomology. In § 4 we prove that the Lando cochain complex
is a copy of the potential extreme Khovanov complex, with the degrees shifted by
a constant (theorem 4.4). In this section there is also an example showing how to
apply this theorem in order to compute Khovanov extreme cohomology in a practi-
cal way. The rest of the paper deals with applications of theorem 4.4. In particular,
§ 5 shows how to relate Lando cohomology (and extreme Khovanov cohomology) to
the homology of a simplicial complex, which allows us to give an example of a link
diagram having exactly two non-trivial extreme Khovanov cohomology modules.
Finally, in § 6 we use the previous example to give families of H-thick knots.

Note added in proof. After the first version of this paper was submitted for publi-
cation, we heard from Sergei Chmutov that he presented a talk, as yet unpublished,
at the conference Knots in Washington XXI, held in Washington, DC, in 2005, with
a similar statement to that appearing in theorem 4.4.

2. Khovanov cohomology

Let D be an oriented diagram of a link L with c crossings and writhe w = p − n,
with p and n being the number of positive and negative crossings in D, according
to the sign convention shown in figure 1(a). A state s assigns a label, A or B, to
each crossing of D. Let S be the collection of 2c possible states of D. For s ∈ S,
assigning a(s) A-labels and b(s) B-labels, write σ = σ(s) = a(s) − b(s). The result
of smoothing each crossing of D according to its label, following figure 1(b), is sD,
a collection of disjoint circles embedded in the plane together with some A- and
B-chords (segments joining the circles at the site where there was a crossing). We
represent A-chords as dark segments and B-chords as light ones (see figure 2).
Enhance the state s with a map e that associates a sign εi = ±1 with each of the
|s| circles in sD. Unless otherwise stated, we will keep the letter s for the enhanced
state (s, e) to avoid cumbersome notation. Write

τ = τ(s) =
|s|∑
i=1

εi,

and define, for the enhanced state s, the integers

i = i(s) =
w − σ

2
, j = j(s) = w + i + τ.
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A B A B

Figure 3. All possible enhancements when melting two circles are (++ → +), (+− → −),
(−+ → −). The possibilities for the splitting are (− → −−), (+ → +−) or (+ → −+).

Definition 2.1. Let s and t be enhanced states of an oriented link diagram D. We
say that t is adjacent to s if the following conditions are satisfied:

(1) i(t) = i(s) + 1 and j(t) = j(s);

(2) the labels assigned by t are identical to those assigned by s except at one
(change) crossing x = x(s, t), where s assigns an A-label and t a B-label;

(3) the signs assigned to the common circles in sD and tD are equal.

Note that the circles that are not common to sD and tD are those touching the
crossing x. In fact, passing from sD to tD can be realized by melting two circles
into one, or splitting one circle into two. The different possibilities according to the
previous points are shown in figure 3.

Let R be a commutative ring with unit. Let Ci,j(D) be the free module over R
generated by the set of enhanced states s of D with i(s) = i and j(s) = j. Order
the crossings in D. Now fix an integer j and consider the ascendant complex

· · · → Ci,j(D) di−→ Ci+1,j(D) → · · ·

with differential di(s) =
∑

(s : t)t, where (s : t) = 0 if t is not adjacent to s and
otherwise (s : t) = (−1)k, with k being the number of B-labelled crossings coming
after the change crossing x. It turns out that di+1 ◦ di = 0 and the corresponding
cohomology modules over R

Hi,j(D) =
ker(di)

im(di−1)

are independent of the diagram D representing the link L and the ordering of
its crossings, that is, these modules are link invariants. They are the Khovanov
cohomology modules Hi,j(L) of L (see [2,9]), as presented by Viro in [14] in terms
of enhanced states.

Let
jmin = jmin(D) = min{j(s)/s is an enhanced state of D}.

We will refer to the complex {Ci,jmin(D), di} as the extreme Khovanov complex,
and to the corresponding modules Hi,jmin(D) as the (potential) extreme Khovanov
modules. Indeed, there are analogous definitions for a certain jmax.

We remark that the integers jmin and jmax depend on the diagram D, and may
differ for two different diagrams representing the same link.
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Figure 4. A diagram D representing the trefoil knot, sAD and the corresponding
Lando graph GD are shown in (a), (b) and (c), respectively.

