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Abstract

We give a geometric interpretation of sheaf cohomology for higher degrees n ≥ 1 in terms of torsors
on the member of degree d = n − 1 in hypercoverings of type r = n − 2, endowed with an additional
datum, the so-called rigidification. This generalizes the fact that cohomology in degree one is the group
of isomorphism classes of torsors, where the rigidification becomes vacuous, and that cohomology in
degree two can be expressed in terms of bundle gerbes, where the rigidification becomes an associativity
constraint.
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1. Introduction

Let X be a topological space and F be an abelian sheaf. It is a classical fact
that the first sheaf cohomology H1(X,F ), which is defined via injective resolutions,
has a combinatorial description in terms of Čech cohomology Ȟ1(X,F ), and also
a geometric interpretation as the group π0(F -Tors) of isomorphism classes for the
Picard category of torsors. This was discussed by Grothendieck in [20, Section 5.1]
and treated in utmost generality in Giraud’s monograph [17, Ch. III]. In degree n = 2,
one may interpret cohomology via gerbes, which are certain fibered categories.

It is natural to ask whether higher cohomology groups Hn(X,F ) also admit a
geometric interpretation. The goal of this paper is to show that this indeed holds in all
degrees n ≥ 1. The idea is to use torsors T living on pieces Un−1 of hypercoverings
U• of type r = n − 2, endowed with some additional datum called rigidification. See
Definition 6.1 for details. This generalizes Murray’s notion of bundle gerbes [29],
which describe the situation in degree n = 2 and are used in the context of differential
geometry and theoretical physics, mainly for the case F = C×. See [30] for an
introduction, [31] and [32] for further development, and also the work of Caray,
Murray and Wang on higher bundle gerbes [12].
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116 S. Schröer [2]

Our starting point is Lazard’s observation that higher cohomology groups already
have a combinatorial description in terms of hyper-Čech cohomology

Hn(X,F ) =
r

Ȟn(X,F ) = lim
−−→

HnΓ(U•,F ),

where the direct limit runs over all hypercoverings U• of type r = n − 1. Roughly
speaking, hypercoverings are certain semi-simplicial coverings U•, which are more
general than Čech coverings, in the sense that one allows in finitely many degrees the
passage to open coverings. The type of a hypercovering indicates that from a certain
degree r ≥ 0, one does not pass to open coverings anymore, such that U• = coskr(U≤r)
becomes a coskeleton. This beautiful idea was developed in utmost generality in [3,
Exposé V, Section 7].

In contrast to common Čech coverings, where Un = Un+1 = U ×X · · · ×X U are fiber
products coming from a single open covering U =

⋃
λ∈L Uλ, the hypercoverings never

gained widespread attention. Of course, this relies on the fact that for paracompact
spaces, sheaf cohomology coincides with Čech cohomology [19, Ch. II, Theorem
5.10.1]. Such a result also holds for étale cohomology on quasicompact schemes
admitting an ample sheaf by Artin’s result [1], and for Nisnevich cohomology on
quasicompact separated schemes by my findings in [33, 35]. In the realm of homotopy
theory, Čech coverings also suffice, because the canonical map |U•| → X from the
geometric realization is a weak equivalence. This is due to Segal [36] for countable
coverings, and also holds in general as observed by Dugger and Isaksen [14].

However, hypercoverings play a crucial role for the étale homotopy type, as
introduced by Artin and Mazur [5] and further studied in Friedlander’s monograph
[16]. More generally, they appear in homotopical algebra, that is, abstract homotopy
theory in the context of Quillen’s model categories, as explained in Jardine’s book
[24]. Hypercoverings of type r = 1 are essential to understand gerbes, as exposed by
Giraud [17], and the subsequent differential geometry of gerbes, which was developed
by Brylinski [11], Hitchin [22] and Breen and Messing [10]; see also the survey
[9]. Despite all these advances, hypercoverings should become more popular, in my
opinion. Recently, I have used them to reduce Serre’s vanishing for general affine
schemes to the noetherian situation [34].

To obtain a geometric description for higher cohomology groups Hn(X,F ), we
introduce the notion of rigidified torsor cocycles (U•,T , ϕ) for the abelian sheaf F in
degree n ≥ 1. Here U• is a hypercovering of type r = n − 2, and T is a torsor for the
abelian sheaf F |Un−1, and the rigidification ϕ is a section over Un of the alternating
preimage

p∗alt(T ) = p∗0(T ) ∧ p∗1(T −1) ∧ · · · ∧ p∗n(T (−1)n
),

subject to the cocycle condition q∗alt(ϕ) = 0. See Definition 6.1 for details. The
pi : Un → Un−1 and q j : Un+1 → Un denote face operators in the hypercovering. The
rigidified torsor cocycles form a fibered Picard category Rn

F , a notion going back
to MacLane [26] and studied in depth by Deligne [4, Exposé XVIII, Section 4.1].
The category Rn

F contains ‘coboundary objects’ coming from alternating preimages
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[3] Rigidified torsor cocycles 117

of F |Un−2-torsors. Forming the resulting residue class groups fiberwise and passing
to a filtered direct limit along homotopy classes of refinements, we obtain the abelian
group RTCn(F ) of equivalence classes of rigidified torsor cocycles. Our main result
is that this indeed gives a geometric description for sheaf cohomology.

Theorem 1.1 (See Theorem 7.2). For each integer n ≥ 1, there is a natural
identification of abelian groups RTCn(F ) = Hn(X,F ).

To define the comparison map RTCn(F )→ Hn(X,F ), we analyze the spectral
sequences attached to the double complex Γ(U•,I •), arising from the injective
resolution I • used to define sheaf cohomology and the hypercovering U•. This leads

to the so-called three-term complex Cn−1 Ψ
→ Cn Φ

→ Cn+1, which captures a small but
essential part of the double complex. The comparison map takes the form

RTCn(F ) 7−→ lim
−−→

Ker(Φ)/ Im(Ψ) = Hn(X,F ).

In degree n = 1, everything boils down to the classical identification

H1(X,F ) = Ȟ1(X,F ) = π0(F -Tors);

the hypercovering is constant, and the rigidification is vacuous. In degree n = 2,
we recover Murray’s notion of bundle gerbes; the hypercovering reduces to a Čech
covering, and the rigidification translates into an associativity constraint. In some
sense, our construction gives a higher-dimensional generalization of bundle gerbes.
The approach works for arbitrary sites C satisfying mild technical assumptions,
introduced mainly for the sake of exposition. In this setting, X ∈ C denotes a final
object. One recurrent technical challenge is to understand the effect of simplicial
homotopies between refinements of hypercoverings.

After the completion of the paper, I learned from M. Murray, D. Stevenson and
D. Roberts that similar results appear in the work of Duskin [15], Glenn [18], Beke [6]
and Jardine [23], albeit in different forms and in much more categorical settings. One
advantage of the present approach is that rigidified torsor cocycles yield a concrete
way to represent cohomology classes, and that we have an explicit comparison map
to sheaf cohomology. This could make the theory more accessible in fields outside
category theory.

The paper is organized as follows: In Section 2 we discuss the notion of fibered
Picard categories R→ C and certain resulting direct limits. Section 3 contains basic
facts on hypercoverings U•. We use them to express sheaf cohomology with the

cohomology of the three-term complex Cn−1 Ψ
→ Cn Φ

→ Cn+1 in Section 4, by using
spectral sequences. In Section 5, we introduce the notion of iterated alternating
preimages p∗alt(F ). Section 6 contains the central definition of rigidified torsor
cocycles (U•,F , ϕ). The main result appears in Section 7, where we define the
comparison map RTCn(F )→ Hn(X,F ) and establish its bijectivity. In the closing
Section 8 we discuss how Murray’s bundle gerbes can be seen as rigidified torsor
cocycles.
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2. Fibered Picard categories

In this section, we recall some notions from category theory that I found rather
useful to phrase results in later sections, and discuss certain direct limits attached to
fibered Picard categories.

Let R be a symmetric monoidal category. The monoidal structure is given by a
functor R × R→ R, which we usually write as (A, B) 7−→ A ∧ B. Moreover, we have
natural isomorphisms

(A ∧ B) ∧C −→ A ∧ (B ∧C) and A ∧ B→ B ∧ A

satisfying MacLane’s axioms (see [26] and [4, Exposé XVIII, Section 4.1]). These
natural isomorphisms are the associativity and commutativity constraints. If there is
an object E ∈ R together with an natural isomorphism A ∧ E → A, then the set π0(R)
of isomorphism classes [A], where A ∈ R runs over all objects, acquires the structure
of an abelian monoid, with addition [A] + [B] = [A ∧ B] and zero element 0 = [E].

A symmetric monoidal categoryR is called strict if the commutativity constraint for
A = B becomes the identity transformation A∧ A→ A∧ A. Note that this does not hold
for the category R = (R-Mod) of modules over a ring, where the monoidal structure is
given by tensor products M ⊗R N and the commutativity constraint is a ⊗ b 7→ b ⊗ a.
But strictness actually holds on the full subcategoryR′ = (R-Inv) of invertible modules.

A groupoid is a category in which all morphisms are isomorphisms. A Picard
category is a strictly symmetric monoidal groupoid R where the translation functors
X 7→ A ∧ X are self-equivalences of categories, for all objects A ∈ R. See [7] for a nice
discussion. The following is an important example. Let X be a topological space, F
be an abelian sheaf, and R = (F -Tors) be the Picard category of F -torsors T . The
monoidal structure is given by T ′ ∧T ′′ = F \(T ′ ×T ′′), which is the quotient of
the product sheaf by the diagonal action.

For this category R = (F -Tors), we have a slight notational problem. It is
customary to write group actions and torsor structures in a multiplicative way. On
the other hand, the group law for abelian groups and abelian sheaves is preferably
written additively, in particular when it comes to Čech cohomology. So the axiom
for a multiplicative action F ×T → T , ( f , ϕ) 7→ f · ϕ of an additive group takes the
form ( f + g) · ϕ = f · (g · ϕ) and 0 · s = s. For T = F , we usually revert back to purely
additive notation.

