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Stochastic analysis of steady seepage underneath
a water-retaining wall through highly

anisotropic porous media
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Steady seepage is determined by a head drop upstream/downstream of a water-
retaining wall. Due to its erratic variations, hydraulic log-conductivity Y = ln K
is modelled as a stationary random space function (RSF). We deal with a highly
anisotropic porous formation, i.e. an axisymmetric medium where the horizontal
correlation integral scale of Y is much larger than the vertical one. The goal of
computing the resulting flow field within a stochastic framework is complicated by
non-uniformity of the mean flow. Simple (closed-form) expressions for the correlation
functions of the flow variables as well as the mean head are derived. We use these
results to quantify the impact of spatial variability of Y upon the probability that
the exit volumetric flow rate downstream of the wall is greater than that obtained
by regarding the formation as homogeneous (with constant hydraulic conductivity).
In particular, we show that the spatial variability of Y may lead to predictions (and
consequently to design choices) which significantly differ from those achieved by
regarding the porous formation as homogeneous.

Key words: general fluid mechanics, hydraulics, porous media

1. Introduction
Water-retaining structures, such as dams or sheet pile walls, may fail due to several

causes. Some of these, like erosion or heaving, depend to a large extent upon the
seepage through the porous formation underlying the structure. Understanding how
seepage influences the occurrence of such failures is of paramount importance for
a safe design. In the traditional approach, which regards the porous formation as a
homogeneous unit, this is achieved by computing the total volumetric flow rate Q
downstream of the structure, and subsequently by applying a safety factor sf = 2–5.
The reason for this ‘conservative’ approach is twofold. First, erosion and heaving may
lead to a complete (and very rapid) failure of a civil engineering structure with (in
most of the cases) little advanced warning (Fraccarollo & Capart 2002; Ferrari et al.
2010). Second, flow underneath a wall is very variable due to the spatial variability
(heterogeneity) of the hydraulic conductivity K. The present paper aims at tackling
this second issue by relating Q to the heterogeneity of K.

† Present address: via Università 100, I-80055 Portici (NA), Italy. Email address for
correspondence: gerardo.severino@unina.it
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b

Heterogeneous
Homogeneous

FIGURE 1. Sketch of seepage underneath a vertical wall (of thickness b) induced by a
water-level drop 1H much larger than b. Continuous lines are the streamlines pertaining
to a heterogeneous medium, whereas dashed lines represent streamlines in a homogeneous
medium.

The impact of spatial variability of the hydraulic conductivity on flow in porous
formations represents a very active research field. Over the past few years, it has been
recognized that the stochastic approach represents an appropriate tool to model such a
variability (an exhaustive exposition on the topic can be found in Dagan 1987, 1989;
Rubin 2003). Basically, this approach recognizes that, owing to its erratic variations,
K is affected by uncertainty and regards it as a random space function (hereafter also
denoted as RSF). As a consequence, the flow variables become RSFs as well, so that
a solution of any seepage problem should be represented by means of all the statistical
moments of the flow variables. However, such solutions are generally limited to the
derivation of the first two moments, which both have practical significance and are
often the only measurable quantities.

In the present study we consider steady seepage induced by a head drop 1H
applied upstream/downstream of a water-retaining wall (figure 1). Seepage occurs in
the half-space �≡ {(x1, x2, x3) : x1 > 0, (x2, x3) ∈ R2}. The thickness b of the wall is
assumed to be much smaller than 1H. Since b = O(1 m) and 1H = O(10–100 m),
the condition b/1H � 1 is met in the majority of real cases. Although simplified,
such a formulation enables one to grasp the main features of a very complex
problem by means of simple (i.e. analytical) results, therefore providing useful
insights for both theoretical purposes and practical applications. The classical
approach to the problem at stake is to consider the medium � as homogeneous
(constant hydraulic conductivity). Within this framework, an analytical solution is
available (Bruggeman 1999), and the subject has stimulated intense research activity in
view of its importance for engineering applications (see e.g. Lancellotta 1993; Fenton
& Griffiths 2008). On the contrary, little work has been done to account for the
impact of spatial variability of the hydraulic properties of porous formations. All the
studies relating spatial variability of the hydraulic properties to the failure probability
of water-retaining structures are purely numerical (an exhaustive review can be
found in Fenton & Griffiths 2008, and references therein). In particular, Griffiths &
Fenton (1997) have shown (by means of Monte Carlo simulations) that the critical
value of the volumetric flow rate determining the failure of the wall has an upper
bound which depends upon the domain dimensionality, as well as on the statistical
moments of the log-conductivity Y = ln K. Numerical approaches can handle a large
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Flow underneath a water-retaining wall through anisotropic porous media 255

