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We study a problem from nonlinear optics that leads to an integro-di® erential
equation which can be written as the abstract bifurcation problem
Au = ¶ Lu + r’(u). For such a type of equation, a general theorem on the
bifurcation of solutions from the essential spectrum is proved. The hypothesis that ’
is non-negative (as is usually assumed) could be omitted and replaced by other
conditions that allow us to use the results for the particular example. We also
indicate applications to semilinear elliptic equations.

1. Introduction and main results

In modern optical data transmission devices, nonlinear methods are often used
with the intention of compensating loss in the ­ bre by means of suitable nonlinear
e¬ects. The transmission of such an optical signal can be modelled by the nonlinear
Schr�odinger equation

iAz + d(z)Att + c(z)jAj2A = 0 (1.1)

(cf. [7, 9, 13, 15]). In (1.1), the complex-valued function A = A(z; t) describes the
envelope of the original electrical ­ eld, z 2 R is the longitudinal coordinate along the
­ bre and t denotes time. The dispersion d(z) = ~d(z) + hdi is periodic with mean
value hdi over one compensation period, whereas the function c(z) accounts for
signal power oscillations. In case of a `lossless’ model, this function is well approx-
imated by the choice c(z) ² 1, as we will assume in the sequel. An important
feature of the dispersion d(z) (and hence also of the `local dispersion’ ~d(z)) is that
it is rapidly varying, thus resulting in rapid oscillations of, for example, the signal
pulse width. However, there is an additional (slow) scale in the problem on which
the solitary pulses just propagate according to some suitably averaged equation.
Several papers derive and take advantage of such an averaged equation (see, for
example, [4,5,12,14,16] and the references therein). For our purposes, we follow [4,5]
and introduce the ansatz

A(z; t) =

Z

R
q(z; !) exp[¡ i!t ¡ i!2R(z)] d!;

with a new unknown function q = q(z; !), where R(z) is chosen such that dR=dz = ~d
and hRi = 0. This transformation eliminates the rapidly oscillating part ~d(z) of d(z),
and a formal averaging of the resulting equation for q yields, after some lengthy
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manipulation, the integro-di¬erential equation

iqz(z; !) = !2hdiq(z; !)

¡
Z

R

Z

R
d!1d!2

sin[ · (! ¡ !1)(! ¡ !2)]

· (! ¡ !1)(! ¡ !2)
q(z; !1)q(z; !2)q ¤ (z; !1 +!2 ¡ !)

(1.2)

for the unknown q(z; !) in the spectral domain (cf. [4, 5]). Here, q ¤ denotes the
complex conjugate of q, and the characteristic length parameter · > 0 is related
to the dispersion function d(z); in particular, the case · = 0 corresponds to d
being constant. This dispersion function d(z) has to be chosen as a step function
to make (1.2) a reasonable approximation (see [12]). Observe that, for · = 0,
equation (1.2) is just the nonlinear Schr�odinger equation ivz = ¡ hdivtt ¡ jvj2v,
where v̂(z; !) = q(z; !) is the Fourier transform of v = v(z; t) with respect to t.
Making in (1.2) the ansatz q(z; !) = u(!)eikz , with k 2 R and a real-valued `ground
state’ u, we ­ nally arrive at the nonlinear eigenvalue problem

(!2hdi + k)u(!) =

Z

R

Z

R
d!1d!2

sin[· (! ¡ !1)(! ¡ !2)]

· (! ¡ !1)(! ¡ !2)
u(!1)u(!2)u(!1 + !2 ¡ !):

(1.3)
It is the aim of the present paper to investigate the solvability of (1.3) (cf. the

corresponding discussion of a related problem in physical space (instead of Fourier
space) given in [18,19]). For simplicity, we take hdi = 1, set ¶ = 1 ¡ k and denote
the independent variable by x instead of !. Then (1.3) becomes

(1 + x2)u(x) = ¶ u(x) + © (u)(x); (1.4)

with

© (u)(x) =

Z

R

Z

R
dx1dx2

sin[· (x ¡ x1)(x ¡ x2)]

· (x ¡ x1)(x ¡ x2)
u(x1)u(x2)u(x1 + x2 ¡ x); x 2 R:

(1.5)
Dividing by (1 + x2) in (1.4), it will be seen below that the resulting nonlinearity
is a potential operator (in a suitable space of functions) with potential

’(u) =
1

4

Z

R

Z

R

Z

R

Z

R
dx1dx2dx3dx4

sin[(1
2
· )(x2

1 + x2
2 ¡ x2

3 ¡ x2
4)]

( 1
2
· )(x2

1 + x2
2 ¡ x2

3 ¡ x2
4)

£ ¯ (x1 + x2 ¡ x3 ¡ x4)u(x1)u(x2)u(x3)u(x4): (1.6)

Thus (1.4) can be rewritten in the abstract (weak) form

u = ¶ Lu + r’(u); ( ¶ ; u) 2 R £ H; (1.7)

in some Hilbert space H , with a bounded linear operator L. There is a large lit-
erature on ­ nding non-trivial solutions of problems of type (1.7) (see the survey
paper [11]). Since the self-adjoint (multiplication) operator Su = (1+x2)u on L2(R)
in (1.4) has essential spectrum ¼ e(S) = [1; 1[ = ¼ (S) (spectrum of S), a natural
attempt is to look for solutions when ¶ < 1 and to decide whether ¶ = 1, the low-
est point of the spectrum, is a bifurcation point of non-trivial solutions. However,
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the results known thus far for bifurcation from the lowest point of the spectrum
mainly deal with the situation that ’(u) > 0 for u 2 H , i.e. a non-negative poten-
tial. For the particular problem introduced above, with potential given by (1.6), it
was nevertheless quite unclear that this assumption would be satis­ ed. Therefore,
the demand arose to relax the hypotheses on ’ accordingly, and surprisingly this
could be achieved in su¯ cient generality to easily cover (1.7) without determining
whether ’(u) > 0 for all u is indeed valid. The corresponding general theorem
will be formulated and proved in x 2, whereas x 3 contains the application to the
concrete problem. Thus we have shown that k = 0 is a bifurcation point to the
right for non-trivial solutions of (1.3), in agreement with known numerical results.
Moreover, in x 3, we will also verify that for every k > 0 a corresponding non-trivial
solution does indeed exist.