Next, we recall the notion of fibered categories. For details, see [21, Exposé VI].
Given a functor F : R→ C between arbitrary categories and an object U ∈ C, we write
R(U) for the fiber category, consisting of objects and morphisms inR sent to the object
U and the morphism idU , respectively. A morphism f : A→ B in R over θ : U → V in
C is called cartesian if the map

HomU(A′, A) −→ Homθ(A′, B), h 7−→ f ◦ h

is bijective, for all A′ ∈ R(U). One says that R is an fibered category if for each
morphism θ : U → V in C and each object B ∈ R(V) there is a cartesian morphism
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f : A→ B in R inducing θ, and the composition of cartesian morphisms is cartesian.
Furthermore, if the fiber categories are groupoids, one says that R is a category fibered
in groupoids. Then all morphism in R are cartesian. The choice of a cartesian
morphism f : A→ B, for each morphism θ : U → V and each object B ∈ R(V), is
called a cleavage. One then regards A as a ‘fiber product’ B ×U V or ‘base-change’
θ∗(B) of the object B with respect to the morphism θ : U → V .

Furthermore, given a functor R ×C R → R, together with associativity and
commutativity constraints that turn all fibers R(U) into Picard categories, we say that
R is a fibered Picard category. This notion was introduced by Deligne in [4, Exposé
XVIII, Section 1.4] where C is furthermore endowed with a Grothendieck topology
and R is regarded as a Picard stack. In any case, we get a contravariant functor

C −→ (Ab), U 7−→ π0(R(U)) (2-1)

into the category of abelian groups. The effect of a morphism θ : U → V is to send
an isomorphism class [B] for the fiber category R(V) to the isomorphism class of its
base-change A = θ∗(B) = B ×U V . Let us call [B] 7→ [A] the transition map for the
above functor.

In the category of sets, one may now form the direct limit

R∞ = lim
−−→

π0(R(U))

for (2-1), regarded as a covariant functor on the opposite category Cop. Note that the
group structures on the π0(R(U)) do not necessarily induce a group structure on the
direct limit, because direct limits do not necessarily commute with finite inverse limits.

For simplicity, suppose now that C admits a final object X ∈ C, and that the opposite
category Cop is filtered. For the category C, this means that each pair of morphisms
V ′ → V ← V ′′ sits in some commutative diagram

U −−−−−→ V ′′y y
V ′ −−−−−→ V

and for each pair of morphisms V ⇒ V ′ there is a morphism U → V so that the two
compositions U ⇒ V ′ coincide; cf. [2, Exposé I, Definition 2.7]. The first condition
is automatic if fiber products exist, and usually poses no problem in practice, but the
latter often becomes tricky for categories that do not come from ordered sets. If both
conditions hold, the direct limit R∞ indeed inherits a group structure. We call it the
stalk group for the fibered Picard category R over the cofiltered category C.

Often, the category C is not cofiltered, but becomes cofiltered after passing to a
quotient category C/∼, whose morphisms are equivalence classes of morphisms in
C, and whose objects are the same. In order to get a group structure on R∞, it then
suffices to check that the base-change map π0(R(V))→ π0(R(U)) depends only on the
equivalence class of the morphism θ : U → V . In the application we have in mind, this
independence actually takes place after passing to certain natural residue class groups
π0(R(U))/∼.
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3. Hypercoverings

In this section we recall some generalities on semi-simplicial coverings, review the
notion of hypercoverings and discuss the ensuing hyper-Čech cohomology. All results
are basically contained in [3, Exposé V, Sections 2 and 7], although in somewhat terse
form. For generalities on simplicial objects, we refer to the monographs of May [28]
and Weibel [38].

As is customary, we write ∆ for the category comprising the sets [n] = {0, 1, . . . , n}
as objects and the monotonic maps [m]→ [n] as morphisms. One may call this the
category of simplex types. We will only be interested in the nonfull subcategory ∆semi,
which has the same object and where the morphisms are injective. The face map
∂i : [n − 1]→ [n], 0 ≤ i ≤ n, is the unique injective monotonic map that omits the
value i ∈ [n]. These face maps satisfy the simplicial identities ∂ j∂i = ∂i∂ j−1 for i < j. A
semi-simplicial object in some category C is a contravariant functor U• : ∆semi → C.
This amounts to a sequence of objects Un ∈ C, n ≥ 0, together with face operators
fi = (∂i)∗ : Un→ Un−1, 0 ≤ i ≤ n, satisfying the identities fi f j = f j−1 fi for i < j. Indeed,
such data already specify the entire semi-simplicial object in a unique way. The
semi-simplicial objects U• form a category Semi(C), with natural transformations of
functors as morphisms.

A homotopy between two morphisms θ•, ζ• : U• → V• is a collection of morphisms
h0, . . . ,hn : Un→ Vn+1, given in each degree n ≥ 0, satisfying f0h0 = θn and fn+1hn = ζn,
together with the relations

fih j =


h j−1 fi if 0 ≤ i < j ≤ n + 1,
fihi−1 if 1 ≤ i = j ≤ n,
fihi if 1 ≤ i = j + 1 ≤ n,
h j fi−1 if 1 ≤ j + 1 < i ≤ n + 1.

(3-1)

We call them the simplicial homotopy identities. One says that the two morphisms θ•
and ζ• are homotopic if they are equivalent under the equivalence relation generated
by the homotopy relation. We then write Semi(C)/∼ for the ensuing quotient category,
where the objects are still the semi-simplicial objects in C, but the morphisms are
homotopy classes of natural transformations. Note that the equivalence relations
generated by the homotopy relations on hom sets indeed from a congruence in the
sense of category theory [27, Ch. II, Section 8].

Now suppose that C is a site, that is, a category endowed with a Grothendieck
topology (cf. [2, Exposé II]). For simplicity, we assume that there is a final object
X ∈ C, and that the topology comes from a pretopology. The latter means that for each
object V ∈ C, one has specified a collection Cov(V) of covering families (Uλ → V)λ∈L

satisfying certain axioms. For the sake of exposition, we also assume that for each
covering family the disjoint union U =

⋃
λ∈L Uλ exists. This ensures that one may

refine each covering family to a one-member covering family, which one may call
a covering singleton.
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One should have the following example in mind. Given a topological space
X, let C be the category of X-spaces (V, f ) whose structure map f : V → X is a
local homeomorphism, and Cov(V) comprises those families where

⋃
λ∈L Uλ → V

is surjective. According to the comparison lemma [2, Exposé V, Theorem 4.1], the
restriction functor Sh(C)→ Sh(X) is an equivalence of categories. In turn, sheaves
and cohomology for the space X are the same for the site C.

Let G be an abelian presheaf on the site C. For each semi-simplicial object U• in
C, we get the cochain complex Γ(U•,G ). The coboundary operators

∂ : Γ(Un,G ) −→ Γ(Un+1,G ), g 7−→
n+1∑
j=0

(−1) jq∗j(g) (3-2)

are induced from the face operators q j : Un+1 → Un, 0 ≤ j ≤ n + 1 (see, for example,
[25, Proposition 11.4.2]). This construction is functorial with respect to the presheaf
G and the hypercovering U•. Given two morphisms θ•, ζ• : U• → V• and a homotopy
h0, . . . , hn : Un → Vn+1 between them, we can form the homomorphisms

s : Γ(Vn+1,G ) −→ Γ(Un,G ), g 7−→
n∑

i=0

(−1)ih∗i (g).

The following fact appears, in one form or another, over and over in homological
algebra. The following form appears in [37, Tag 019S]; see also the proof of
Proposition 6.3 below.

Lemma 3.1. In the above situation, we have θ∗n − ζ
∗
n = s∂ − ∂s as homomorphisms

Γ(Vn,G )→ Γ(Un,G ), for all degrees n ≥ 0.

In other words, simplicial homotopies yield cochain homotopies. In particular, the
homomorphisms θn and ζn induce the same map on cohomology. More generally, the
contravariant functor

Semi(C) −→ Ch(Ab), U• 7−→ Γ(U•,G )

into the abelian category Ch(Ab) of cochain complexes of abelian groups induces a
functor

Semi(C)/∼ −→ K(Ab)

into the quotient category K(Ab) = Ch(Ab)/∼, where the morphisms are cochain
maps modulo cochain homotopy. Note that this is still an additive category, in fact
a triangulated category, but no longer an abelian category.

A semi-simplicial object U• in the site C is called a semi-simplicial covering
if all face operators pi : Un → Un−1 and the augmentation U0 → X are coverings.
Morphisms between semi-simplicial coverings are called refinements. Using the
covering families belonging to Cov(Un), n ≥ 0, we get categories of sheaves Sh(Un).
The face operators thus yield contravariant functors

p∗i : Sh(Un−1) −→ Sh(Un), G 7−→ p∗i (G ).
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Here we write p∗i (G ) = p−1
i (G ) for the preimage sheaf, because there is no danger of

confusion. In the presence of points and stalks, this means p∗i (G )a = Gpi(a). These
preimage functors are related by natural isomorphisms q∗j ◦ p∗i ' p∗i ◦ p∗j−1 for i < j,
which we regard as identifications. Here

pi : Un → Un−1 and q j : Un+1 → Un

are the face operators defined in degree n and degree n + 1, respectively. In this context,
we usually write rk : Un−1 → Un−2 for face operators in degree n − 1. This convention
will be used many times throughout.

Given a covering U → X, we may form the fiber products

Un = Un+1 = U ×X · · · ×X U, n ≥ 0,

and use as face operators the projections pi : Un → Un−1 that omit the ith entry. Such
semi-simplicial coverings occur in the definition of Čech cohomology, and we refer
to them as Čech coverings. Note that in degree one, the face operators become the
projections p0 = pr2 and p1 = pr1.