variety of boundary conditions and complex geometries, but they are computationally
intensive and prone to numerical inaccuracies (especially when computing high-order
moments). Moreover, this computational complexity increases tremendously when
dealing with three-dimensional domains. On the contrary, analytical results (although
mathematically cumbersome) are very simple to implement for the subsequent
analysis/discussion, and provide explicit relationships between input parameters and
model output. In addition, analytical results represent a benchmark to validate more
involved numerical codes.

In the present study we analytically solve, for the first time, steady seepage
underneath a water-retaining wall where Y= ln K is modelled as a stationary, normally
distributed, RSF with given mean 〈Y〉 and covariance (here and in what follows 〈 〉
denotes the ensemble-average operator). Within a homogeneous medium the problem
under consideration is characterized by streamlines which are semi-circles originating
upstream and ending downstream of the wall. The ‘distortion effect’ due to the
heterogeneity of Y causes the streamlines to fluctuate around the ones pertaining
to a homogeneous medium (figure 1), similarly to a vortex-type flow where the
fluctuations are due to the uncertainty of the hydrodynamical coefficient(s) (Landau
& Lifshitz 1959). To obtain simple expressions for the second-order moments of the
flow variables, we derive an approximate solution for the flow field that is sufficiently
accurate for small variance σ 2

Y (weak heterogeneity), i.e. the heterogeneous flow
slightly differs from the homogeneous (mean) one, similarly to the ‘frozen field’
approximation in turbulent flows.

Generally, modelling Y (and consequently the resulting flow field) as an RSF is
equivalent to the approach adopted in a large variety of turbulent flows, such as flow
in pipelines, density-driven flows, flow through pumps and turbines, and reactive
flows (a wide review can be found in Pope 2010). The difference is that in turbulent
flows the random nature of the dependent scalar field(s) is due to the velocity, which
is regarded as a given random field, whereas in the present case the random nature
of the flow variables (i.e. pressure head and specific discharge) stems from the spatial
variability of Y .

The paper is organized as follows: we begin by formulating the mathematical
problem in the context of a stochastic framework, and derive general results (§ 2).
Second-order moments of the head are analyzed in § 3. To highlight the potential use
of our results for a reliability-based design, we discuss how the spatial variability of
Y affects the risk of failure (§ 4). Concluding remarks are reported in § 5.

2. Problem formulation and general results
Steady seepage takes place in a semi-bounded domain �, and it is induced by a

head-drop 1H upstream/downstream of a water-retaining wall (figure 1). Seepage is
modelled by: (i) the Darcy’s (constitutive) law, i.e. q(x)=−K(x)∇h(x), relating the
gradient of the hydraulic head h to the flux q via the conductivity K; and (ii) the
continuity equation ∇ · q(x) = 0. The combination of (i)–(ii) leads to the following
equation:

∇2h(x)+∇Y ′(x) · ∇h(x)= 0, (2.1)

which is solved subjected to the boundary conditions:

h(x)|x1=0 =
{

H1 for x2 < 0,
H1 −1H for x2 > 0,

lim
x→∞
|h(x)|<∞ (2.2)