3. The Lando graph and its cohomology

Let G be a graph. A set σ of vertices of G is said to be independent if no vertices
in σ are adjacent. The independence number of G is defined to be

I(G) =
∑

σ

(−1)|σ|,

where the sum is taken over all the independent sets of vertices of G. The empty
set is considered as an independent set of vertices with |∅| = 0. A point has inde-
pendence number 0, a hexagon 2.

Starting from a link diagram D, we recall the construction of its Lando graph
(see [1, 12]). An A- or B-chord of sD is admissible if it connects the same circle of
sD to itself.

Definition 3.1. Let D be a link diagram and let sA be the state assigning A-labels
to all the crossings of D. The Lando graph GD associated with D is constructed
from sAD by considering a vertex for every admissible A-chord, and an edge joining
two vertices if the ends of the corresponding A-chords alternate in the same circle.

Figure 4 exhibits a diagram D, the corresponding sAD and its Lando graph GD.

Theorem 3.2 (Bae and Morton [1]). Let L be a link represented by a diagram D.
Then the coefficient of the potential lowest degree monomial of its Jones polynomial,
V (L) is, up to sign, the independence number I(GD) of the Lando graph GD of D.

Theorem 3.3 (Manchón [12]). For any integer k there exists a link diagram D
such that I(GD) = k. Therefore, there are links with arbitrary extreme coefficients
in their Jones polynomials.

On one hand, the Jones polynomial can be seen as the bigraded Euler charac-
teristic of the Khovanov cohomology. On the other hand, the formula for the inde-
pendence number suggests that each extreme coefficient of the Jones polynomial
is the Euler characteristic of a certain cohomology given in terms of independent
sets of vertices of the Lando graph. Both ideas together have led us to a way of
understanding the extreme Khovanov cohomology in terms of this graph; in other
words, we have obtained a geometric realization of the potential extreme Khovanov
cohomology of a link.

Let XD be the independence simplicial complex of the graph GD. By definition,
the simplices σ of XD are the independent subsets of vertices of GD. Recall that
the dimension of a simplex σ is the number of its vertices minus 1.
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546 J. González-Meneses, P. M. G. Manchón and M. Silvero

Definition 3.4. The Lando ascendant complex of a link diagram D is the cochain
complex {Ci(XD), δi}, where Ci(XD) is the free module over R generated by the
simplices of dimension i, and δi is the (standard) differential

· · · → Ci(XD) δi−→ Ci+1(XD) → · · ·

given by δi(σ) =
∑

v(−1)kσ ∪ {v}, where v runs over the set of vertices of GD that
are not adjacent to any vertex of σ, and k = k(σ, v) is the number of vertices of σ
coming after v in the predetermined order of the vertices of GD.

The Lando cohomology modules of D are the reduced cohomology modules

Hi(XD) =
ker(δi)

im(δi−1)
.

It is a straightforward algebraic exercise to check that if R is the field of the
rational numbers, then I(GD) is the Euler characteristic associated with the cohom-
ology of XD.

4. Lando and extreme Khovanov cohomologies

Let D be an oriented link diagram and let s−
A be the enhanced state assigning an

A-label to each crossing and the sign −1 to each circle of sAD.

Proposition 4.1. Let jmin = jmin(D). Then jmin = j(s−
A) and j(s) = jmin if and

only if s ∈ Smin, where

Smin = {enhanced states s such that |s| = |sA| + b(s), τ(s) = −|s|}.

Proof. Recall that j(s) = (3w − σ)/2 + τ with σ = a(s) − b(s) and τ(s) =
∑|s|

i=1 εi,
where εi is the sign (+1 or −1) associated with the circle ci in sD.

Given a diagram D, let s be an enhanced state associating a positive sign with
at least one of the circles in sD. Then j(s) �= jmin, as the state given by associating
negative signs with every circle in sD has a smaller value of j. Hence, all states
s realizing jmin assign −1 to their circles, or equivalently τ(s) = −|s| (the second
condition in the definition of Smin).