It later turned out, however, that ’(u) > 0 for all u holds for the particular
potential ’ from (1.6) (cf. x 3.4). Nevertheless, since to validate this assertion it
is necessary to be quite familiar with the dispersion-managed optical ­ bre prob-
lems, although in the end our abstract result does not give something new here, it
can at least be considered a welcome simpli­ cation since it omits concentration{
compactness arguments.

A further important example to which general bifurcation results can be applied
are semilinear elliptic equations of the form

¡ ¢u + V (x)u = ¶ u + a(x)jujp¡2
u; x 2 RN ; (1.8)

for certain potentials V such that the linearized equation ¡ ¢u + V (x)u = 0 has
only essential spectrum. We then explain in x 4, using the abstract result from x 2,
how the usual assumption a(x) > 0, x 2 RN (guaranteeing the non-negativity of
the corresponding potential), can be modi­ ed to also cover some classes of sign-
changing functions a. It should be noted that several results on bifurcation from
the essential spectrum without sign-condition on a have already been obtained in
the one-dimensional case with V = 0, i.e.

¡ u00 = ¶ u + a(x)jujp¡2u; lim
jxj! 1

u(x) = 0; x 2 R;

under various di¬erent sets of assumptions on a and p (see, for example, [1], improv-
ing on the earlier [8,10]).

2. An abstract bifurcation theorem

We discuss the existence of solutions to the equation

Au = ¶ Lu + N (u); ( ¶ ; u) 2 R £ H; (2.1)

in a Hilbert space H whose norm and inner product are denoted by j ¢ j and h¢; ¢i,
respectively. We assume u = 0 is a solution for all ¶ 2 R, and we give conditions
that ( ¤ ; 0) 2 R £ H , with a certain ¤ 2 R, is a bifurcation point from this trivial
solution. By de­ nition, this means that there is a sequence ( ¶ n; un) 2 R £ H of
solutions to (2.1) such that un 6= 0, ¶ n ! ¤ and un ! 0 in H . We call ( ¤ ; 0) a
bifurcation point to the left in case that ¶ n < ¤ for n 2 N. Moreover, we denote by
B(H) the bounded linear operators on H , and I stands for the identity on H .

Our hypotheses are as follows.
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(H1) A; L 2 B(H), A ¤ = A, L ¤ = L and hLu; ui > 0 for u 6= 0.

(H2) The `nonlinearity’ N : H ! H satis­ es N (u) = o(juj) as juj ! 0, and there
exists ’ 2 C1(H; R) such that r’ = N , that is, r’(u)v = hN (u); vi for
u; v 2 H . Without loss of generality, we assume ’(0) = 0.

(H3) There exists ¶ 0 2 R and ¸ > 0 such that A ¡ ¶ 0L > ¸ I, i.e. h(A ¡ ¶ 0L)u; ui >
¸ juj2 for u 2 H.

(H4) ’ is weakly sequentially continuous.

(H5) If ’(u) > 0 and t > 1, then ’(tu) > t2’(u).

(H6) Let

¤ = inf

»
hAu; ui
hLu; ui : u 2 H; u 6= 0

¼
:

Then ¤ > ¶ 0 by (H3), and we assume the following.

(H6a) There exists r0 > 0 such that M(r) < 1
2 ¤ r2 for r 2 ]0; r0], where

M(r) = inffJ(u) : u 2 S(r)g; with S(r) = fu 2 H : hLu; ui = r2g

and J(u) = 1
2
hAu; ui ¡ ’(u).

(H6b) There exists C > 0, n 2 N and ai 2 [0; 1[, bi > 1 ¡ ai, 1 6 i 6 n, such
that, for r 2 ]0; r0],

’(u) 6 C

nX

i = 1

h(A ¡ ¤ L)u; uiai hLu; uibi

= C

nX

i = 1

h(A ¡ ¤ L)u; uiai r2bi ; u 2 S(r):

Now we are ready to state the following.

Theorem 2.1. Let conditions (H1){(H6) hold. Then ( ¤ ; 0) is a bifurcation point to
the left. More precisely, for every r 2 ]0; r0], there exists a solution ( ¶ r; ur) 2 R£H
of (2.1) such that ur 2 S(r) is a minimizer of J , that is, J(ur) = M(r). Moreover,
0 < jurj 6 Cr and 0 < ¤ ¡ ¶ r 6 C jur j¡1jN (ur)j.

The assumptions and the theorem are much the same as in [11, theorem 11], up to
one important di¬erence: we did not assume ’(u) to be non-negative for all u 2 H
(cf. [11, hypothesis (K), p. 413]). As noted in the introduction, this hypothesis would
be in question for the particular example we have in mind. One motivation to have
’(u) > 0 is the following. Taking ’ = 0 (corresponding to the linearized problem
Au = ¶ Lu), we ­ nd M’ = 0(r) = 1

2 ¤ r2, and thus M(r) 6 1
2 ¤ r2 for ’ with ’(u) > 0.

Whence the assumption M(r) < 1
2 ¤ r2 comes naturally (see (b) in [11, theorem 11]).