(figure 1). In line with most of the field investigations (Rubin 2003), and in agreement
with similar studies (e.g. Indelman 1996; Indelman & Dagan 1999), the fluctuation
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Y ′ = Y − 〈Y〉 is regarded as a zero-mean stationary RSF completely characterized by
the (constant) variance σ 2

Y ≡ 〈Y ′2〉, and the two-point autocorrelation function ρY(x−
y) ≡ 〈Y ′(x)Y ′(y)〉. The random nature of the fluctuation Y ′ greatly complicates the
mathematical problem, such that no analytical solution is achievable. Simple results
can be obtained by adopting an asymptotic expansion similarly to Indelman & Dagan
(1999) and Tartakovsky, Guadagnini & Riva (2003). Thus, the head field is sought
as

h(x)=
∑

n

h(n)(x), h(n) =O(Y ′n). (2.3)

Substitution into (2.1), and collecting terms of the same order, yields

∇2h(0)(x)= 0
∇2h(n)(x)=−∇Y ′(x) · ∇h(n−1)(x), n= 1, 2, . . . .

}
(2.4)

The leading-order term h(0) (valid for a medium of constant conductivity) is

h(0)(x?)= 1H
π

arctan
(

x2

x1

)
(2.5)

(Bruggeman 1999), whereas the head fluctuation h(1) is the solution of the following
problem:

∇2h(1)(x)=−∇Y ′(x) · ∇h(0)(x?), h(1)(x)|x1=0 = 0. (2.6)

Here and hereafter, the ‘star’ symbol denotes any point belonging to the half-plane
�? ≡ {(x1, x2) : x1 > 0, x2 ∈ R}. The fluctuation q(1) ≡ (q(1)1 , q(1)2 , q(1)3 ) of the flux is
obtained from Darcy’s law by employing the same asymptotic expansion as before.
This yields

q(1)l (x)=−KG

[
Y ′(x)

∂

∂xl
h(0)(x?)+ ∂

∂xl
h(1)(x)

]
(l= 1, 2, 3), (2.7)

where KG= exp(〈Y〉) is the geometric mean of Y . Equations (2.6)–(2.7) represent the
starting point for the next developments. In particular, we aim to compute the second-
order moments of the head and the volumetric rate, since these statistical quantities
are of main interest for the present study.

Hereafter, we deal with an axisymmetric anisotropic porous medium characterized
by a horizontal correlation integral scale, I∞, of Y that is much larger than the
vertical one, I. This allows one to regard the Y-field as perfectly correlated in the
horizontal plane, and consequently the autocorrelation ρY depends upon the vertical
distance solely, i.e. ρY(x)≡ ρY(x1). In other words, we regard Y as: (i) random along
the vertical direction; and (ii) deterministic in the horizontal plane. Such a statistical
correlation structure is typical of formations wherein the fluctuation of Y/〈Y〉 along
the vertical direction is much larger than that in the horizontal plane (see e.g.
Sudicky 1986; Zinn & Harvey 2003). It is worth noting here that such a geological
structure is also typical of formations made up by strata of significantly different
conductivities (Dagan 1989) for which other approaches have been employed (see
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e.g. Guadagnini et al. 2003). With the details reported in appendix A, the covariance
Ch(x, y)≡ 〈h(1)(x)h(1)(y)〉 of the head is given by

Ch(x?, y?)= σ
2
Y

4
c̄(x?, y?), (2.8)

where c̄ ≡ c̄(x?, y?) is given by (A 29) in appendix A. Hereafter, lengths are scaled
by the integral scale I (although for simplicity we retain the same notation). The
result (2.8) represents a general expression for the head covariance, and it can be
straightforwardly computed after specifying the shape of ρY . Furthermore, one can
easily check (see (A 21) in appendix A) that Ch vanishes for either x1 = 0 or y1 = 0
due to the deterministic nature of the head there, which requires: h(1)(x)|x1=0 =
h(1)(y)|y1=0 = 0.