Now identify a state with the set of crossings of D where the state assigns a
B-label. Let s = {y1, . . . , yb} be an enhanced state assigning b = b(s) B-labels
(at the crossings y1, . . . , yb) and negative signs to all of its circles. Consider the
sequence of enhanced states

s0 = s−
A, s1, . . . , sb = s,

where sk = {y1, . . . , yk} for k = 1, . . . , b, and all circles in skD have sign −1.
Since w is invariant and σ(sk) = σ(sk−1) − 2, there are two possibilities: if

|sk| = |sk−1|+1, then τ(sk) = τ(sk−1)− 1 and j(sk) = j(sk−1); if |sk| = |sk−1|− 1,
then τ(sk) = τ(sk−1) + 1 and j(sk) = j(sk−1) + 2. Note that this is independent of
the ordering of the crossings.

A first consequence is that j(s−
A) � j(s), where s was taken to be any state

assigning −1 to all circles in sD, so j(s−
A) = jmin. A second consequence is that

j(s) = jmin if and only if |sk| = |sk−1| + 1 for each k ∈ {1, . . . , b}, that is, if and
only if s ∈ Smin.
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A
B

y1

Figure 5. The vertex y1 corresponds to a splitting from sAD = s0D to s1D.

There are analogous s+
B , jmax and Smax, with j(s+

B) = jmax and s ∈ Smax if and
only if j(s) = jmax.

Corollary 4.2. Fix an oriented link diagram D with c crossings, n negative and
p positive. Then jmin = c − 3n − |sA| and jmax = −c + 3p + |sB |.

Proof. Since w = p−n = c−2n and σ(s) = c−2b(s) we deduce that i(s) = b(s)−n.
In particular i(sA) = −n. It follows that

jmin = j(s−
A)

= w + i(s−
A) + τ(s−

A)
= (c − 2n) − n − |sA|
= c − 3n − |sA|.

A similar argument works for jmax using s+
B instead of s−

A.

Recall that the vertices in the Lando graph of D, GD, are associated with the
admissible A-chords in sAD (the ones having both ends in the same circle of sAD).
Let Vs be the set of vertices of GD corresponding to the crossings of D with which
s associates a B-label. Note that Vs can have less than b(s) vertices, or even be
empty.

Proposition 4.3. The map that assigns Vs to each enhanced state s defines a
bijection between Smin and the set of independent sets of vertices of GD. Moreover,
if s ∈ Smin, then the cardinality of Vs is exactly b(s).

Proof. Let s = {y1, . . . , yb} be an enhanced state in Smin with b = b(s) B-labels (at
the crossings y1, . . . , yb). Consider the sequence of enhanced states

s0 = s−
A, s1, . . . , sb = s,

where sk = {y1, . . . , yk} for k = 1, . . . , b, and all circles in skD have sign −1.
As s ∈ Smin, according to the proof of proposition 4.1, |sk| = |sk−1| + 1 for each
k ∈ {1, . . . , b} or, equivalently, one passes from sk−1D to skD by splitting one circle
into two circles.

Note that the A-chord of sAD corresponding to the crossing y1 of D is admissible,
since otherwise |s1| = |s0| − 1 (see figure 5). As the construction in the previous
sequence does not depend on the order of the crossings, it follows that any A-chord
of sAD corresponding to a crossing yi is admissible in sAD, so GD contains its
associated vertex.

Moreover, there is no pair of A-chords in sAD corresponding to B-labels of s with
their ends alternating in the same circle, since otherwise two B-smoothings in these
two crossings would not increase the number of circles by two, as figure 6 shows
schematically. This implies that the corresponding vertices in Vs are independent.
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A B
BA

Figure 6. Adjacent vertices in GD correspond to |sA| = |s| when smoothing.

Conversely, if C is an independent set of vertices of GD, let s be the state that
assigns B-labels to the crossings corresponding to the vertices of C. In particular,
b(s) = |C|. Enhance this state by assigning −1 to each circle of sD. Since C is
independent, |s| = |sA| + b(s), and hence s ∈ Smin as we wanted to show.

The extreme Khovanov cohomology is constructed, according to proposition 4.1,
in terms of the states in Smin. For these states the notion of adjacency given in
definition 2.1 is reduced to the second condition. Namely, if s, t ∈ Smin, then t is
adjacent to s if and only if t assigns the same labels as s except at one crossing x,
where s(x) and t(x) are an A-label and a B-label, respectively. Now we are ready
to establish the main result of this paper.