However, in concrete examples, one might often have the chance to verify directly
the key estimate M(r) < 1

2
¤ r2 for small r > 0, since this only amounts to ­ nding

some particular u0 2 S(r) with the property 1
2
hAu0; u0i < 1

2
¤ r2 + ’(u0). We also

note that [11, hypothesis (K), p. 413] contained the condition hN (u); ui > 2’(u),
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which (for general ’) is equivalent to ’(tu) > t2’(u) for t > 1. This could be
relaxed to (H5), as is particularly satis­ ed for ’ being homogeneous of degree
k > 2, without a condition on the sign of ’.

Proof of theorem 2.1. The proof is along standard lines (see [11, theorem 11]), but
nevertheless we include some details to explain where and how the modi­ ed assump-
tions enter. First we need to show that J is bounded below on S(r), for every
r 2 ]0; r0]. We introduce the positive, linear and self-adjoint ~A = A ¡ ¤ L and esti-
mate

J(u) > 1
2
h ~Au; ui + 1

2
¤ r2 ¡ C

nX

i = 1

h ~Au; uiai
r2bi

for u 2 S(r) by (H6b). Due to ai 2 [0; 1[, the map z 7! 1
2 z ¡ C

Pn
i = 1 zai r2bi is

bounded below for z 2 [0; 1[, and hence M(r) is ­ nite. Next we show that the in­ -
mum is attained. Let (un) » S(r) be a minimizing sequence, that is, J(un) ! M(r).
Set

~J(u) = 1
2
h ~Au; ui ¡ ’(u) = J(u) ¡ 1

2 ¤ hLu; ui;
~M(r) = inff ~J(u) : u 2 S(r)g = M(r) ¡ 1

2
¤ r2:

By (H6a), and since un 2 S(r) and J(un) ! M(r) < 1
2 ¤ r2, we may assume that

~J(un) 6 0 for all n 2 N. Next note that

u 2 S(r); ~J(u) 6 0 ) ¸ juj2 6 C

nX

i= 1

r2bi=(1¡ai) + ( ¤ ¡ ¶ 0)r2: (2.2)

To see this, by (H3), for u 2 S(r), we have that

¸ juj2 6 h(A ¡ ¶ 0L)u; ui = h ~Au; ui + ( ¤ ¡ ¶ 0)r2

and, moreover, in case ~J(u) 6 0, by (H6b),

1
2
h ~Au; ui 6 ’(u) 6 C

nX

i= 1

h ~Au; uiai
r2bi :

Hence, for some index 1 6 i0 6 n, we must have 1=(2Cn) 6 h ~Au; ui¡(1¡ai0 )
r2bi0 ,

and this proves (2.2). Since ~J(un) 6 0, in particular, (un) is bounded by (2.2), and
therefore, without loss of generality, un * u ¤ (weak convergence) in H , for some
u ¤ 2 H . Then

J(un) = 1
2
hAun; uni ¡ ’(un) > 1

2
¤ hLun; uni ¡ ’(un) = 1

2
¤ r2 ¡ ’(un);

together with (H4) and (H6a), yields 1
2 ¤ r2 > M(r) > 1

2 ¤ r2 ¡ ’(u ¤ ), and therefore
’(u¤ ) > 0. Consequently, u ¤ 6= 0 by (H2). In general, if P 2 B(H) is non-negative
and self-adjoint, then the Cauchy{Schwarz inequality shows that u 7! hPu; ui is
convex, and hence lower semicontinuous for the weak topology as it is continuous
(see [6, theorem 4, p. 14]). This remark applies to both ~A and L, and hence, ­ rstly,

0 < hLu ¤ ; u ¤ i 6 lim inf
n! 1

hLun; uni = r2:
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Thus
t =

r

hLu¤ ; u ¤ i1=2
> 1

and tu ¤ 2 S(r). Secondly, by (H4),

~J(u ¤ ) 6 lim inf
n! 1

~J(un) = lim inf
n! 1

(J(un) ¡ 1
2 ¤ r2) = M(r) ¡ 1

2 ¤ r2 = ~M(r):

As we want to apply (H5) with u¤ and t > 1, it is now clear that this assumption
is needed only for u with ’(u) > 0. It follows that

~M(r) 6 ~J(tu ¤ ) = 1
2 t2h ~Au¤ ; u ¤ i ¡ ’(tu ¤ )

6 t2( 1
2
h ~Au ¤ ; u¤ i ¡ ’(u¤ )) = t2 ~J(u ¤ ) 6 t2 ~M(r): (2.3)

Because ~M(r) = M(r) ¡ 1
2 ¤ r2 < 0, we obtain that t = 1, hence u¤ 2 S(r), and

thus, by (2.3), M(r) = ~M(r) + 1
2 ¤ r2 = ~J(u ¤ ) + 1

2 ¤ r2 = J(u ¤ ). Thus u ¤ is a mini-
mizer. Since this argument applies to any r 2 ]0; r0], for each such r, we ­ nd ¶ r 2 R,
with

Aur = ¶ rLur + N (ur); (2.4)

by the Lagrange multiplier rule. Therefore, ( ¶ r; ur) is a solution to (2.1), and also
ur 6= 0 as a consequence of hLur; uri = r2. Moreover, the construction of ur shows
’(ur) > 0, J(ur) = M(r) and ~J(ur) 6 ~M(r) < 0. Thus jur j 6 Cr by (2.2), since
2bi=(1 ¡ ai) > 2. From (2.4), we obtain

¤ r2 = ¤ hLur; uri 6 hAur; uri = ¶ rr2 + hN (ur); uri;

and therefore ( ¤ ¡ ¶ r)r2 6 hN (ur); uri. By (H5),

’(ur + "ur) ¡ ’(ur) > (2" + "2)’(ur) for " > 0:

Dividing by " and letting " tend to zero we conclude

hN(ur); uri = r’(ur)ur > 2’(ur):

From (H6a) and (2.4), it then follows that

1
2
¤ r2 > M(r) = J(ur) = 1

2
¶ rr2 + 1

2
hN (ur); uri ¡ ’(ur) > 1

2
¶ rr2:

Therefore, ¶ r < ¤ , and ( ¤ ¡ ¶ r)jur j2 6 C2( ¤ ¡ ¶ r)r2 6 C2hN (ur); uri ­ nally yields

¤ ¡ ¶ r 6 Cjurj¡1jN (ur)j ! 0 as r ! 0 + .