Čech coverings are special cases of the more flexible hypercoverings, which
are certain semi-simplicial coverings U• constructed by the following recursive
procedure. One formally starts with U−1 = X. If for some degree n ≥ 0 the objects
U−1,U0, . . . ,Un−1 are already defined, one extends this truncated semi-simplicial
covering U≤n−1 to a full semi-simplicial covering L• by taking fiber products in the
universal way, such that

Hom(T≤n−1,U≤n−1) = Hom(T•, L•)

for all other semi-simplicial coverings T•. Now one is allowed to choose a covering
family (Wλ → Ln)λ∈L, and defines Un =

⋃
λ∈L Wλ as the corresponding covering

singleton. This concludes the recursive construction. However, one demands that
for some degree r = n − 1, there is no passage to a covering family, such that U• = L•.
In turn, the hypercovering U• is entirely determined by the truncated covering U≤r.
Equivalently, the morphism U• → coskr(U≤r) into the coskeleton is an isomorphism.
One than says that U• is a hypercovering of type r ≥ 0. Note that the hypercoverings
of type r = 0 are precisely the Čech coverings. We refer to [3, Exposé V, Section 7]
for details.

Now let HX,r be the category of hypercoverings U• of type r ≥ 0. Recall that the
morphisms are called refinements. We get a functor

H
op
X,r −→ Ch(Ab), U 7−→ Γ(U•,G )

into the abelian category Ch(Ab) of cochain complexes of abelian groups. This
satisfies Grothendieck’s axiom (AB3), hence admits all direct sums and direct limits.
One may form the direct limit of the above functor, but loses control over the resulting
cochain groups, because the index category HX,r is in general not filtered.

However, we may pass to the quotient category HX,r = HX,r/∼, where the morphisms
are homotopy classes of refinements. Let us call it the quotient category of
hypercoverings. Thus we formally get a functor

H
op
X,r −→ K(Ab), U 7−→ Γ(U•,G ).
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As explained in [3, Exposé V, Theorem 7.3.2], the opposite quotient category H
op
X,r

becomes filtered. In other words, the above may be regarded as an ind-object in the
sense of [21, Exposé 1, Section 8.2]. Passing to cohomology, we obtain direct limits

r

Ȟp(X,G ) = lim
−−→

HpΓ(U•,G ) ∈ (Ab).

One may form the direct limits as sets or abelian groups, and use as index category
either Hop

X,r or the quotient category H
op
X,r, and always gets the same group. These groups

are called hyper-Čech cohomology groups of type r ≥ 0, for each abelian presheaf G .
For type r = 0, this gives the usual Čech cohomology Ȟp(X,G ).

Now write (AbP/C) for the category of all abelian presheaves G . Generalizing from
Čech cohomology, one easily sees that for each fixed type r ≥ 0, the

r

Ȟp : (AbP/C) −→ (Ab), G 7−→
r

Ȟp(X,G )

form ∂-functors, and the canonical inclusions HX,r ⊂ HX,r′ for r ≤ r′ induce natural
transformations between ∂-functors. For type r = 0 we get the universal ∂-functor
and the universal natural transformations. Note further that the restriction to the
full subcategory (Ab/C) of all abelian sheaves F usually fails to be a ∂-functor,
because the inclusion functor is not exact and the subcategory contains more short
exact sequences in general. However, we have the following vanishing result.

Proposition 3.2. Suppose I ∈ (AbP/C) satisfies the sheaf axiom and becomes an
injective object in the abelian category (Ab/C). Then for each hypercovering U•,
the cochain complex Γ(U•,I ) has no cohomology in degrees p ≥ 1. In particular, I
is acyclic with respect to hyper-Čech cohomology for each type r ≥ 0.

Proof. For each object U ∈ C, consider the corresponding representable presheaf
hU : C → (Set) given by hU(V) = HomC(V, U). The Yoneda lemma yields
Hom(AbP/C)(hU ,G ) = Γ(U,G ) for each set-valued presheaf G . Write ZhU : C→ (Ab)
for the resulting abelian presheaf, whose group of local sections over V is the
free abelian group generated by the set hU(V). We thus get Hom(Ab/C)(ZhU , G ) =

Γ(U, G ), for each abelian presheaf G . Finally, write ZU for the sheafification of
the abelian presheaf ZhU . By the universal property of sheafification, we obtain
Hom(Ab/C)(ZU ,F ) = Γ(U,F ) for each abelian sheaf F .

Now let U• be a hypercovering of type r ≥ 0, and consider the resulting semi-
simplicial sheaf ZU• and the ensuing chain complex of abelian sheaves

· · · −→ ZU2 −→ ZU1 −→ ZU0

on C, where the boundary maps are alternating sums induced from the face operators
q j : Un+1 → Un. According to [3, Exposé V, Theorem 7.3.2], this chain complex is
exact in degrees p ≥ 1, and the cokernel for the map on the right is ZX . Since I ∈

(Ab/C) is an injective object, the functor F 7→ Hom(Ab/C)(F ,I ) is exact. Applying
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this exact hom functor to our exact sequence and using the preceding paragraph, we
get an exact sequence

0 −→ Γ(X,I ) −→ Γ(U0,I ) −→ Γ(U1,I ) −→ · · · .

Here the coboundary maps coincide with (3-2). In turn, the cohomology groups
HpΓ(U•,I ) vanish for p ≥ 1. Passing to direct limits with respect to U• ∈ H

op
X,r, we

get
r

Ȟp(X,I ) = 0. �

4. The three-term complex

We keep the notation and assumptions from the preceding section, such that C is a
site with final object X ∈ C. The goal now is to express sheaf cohomology in terms of
certain three-term complexes, which arise from total complexes and spectral sequences
involving hypercoverings. We use the standard conventions with regard to double
complexes; cf. [13, Chs. IV and XV].

For each abelian sheaf F , choose once and for all an injective resolution

0 −→F −→I 0 d
−→I 1 d

−→ · · · , (4-1)

such that Hp(X,F ) = HpΓ(X,I •). Furthermore, fix some hypercovering U•. This
gives cochain complexes Γ(U•,I q) with coboundary maps

∂ : Γ(Un,I
q) −→ Γ(Un+1,I

q), f 7−→
n+1∑
j=0

(−1) jq∗j( f ). (4-2)

The two types of coboundary maps are compatible, such that the diagrams

Γ(Up,I q+1)
∂p,q+1
−−−−−→ Γ(Up+1,I q+1)

dp,q

x xdp+1,q

Γ(Up,I q) −−−−−→
∂p,q

Γ(Up+1,I q)

are commutative. To obtain a double complex Γ(U•,I •), we use the usual sign trick
and replace the vertical differentials dp,q by (−1)pdp,q. Up to this sign change, the
vertical differential comes from the injective resolution (4-1), whereas the horizontal
differential comes from the hypercovering (4-2).

In turn, we obtain a total complex Tot Γ(U•,I •). First, we consider the horizontal
filtration, which has

Filq =
⊕

p≥0,b≥q

Γ(Up,I
b).

The associated graded complex is grq = Γ(U•,I q), with differential given by (4-2).
This gives a spectral sequence with Epq

1 = HpΓ(U•,I q). Since the presheaf I q

is an injective sheaf, we have Epq
1 = 0 for all p > 0, according to Proposition 3.2.
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Furthermore, E0,q
1 = H0(X,I q). The differential E0,q

1 → E0,q+1
1 is induced by (4-1),

and the definition of sheaf cohomology gives E0,q
2 = Hq(X,F ). Since there are no

nontrivial differentials on the E2-page, the spectral sequence collapses, such that
Epq

2 = Epq
3 = · · · = Epq

∞ . In turn, the filtration Filq Hp+q Tot Γ(U•,F ) has just one
nontrivial step. We thus have the following proposition.

Proposition 4.1. For each hypercovering U• and each degree q ≥ 0, the edge map

Hq Tot Γ(U•,I •) −→ Hq(X,F )

for the above spectral sequence is bijective.

The total complex is functorial in the hypercovering U•, and the edge map is
compatible with refinements. In turn, refinements induce identities on the cohomology
of the total space.

Next, consider the vertical filtration Filp =
⊕

a≥p,q≥0 Γ(Ua,I q) on the total
complex, whose associated graded complex is grp = Γ(Up,I •). This gives another
spectral sequence, with pages

Epq
1 = HqΓ(Up,I

•) and Epq
2 = HpΓ(U•,Hq(F )).

Here Hq(F ) denotes the presheaf defined by Γ(V,Hq(F )) = Hq(V,F ). The spectral
sequence is functorial in the hypercovering U•, and homotopic refinements induce
identical maps. Passing to the direct limit over all U• ∈ H

op
X,r and using the preceding

proposition, we obtain the spectral sequence

Epq
2 =

r

Ȟp(X,Hq(F )) =⇒ Hp+q(X,F ),

as given in [3, Exposé V, Section 7.4]. According to [3, Theorem 7.4.1] we have the
following theorem.

Theorem 4.2. For each degree n ≤ r + 1, the edge map
r

Ȟn(X,F ) −→ Hn Tot Γ(U•,I •) = Hn(X,F )

for the above spectral sequence is bijective.

This should be seen as a far-reaching generalization of the fact that cohomology in
degree one coincides with Čech cohomology, which is the special case r = 0 and n = 1.
Note, however, that in general the edge map is not bijective for n = r + 2.