Theorem 4.4. Let L be an oriented link represented by a diagram D having n
negative crossings. Let GD be the Lando graph of D and let j = jmin(D). Then the
Lando ascendant complex {Ci(XD), δi} is a copy of the extreme Khovanov complex
{Ci,j(D), di}, shifted by n − 1. Hence,

Hi,j(D) ≈ Hi−1+n(XD).

Proof. According to proposition 4.1, the extreme Khovanov cohomology modules
are generated by the states in Smin. Suppose that s ∈ Smin and let Vs be the
corresponding independent set of vertices of GD. Since i(s) = b(s)−n and dim(Vs) =
|Vs| − 1 = b(s) − 1, the bijection between Smin and the set of independent sets of
vertices of GD established in proposition 4.3 provides an isomorphism

Ci,j(D) ≈ Ci−1+n(XD).

Next, we need to show that the isomorphism described above respects both dif-
ferentials (technically, that the assignment s to Vs defines a chain isomorphism).
Recall that for two states s, t ∈ Smin, t is adjacent to s if and only if t assigns
the same labels as s except at one crossing x, where s(x) and t(x) are an A-label
and a B-label, respectively. Moreover, in this case only a splitting is possible at the
change crossing x when passing from sD to tD, since the degree jmin is preserved
and the degree i is increased by one, τ(s) = −|s| and τ(t) = −|t|. It follows that
Vt = Vs ∪ {vx}, where vx is the vertex in GD corresponding to x.

In addition, if we order the vertices of GD according to the order of the crossings
in D (hence, the assignment ‘vertex to crossing’ is an increasing map), we get that
the number of B-labelled crossings of D coming after the crossing x is exactly the
number of vertices of Vs coming after the vertex vx.

Example 4.5. Consider the oriented link L represented by the oriented diagram
D shown in figure 7(a). The Lando graph GD is the hexagon shown in figure 7(d).
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Figure 7. (a) A link diagram D; (b), (c) two versions of sAD; and
(d) its associated Lando graph GD.

Number its vertices consecutively, from 1 to 6. Then C−1(XD), C0(XD), C1(XD)
and C2(XD) have ranks 1, 6, 9 and 2, respectively, with bases

{∅}, {1, 2, 3, 4, 5, 6}, {13, 14, 15, 24, 25, 26, 35, 36, 46}, {135, 246},

the other modules being trivial (note that we write, for example, 135 instead of
{1, 3, 5}). The Lando ascendant complex is

0 → C−1(XD)
δ−1−−→ C0(XD) δ0−→ C1(XD) δ1−→ C2(XD) → 0,

with differentials δ−1, δ0 and δ1 given by the matrices

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 0
1 0 0 −1 0 0
1 0 0 0 −1 0
0 1 0 −1 0 0
0 1 0 0 −1 0
0 1 0 0 0 −1
0 0 1 0 −1 0
0 0 1 0 0 −1
0 0 0 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(
1 0 −1 0 0 0 1 0 0
0 0 0 1 0 −1 0 0 1

)
.

Let R be the field of rational numbers. The ranks of these matrices are 1, 5 and 2,
respectively. Hence, H1(XD) has dimension 2 as a rational vector space, the rest
of the Lando cohomology vector spaces being trivial.

Next, orient the three components of D in a counterclockwise sense. By corol-
lary 4.2, jmin = c−3n−|sA| = 6−3·6−1 = −13 and, by theorem 4.4, the complexes
are shifted by n − 1 = 5; hence, H−4,−13(L) ≈ H1(XD) is two-dimensional and the
other extreme Khovanov cohomology vector spaces are trivial.

This example illustrates that, in general, for different orientations of the compo-
nents of a link, we obtain the same extreme Khovanov cohomology modules (jmin
may change), with some shifting in the index i.