3. Existence of ground states

In this section we consider (1.3) from x 1 in the form (1.4). We wish to prove the
existence of solutions to (1.4) for all ¶ < 1, corresponding to k = 1 ¡ ¶ > 0 for
the original problem (1.3). Furthermore, we want to show that ¶ = 1 is a bifur-
cation point to the left from the trivial solution u = 0 in (1.4). The restriction to
¶ < 1 comes from the fact that the multiplication operator (Su)(x) = (1 + x2)u(x)
on L2(R) has purely continuous spectrum [1; 1[ (see [17]). We do not know
whether there are solutions over the continuous spectrum, but the numerical
observations (e.g. in [12]) suggest that this is not the case. Note also that
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S : D(S) = fu 2 L2(R) : (1 + x2)u 2 L2(R)g ! L2(R) is non-negative, unbounded
and self-adjoint. To deal with such problems, a weak solution approach often is most
convenient. Following the reduction in [11, x 3] (see also the references therein),
equation (1.4) should be considered on the `form domain’ D(S1=2), which is here,
up to equivalence of norms,

L2
1 = L2

1(R) =

»
u 2 L2 : juj2L2

1
=

Z
(1 + x2)u2(x) dx < 1

¼
:

When no domain of integration is indicated, it is always understood that the integral
is taken over R, and we often abbreviate Lp = Lp(R). The space H = L2

1 is a Hilbert
space with inner product

hu; vi =

Z
(1 + x2)u(x)v(x) dx;

and L2
1 is isomorphic to W 1;2(R) through Fourier transform. The weak formulation

of (1.4) then is

u = ¶ Lu + N (u); (Lu)(x) =
1

1 + x2
u(x) and N (u)(x) =

1

1 + x2
© (u)(x):

(3.1)
In x 3.2, we will prove that (3.1) has a solution for all ¶ < 1. Then x 3.3 contains the
application of theorem 2.1 to show that ¶ = 1 is a bifurcation point from the left.
We start with a preliminary section containing some technical results concerning
L2

1 and the properties of © and N ; in particular, it will be seen that N is a potential
operator.

3.1. Some technical preliminaries

Lemma 3.1. We have the embedding L2
1 » Lp for p 2 ] 2

3 ; 2].

Proof. Fix p 2 ] 2
3 ; 2[. By H�older’s inequality, with exponents (2=p) and 2=(2 ¡ p),

jujpLp =

Z
(1 + jxj)p

(1 + jxj)p ju(x)jp dx

6
³Z

dx

(1 + jxj)2p=(2¡p)

1́¡p=2³Z
(1 + jxj)2

u2(x) dx
ṕ=2

:

Since 2p=(2 ¡ p) > 1, this gives the claim.

Next we show that the best `Sobolev constant’ of the embedding L2
1 » L2 equals

unity, which is the lowest point of the essential spectrum of S.

Lemma 3.2. Let
¤ = inffjujL2

1
=jujL2 : u 2 L2

1; u 6= 0g:

Then ¤ = 1.

Proof. Clearly, ¤ > 1. On the other hand, for u = 1[¡";"] we ­ nd

¤ 6 jujL2
1
=jujL2 =

p
1 + 1

3"2 ! 1; " ! 0:
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Lemma 3.3. The interpolation inequality

jujL1 6 C juj1=2
L2 juj1=2

L2
1

; u 2 L2
1;

holds, with C = 2
p

2.

Proof. Let M = jujL2
1
=jujL2 . Then, by H�older’s inequality,

jujL1 =

Z M

¡M

ju(x)j dx +

Z

jxj>M

(1 + x2)1=2

(1 + x2)1=2
ju(x)j dx

6 (2M )1=2jujL2 +

³Z

jxj>M

dx

1 + x2

1́=2

jujL2
1

6 (2M )1=2jujL2 + (2=M)
1=2jujL2

1
:

This completes the proof.

Next we are going to show that ’ from (1.6) is a potential for N . Recall from (3.1)
that

N (u)(x) =
1

1 + x2
© (u)(x);

hence

hNu; vi =

Z
© (u)(x)v(x) dx; u; v 2 L2

1; (3.2)

with © from (1.5).

Lemma 3.4. We have that ’ 2 C1(L2
1; R), with

r’(u)v =

Z
© (u)(x)v(x) dx = hN (u); vi; u; v 2 L2

1:

Proof. An elementary calculation shows

Z
© (u)(x)v(x) dx

=

Z Z Z
dx1dx2dx3

sin[ · (x3 ¡ x1)(x3 ¡ x2))]

· (x3 ¡ x1)(x3 ¡ x2)

£ u(x1)u(x2)u(x1 + x2 ¡ x3)v(x3)

=
1

4

³Z Z Z Z
dx1dx2dx3dx4

sin[(1
2 · )(x2

1 + x2
2 ¡ x2

3 ¡ x2
4)]

( 1
2 · )(x2

1 + x2
2 ¡ x2

3 ¡ x2
4)

£ ¯ (x1 + x2 ¡ x3 ¡ x4)

£ [v(x1)u(x2)u(x3)u(x4) + u(x1)v(x2)u(x3)u(x4)

+ u(x1)u(x2)v(x3)u(x4) + u(x1)u(x2)u(x3)v(x4)]

´
;
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since all four terms equal
R

© (u)(x)v(x) dx. A straightforward estimate then yields,
for ­ xed u 2 L2

1,
­­­­’(u + v) ¡ ’(u) ¡

Z
© (u)(x)v(x) dx

­­­­6 C(juj2L1 jvj2L1 + jujL1 jvj3L1 + jvj4L1 )