At the second order in σ 2
Y the mean head 〈h〉 is given by 〈h〉 = h(0) + 〈h(2)〉 with

h(2) computed from (2.4) for n≡ 2. It is convenient to represent 〈h〉 as

〈h(x?)〉 =9(x?)h(0)(x?), 9(x?)= 1− σ 2
Yψ(x

?), ψ(x?)=−σ−2
Y
〈h(2)(x?)〉
h(0)(x?)

, (2.9)

i.e. the mean head is expressed as the product between h(0) (valid for a homogeneous
formation) and a characteristic function 9 which ‘adjusts’ h(0) according to the
medium heterogeneity. One advantage of the representation (2.9) is that it is useful to
identify the statistical properties of the porous formation. Indeed, once 〈h〉 has been
estimated by the head measurements, one can determine the variance and the integral
scale of the RSF Y by matching with (2.9). The function ψ ≡ ψ(x?) is determined
by computing the quantity σ−2

Y 〈h(2)(x?)〉. The final result is (appendix B)

ψ(x?)= x23(x?)

arctan
(

x2

x1

) , (2.10)

where

3(x?)= x1

x2
1 + x2

2
+
∫ x1

0

duρY(u)
(3x1 − u)2 + x2

2
− 2

∫ x1

0

duρY(u)
(u+ x1)2 + x2

2
+
∫ ∞

0

duρY(u)
(u+ 3x1)2 + x2

2

+ 2
∫ ∞

x1

duρY(u)
(2u− x1)2 + x2

2
−
∫ ∞

0

duρY(u)
(u+ x1)2 + x2

2
− 2

∫ ∞
0

duρY(u)
(2u+ x1)2 + x2

2

+
∫ ∞

0

duρY(u)
(3u+ x1)2 + x2

2
−
∫ ∞

x1

duρY(u)
(3u− x1)2 + x2

2
− x1

∫ ∞
0

du(u+ x1)ρY(u)
[(u+ x1)2 + x2

2]2
. (2.11)

The normalized correction (2.10) allows one to investigate the flow in the far field.
Thus, it yields

lim
x?→∞

ψ(x?)= sin 2θ
2θ

(any ρY), (2.12)

where we have introduced polar coordinates x? ≡ x?(cos θ, sin θ). The limit (2.12)
suggests that at large distances from the wall the mean flow behaves like a
homogeneous one driven by

〈h(θ)〉∞ =
(

1− σ 2
Y

sin 2θ
2θ

)
h(0)(x?, θ)= 1H

π
(θ − σ 2

Y sin θ cos θ) for x?� I. (2.13)

The asymptotic equation (2.13), whose dependence upon the polar angle θ is depicted
in figure 2, represents a useful benchmark to validate numerical codes.
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FIGURE 2. Dependence of the scaled asymptotic head 〈h(θ)〉∞/1H on the polar angle
θ ∈ [−π/2,π/2] for some values of the variance σ 2

Y of the log-conductivity Y = ln K.

3. Discussion
Besides being of definite theoretical interest, the statistical moments of the head

obtained so far may serve: (i) in field applications for the purpose of carrying out
proper head measurements; and (ii) as a benchmark to validate numerical codes.

The head variance σ 2
h (x?) = Ch(x?, x?) is computed from (2.8) by carrying out a

single numerical quadrature as shown in appendix A. However, a simpler (closed-
form) expression for σ 2

h is obtained by approximating the fluctuation Y ′ = Y − 〈Y〉
of the log-conductivity by a Gaussian white noise (in analogy to the δ-approximation
of the energy spectrum in the theory of homogeneous turbulence), i.e. ρY(x1)≈ Iδ(x1).
The result (in dimensional form) is

σ 2
h (x?)