A complete bipartite graph Kr,s is a graph whose vertices can be divided into
two disjoint sets V and W , called parts, having r and s vertices, respectively, such
that every edge connects a vertex in V to one in W , and every pair of vertices v ∈ V
and w ∈ W are connected by an edge.
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Corollary 4.6. Let L be an oriented link represented by a diagram D having n
negative crossings. Let GD be the Lando graph of D and let j = jmin(D). If GD

is the complete bipartite graph Kr,s, then H1−n,j(L) ≈ R; otherwise, H1−n,j(L) is
trivial.

Proof. According to theorem 4.4, we just have to prove that H0(XD) ≈ R if GD

is Kr,s, and it is trivial otherwise. Let Gc
D be the complementary graph of GD. A

remarkable observation is that any Lando graph is always a bipartite graph, and
GD = Kr,s if and only if Gc

D has exactly two connected components; otherwise,
Gc

D is connected. The key observation is now that the connected components of
Gc

D coincide exactly with the elements of a basis of ker(δ0). The fact that δ−1(∅) =
1 + 2 + · · · + c ∈ C0(XD) completes the argument.

5. Lando cohomology as homology of a simplicial complex

In this section we show how to construct a simplicial complex whose homology is
equal to the cohomology of the Lando ascendant complex of a link diagram D up to
a homological shift. This fact, together with theorem 4.4, implies that the homology
of the simplicial complex determines the extreme Khovanov cohomology of the link
represented by D.

A key point is the following result by Jonsson [7, theorem 3.1].

Theorem 5.1. Let G be a bipartite graph with non-empty parts V and W . Then
there exists a simplicial complex XG,V whose suspension is homotopy equivalent to
the independence complex of G.

In [7] Jonsson also gave the procedure for constructing the complex XG,V . Start-
ing with the bipartite graph G, a set σ ⊆ V belongs to XG,V if and only if there
is a vertex w ∈ W such that σ ∪ {w} is an independent set in G. In other words,
σ ⊆ V is a face of XG,V if and only if σ is not adjacent to every w ∈ W .

Recall that the Alexander dual of a simplicial complex X with ground set V is a
simplicial complex X∗ whose faces are the complements of the non-faces of X. The
combinatorial Alexander duality (see, for example, [4,13]) relates the homology and
cohomology of a given simplicial complex and its Alexander dual.

Theorem 5.2. Let X be a simplicial complex with a ground set of size n. Then for
any i ∈ Z the reduced homology of X in degree i is equal to the reduced cohomology
of the dual complex X∗ in degree n − i − 3.

As Lando graphs are bipartite, theorems 5.1 and 5.2, together with the fact
that a simplicial complex X and its suspension S(X) have the same homology and
cohomology up to a homological shift by 1, provide an algorithm for computing the
cohomology of the independence simplicial complex associated with a Lando graph
GD (or, equivalently, the extreme Khovanov cohomology of the link represented by
D) from the homology of a specific simplicial complex.

Theorem 5.3. Let D be a diagram of an oriented link L with n negative crossings.
Let j = jmin(D). Let YD = (XG,V )∗, where G = GD is the Lando graph of D, with
parts V and W . Then

Hi,j(L) ≈ H̃|V |−i−1−n(YD).
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Proof. Let Z = XG,V ; hence YD = Z∗. Then

Hi+1−n,j(L) ≈ H̃i(XD) ≈ H̃i(S(Z)) ≈ H̃i−1(Z) ≈ H̃|V |−i−2(YD),

where we have applied theorem 4.4 (recall that XD = XG is the independence
complex of the Lando graph G = GD), the homotopy equivalence XG ≈ S(XG,V )
given by theorem 5.1, the relation between the cohomology of a simplicial complex
and its suspension, and finally the combinatorial Alexander duality theorem.

Remark 5.4. One can also describe the complex YD in terms of sAD, avoiding
any reference to the Lando graph GD. Start by colouring the regions of sAD in
a chequerboard fashion. Call an A-chord white (black) if it is in a white (black)
region. The ground set of YD is the set of admissible white arcs of sAD, and a set
of admissible white arcs σ is a simplex of YD if and only if for any admissible black
arc there is at least an admissible white arc that is not in σ whose ends alternate
with the ends of the black arc in the same circle of sAD. Note that there are two
different choices when colouring the regions; in order to get the simplest ground set
of YD, choose colours in such a way that white regions contain a lower number of
admissible A-chords than black regions.