6 C(u)(1 + jvjL2
1
)2jvj2L2

1

by lemma 3.1. Hence

r’(u)v =

Z
© (u)(x)v(x) dx = hN (u); vi:

To show that the derivative r’ : L2
1 ! B(L2

1) is continuous, we note that, for
u; ·u; v 2 L2

1,

jr’(u)v ¡ r’(·u)vj 6 2jujL1 jujL2 ju ¡ ·ujL1 jvjL2 + juj2L1 ju ¡ ·ujL2 jvjL2

6 Cjuj2L2
1
ju ¡ ·ujL2

1
jvjL2

1
:

Hence jr’(u) ¡ r’(·u)j 6 Cjuj2L2
1
ju ¡ ·ujL2

1
, that is, r’ is even locally Lipschitz.

Remark 3.5. For later reference, we note that ’(tu) = t4’(u) for t 2 R and
u 2 L1

2, and therefore also r’(u)u = 4’(u).

The next lemma discusses the behaviour of © and ’, respectively, with respect
to weak convergence.

Lemma 3.6. If un * u in L2
1, then © (un) * © (u) in L2 and ’(un) ! ’(u).

Proof. For the ­ rst claim let v 2 L2 and de­ ne

wn(x1; x2) =

Z
dx

sin[ · (x ¡ x1)(x ¡ x2)]

· (x ¡ x1)(x ¡ x2)
un(x1 + x2 ¡ x)v(x); (x1; x2) 2 R2:

Since j sin(z)=zj 6 1, we obtain jwn(x1; x2)j 6 junjL2 jvjL2 6 CjvjL2 and, moreover,
for

¿ (x) =
sin[ · (x2 ¡ x)(x1 ¡ x)]

· (x2 ¡ x)(x1 ¡ x)
v(x1 + x2 ¡ x);

we have ¿ 2 L2. As, in particular, un * u in L2, we obtain wn(x1; x2) ! w(x1; x2)
a.e. in R2, with w de­ ned analogously to wn, having u in place of un. Let

~wn(x1; x2) =
wn(x1; x2)

(1 + x2
1)1=2(1 + x2

2)1=2
and ~w(x1; x2) =

w(x1; x2)

(1 + x2
1)1=2(1 + x2

2)1=2
:

Then ~wn(x1; x2) ! ~w(x1; x2) a.e. in R2 and

j ~wn(x1; x2) ¡ ~w(x1; x2)j2 6 C(1 + x2
1)¡1(1 + x2

2)
¡1 2 L1(R2):

Hence the dominated convergence theorem yields ~wn ! ~w strongly in L2(R2).
De­ ne

~un(x) = (1 + x2)
1=2

un(x) and ~u(x) = (1 + x2)
1=2

u(x);
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and we also introduce ~Un(x1; x2) = ~un(x1)~un(x2) as well as ~U (x1; x2) = ~u(x1)~u(x2).
Then un * u in L2

1 implies ~un * ~u in L2, and this in turn shows ~Un * ~U in L2(R2).
To verify the last statement, it is enough to remark that the convergence only has
to be tested on functions ¿ in D(R2). As ­ nite linear combinations of separating
functions of type ¿ (x1; x2) = ¿ 1(x1) ¿ 2(x2), ¿ 1; ¿ 2 2 D(R), are dense in D(R2), we
indeed obtain ~Un * ~U in L2(R2). But then

Z
© (un)(x)v(x)dx =

Z Z
dx1dx2 wn(x1; x2)un(x1)un(x2)

=

Z Z
dx1dx2 ~wn(x1; x2) ~Un(x1; x2)

!
Z Z

dx1dx2 ~w(x1; x2) ~U (x1; x2)

=

Z
© (u)(x)v(x) dx

as n ! 1. The second claim ’(un) ! ’(u) is veri­ ed similarly.

We also need an estimate on ’.

Lemma 3.7. We have that

j’(u)j 6 C juj3L2 jujL2
1

6 C juj4L2
1
; u 2 L2

1:

Proof. By de­ nition of ’ in (1.6), we obtain

j’(u)j 6 1

4

Z Z Z
dx1dx2dx3 ju(x1)jju(x2)jju(x1 + x2 ¡ x3)j 6 1

4
juj2L1 juj2L2 ;

hence lemma 3.3 gives the ­ rst estimate, whereas the second follows from lemma 3.1.

Next we show that the nonlinearity N in (3.1) is of higher order near u = 0.

Lemma 3.8. We have that

jN (u)jL2
1

6 C juj3L2
1
; u 2 L2

1:

Proof. First note that, for a.e. x 2 R,

j© (u)(x)j 6
Z Z

dx1dx2 ju(x1)jju(x2)jju(x2 ¡ [x ¡ x1])j = (juj ¤ juj ¤ ju( ¡ ¢)j)(x);

(3.3)
with u( ¡ ¢)(x) = u( ¡ x). Thus by Young’s inequality (see, for example, [3, p. 205]),

j © (u)jL1 6 jujL1 jjuj ¤ ju( ¡ ¢)jjL1 6 jujL1 juj2L2 6 C juj3L2
1
;

the latter by lemma 3.1. Therefore,

jN (u)j2L2
1

=

Z
1

1 + x2
( © (u)(x))2 dx 6 C juj6L2

1
;

as required.
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Corollary 3.9. The estimate

j© (u)jL2 6 C juj3L2
1
; u 2 L2

1;

holds.

Proof. We apply Young’s inequality twice in (3.3) and obtain

j © (u)jL2 6 jjuj ¤ juj ¤ ju( ¡ ¢)jjL2 6 jujL4=3 jjuj ¤ ju( ¡ ¢)jjL4=3 6 jujL4=3 juj2L8=7 :

Thus we can use lemma 3.1.