(1HσY)2
= I sin θ

x?π2

{
θ − arctan

(
tan θ

2

)
+ sin θ cos θ

[
f1(tan2 θ)

1+ 8 sin2 θ
+ f2(tan2 θ)

3(1+ 8 cos2 θ)

+ f3(tan2 θ)

(1+ 24 cos2 θ)(9+ 16 cos2 θ)

]}
, −π

2
6 θ 6

π

2
, (3.1)

where

f1(a)= 1+ 3a√
a

[
arctan

(
3√
a

)
− arctan

(
1√
a

)]
+ ln

[
(9+ a)

16(1+ a)

]
, (3.2)

f2(a)= a− 3
2
√

a
arctan

(
2√
a

)
− a+ 3√

a
arctan

(
1√
a

)
+ ln

[
(1+ a)

4(4+ a)

]
+π

9+ a
4
√

a
, (3.3)

f3(a) = 125+ 9a
2
√

a
arctan

(
1√
a

)
− 25− 3a

2
√

a
arctan

(
2√
a

)
− 25+ 9a

2
√

a
arctan

(
3√
a

)
+ 5 ln

[
4(1+ a)

4+ a

]
− 3π

25+ a
4
√

a
. (3.4)
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0

I

FIGURE 3. Sketch of a horizontally elongated inclusion of conductivity K0 imbedded in a
matrix �eff of effective conductivity Keff such that the homogeneous flow field coincides
with that generated by h(0) in (2.5).

Before going on, it is worth noting that one can replace ρY with a white noise when
the log-conductivity Y is correlated over a very short vertical scale. However, within
the context of hydrological applications it has been shown (see e.g. Fiori, Indelman &
Dagan 1998; Indelman & Dagan 1999; Severino & Coppola 2012) that this becomes
a reasonable working assumption when I/I∞ � 1 (in line with the assumption
of a highly anisotropic porous formation). From the practical point of view, the
white-noise approximation has already been found to be in good agreement with field
findings (Sudicky 1986; Zinn & Harvey 2003) and Monte Carlo simulations (e.g.
Indelman, Or & Rubin 1993) for I/I∞ . 0.05.

For comparison purposes, we have also conducted Monte Carlo simulations (MCS)
using the code RFLOW (freely available at: http://courses.engmath.dal.ca/rfem/). For
the sake of completeness, we briefly describe the algorithm here (a detailed description
can be found in Fenton & Griffiths 2008). Any realization of the random field
K, which is generated by the local average subdivision method (chapter 6.4.6 in
Fenton & Griffiths 2008), is mapped upon a regular mesh (step 1). The elliptic-type
equation (2.1) is then discretized (by means of the finite-elements method) into a
system of linear algebraic equations. The latter is solved for the nodal h-values by
using the Gaussian elimination algorithm (step 2). Steps 1 and 2 are iterated Nr
times (with Nr� 1) to obtain a set of realizations at each node for any flow variable
that is used to evaluate moments (for details, see chapter 8 in Fenton & Griffiths
2008). In the present study, the numerical mesh consisted of 100× 40× 40 elements.
The boundary conditions at x1 = 0 were such that the head drop 1H across the wall
(of zero thickness) was set to unity, whereas the outer boundary of the mesh was
assigned a ‘no-flow’ boundary condition. The vertical and horizontal integral scales
were taken such that I/I∞ = 0.001. Finally, Nr = 5000 realizations were performed
for each case.

To discuss the behaviour of the head variance σ 2
h to be shown in figures 4 and 5,

it is convenient to focus upon the head pattern in the vicinity of an inclusion of
conductivity K0 embedded into a matrix �eff . The latter is homogenized (to ensure the
same flux) with the effective conductivity Keff (details on how to compute Keff in this
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FIGURE 4. (Colour online) Contour plot of the scaled head variance σ 2
h (x?)/(σY1H)2

computed with the analytical expression (3.1) (black lines), and the MCS (red lines).

case can be found in Indelman 1996; Severino, Santini & Sommella 2008; Severino
2011; Severino & Coppola 2012). The variance σ 2

h is obtained by ensemble averaging
the square of the head fluctuation, h(1)(x) = h(x) − 〈h(x)〉, as computed by several
such single realizations. Toward this end, we have depicted in figure 3 an horizontally
elongated (large I∞ and small I) inclusion to mimic the statistical structure of a highly
anisotropic formation. We start by analyzing the disturbance in the flow field when
such an inclusion is close to the upper boundary x1 = 0. In this case one has

q1 ≈Keff 1H
πx2

and q2 ≈ 0 (for x1→ 0). (3.5a,b)