We are now interested in reversing the process above, namely, starting with any
simplicial complex X, we will construct a bipartite graph with an associated inde-
pendence simplicial complex whose cohomology is equal to the homology of X
shifted by some degree. Under certain conditions that will be clarified later, this
allows us to construct a link diagram whose extreme Khovanov cohomology coin-
cides with the homology of X. Again, the key point is the Alexander duality theorem
together with the following result by Jonsson [7, theorem 3.2].

Theorem 5.5. Let X be a simplicial complex. Then there is a bipartite graph G
whose independence complex is homotopically equivalent to the suspension of X.

The bipartite graph G can be constructed by taking as the set of vertices the
disjoint union of the ground set V of the complex X, and the set M of maximal
faces of X. The edges of G are all pairs {v, µ} such that v ∈ V , µ ∈ M and v �∈ µ.

We remark that, although theorem 5.5 holds for any simplicial complex, the graph
obtained by the above procedure is not necessarily the Lando graph associated with
a link diagram.

Definition 5.6. A graph G is said to be realizable if there is a link diagram D
such that G = GD (in [12] these graphs were originally called convertible).

We are now ready to construct a link with exactly two non-trivial extreme Kho-
vanov cohomology modules. In the following section this example will be an essential
ingredient in the construction of families of H-thick knots.

Theorem 5.7. There exist oriented link diagrams whose extreme Khovanov cohom-
ology modules are non-trivial for two different values of i, that is, Hi,jmin(D) is
non-trivial for two different values of i.

Proof. Although our argument is equally valid for any commutative ring R with
unit, just for convenience set R = Z, the ring of integers.
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Figure 8. The topological realization of the simplicial complex X and the graph G are
shown in (a) and (b), respectively. The independence complex of G is homotopy equivalent
to the suspension of X∗.
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Figure 9. The graph G is realizable; the correspondence between
its vertices and the A-chords in sAD is shown.

Let X = {∅, 1, 2, 3, 4, 5, 12, 23, 34, 41} be a simplicial complex with ground set
V = {1, 2, 3, 4, 5}. Its topological realization is the disjoint union of a point and
a square, as shown in figure 8(a), and hence its reduced homology is H̃0(X) ≈
H̃1(X) ≈ Z (the other homology groups being trivial).

Consider now the Alexander dual of X,

X∗ = {∅, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45, 123, 124, 134, 135, 234, 245}.

Note that |X| + |X∗| = 32 = 2|V |. Applying the combinatorial Alexander duality
leads to

H̃i(X) ≈ H̃ |V |−i−3(X∗) = H̃2−i(X∗),

which implies that H̃2(X∗) ≈ H̃1(X∗) ≈ Z, the other groups being trivial.
Applying theorem 5.5 (and the construction described right after) to the simpli-

cial complex X∗ leads to a graph G consisting in two hexagons sharing a common
vertex, as shown in figure 8(b), whose independence complex XG is homotopically
equivalent to the suspension of X∗. In particular,

H̃i−1(X∗) ≈ H̃i(S(X∗)) ≈ H̃i(XG).

Hence, H̃3(XG) ≈ H̃2(XG) ≈ Z are the only non-trivial groups in the reduced
cohomology of XG. In fact, as the indices are different from zero, this is still true
for the (non-reduced) cohomology, so H2(XG) ≈ H3(XG) ≈ Z.

An important point now is the fact that the graph G is realizable. In fact, G = GD

with D being the link diagram in figure 10. Indeed, figure 9 shows the correspon-
dence between the vertices of G and the A-chords in sAD.
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D

Figure 10. The oriented diagram D representing the link L.

Consider now the link L represented by the diagram D oriented as shown in
figure 10. Then applying corollary 4.2, we get that jmin = c−3n−|sA| = 11−3 ·3−
1 = 1, and by theorem 4.4 one gets Hi,1(L) ≈ Z for i = 0, 1, the other cohomology
groups being trivial. This concludes the proof.