We shall exploit this failure as follows. Fix some integer n ≥ 1, and consider the
three abelian groups

Cn−1 = Γ(Un−2,I
0/F ) ⊕ Γ(Un−1,I

0),

Cn = Γ(Un−1,I
1) ⊕ Γ(Un,I

0),

Cn+1 = Γ(Un−1,I
2) ⊕ Γ(Un,I

1) ⊕ Γ(Un+1,I
0).
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Taking the horizontal and vertical differentials from (4-2) and (4-1), we get matrices

Φ =

εd 0
∂ −εd
0 ∂

 and Ψ =

(
∂ εd
0 ∂

)

that define a three-term cochain complex Cn−1 Ψ
→ Cn Φ

→ Cn+1. Here ε = (−1)n−1 is
the sign introduced for the double complex Γ(U•,I •). One should have in mind the
following diagram, which arises from the double complex Γ(U•,I •):

Γ(Un−1,I 2)

Γ(Un−2,I 0/F ) ∂ // Γ(Un−1,I 1)

εd

OO

∂ // Γ(Un,I 1)

Γ(Un−1,I 0)

εd

OO

∂
// Γ(Un,I 0)

−εd

OO

∂
// Γ(Un+1,I 0)

Note that upper left entry of the matrix Ψ is given by the canonical inclusion I 0/F
⊂I 1 coming from the differential I 0 →I 1, which ensures that the upper left entry
of Φ ◦ Ψ vanishes. The exact sequence 0→ I 0/F → I 1 → I 2 induces an exact
sequence

0 −→ Γ(Un−2,I
0/F ) −→ Γ(Un−2,I

1)
−εd
−→ Γ(Un−2,I

2).

In turn, we have a homomorphism from the three-term cochain complex to the total
cochain complex, which induces the map

Ker(Φ)/ Im(Ψ) −→ Hn Tot Γ(U•,I •)

on cohomology. Both sides depend functorially on the hypercovering: each refinement
U′• → U• gives a restriction map, and we thus get a contravariant functor HX,r → (Ab)
given by U• 7→ Ker(Φ)/ Im(Ψ).

Suppose that θ•, ζ• : U′• → U• are homotopic refinements. Each of them induces a
cochain map between the three-term complexes formed with U• and U′•. Using that
the operator s in Lemma 3.1 is natural in the sheaf G , one easily infers that the induced
maps Ker(Φ)/ Im(Ψ)→ Ker(Φ′)/ Im(Ψ′) on cohomology coincide.

Passing to the direct limit and taking the identification in Proposition 4.1 into
account, we get a map

lim
−−→

Ker(Φ)/ Im(Ψ) −→ lim
−−→

Hn Tot Γ(U•,I •) = Hn(X,F ),

where the direct limit runs over all hypercoverings U• ∈ H
op
X,r.

Theorem 4.3. For each integer n ≥ 2 and each type r ≥ n − 2, the above map is
bijective, such that we get an identification Hn(X,F ) = lim

−−→
Ker(Φ)/ Im(Ψ).

https://doi.org/10.1017/S1446788720000142 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000142


[13] Rigidified torsor cocycles 127

Proof. First, we check that the map in question is surjective. Fix some cohomology
class [α] ∈ Hn(X,F ). Represent the class on some suitable hypercovering U• of type
r by some tuple

α = (α0, α1, . . . , αn),

where each entry is a local section αi ∈ Γ(Ui,I n−i) and the tuple is a cocycle in the
total complex Tot Γ(U•,I •). We now show by induction on 0 ≤ i ≤ n − 2 that after
passing to finer hypercoverings, the tuple becomes cohomologous to a tuple of the
form β = (0, . . . , 0, βi, . . . , βn). In the final case i = n − 2, the remaining pair (βn−1, βn)
gives a cocycle in the three-term complex inducing the class [α].

This assertion is trivial for i = 0. Now suppose that 1 ≤ i ≤ n − 3, and that
α0 = · · · = αi−1 = 0. Then αi ∈ Γ(Ui,I n−i) vanishes in Γ(Ui,I n−i+1), thus defines
a class [αi] ∈ Hn−i(Ui,F ). Choose some covering W → Ui on which the cohomology
class vanishes, in other words, αi|W lies in the image of Γ(W,I n−i−1). Now we use
i < n − 2 ≤ r, so we may refine the hypercovering U• ∈ HX,r of type r and assume that
αi lies in the image of Γ(Ui,I n−i−1). Subtracting from α the ensuing coboundary, we
obtain α0 = · · · = αi = 0. This shows that the canonical map is surjective.

It remains to check that our map is also injective. Suppose an n-cocycle of the form
α = (0, . . . , 0, αn−1, αn) is a coboundary in the total complex Tot Γ(U•,I •). Then there
is an (n − 1)-cochain β = (β0, . . . , βn−1) mapping to α. Clearly, we may replace β by
some cohomologous cochain. As in the preceding paragraph, we may thus assume
that β0 = · · · = βn−3 = 0. The entry βn−2 ∈ Γ(Un−2,I 1) then vanishes in Γ(Un−2,I 2),
thus can be regarded as an local section of I 0/F . In turn, the pair (βn−2, βn−1) is an
element from Cn−1 mapping to (αn−1, αn) ∈ Cn. This means that the map in question is
injective. �

5. Iterated alternating preimages

We keep the assumptions of the preceding section, such that C is a site with final
object X ∈ C. Let F be an abelian sheaf on C. We now collect some observations how
torsors behave in simplicial coverings. Together with the identification Hn(X,F ) =

lim
−−→

Ker(Φ)/ Im(Ψ) from the previous section, this will later lead to our geometric
interpretation of sheaf cohomology.

First recall that one may view H1(X,F ) as the group of isomorphism classes
π0(F -Tors) of F -torsors T . We write the group law for F additively and the
group action on T multiplicatively. Let T −1 be the same set-valued sheaf T , but
endowed with the inverse F -action, given on local sections by (− f ) · s. If F →F ′

is a homomorphism of abelian sheaves, we obtain an induced F ′-torsor F ′ ∧F T as
the quotient

F ′ ∧F T = F \(F ′ ×T )

by the diagonal F -action. Given F -torsors Ti indexed by a finite set I, and a map
ε : I → {±1}, the product sheaf

∏
i∈I T εi

i becomes a torsor under the abelian product
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sheaf P =
∏

i∈I Fi. We define the contracted product
∧

i∈I Fi as the induced F -
torsor ∧

i∈I

T εi
i = F ∧P

(∏
i∈I

T εi
i

)
with respect to the addition map P =

⊕
i∈I F → F . In the additive group

H1(X,F ) = π0(F -Tors) of isomorphism classes, we then have[∧
i∈I

T εi
i

]
=

∑
i∈I

εi[Ti].

The sum vanishes if and only if the contracted product admits a global section. Under
suitable assumptions, the contracted product even acquires a canonical section. The
precise meaning of this locution becomes apparent in the proof of the following
assertion.

Lemma 5.1. Suppose there is a free involution σ : I → I on the index set such that
εσ(i) = −εi and Ti = Tσ(i) for all i ∈ I. Then the contracted product

∧
i∈I T εi

i admits a
canonical section.

Proof. By taking contracted products of canonical sections, it suffices to treat the
case where the index set I contains merely two elements, such that the contracted
product takes the form T ∧ T −1. This contracted product comes with a canonical
map ϕ : T ∧T −1 →F , which sends a pair of local sections (s, s′) to the element f ,
defined via the condition f · s = s′. Recall that T = T −1 as set-valued sheaves. This
map is well defined, and equivariant with respect to the canonical F -actions. It must
be an isomorphism, because the category (F -tors) is a groupoid. The preimage of the
zero-section 0 ∈ Γ(X,F ) is the canonical global section of T ∧T −1. �

Now let U• be any semi-simplicial covering. Fix some integer n ≥ 0, and consider
the face operators pi : Un→ Un−1 for 0 ≤ i ≤ n. Given an F |Un−1-torsor T , we define
the alternating preimage as

p∗alt(T ) = p∗0(T ) ∧ p∗1(T −1) ∧ · · · ∧ p∗n(T )(−1)n
,

which is an F |Un-torsor. This torsor may or may not be trivial. However, we shall see
that the iterated alternating preimage q∗alt(p∗alt(T )) becomes trivial, and in fact acquires
a canonical section. Here q j : Un+1 → Un for 0 ≤ j ≤ n + 1 denote face operators
defined in degree n + 1. The reason is as follows. Set

T( j,i) = q∗j(p∗i (T )) and ε( j,i) = (−1)i+ j.

By definition, the iterated alternating preimage is the contracted product for the
F |Un+1-torsors T

ε( j,i)

( j,i) , where the indices satisfy 0 ≤ j ≤ n + 1 and 0 ≤ i ≤ n. The
simplicial identities ∂ j∂i = ∂i∂ j−1 for i < j yield canonical identifications q∗j(p∗i (G )) =

q∗i (p∗j−1(G )) that are natural in the sheaf G . Consider the index set

L = [n] × [n − 1] = {( j, i) | 0 ≤ i ≤ n and 0 ≤ j ≤ n + 1},
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which has cardinality (n + 1)(n + 2), an even number. It comes with the partition

L′ = {( j, i) | i < j} and L′′ = {( j, i) | i ≥ j},

and both of these sets have cardinality (n + 1)(n + 2)/2. In fact, we have a canonical
map

ψ : L′ −→ L′′, ( j, i) 7−→ (i, j − 1)

which reflects the simplicial identities. This map is injective, hence bijective, because
domain and range have the same cardinality. In turn, we get a canonical free involution
σ : L→ L, with σ|L′ = ψ and σ|L′′ = ψ−1. By construction,

Tσ( j,i) = T( j,i) and εσ(i, j) = −ε(i, j).

So we may apply Lemma 5.1 to the iterated alternating preimage q∗alt(p∗alt(T )) and
infer that it comes with a canonical section ϕcan ∈ Γ(Un+1, q∗alt(p∗alt(T ))), which yields
a canonical identification

q∗alt(p∗alt(T )) = F |Un+1.

This simple observation has remarkable consequences. If T is an F |Un−1 torsor
and ϕ ∈ Γ(Un, p∗alt(T )) is a section of the alternating preimage of the torsor, the
alternating preimage of the section can be regarded as a section q∗alt(ϕ) ∈ Γ(Un+1,F ).
In turn, we get a ‘cocycle condition’ q∗alt(ϕ) = 0 for pairs (T , ϕ).