As a consequence, the flux close to x1 is mainly vertical. Therefore any fluid particle
will be ‘forced to pass through’ the inclusion, thus causing a variation (i.e. a
fluctuation) of the head with respect to the mean one. More precisely, depending
upon the contrast ratio κ =K0/Keff and due to the mass-conservation law, streamlines
will: (i) be attracted by the inclusion (similarly to the channelling mechanism) for
κ > 1; or (ii) try to circumvent the inclusion for κ < 1. The deformation of the
streamlines in the vicinity of the inclusion determines steeper gradients above/below
it, and consequently the heads in the close vicinity of the inclusion are higher
(κ < 1) or lower (κ > 1) than the mean. Hence, the variance σ 2

h ≡ 〈h(1)2〉 increases in
this zone (figure 4). Such a physical explanation applies to both upstream (x2 < 0)
and downstream (x2 > 0) of the wall. This explains the symmetry of σ 2

h depicted in
figures 4 and 5, as well as the fact that the main source of uncertainty is concentrated
below the wall (figure 4).
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–1.5 –1.0 –0.5 0 0.5 1.0 1.5

0

0.002

0.004

0.006

0.008

0.010

0

0.10

0.20

0.30

0.40

FIGURE 5. (Colour online) Dependence of: (i) the normalized variance σ 2
h /(1HσY)

2

(continuous line), and (ii) the coefficient of variation CVh/σY (dash-dot line) of the RSF h
upon the polar angle θ ∈ [−π/2,π/2], for some values of the dimensionless distance x?/I
from the vortex x? ≡ (0, 0).

As the flux becomes horizontal, a smaller and smaller amount of fluid particles
passes through the inclusion. Indeed, unlike the previous case, the horizontal flux
(and consequently the head) is not affected by the elongated shape of the inclusion
(see figure 3), and thus the head variance decreases as θ→ 0 (figure 5). In the case
of a ‘purely horizontal’ flow (i.e. θ ≡ 0), the head field is not influenced at all by
the perturbation generated by the inclusion, and therefore σ 2

h vanishes (see figure 5).
As the distance x? increases (along a given direction θ ), the head fluctuation (and
consequently σ 2

h ) increases, reaching its a maximum at a certain distance. By this
distance, the head starts to behave like the mean one (see (2.13)), and consequently
the head variance decays with increasing x? (see figure 4). Unlike the variance, the
coefficient of variation CVh (dash-dot lines in the figure 5) reveals that the more
uncertain head values (as compared with the mean (2.5)) are those beneath the
wall (θ = 0). The same conclusions can be drawn for either the exponential or the
Gaussian model for ρY . An improvement in the agreement between the analytical
expression (3.1) and the MCS (see figure 4) can be obtained by using a more accurate
(higher-order) finite-difference scheme in the numerical simulations.

In order to show how the heterogeneity affects the spatial distribution of the mean
head, in figure 6(a) we have depicted a few contour levels of the function ψ (see
(2.9)–(2.10)). Up to depths smaller than three integral scales (i.e. for x1 6 3I), the ψ
distribution upstream of the wall (corresponding to x2 < 0) is negative, and therefore
9 > 1 (see (2.9a)). The consequence is that within such a zone the mean head 〈h〉
is larger than h(0), which is obtained by assuming K ≡ KG throughout the domain �.
Instead, for x1 > 3I (and x2 6 0), 9 < 1 and, therefore, 〈h〉< h(0) (in agreement with
the asymptotic equation (2.13)). The situation is completely reversed downstream of
the wall (x2 > 0). Such a behaviour is visualized in figure 6(b), wherein we compare
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FIGURE 6. (Colour online) (a) Contour lines of the correction function ψ ≡ ψ(x?) for
exponential ρY . (b) Contour lines of the normalized mean head 〈h(x?)〉/1H for σ 2

Y = 0.5
computed with: (i) MCS (dashed black thick lines), and (ii) the analytical model (2.10)
(blue continuous lines) with exponential ρY . Red dash-dot lines refer to the normalized
leading-order term: h(0)(x?)/1H.

the isolines of the mean head computed by the MCS and the analytical model (2.10)
for exponential ρY (the same conclusions are drawn for a Gaussian ρY) against the
leading-order term (2.5).