Finally, we derive an estimate that will be needed in the sequel to establish, on
the one hand, hypothesis (H6a), and, on the other hand, to show that a certain
functional possesses a `mountain-pass geometry’.

Lemma 3.10. There exists "0 > 0 such that, for " 2 ]0; "0],

’(e"
0) > 2

3
"3; where e"

0 = 1[¡";"]:

Proof. Fix ­ 0 > 0 such that S(z) = sin[· z]=· z > 1
2 for jzj 6 ­ 0. Since

x2
1 + x2

2 + x2
3 ¡ (x1 + x2 ¡ x3)2 = 2(x3 ¡ x1)(x2 ¡ x3);

we may rewrite

’(e"
0) =

1

4

Z "

¡"

Z "

¡"

Z "

¡"

dx1dx2dx3 S((x3 ¡ x1)(x3 ¡ x2))1[¡";"](x1 + x2 ¡ x3):

Let "0 = 1
2

p
­ 0. For " 2 ]0; "0] and x1; x2; x3 2 [¡ "; "], we then obtain

j(x3 ¡ x1)(x3 ¡ x2)j 6 4"2 6 ­ 0

and thus

’(e"
0) > 1

8

Z "

¡"

Z "

¡"

Z "

¡"

dx1dx2dx3 1[x1 + x2¡";x1 + x2 + "](x3):

Now Z "

¡"

dx31[z¡";z + "](x3) = 1fjzj6 2"g(z)(2" ¡ jzj);

whence

’(e"
0) > 1

8

Z "

¡"

Z "

¡"

dx1dx2 (2" ¡ jx1 + x2j) =
1

8

³
8"3 ¡

Z "

¡"

Z "

¡"

dx1dx2 jx1 + x2j
´

:

Since the latter integral may be evaluated as 8
3
"3, the proof is complete.

3.2. Existence of solutions for all ¸ < 1

In this section we will show that for every ¶ < ¤ = 1 ­ xed there exists a non-
trivial solution to (3.1). De­ ne

I(u) = 1
2
juj2L2

1
¡ 1

2
¶ hLu; ui ¡ ’(u); u 2 L2

1:

Then I 2 C1(L2
1; R), and the critical points of I are the solutions to (3.1), by

lemma 3.4. The ­ rst step is to prove that I has a strict local minimum at u = 0.
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Lemma 3.11. There exist constants ¯ 0; ¯ 1 > 0 such that I(u) > ¯ 1juj2L2
1

for jujL2
1

6
¯ 0.

Proof. Since hLu; ui = juj2L2 , we obtain from lemmas 3.2 and 3.7 that

I(u) > 1
2
juj2L2

1
¡ 1

2
¶ juj2L2

1
¡ C juj4L2

1
= ( 1

2
(1 ¡ ¶ ) ¡ Cjuj2L2

1
)juj2L2

1
:

As ¶ < 1, the claim is obvious.

Next we show that I attains negative values outside large balls.

Lemma 3.12. Fix some " 2 ]0; "0] and de¯ne u0 = e"
0 (cf. lemma 3.10). Then

I( » u0) ! ¡ 1 for » ! 1.

Proof. By remark 3.5 and lemma 3.10, we can estimate

I( » u0) = 1
2
» 2(ju0j2L2

1
¡ ¶ ju0j2L2 ) ¡ » 4’(u0) 6 1

2
» 2(ju0j2L2

1
¡ ¶ ju0j2L2 ) ¡ » 4 ¬ 0;

with ¬ 0 = 2
3 "3 > 0. Therefore, I( » u0) ! ¡ 1 as » ! 1.

Since I(0) = 0, lemmas 3.11 and 3.12 can be summarized as saying that the
functional I has a `mountain-pass geometry’. According to [2, theorem 1.1.4], there
exists a sequence (un) » L2

1 such that

I(un) ! c > 0; rI(un) ! 0; n ! 1; (3.4)

with c = infg 2 ¡ supu 2 g([0;1]) I(u), where ¡ is the class of continuous paths g :
[0; 1] ! L2

1 connecting u = 0 to u = » 0u0. Here, » 0 > 0 is chosen such that
I( » 0u0) < 0. Using remark 3.5, we obtain rI(u)u = juj2L2

1
¡ ¶ juj2L2 ¡ 4’(u) for

u 2 L2
1. From this it follows, by the de­ nition of I , that, on the one hand,

1
2
rI(u)u = 1

2 [2I(u) + 2’(u)] ¡ 2’(u) = I(u) ¡ ’(u): (3.5)

On the other hand,

rI(u)u = juj2L2
1

¡ ¶ juj2L2 + 4I(u) ¡ 2juj2L2
1

+ 2 ¶ juj2L2 = 4I(u) ¡ juj2L2
1

+ ¶ juj2L2 :

Using the latter relation we can estimate

(1 ¡ ¶ )junj2L2
1

6 junj2L2
1

¡ ¶ junj2L2 = 4I(un) ¡ rI(un)un 6 4(c + 1) + junjL2
1

for large n. Consequently, (un) is bounded and therefore, without loss of generality,
un * u for some u 2 L2

1. We show that u 6= 0 and that u is a critical point of I .
Firstly, by (3.4), (3.5) and lemma 3.6,

2c = 2c ¡ 0 Á 2I(un) ¡ rI(un)un = 2’(un) ! 2’(u); n ! 1:

Whence ’(u) = c > 0 excludes the possibility u = 0. Moreover, for v 2 L2
1 » L2,

we ­ nd hLun; vi = hun; Lvi ! hu; Lvi = hLu; vi, since, in particular, Lv 2 L2
1. In

addition,

hN (un); vi =

Z
© (un)(x)v(x) dx !