Furthermore, each F |Un−2-torsor Tn−2 yields a ‘coboundary pair’ (T , ϕ), where
the F |Un−1-torsor T = r∗alt(Tn−2) is the alternating preimage, formed with the face
operators rk : Un−1 → Un−2, and ϕ = ϕcan is the canonical section of the iterated
alternating preimage p∗alt(T ) = p∗alt(r

∗
alt(Tn−2)). Indeed, coboundary pairs satisfy the

following cocycle condition.

Proposition 5.2. With the preceding notation, we have q∗alt(ϕcan) = 0.

The proof of this innocuous assertion requires a little preparation. Consider the
triple index set

M = {( j, i, k) | 0 ≤ j ≤ n + 1, 0 ≤ i ≤ n and 0 ≤ k ≤ n − 1}.

This set has cardinality (n + 2)(n + 1)n, which is divisible by six. In simplicial
notation M = [n + 1] × [n] × [n − 1]. Furthermore, the simplicial identities yield two
involutions σ, η : M → M, determined by the condition

σ( j, i, k) = (i, j − 1, k) and η( j, i, k) = ( j, k, i − 1)

for i < j and k < i, respectively. Consider the dihedral permutation group G = 〈σ, η〉
inside the symmetric group SM generated by the involutions, which satisfy the relations
σ2 = η2 = e.

Lemma 5.3. The dihedral group G has order ord(G) = 6, and the G-action on the index
set M is free.
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Proof. Fix some element ( j, i, k) ∈ M with k < i < j. Its G-orbit consists of the
following elements, arranged in a hexagonal pattern:

( j, i, k).
σ

ww

�
η

((

(i, j − 1, k)_
η

��

( j, k, i − 1)_

σ

��

(i, k, j − 2)
�

σ
''

(k, j − 1, i − 1)-

η
vv

(k, i − 1, j − 2)

These six triples are pairwise different, because the entries j, i, k are pairwise different.
Setting g = ord(G), we obtain 6|g.

By the simplicial identities, each element ( j′, i′, k′) ∈ M lies in the G-orbit of some
element ( j, i, k) with k < i < j. Hence all G-orbits comprise six elements, and we have
the relation σησ = ηση in G. Therefore, the generators σ, η ∈ G yield a surjection
from the dihedral group D3 = 〈σ, η | σ2 = η2 = (ση)3〉, thus g|6. The upshot is that
g = 6, that the surjection D3 → G is bijective, and that G acts freely on M. �

Proof of Proposition 5.2. By the very definition, the iterated alternating preimage
p∗alt(T ) = p∗alt(r

∗
alt(TUn−2 )) is a contracted product of the trivial F |Un-torsors

Pik = p∗i (r∗k(TUn−2 ))(−1)i+k
∧ p∗k(r∗i−1(TUn−2 ))(−1)i+k−1

(5-1)

for k < i, and the canonical section ϕcan is the contracted product of canonical sections
ϕik ∈ Γ(Un,Pik). For each 0 ≤ j ≤ n + 1 with i < j, define

P j,i,k = q∗j(Pik)(−1) j
,

Pk, j−1,i−1 = q∗k(P j−1,i−1)(−1)k
, (5-2)

Pi, j−1,k = q∗i (P j−1,k)(−1)i
.

According to Lemma 5.3, the triple iterated alternating preimage q∗alt(p∗alt(T )) =

q∗alt(p∗alt(r
∗
alt(TUn−2 ))) is the contracted product of the trivial F |Un+1-torsors

P j,i,k ∧Pk, j−1,i−1 ∧Pi, j−1,k, (5-3)

where the contracted product runs over all triples ( j, i, k) with k < i < j. Substituting
(5-2) and (5-1), we see that (5-3) is the contracted product of six torsors, which
are nontrivial in general. To simplify notation, set ε = (−1)i+ j+k and Sb,a,c =
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q∗b(p∗a(r∗c(TUn−2 ))), and arrange the six torsors in a hexagonal graph:

S ε
j,i,k

σ η

S −ε
j,k,i−1

η

S −ε
j,k,i−1

σ

S ε
i,k, j−2

σ

S ε
k, j−1,i−1

η

S −ε
k,i−1, j−2

(5-4)

Here the edges reflect the action of the generators σ, η of the dihedral permutation
group G ⊂ SM on the set of indices M. In light of the simplicial identities and the
exponents ±ε, any two adjacent torsors are inverse to each other, and in particular
have the same underlying set-valued sheaf. The contracted product of the six torsors
is a trivial F |Un+1-torsor. In fact, the contracted product has two canonical sections,
coming from the two possible cyclic placement of parenthesis pairs. Pairing the torsors
incident with the σ-edges gives(

S ε
j,i,k ∧S −ε

j,k,i−1
)
∧

(
S ε

i,k, j−2 ∧S −ε
k,i−1, j−2

)
∧

(
S ε

k, j−1,i−1 ∧S −ε
j,k,i−1

)
,

which yields the canonical section from the ‘outer iterated preimage’. Pairing the
torsors incident with the η-edges gives(

S ε
j,i,k ∧S −ε

j,k,i−1
)
∧

(
S −ε

j,k,i−1 ∧S −ε
k,i−1, j−2

)
∧

(
S ε

i,k, j−2 ∧S −ε
j,k,i−1

)
,

which yields the canonical section from the ‘inner iterated preimage’.
Our task is to show that these two canonical sections coincide. To verify this, choose

respective local sections
s0

g0

  

=
f0

~~
s1_

g1

��

s5_
f1
��

s2 �

f2
  

s4=

g2
~~

s3

for the torsors in the hexagonal diagram (5-4). The equations s1 = f0 · s0 and s2 =

g1 · s1 etc. define local sections f0, f1, f2 and g0, g1, g2 for the abelian sheaf F , as
indicated in the above diagram. Obviously, they satisfy f0 + g1 + f2 = g0 + f1 + g2,
hence f0 − f1 + f2 = g0 − g1 + g2. The two sides of the latter equation correspond to
the canonical sections of the sixfold contracted product, and our assertion follows. �
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6. Rigidified torsor cocycles

We keep the assumptions of the preceding section, such that C is a site with final
object X ∈ C. For simplicity, we assume that the Grothendieck topology is given
by a pretopology Cov(V), V ∈ C, of covering families (Uλ → V)λ∈L. Furthermore,
we suppose that for each covering family (Uλ → V)λ∈L, the disjoint union U =

⋃
Uλ

exists. We now introduce the central notion of this paper.

Definition 6.1. Let F be an abelian sheaf on the site C, and n ≥ 1 be some integer.
A rigidified torsor cocycle for F in degree n is a triple (U•,T , ϕ) consisting of the
following data:

(1) U• is a hypercovering of type r = n − 2;
(2) T is a torsor for the abelian sheaf F |Un−1 over Un−1;
(3) ϕ is a section of the alternating preimage p∗alt(T ) over Un.

These data satisfy q∗alt(ϕ) = 0 as section over Un+1 of the iterated alternating preimage
under the canonical identification q∗alt(p∗alt(T )) = F |Un+1.

For simplicity, we also say that (U•,T , ϕ) is a rigidified F -torsor n-cocycle.
Recall that pi : Un → Un−1 and q j : Un+1 → Un denote the face operators in the semi-
simplicial covering U• defined in degree n and n + 1, respectively. One should have
in mind the special case where the hypercovering U• has type r = 0, such that the
Um = Um+1 = U ×X × · · · ×X U form a Čech covering. Also note that a hypercovering
of type r = −1 is just the constant semi-simplicial covering with Um = X for all m ≥ 0.

Some rigidified torsor cocycles arise as follows. Given a hypercovering U• of type
n − 2, an F |Un−2-torsor TUn−2 and a local section s ∈ Γ(Un−1,F ), we may form the
alternating preimage T = r∗alt(TUn−2 ), where the rk : Un−1 → Un, 0 ≤ k ≤ n − 1, denote
face operators defined in degree n − 1. Being an iterated alternating preimage, the
F |Un-torsor p∗alt(T ) = p∗alt(r

∗
alt(TUn−2 )) on Un comes with a canonical section ϕ = ϕcan,

which we can multiply with p∗alt(s) ∈ Γ(Un−1,F ). It follows from Proposition 5.2 that
the triple (U•, r∗alt(TUn−2 ), p∗alt(s) · ϕcan) is a rigidified torsor cocycle. Let us call them
rigidified torsor coboundaries.

The rigidified F -torsor n-cocycles form a category Rn
F , where the morphism

(θ•, τ) : (U•,T , ϕ) −→ (U′•,T
′, ϕ′)

consists of a refinement θ• : U•→ U′•, together with a morphism τ : T → T ′|Un−1 of
F |Un−1-torsors, such that p∗alt(τ)(ϕ) = ϕ′|Un. Recall that HX,n−2 denotes the category
of hypercoverings U• of type r = n − 2, and consider the forgetful functor

R
n
F −→ HX,n−2, (U•,T , ϕ) −→ U•.

Clearly, all fiber categories Rn
F (U•) are groupoids, and all morphisms in Rn

F are
cartesian. The fiber categories Rn

F (U•) are actually Picard categories. The monoidal
structure is given by

(U•,T , ϕ) = (U•,T ′, ϕ′) ∧ (U•,T ′′, ϕ′′),
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where T = T ′ ∧ T ′′ and ϕ = ϕ′ ∧ ϕ′′. The associativity and commutativity
constraints come from the corresponding constraints for torsors. The neutral object is
given by the triple (U•,F |Un−1, 0). The monoidal structure on fibers comes from the
functorRn

F ×HX,n−2 R
n
F → R

n
F between categories overHX,n−2, where a triple consisting

of (U′•,T
′, ϕ′) and (U′′• ,T

′′, ϕ′′) together with an isomorphism θ• : U′• → U′′• is
mapped to the obvious wedge product taking θ• into account. Summing up, we have
the following proposition.