For the example in the previous proof we have checked with computer assistance
that the ranks of the chain groups Ci = Ci(XD) and differentials δi for the Lando
ascendant complex

0 → C−1 δ−1−−→ C0 δ0−→ C1 δ1−→ C2 δ2−→ C3 δ3−→ C4 δ4−→ C5 → 0

are

rk(C−1) = 1, rk(δ−1) = 1, rk(C0) = 11, rk(δ0) = 10,

rk(C1) = 43, rk(δ1) = 33, rk(C2) = 73, rk(δ2) = 39,

rk(C3) = 52, rk(δ3) = 12, rk(C4) = 13, rk(δ4) = 1,

rk(C5) = 1.

Hence,

rk(H2(XD)) = 73 − 39 − 33 = 1 and rk(H3(XD)) = 52 − 12 − 39 = 1.

Remark 5.8. The proof of theorem 5.7 does not work if, for example, we start
with the simplicial complex whose topological realization is a point plus a triangle.
Although one again gets a graph G such that XG has two non-trivial cohomology
groups, G consists of two hexagons with four common consecutive edges (a total of
eight vertices), which is no longer a realizable graph.

6. Families of H-thick knots

Citing Khovanov [10], there are 249 prime unoriented knots with at most 10 cross-
ings (not counting mirror images). It is known that all but 12 of these knots are
H-thin, that is, their Khovanov cohomology is supported on two adjacent diago-
nals, in a matrix in which rows are indexed by j and columns by i. An H-thick
knot is a knot that is not H-thin. For example, any non-split alternating link is
H-thin, and any adequate non-alternating knot is H-thick (see [10, theorem 2.1
and proposition 5.1]).

Up to eleven crossings, there are no knots with more than one non-trivial cohom-
ology group in the rows corresponding to the potential extreme jmax or jmin ob-
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tained from the associated diagrams in [3]. There are examples that seem to contra-
dict this statement. For example, knot 10132, whose Khovanov cohomology groups
are trivial for j > −1 and which has two non-trivial groups for j = −1, but
for the diagram of 10132 taken from [3], we have jmax(D) = −c + 3p + |sB | =
−10 + 3 · 3 + 2 = 1. We do not know if there exists a diagram D representing knot
10132 with jmax(D) = −1. Related to this fact we pose the following question.

Question. Does any oriented link L have a diagram D whose associated jmin(D)
equals the minimum value of j such that Hi,j(L) is non-trivial for at least one value
of i?

In this section we show examples of H-thick knots having any arbitrary number
of non-trivial cohomology groups in the non-trivial row of smallest possible index.
More precisely, we will provide a diagram D whose row indexed by jmin(D) is
non-trivial, and hence corresponds to the non-trivial row of smallest possible index.
Moreover, this row has as many non-trivial cohomology groups as desired. The basis
of our construction is the link given in the proof of theorem 5.7.

We remark that theorem 4.4 allows us to compute the extreme Khovanov cohom-
ology of any link diagram D by considering independently each of the circles appear-
ing in sAD, since the non-admissible A-chords do not take part in the construction
of the simplicial complex YD described in § 5. More precisely, let D be a link dia-
gram and let c1, . . . , cn be the circles of sAD. Write Ci for the circle ci together
with the admissible A-chords having both ends in the circle ci, and let Di be the
diagram reconstructed from Ci by reversing the corresponding smoothings. Then,
from the construction in remark 5.4 it follows that YD = YD1 ∗ · · · ∗ YDn , with ∗
being the join of simplicial complexes. Recall that the join X ∗ Y of two simplicial
complexes X and Y is defined as the simplicial complex whose simplices are the
disjoint unions of simplices of X and Y .

The reduced homology of the join of two simplicial complexes can be computed
directly from the reduced homology of each of the complexes, namely,

H̃i(X ∗ Y ) =
∑

r+s=i−1

H̃r(X) ⊗ H̃s(Y ) ⊕
∑

r+s=i−2

Tor(H̃r(X), H̃s(Y )).

Taking copies of the example in the proof of theorem 5.7, one obtains a link
that, by theorem 5.3 and the above formula, has any number of non-trivial extreme
Khovanov cohomology groups. Note that one could also use the general formula for
the Khovanov cohomology of a split link (see [9, corollary 12]). At this point, our
understanding of extreme Khovanov cohomology in terms of Lando cohomology
allows us to slightly modify a link in such a way that one obtains a knot with
the same extreme Khovanov cohomology. We explain this construction in detail in
theorem 6.2 and remark 6.3. We first need the following result.