4. Analysis of the failure probability: risk quantification
The majority of the engineering analyses aimed at the design of water-retaining

structures are deterministic in that the hydraulic conductivity K is regarded as
uniformly distributed over the entire flow domain. Spatial variations of K are
subsequently accounted for by applying (often rather arbitrarily) a safety factor
sf to the exit volumetric flow rate Q downstream of the wall (see e.g. Lancellotta
1993). Such an approach suffers from many flaws (a wide-ranging discussion can be
found in Fenton & Griffiths 2008), the most important of which is the total lack of
the associated risk. In fact, even if the deterministically predicted Q is amplified by
sf , there is no a priori guarantee that for the ‘upscaled’ value Qf = sf Q the probability
of failure (due to the well-known piping effect) will be small enough to be tolerated.
On the contrary, the stochastic approach provides a way to estimate the probability
of failure (risk quantification), therefore leading to a reliability-based design. More
precisely, the risk quantification enables one to compute the probability that the actual
volumetric flow rate will exceed a certain value (see e.g. Tartakovsky 2013).

In order to compute the probability associated with the RSF Q, we adopt the
log-normal distribution. The feasibility of such a hypothesis has been tested in
several studies (see Fenton & Griffiths 2008, and references therein), and it will
also be checked in the present study. As a consequence, to determine the probability
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associated with Q it suffices to compute the mean µQ and the variance σ 2
Q of the

total flow rate Q (hereafter per unit transverse length). Thus, we expand the RSF Q
into an asymptotic sequence to obtain

µQ ≡Q(0) =−
∫ x?

%

ds q(0)1 (0, s)=KG
1H
π

ln
(

x?

%

)
, Q(1) =−

∫ x?

%

ds q(1)1 (0, s).

(4.1)

The flux q (unlike the hydraulic head h) is singular at the vortex x?= 0, and therefore
to guarantee the integrability of the second term in (4.1) we have excluded from �?

the (very tiny) semi-circle C (%)≡{(x1, x2)∈�? : x2
1+ x2

2 6 %
2} of radius %= b/2. Thus,

the variance of the total flow rate is given by

σ 2
Q = 〈Q(1)2〉 =

∫ x?

%

∫ x?

%

ds′ ds′′〈q(1)1 (0, s′)q(1)1 (0, s′′)〉. (4.2)

In particular, to evaluate the variance (4.2) one has to compute the covariance

〈q(1)1 (0, x2)q
(1)
1 (0, y2)〉 ≡Cq1(x

?; y?)|x1=y1=0 = (σYKG1H)2

π2
Cq1(x2, y2) (4.3)

of the vertical flux downstream of the wall. The scaled covariance Cq1 is expressed
in terms of a single quadrature (for details, see appendix C), and consequently the
variance σ 2

Q is obtained from (4.2) by a triple numerical quadrature. For simplicity, we
approximate ρY by white noise which leads to a very simple (closed-form) result for
the coefficient of variation CVQ = σQ/|µQ|, i.e.(

CVQ

σY

)2

= 1+ π(x? − %)2
2%x?(x? + %) ln2(x?/%)

. (4.4)

From (4.4) it is seen that CV2
Q decays monotonically (for given %) with the distance

x?, ranging from the very high values attained in the neighbourhood of the wall
(x? ' %) to CV2

Q ≡ σ 2
Y corresponding to the large-distance value. The highest values

of CVQ are due to the fact that close to the wall the local vertical flux q1(0, x2)
(and consequently Q) undergoes very large fluctuations. Instead, for x? � I the
flow behaves as a mean uniform one (see (2.13)), and therefore one recovers
CV2

Q ' O(σ 2
Y ) in agreement with previous studies (see e.g. Dagan 1987; Indelman

1996). The property CVQ(∞) < CVQ(x?) < CVQ(%) is of utility for both design (as will
be shown later on) and numerical (to validate/check more involved codes) purposes.