Proposition 6.2. The forgetful functor Rn
F → HX,n−2 is a fibered Picard category.

To proceed, let Tn−1
F be the fibered Picard category whose objects are triples

(U•,TUn−2 , s), where U• is a hypercovering of type n − 2, TUn−2 is an F |Un−2-torsor,
and s ∈ Γ(Un−1,F ) is a local section. The morphism

(U•,TUn−2 , s) −→ (U′•,T
′

Un−2
, s′)

consists of a refinement θ• : U• → U′• such that s = s′|Un−1, together with a morphism
τ : TUn−2 → T ′

Un−2
|Un−2 of F |Un−2-torsors.

Note that in the special case n = 1, our hypercovering U• of type r = −1 takes
constant values Ud = X, d ≥ 0. Hence TU−1 is a torsor over X endowed with a global
section s ∈ Γ(X,T ). In particular, all objects in the fiber categories T−1

F (U•) are
isomorphic.

We have a commutative diagram

Tn−1
F

##

// Rn
F

||

HX,n−2

where the horizontal functor sends the triple (U•,TUn−2 , s) to the rigidified torsor
coboundary (U•, r∗alt(TUn−2 ), p∗alt(s) · ϕcan), and the two diagonal arrows are the forgetful
functors. The horizontal functor respects the monoidal structure. The cokernels

Coker(π0(Tn−1
F (U•)) −→ π0(Rn

F (U•)))

for the resulting homomorphisms between fiberwise groups of isomorphism classes
depend functorially on the hypercovering U•. The transition maps arise from base-
changes. We write the ensuing contravariant functor as

HX,n−2 −→ (Ab), U• 7−→ π0(Rn
F (U•))/π0(Tn−1

F (U•)).

The ensuing direct limit

RTCn(F ) = lim
−−→

π0(Rn
F (U•))/π0(Tn−1

F (U•))

in the category of sets is called the set of equivalence classes of rigidified torsor
cocycles for the abelian sheaf F in degree n ≥ 1. Here the direct limit runs over
all objects U• ∈ H

op
X,n−2.
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It is not a priori clear that the set RTCn(F ) inherits a group structure, because
the category Hop

X,n−2 is usually not filtered. We thus have to check that the transition
maps depend only on homotopy classes of refinements, that is, the functor factors over
the quotient category H

op
X,n−2. To see this, suppose we have a homotopy h0, . . . , hn :

Un→ Vn+1 between two refinements θ•, ζ• : U•→ V•, as discussed in Section 3. Write
h∗alt(P) = h∗0(P) ∧ h∗1(P−1) ∧ · · · ∧ h∗n(P (−1)n

) for each F |Vn+1-torsor P .

Lemma 6.3. Let V• be a semi-simplicial covering and T be an F |Vn−1-torsor. With
the above notation, we have a canonical identification

θ∗n−1(T ) ∧ r∗alt(h
∗
alt(T

−1)) = ζ∗n−1(T ) ∧ h∗alt(p∗alt(T )) (6-1)

of F |Un−1-torsors, which is natural in T . Here pi and rk denote face operators
defined in degree n and n − 1, respectively.

Proof. The torsor h∗alt(p∗alt(T )) on the right-hand side is a wedge product of torsors
h∗j(p∗i (T ))ε , with exponents ε = (−1)i+ j and indices 0 ≤ i ≤ n and 0 ≤ j ≤ n − 1. Now
recall from Section 3 the simplicial homotopy identities (3-1). In the two boundary
cases i = j = 0 and i = j + 1 = n we get θ∗n−1(T ) and ζ∗n−1(T )−1, respectively. The
two diagonal strips 1 ≤ i = j ≤ n and 1 ≤ i = j + 1 ≤ n + 1 give torsors h∗i (p∗i (T )) and
h∗i (p∗i−1(T ))−1 that are inverse to each other. The remaining n(n + 1) − 2 − 2(n − 1) =

n(n − 1) torsors take the form

h∗j(p∗i (T ))ε =

r∗i (h∗j−1(T ))ε if 0 ≤ i < j ≤ n + 1,
r∗i−1(h∗j(T ))ε if n + 1 ≥ i > j + 1 > 0.

These comprise the factors in the torsor r∗alt(h
∗
alt(T

−1)) occurring on the left hand side
of the natural identification. Summing up, the simplicial homotopy identities, together
with P ∧P−1 = F |Un−1, give the desired identification, which is therefore natural
in T . �

This ensures the desired homotopy invariance.

Proposition 6.4. Let (V•,T , ϕ) be a rigidified torsor cocycle in degree n ≥ 1, and
θ•, ζ• : U• → V• be two homotopic refinements. Then the resulting transition maps

π0(Rn
F (V•))/π0(Tn−1

F (V•)) −→ π0(Rn
F (U•))/π0(Tn−1

F (U•))

induced by θ• and ζ• coincide.

Proof. It suffices to treat the case where there is a homotopy h0, . . . , hd : Ud → Vd+1
between the refinements θ• and ζ•. The idea is to extend the natural identification of
F |Un−1-torsors in Lemma 6.3 to an isomorphism of rigidified torsor cocycles, where
the additional factors

T ′ = r∗alt(h
∗
alt(T )) and T ′′ = h∗alt(p∗alt(T ))

are equipped with the structure of rigidified torsor coboundaries.
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For T ′, we take the canonical section ϕ′ = ϕcan for the iterated alternating preimage
q∗alt(T

′) of h∗alt(T ). Note that in the special case T = F |Vn−1, this becomes T ′ =

F |Un−1 and ϕ′ = 0.
For T ′′, we use the given ϕ ∈ Γ(Vn, p∗alt(T )) to define ϕ′′ = −p∗alt(h

∗
alt(ϕ)). The

ensuing triple (U•,T ′′, ϕ′′) is indeed a rigidified coboundary: using the identification
T ′′ = F |Un−1 stemming from h∗alt(ϕ), we get T ′′ = F |Un−1 = r∗alt(F |Un−2) and
ϕ′′ = 0, and in particular q∗(ϕ′′) = 0.

It remains to see that the natural identification (6-1) is compatible with the four
rigidifications θ∗n(ϕ), ϕ′, ζ∗n(ϕ), ϕ′′. Applying p∗alt and using that θ• and ζ• are natural
transformations, we get

θ∗n(p∗alt(T )) ∧ p∗alt(T
′) = ζ∗n(p∗alt(T )) ∧ p∗alt(T

′′).

This is an identification of F |Un-torsors, which is natural in the F |Vn−1-torsor T .
Our task is to verify

θ∗n(ϕ) ∧ ϕ′ = ζ∗n(ϕ) ∧ ϕ′′ (6-2)

as sections in the above torsor. This problem is local in Un; to check it we may
refine our hypercoverings, and even increase their type. Now choose some covering
Ṽn−1 → Vn−1 on which T acquires a section, and form the fiber product Ũn−1 =

Ṽn−1 ×Vn−1 Un−1. Setting Ṽd = Vd and Ũd = Ud for d < n − 1, we obtain truncated semi-
simplicial coverings and hypercoverings

Ũ• = coskn−1(Ũ≤n−1) and Ṽ• = coskn−1(Ṽ≤n−1)

of type r = n − 1. In order to check (6-2), we may restrict to the new hypercoverings.
Replacing the old hypercoverings by the new ones and using the naturalness of our
construction, we have reduced the problem to the special case T = F |Vn−1 and thus
ϕ′ = 0 = h∗alt(q

∗
alt(ϕ)).

Consider the cochain complexes Γ(V•,F ) and Γ(U•,F ) of abelian groups, where
the coboundary operators ∂ are alternating sums as in (3-2). The refinements induce
cochain maps θ∗•, ζ

∗
• : Γ(V•,F )→ Γ(U•,F ). With the notation from Lemma 3.1, we

have θ∗d − ζ
∗
d = s∂ − ∂s in all degrees d ≥ 0. For d = n, we find

θ∗n(ϕ) + ϕ′ = θ∗n(ϕ) − h∗alt(q
∗
alt(ϕ)) = ζ∗n(ϕ) − p∗alt(h

∗
alt(ϕ)) = ζ∗n(ϕ) + ϕ′′.

It follows that equality (6-2) holds. �

Let us unravel our setup in degree n = 1. Recall that a hypercovering U• of type
r = −1 is given by Um = X for all m ≥ 0, and every face operator is the identity on
X. Hence the alternating preimage for the face operators p0, p1 : U1 → U0 is given by
p∗alt(T ) = T ∧T −1 = F . Likewise, the iterated alternating preimage is

q∗alt(p∗alt(T )) = q∗alt(F ) = F ∧F −1 ∧F = F ,

such that q∗alt(ϕ) = ϕϕ−1ϕ = ϕ. In turn, a rigidified torsor cocycle (U•,T , ϕ) in degree
n = 1 is entirely determined by the F -torsor T over the final object U0 = X, and
ϕ is the zero-section of T ∧ T −1 = F |Un. Using the description of H1(X,F ) =

π0(F -Tors), we immediately get the following result.
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Proposition 6.5. There is a functorial identification RTC1(F ) = H1(X,F ).

The situation is more challenging in degree n = 2. Suppose we have an F -gerbe
G→ C. Choose a covering U → X over which there is an object T ∈ GU . The fiber
products Um = Um+1 form a Čech covering U•, that is, a hypercovering of type r = 0.
Write

U3

q j
//////// U2

pi
////// U1

rk //// U0 // X

for the face operators defined in degrees up to three. We get two objects T0 = r∗0(T )
and T1 = r∗1(T ) in the fiber category GU1 , and thus an F |U1-torsor T = Hom(T1,T0).
To compute the alternating preimage p∗alt(T ), we use the three simplicial identities
r0 p1 = p0r1, r0 p2 = r1 p0 and r1 p2 = r1 p1 to get

p∗0(T )−1 = Hom(p∗0r∗0T, p∗0r∗1T ),

p∗1(T )−1 = Hom(p∗1r∗0T, p∗1r∗1T ) = Hom(p∗0r∗0T, p∗1r∗1T ),

p∗2(T )−1 = Hom(p∗2r∗0T, p∗2r∗1T ) = Hom(p∗0r∗1T, p∗1r∗1T ).