Z
© (u)(x)v(x) dx = hN (u); vi
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by (3.2) and lemma 3.6. Consequently,

0 Á¡ rI(un)v = hun; vi ¡ ¶ hLun; vi ¡ hN (un); vi ! hu; vi ¡ ¶ hLu; vi ¡ hN (u); vi;

and hence rI(u) = 0, that is, u is a non-trivial critical point of I. Thus we have
shown the following result.

Theorem 3.13. For every ¶ < 1, there exists a non-trivial solution u 2 L2
1 of (3.1).

In fact, we have found L2-solutions of (1.4), and hence of the original prob-
lem (1.3).

Corollary 3.14. The solutions from theorem 3.13 satisfy (1.4) in L2.

Proof. Since (3.1) holds, we have (1 + x2)u(x) = ¶ u(x) + © (u)(x) a.e. in R. Due
to corollary 3.9, © (u) 2 L2 and therefore ¶ u + © (u) 2 L2. Hence also (1 + x2)u
in L2.

3.3. Bifurcation from the lowest point of the essential spectrum

To apply theorem 2.1 to (3.1), we ­ rst note that (H1) holds, with A = I .
Moreover, by lemmas 3.8 and 3.4, hypothesis (H2) is satis­ ed as well. Since
hLu; ui = juj2L2 (see (3.1)), we can choose, for example, ¶ 0 = 0 and ¸ = 1 to
get (H3). Next, hypothesis (H4) is part of the assertion of lemma 3.6, whereas (H5)
is clear from the fact that ’ is homogeneous of degree four (see remark 3.5). To
verify (H6a), let r0 =

p
2"0 > 0, with "0 from lemma 3.10. As ¤ = 1 by lemma 3.2,

the remarks following theorem 2.1 show that it su¯ ces to prove ur
0 2 S(r) and

1
2
jur

0j2 < 1
2
r2 + ’(ur

0); with ur
0 = e

r2=2
0 = 1[¡r2=2;r2=2]

(cf. lemma 3.10). For this, we have jur
0j2L2 = r2 and

jur
0j2L2

1
=

Z r2=2

¡r2=2

(1 + x2) dx = r2 + 1
12 r6:

Hence lemma 3.10 yields

1
2 r2 + ’(ur

0) > 1
2 r2 + 2

3( 1
2 r2)3 = 1

2r2 + 1
12 r6 > 1

2 (r2 + 1
12 r6) = 1

2
jur

0j2L2
1
;

and therefore (H6a) holds. Finally, concerning (H6b), we have j’(u)j 6 C juj3L2 jujL2
1

for u 2 L2
1 by lemma 3.7. Next observe that

juj3L2 jujL2
1

= hu; ui1=2hLu; ui3=2

= [h(I ¡ L)u; ui + hLu; ui]1=2hLu; ui3=2

6 h(I ¡ L)u; ui1=2hLu; ui3=2
+ hLu; ui2

:

Thus we may set n = 2, a1 = 1
2 , b1 = 3

2 , a2 = 0 and b2 = 2 to obtain (H6b).
Therefore, theorem 2.1 indeed applies.

Theorem 3.15. With ¤ = 1, the point ( ¤ ; 0) 2 R £ H is a bifurcation point to
the left for (3.1). There exists r0 > 0 and, for each r 2 ]0; r0], a solution ( ¶ r ; ur)
of (3.1) such that 0 < jurjL2

1
6 Cr and 0 < 1 ¡ ¶ r 6 Cr2.
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Note that the last estimate follows from theorem 2.1 and lemma 3.8. Analogously
to corollary 3.14, the ( ¶ r; ur) are solutions to (1.4).

3.4. Positivity of ’

As mentioned in the introduction, in fact ’(u) > 0 for all u 2 L2
1 is satis­ ed for

’(u) =
1

4

Z

R

Z

R

Z

R

Z

R
d!1d!2d!3d!4

sin[(1
2
· )(!2

1 + !2
2 ¡ !2

3 ¡ !2
4)]

( 1
2
· )(!2

1 + !2
2 ¡ !2

3 ¡ !2
4)

£ ¯ (!1 + !2 ¡ !3 ¡ !4)u(!1)u(!2)u(!3)u(!4):

We sketch a (formal) argument, which was explained to us by V. Zharnitsky. Let
T (t) be the solution operator to

ivt + d(t)vxx = 0;

i.e. v(t; x) = [T (t)v0](x), with d(t) the dispersion function, which is assumed to be
1-periodic. We have the representation

[T (t)v0](x) = (2 º )
¡1

Z

R
d! e¡i!x¡i!2R(t)

Z

R
dy ei!yv0(y);

where (dR=dt)(t) = d(t). For a prescribed real-valued u, we choose v0 such that

u(!) = (2 º )¡1

Z

R
dy ei!yv0(y)

and calculate
Z 1

0

dt

Z

R
dx j[T (t)v0](x)j4

=

Z 1

0

dt

Z

R
dx

Z

R

Z

R

Z

R

Z

R
d!1d!2d!3d!4 ei(!1 + !2¡!3¡!4)xei(!2

1 + !2
2¡!2

3¡!2
4)R(t)

£ u(!1)u(!2)u(!3)u(!4): (3.6)

To evaluate the dx-integral, we use
Z

R
ei!x dx = 2 º ¯ (!);

and for the dt-integral, one observes

Z 1

0

ei!R(t) dt =
sin[(1

2
· )!]

( 1
2
· )!

for a certain · > 0 related to d(t), if d(t) is chosen to be a step function of type
d(t) = d1 in [0; l] and d(t) = d2 in [l; 1] (cf. [12]). Thus (3.6) yields

0 6
Z 1

0

dt

Z

R
dxj[T (t)v0](x)j4 = 2 º ’(u);

as desired.
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4. Applications to semilinear elliptic equations

In this section we indicate how theorem 2.1 can be used to prove the bifurcation
of solutions from the lowest point of the essential spectrum for semilinear elliptic
equations with a nonlinearity that may change sign.