Proposition 6.1. Let ∗nX be the join of n copies of the simplicial complex X =
{∅, 1, 2, 3, 4, 5, 12, 23, 34, 41}. Then H̃i(∗nX) ≈ Z

( n
i−n+1) if n − 1 � i � 2n − 1, and

it is trivial otherwise.

Proof. We proceed by way of induction on n. In the proof of theorem 5.7 we saw
that H̃0(X) ≈ H̃1(X) ≈ Z, which is the n = 1 case. For n > 1 we apply the formula
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D

sAD

D'

sAD' 

(a)

(b)

Figure 11. D and D′ are shown in (a). The corresponding sAD and sAD′ are
shown in (b). Note that D′ has one component.

Dn'

sADn'

(a)

(b)

Figure 12. D′
n and sAD′

n for the n = 3 case are shown in (a) and (b), respectively.

for the homology of a join (torsion terms do not appear in any case):

H̃i(∗nX) ≈
⊕

r+s=i−1

[H̃r(∗n−1X) ⊗ H̃s(X)]

≈ H̃i−1(∗n−1X) ⊕ H̃i−2(∗n−1X)

≈ Z
( n−1
(i−1)−(n−1)+1) ⊕ Z

( n−1
(i−2)−(n−1)+1)

≈ Z
( n−1

i−n+1) ⊕ Z
(n−1

i−n)

≈ Z
( n

i−n+1). �

Theorem 6.2. For every n > 0 there exists an oriented knot diagram D with
exactly n + 1 non-trivial extreme Khovanov integer cohomology groups Hi,jmin(D).

Proof. Let L be the oriented link represented by the diagram D in figure 10. Con-
sidering as ground set the chords in the unbounded region of sAD, the associ-
ated simplicial complex YD is the simplicial complex X appearing in the proof
of theorem 5.7, whose topological realization is the disjoint union of a point and
a square (figure 8(a)). Hence it has two non-trivial reduced homology groups,
H̃0(YD) ≈ H̃1(YD) ≈ Z.
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(a)

(b)

Figure 13. In part (a) two crossings are added in such a way that two different link
components are merged. The effect of this transformation at the level of sAD is shown in
part (b).

Now consider the link Ln consisting of the split union of n copies of L. It can be
represented by Dn, the disjoint union of n copies of D, so sADn is the disjoint union
of n copies of sAD, shown in figure 9(b). Hence its associated simplicial complex is
YDn = ∗nYD = ∗nX, that is, the join of n copies of X. Applying proposition 6.1 to
∗nX one gets

H̃i(YDn) ≈ Z
( n

i−n+1)

for n − 1 � i � 2n − 1.
This fact together with theorem 5.3 shows that the extreme Khovanov cohom-

ology of Ln has n + 1 non-trivial groups.
Now we will give a knot having the same extreme Khovanov cohomology groups as

Ln (the value of jmin changes in general). Starting from the diagram D in figure 10,
add four crossings, as shown in figure 11(a), in such a way that the resulting diagram
D′ has one component. Note that sAD′ is obtained from sAD by adding two circles
with four A-chords (figure 11(b)). Consider now n copies of D′ and join them as
shown in figure 12(a). The resulting diagram D′

n is a knot diagram. Since sAD′
n

just adds 5n−1 non-admissible A-chords to sADn, both diagrams Dn and D′
n share

the same Lando graph. Hence D′
n represents a knot having n+1 non-trivial groups

in its extreme Khovanov cohomology.

The proof of theorem 6.2 provides a family of knots having as many non-trivial
extreme Khovanov cohomology groups as desired. These are examples of H-thick
knots with arbitrarily large thickness.

Remark 6.3. Every link L with µ components can be turned into a knot preserving
its extreme Khovanov cohomology (jmin can change). One just needs to consider a
diagram D of L and add two extra crossings merging two different components into
one, as shown in figure 13(a). Since sAD′ just adds two non-admissible A-chords to
sAD (see figure 13(b)), both diagrams share the same Lando graph. After repeating
this procedure µ − 1 times, the link L is transformed into a knot.
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