Composition for hom sets yields a canonical isomorphism of F |U2-torsors

ϕ : p∗2(T )−1 ∧ p∗0(T )−1 −→ p∗1(T )−1, (h2, h0) 7−→ h2 ◦ h0 (6-3)

which can be regarded as a section ϕ ∈ Γ(U2, p∗alt(T )). This gives us a triple
(U•,T , ϕ).

Proposition 6.6. The triple (U•,T , ϕ) is a rigidified torsor cocycle.

Proof. We have to check that q∗alt(ϕ) = 0 as section of the iterated alternating preimages
q∗alt(p∗alt(T )) = F |U3. Choose a covering V → U1 over which the F |U2-torsor T
acquires a section. This section defines an isomorphism r∗1(T )|V → r∗0(T )|V of objects
in the fiber category GV , and we write h : r∗0(T )|V → r∗1(T )|V for its inverse. Consider
the truncated semi-simplicial covering V≤2 with V2 = V , V1 = U1 and V0 = U0, and the
ensuing hypercovering V• = cosk2(V≤2) of type two. The composition (6-3) of hom
sets defines via the equation

p∗2(h) ◦ p∗0(h) = f · p∗1(h)

a local section f ∈ Γ(V2,F ). Using the six simplicial identities piq j = p j−1qi for i < j,
the above equality gives four equations:

q∗0 p∗2(h) ◦ q∗0 p∗0(h) = q∗0( f ) · q∗0 p∗1(h),
q∗1 p∗2(h) ◦ q∗0 p∗0(h) = q∗1( f ) · q∗1 p∗1(h),
q∗2 p∗2(h) ◦ q∗0 p∗1(h) = q∗2( f ) · q∗1 p∗1(h),
q∗2 p∗2(h) ◦ q∗0 p∗2(h) = q∗3( f ) · q∗1 p∗2(h).

Here q∗j( f ) ∈ Γ(V3,F ), and the equations hold as morphisms q∗j p
∗
i r∗0(T )→ q∗j p

∗
i r∗1(T )

in the fiber category GV3 . In the above four equations, each of the terms q∗j p
∗
i (h)
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appears twice, and the pair members come with ‘opposite signs’ in the alternating
preimage. This ensures q∗0( f ) + q∗2( f ) = q∗1( f ) + q∗2( f ). By definition of the iterated
alternating preimage, one has

q∗alt(ϕ)|V3 = q∗0( f ) − q∗1( f ) + q∗2( f ) − q∗3( f ).

In turn, we have q∗alt(ϕ)|V3 = 0. Since the induced morphism V3 → U3 is a covering,
the sheaf axiom ensures that q∗alt(ϕ) = 0. �

It is easy to see that the class of (U•,T , ϕ) in the group RTC2(F ) is independent
of the choice of the equivalence class of the F -gerbe G→ C, the covering U → X,
and the object T ∈ GU . One thus gets a well-defined map

H2(X,F ) −→ RTC2(F ), G 7−→ (U•,T , ϕ).

In the next section, we shall see that this map is bijective.

7. The comparison map

We keep the assumptions of the preceding section, such that C is a site having
a final object X ∈ C, and that the Grothendieck topology is given by a pretopology
Cov(V), V ∈ C, of covering families (Uλ → V)λ∈L. Furthermore, we suppose that for
each covering family (Uλ → V)λ∈L, the disjoint union U =

⋃
Uλ exists, such that each

covering family can be refined to a covering singleton. For each abelian sheaf F ,
fix an injective resolution 0→F →I 0 → · · · , such that sheaf cohomology becomes
Hn(X,F ) = HnΓ(X,I •).

The goal of this section is to identify the group RTCn(F ) of equivalence classes of
rigidified torsor cocycles with the cohomology group Hn(X,F ), for each degree n ≥ 1.

The crucial ingredient is the three-term complex Cn−1 Ψ
→ Cn Φ

→ Cn+1 constructed in
Section 4. The main task is to define the comparison map

RTCn(F ) −→ lim
−−→

Ker(Φ)/ Im(Ψ) = Hn(X,F ),

where the identification on the right comes from Theorem 4.3. We start by defining
the comparison map on objects (U•,T , ϕ) from a fixed fiber category Rn

F (U•). Recall
that Rn

F → HX,n−2 is the fibered Picard category of rigidified torsor cocycles.
Consider the induced I 0|Un−1-torsor T 0 = (I 0|Un−1) ∧F |Un−1 T , obtained by

extending the structure sheaf with respect to the inclusion F ⊂ I 0. This torsor
admits a section s ∈ Γ(Un−1,T 0), because I 0 is an injective and hence acyclic sheaf.
The resulting bijection T 0 → I 0|Un−1 yields an injection T ⊂ I 0|Un−1, whose
image under the vertical differential εd : I 0 → I 1 can be regarded as a section
αn−1 ∈ Γ(Un−1,I 1) mapping to zero in Γ(Un−1,I 2). Here ε = (−1)n−1 is the sign
introduced for the double complex.

Next, consider the section ϕ ∈ Γ(Un, p∗alt(T )) for the alternating preimage. Recall
that pi : Un → Un−1, 0 ≤ i ≤ n, denote the face operators in the hypercovering U•. The
inclusion T ⊂ T 0 = I 0|Un−1 induces an inclusion of alternating preimages

p∗alt(T ) ⊂ p∗alt(T
0) = p∗alt(I

0|Un−1) = I 0|Un,
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so our section ϕ becomes an element αn ∈ Γ(Un,I 0). In turn, we obtain a cochain

(αn−1, αn) ∈ Cn in the three-term complex Cn−1 Ψ
→ Cn Φ

→ Cn+1, and the comparison
map will be given by the assignment

(U•,T , ϕ) 7−→ (αn−1, αn). (7-1)

This cochain is a cocycle. We have already remarked that d(αn−1) = 0. By
construction, αn is the section ϕ of the subsheaf p∗alt(T ) ⊂ I 0|Un, hence −εd(αn) =

δ(αn−1). Furthermore, we have q∗alt(ϕ) = 0 as section of the iterated alternating
preimage q∗alt(p∗alt(T )), which ensures ∂(αn) = 0. Summing up, the pair (αn−1, αn)
lies in the kernel of the differential Φ, hence is a cocycle.

This attaches to each object (U•,T , ϕ) ∈ Rn
F (U•) an element (αn−1, αn) ∈ Ker(Φ).

Note that the assignment depends on the choice of sections s ∈ Γ(Un−1,T 0). Passing
to cohomology gives a map

R
n
F (U•) −→ Ker(Φ)/ Im(Ψ) −→ Hn(X,F ), (U•,T , ϕ) 7−→ (αn−1, αn). (7-2)

This map does not depend anymore on the choice of sections: any other section is of
the form s′ = s + βn−1 for some unique βn−1 ∈ Γ(Un−1,I 0). One easily checks that
the resulting cocycle (α′n−1, α

′
n) differs by the coboundary Ψ(0, βn−1). The following

proposition is also immediate.

Proposition 7.1. The above map (7-2) sends isomorphic objects to the same
cohomology class, and turns wedge products in the Picard category Rn

F (U•) into
addition of classes. Furthermore, for each F |Un−2-torsor Tn−2 and each local section
s ∈ Γ(Un−1,F ), the rigidified torsor coboundary (U•,T , ϕ) given by T = r∗alt(Tn−2)
and ϕ = p∗alt(s) · ϕcan is sent to the zero class.

Clearly, our map is functorial in U•. Recall that the group RTCn(F ) is the direct
limit for the functor

H
op
X,n−2 −→ (Ab), U• 7−→ π0(Rn

F (U•))/π0(Tn−1
F (U•))

which is defined on the quotient category of hypercoverings of type r = n − 2. Passing
to direct limits, the maps in (7-2) give the desired comparison map

RTCn(F ) −→ lim
−−→

Ker(Φ)/ Im(Ψ) = Hn(X,F ).

We now come to our main result, which gives the desired geometric interpretation of
higher cohomology.

Theorem 7.2. For each abelian sheaf F and each degree n ≥ 1, the comparison map
is bijective, such that we have an identification RTCn(F ) = Hn(X,F ).

Proof. To see surjectivity, we represent a given cohomology class [α] ∈ Hn(X,F ) by a

cocycle (αn−1, αn) in the three-term complex Cn−1 Ψ
→ Cn Φ

→ Cn+1, with respect to some
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hypercovering U• of type r = n − 2. In particular, the entry αn−1 ∈ Γ(Un−1,I 1) is a
local section that vanishes in Γ(Un−1,I 2). The cartesian square of set-valued sheaves

T //

��

hUn−1

αn−1

��

I 0|Un−1
εd
// I 1|Un−1

defines an F |Un−1-torsor T . Here ε = (−1)n−1 is the sign introduced for the double
complex. One easily checks that its alternating preimage sits in the cartesian square

p∗alt(T ) //

��

hUn

−αn

zz

∂(αn−1)
��

ϕ

{{

I 0|Un
εd
// I 1|Un

The dotted diagonal arrow arises from the entry αn ∈ Γ(Un,I 0), in light of the cocycle
condition ∂(αn−1) = −εd(αn). This dotted diagonal arrow corresponds to a section
ϕ ∈ Γ(Un, p∗alt(T )). In turn, we obtain a triple (U•,T , ϕ). The condition ∂(αn) = 0
ensures that q∗alt(ϕ) = 0, hence (U•,T , ϕ) is a rigidified torsor cocycle.