We consider (1.8) from the introduction, i.e.

¡ ¢u(x) + V (x)u(x) = ¶ u(x) + a(x)ju(x)jp¡2
u(x); x 2 RN :

The corresponding weak formulation can be cast in the form of (3.1), in the Hilbert
space H = H1 = H1(RN). Here,

hAu; vi =

Z
fV (x)u(x)v(x) + ru(x) ¢ rv(x)g dx;

hLu; vi =

Z
u(x)v(x) dx;

and

’(u) =
1

p

Z
a(x)ju(x)jp dx

(see [11, p. 401 and x 6]). In this section, integrals with no domain of integration
indicated are taken over RN . The main purpose here is to exemplify that the non-
negativity condition usually imposed on a(x) can be relaxed. As we want to discuss
only the simplest case, we make the following assumptions.

(A1) V 2 L 1 (RN).

(A2) jxj2V 2 L 1 (RN ) and

jV¡jLN=2(RN ) <
N ¡ 2

2(N ¡ 1)
;

with V¡(x) = maxf0; ¡ V (x)g.

(A3) N > 3 and 2 < p < 2 + 4=N ¡ 2 ½ =N , with ½ from (A6) below.

(A4) a 2 L 1 (RN ).

(A5) ess supfja(x)j : jxj > ng ! 0 as n ! 1.

(A6) Let RN
+ = fx 2 RN : x1 > 0g. Then there exist ½ 2 [0; 2[ and ¼ 2 ] ½ ; p + N [

such that

a(x) > K1jxj¡ ½
; x 2 RN

+ ; and ja(x)j 6 K2jxj¡ ¼
; x 2 RN n RN

+ ;

for some constants K1; K2 > 0.

Condition (A6) was only designed to allow for an easy example of how the relaxed
conditions on a(x) might look like; there is broad scope for modi­ cations and vari-
ants. The assumption N > 3 was included to avoid distinguishing cases for N = 1; 2
or N > 3. Note also that, by (A3), we ensure that p < 2+ 4=N < 2¤ = 2N=(N ¡ 2).
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Theorem 4.1. Assume (A1){(A6) holds. Then (u; ¶ ) = (0; 0) 2 H £ R is a bifur-
cation point to the left for (1.8).

Proof. Hypotheses (H1) and (H2) of theorem 2.1 are satis­ ed. Moreover, hypothe-
sis (H3) holds for any ¶ 0 < inf V , with ¸ = minf1; inf V ¡ ¶ 0g > 0 (cf. [11, p. 427]).
Using (A3), (A4) and (A5), it is possible to verify (H4), as p is subcritical (cf. [11,
p. 430]). Since ’ is homogeneous of degree p, hypothesis (H5), in particular, is valid.
Due to (A1) and (A2), it is found that ¤ = 0, and (A1), (A2) and (A3) show (H6b)
holds, as is explained in [11, p. 429]. So it remains to check (H6a). This amounts
to ­ nding, for all r > 0 small, an u0 2 H (that may depend on r) with

ju0jL2 = r and 1
2
hAu0; u0i < ’(u0): (4.1)

For this we consider, following [11], for ¬ > 0, the family of functions u ¬ (x) = v( ¬ x),
x 2 RN , where v(y) = jyje¡jyj. Then ju ¬ j22 = C1 ¬ ¡N and jru ¬ j22 = C2 ¬ 2¡N for
appropriate constants C1; C2 > 0. In addition, by (A2),

Z
V (x)u2

¬ (x) dx 6 C

Z
jxj¡2jv( ¬ x)j2 dx 6 C3 ¬ 2¡N

for some C3 > 0. Therefore,

1
2
hAu ¬ ; u¬ i 6 C4 ¬ 2¡N : (4.2)

To derive a lower bound on ’(u¬ ), we obtain from (A6)

’(u ¬ ) =
1

p

Z

RN
+

a(x)ju ¬ (x)jp dx +
1

p

Z

RN nRN
+

a(x)ju ¬ (x)jp dx

> K1

p

Z

RN
+

jxj¡ ½ jv( ¬ x)jp dx ¡ K2

p

Z

RN nRN
+

jxj¡ ¼ jv( ¬ x)jp dx

= C5 ¬ ½ ¡N ¡ C6 ¬ ¼ ¡N ; (4.3)

by setting y = ¬ x and observing x 2 RN
+ if and only if y 2 RN

+ .
Let r > 0 be ­ xed and de­ ne u0 = t ¬ u¬ , with t ¬ = rC1

¡1=2 ¬ N=2 and ¬ > 0 still
to be chosen. Then ju0j2 = t ¬ ju¬ j2 = r and, according to (4.2) and (4.3), it follows
that

’(u0) ¡ 1
2
hAu0; u0i = tp

¬ ’(u ¬ ) ¡ 1
2 t2

¬ hAu¬ ; u ¬ i
> tp

¬ (C5 ¬ ½ ¡N ¡ C6 ¬ ¼ ¡N) ¡ 1
2
C4t2

¬ ¬ 2¡N

> C7rp ¬ ½ ¡N + Np=2 ¡ C8rp ¬ ¼ ¡N + Np=2 ¡ C9r2 ¬ 2

= ¬ ½ ¡N + Np=2(C7rp ¡ C8rp ¬ ¼ ¡ ½ ¡ C9r2 ¬ 2¡ ½ + N¡Np=2)

for all ¬ > 0. Due to (A6), ¼ > ½ , and (A3) implies 2 ¡ ½ + N ¡ 1
2 Np > 0. Thus we

can ­ x ¬ > 0 su¯ ciently small to see that (4.1) is satis­ ed for the corresponding
u0. Consequently, hypothesis (H6a) holds, and theorem 2.1 applies to yield the
claim.
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