We now check that (U•,T , ϕ) 7→ (αn, αn−1) under the comparison map, as
described on objects in (7-1). Indeed, the inclusion T ⊂ I 0|Un−1 yields a canonical
isomorphism

T 0 = (I 0|Un−1) ∧F |Un−1 T −→I 0|Un−1,

and we may take for the section s ∈ Γ(Un−1,T 0) the zero-section of I 0|Un−1. Then
the image of T ⊂ I 0|Un−1 under the differential εd is the entry αn−1 ∈ Γ(Un−1,I 1).
Furthermore, the section ϕ corresponds to −αn ∈ Γ(Un,I 0). Thus the cocycle
(αn−1, αn) lies in the image.

It remains to check that the comparison map is injective. Let (U•,T , ϕ) be a
rigidified torsor cocycle, and suppose that the comparison map (7-1) sends it to a

cocycle (αn−1, αn) in the three-term complex Cn−1 Ψ
→ Cn Φ

→ Cn+1 that vanishes in
Hn(X,F ). Refining the hypercovering U•, we may assume that (αn−1, αn) is already
the coboundary of some (βn−2, βn−1); in other words,

αn−1 = εd(βn−1) +

n−1∑
k=0

(−1)kr∗k(βn−2) and αn =

n∑
i=0

(−1)i p∗i (βn−1).

The local section βn−2 ∈ Γ(Un−2,I 0/F ) yields an F |Un−2-torsor TUn−2 , by taking
the preimage sheaf of this local section. Adding the rigidified torsor coboundary
(U•, r∗alt(T

−1), ϕcan), we reduce to the situation βn−2 = 0, hence αn−1 = εd(βn−1). By
definition of the comparison map, T ⊂ I 0|Un−1 is the preimage sheaf of αn−1 ∈
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Γ(Un−1,I 1), so εβn−1 ∈ Γ(Un−1,I 0) defines a section for T . In turn, we may assume
that T = F |Un−1 and βn−1 = 0. Consequently αn = 0, which means that the section
ϕ ∈ Γ(Un+1, q∗alt(T )) coincides with the zero-section. Summing up, our rigidified
torsor cocycle is a rigidified torsor coboundary. �

Let us record the following two consequences.

Corollary 7.3. Two rigidified F -torsor n-cocycles A′ = (U′•,T
′, ϕ′) and A′′ =

(U′′• ,T
′′, ϕ′′) have the same cohomology class in Hn(X,F ) if and only if there

exist a common refinement U′• ← U• → U′′• and some rigidified torsor coboundary
B = (U•, r∗alt(Tn−2), p∗alt(s) · ϕcan) such that A′|U• ' (A′′|U•) ∧ B.

Corollary 7.4. A rigidified F -torsor n-cocycle A′ = (U′•, T
′, ϕ′) has trivial

cohomology class in Hn(X,F ) if and only if there exist a refinement U• → U′•
and some rigidified torsor coboundary B = (U•, r∗alt(Tn−2), p∗alt(s) · ϕcan) such that
A′|U• ' B.

8. Bundle gerbes and Dixmier–Douady classes

Let us now connect our theory of rigidified torsor cocycles with Murray’s notion of
bundle gerbes from [29, Section 3]; see also [32, Section 2]. Let M be a differential
manifold, π : Y → M be a fibration, and P→ Y [2] be a C×-principal bundle. In this
context, Y is also a differentiable manifold and fibrations denote differentiable maps
that are surjective on points and tangent vectors. The total space Y is allowed to be
infinite-dimensional, and the fibration Y → M is assumed to admit local sections.
Conforming with the notation in [32], we here write Y [2] = Y ×M Y for the fiber
product. Now define

Y [2] ◦ Y [2] ⊂ Y [2] × Y [2]

as the set of all pairs of the form ((a, b), (b, c)), with a, b, c ∈ Y all mapping to the same
point in M. Write πi : Y [2] ◦ Y [2] → Y [2] with i = 1, 2 for the two projections.

A bundle gerbe consists of the choice of a fibration π : Y → M and a principal C×-
bundle P→ Y [2], together with a map of C×-bundles

µ : π−1
1 (P) ⊗ π−1

2 (P) −→ P (8-1)

covering the map

π3 : Y [2] ◦ Y [2] −→ Y [2], ((a, b), (b, c)) 7−→ (a, c). (8-2)

The product in (8-1) is assumed to be associative whenever triple products in (8-2)
are defined. Bundle gerbes arising from P = π−1

1 (Q∗) ⊗ π−1
2 (Q), where Q→ Y is a

principal C×-bundle, are called trivial.
Let us translate this into the setup and notation of the present paper. The tensor

product in (8-1) is vector bundle notation for the contracted product of C×-bundles.
Furthermore, the morphism can be regarded as a map µ : π∗1(P) ⊗ π∗2(P)→ π∗3(P)
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of principal C×-bundles over Y [2] ◦ Y [2]. Using semi-simplicial notation, we write
Yd = Y [d+1]. Clearly, the canonical map

Y [2] ◦ Y [2] −→ Y [3] = Y2, ((a, b), (b, c)) 7−→ (a, b, c)

into the threefold fiber product is a homeomorphism. With respect to this
identification, we have

π1 = p2, π2 = p0, π3 = p1

as face operators Y2 → Y1, in simplicial notation. So µ in (8-1) may be regarded as
a section into the alternating preimage p∗alt(P

−1) = p∗0(P−1) ⊗ p∗1(P) ⊗ p∗2(P−1) for the
inverse principal bundle P−1. On the other hand, we may regard µ as the collection of
fiberwise maps of principal C×-sets

µabc : P(a,b) ⊗ P(b,c) −→ P(a,c),

where a,b, c ∈ Y map to the same point in M. Write idab : P(a,b)→ P(a,b) for the identity
map. The associativity condition for bundle gerbes becomes

µacd ◦ (µabc ⊗ idcd) = µabd ◦ (idab ⊗ µbcd) (8-3)

as maps P(a,b) ⊗ P(b,c) ⊗ P(c,d)→ P(a,d) of principalC×-sets, for all a,b, c,d ∈ Y mapping
to the same point in M. For the following observation, recall that the pi : Y2 → Y1 and
q j : Y3 → Y2 denote face operators.

Proposition 8.1. The associativity condition (8-3) for bundle gerbes holds if and only
if q∗alt(µ) = 1Y3 with respect to the identification q∗alt(p∗alt(P

−1)) = C× × Y3 of iterated
alternating preimages.

Proof. Over each point (a, b, c, d) ∈ Y [4] = Y3, the fiber of the iterated alternating
preimage q∗alt(p∗alt(P

−1)) is the tensor product of the following 12 principal C×-sets:

P−1
(c,d), P(b,d), P−1

(b,c),

P(c,d), P−1
(a,d), P(a,c),

P−1
(b,d), P(a,d), P−1

(a,b),

P(b,c), P−1
(a,c), P(a,b).

Now choose for each of the six occurring points (c, d), . . . , (a, b) ∈ Y [2] some elements
scd ∈ P(c,d), . . . , sab ∈ P(a,b). Regarding µ as a pairing, the four equations

µbcd(sbc ⊗ scd) = fasbd,

µacd(sac ⊗ scd) = fbsad,

µabd(sab ⊗ sbd) = fcsad,

µabc(sab ⊗ sbc) = fd sac

define scalars fa, . . . , fd ∈ C×. The condition q∗alt(µ) = 1Y3 on the alternating preimage
translates into fa fc = fb fd. Note that here we use multiplicative rather than additive
notation. Applying the two sides of (8-3) to the element

sab ⊗ sbc ⊗ scd ∈ P(a,b) ⊗ P(b,c) ⊗ P(c,d),

we see that the associativity conditions is equivalent to fa fc = fb fd as well. �
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It is now straightforward to verify that Murray’s bundle gerbes correspond to our
rigidified torsor cocycles for n = 2. Let F = C ×M be the abelian sheaf of invertible
complex-valued functions. Each principal C×-bundle P→ M yields the F -torsor T
of local sections, and each F -torsor T yields the principal C×-bundle defined as
the relative spectrum of the CM-algebra

⊕
d∈ZL ⊗−d, where L = CM ∧

C ×M T is the
invertible sheaf attached to the C ×M-torsor. In this way, one gets an equivalence of
categories between principal C×-bundles and C ×M-torsors.

In turn, a bundle gerbe, which consists of a fibration P→ M, a principal bundle
P→ Y [2] and a pairing µ : π−1

1 (P) ⊗ π−1
2 (P)→ P satisfying the associativity condition,

corresponds to a covering U = Y with respect to some suitable site C, an F |U1-torsor
T and a section ϕ ∈ Γ(U2, p∗alt(T )) satisfying q∗alt(ϕ) = 1, in multiplicative notation.

The Dixmier–Douady class arises as follows. The exponential sequence of abelian
sheaves 0→ 2πiZM → CM → C ×M → 1 induces long exact sequences

Hn(M,CM) −→ Hn(X,C ×M) −→ Hn(M, 2πiZ) −→ Hn+1(M,CM).

The outer terms vanish for n ≥ 1, because the sheaf CM is soft, whence acyclic. In
turn, we get the identifications

RTCn(C ×M) = Hn(M,C ×M) = Hn+1(M, 2πiZ).

Here one may interpret the right-hand side both as sheaf cohomology and singular
cohomology. The integral cohomology class attached to a bundle gerbe or a rigidified
torsor cocycle in degree n = 2 is called the Dixmier–Douady class. We see that it is
defined for all degrees n ≥ 1.

Note also that the theory works well if the differentiable manifold M is merely
a topological space that is paracompact and locally contractible, because then sheaf
cohomology with locally constant Z-coefficients coincides with singular cohomology,
as explained in [8, Ch. III].
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[19] R. Godement, Topologie Algébrique et Théorie des Faisceaux (Hermann, Paris, 1964).
[20] A. Grothendieck, ‘A general theory of fibre spaces with structure sheaf’, University of Kansas,

Department of Mathematics, Report No. 4.
[21] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1) (Société Mathématique de
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