For a reliability-based design, a major goal is to estimate the probability that a
‘given’ design value of the flow rate (say Qd) underestimates the current one. Such
an event implies an unsafe design, and therefore it would be desirable to attach it to
a low (failure) probability. The probability that Q exceeds the value Qd is computed
as

Pd ≡ P[Q>Qd] = 1− F(Qd)= 1
2

erfc

 ln
[
(Qd/µQ)

√
1+ CV2

Q

]
√

2 ln(1+ CV2
Q)

 , (4.5)

where µQ and CVQ are given by (4.1) and (4.4), respectively. The probability (4.5)
evaluated at x? = I and x? = 10I is depicted in figure 7 along with the failure
probability obtained with the MCS, figure 8, and the failure probability (dash-dot
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FIGURE 7. (Colour online) Probability of the dimensionless volumetric flow rate
Q/(KG1H) exceeding a certain design value Qd. Continuous lines represent the analytical
model (4.5), whereas circles pertain to the MCS. Parameter values: x?= I (black), x?= 10I
(blue), % = 0.002I, and σ 2

Y = 0.50. The dash-dot lines correspond to a homogeneous
(σ 2

Y ≡ 0) aquifer �. In the inset, the horizontal and vertical scales are both expressed in
logarithmic scale.

lines) corresponding to CVQ ≡ 0 (homogeneous formation). In the second case, the
failure probability is 1 as long as the design value Qd does not exceed µQ; otherwise
it is zero, i.e. Pd ≡ χ(µQ − Qd). Thus, Qd � µQ means that within almost all the
K-field realizations the flow rates (even those attached to the highest values of CVQ,
and therefore significantly different from the mean µQ) are greater than Qd. This
explains why Pd ∼ 1 for Qd � µQ. As Qd increases (but still being less than µQ)
the outcome depends on whether CVQ is small or large. In the first case, most of
the flow rates do not differ significantly from µQ, and therefore the majority of
them are higher than Qd. As a consequence, this case is close to the previous one,
and therefore Pd is still approximately 1. On the other hand, a large coefficient of
variation CVQ results in numerous events where the flow rate does not exceed Qd,
and consequently the failure probability is significantly smaller than 1. Since the
coefficient of variation (4.4) is a decreasing function of the distance x?, one detects
a smaller Pd for the smaller distance (black lines) downstream of the wall (figure 7).

The case Qd > µQ is much more interesting from the application point of view.
While for a homogeneous medium (dashed-dot lines) the failure probability is zero
(therefore leading to a safe design), the medium heterogeneity clearly makes it
possible to have Q > Qd with a probability Pd 6= 0. This unwarranted event may be
associated with an unacceptable result from the safety stand-point. More precisely,
even if one amplifies µQ by a safety factor sf (as is routinely done in the classical
approach), there is no a priori guarantee that the failure probability will be small
enough to consider the design acceptable. A very simple manner to illustrate such
an unwarranted outcome is to provide an answer to the following question: What
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FIGURE 8. (Colour online) Probability density function of the volumetric flow rate
Q/(〈K〉1H) obtained with the MCS (dotted line), along with the fitted log-normal model
(continuous line). Parameter values are the same as in figure 7. The p-value (i.e. the
smallest value of the significance level 5 % at which the hypothesis of log-normal
distribution would be rejected) for the χ 2-test of fitting is 68 % and 13 % for x? = I and
x? = 10I, respectively.

reliability-based safety factor s?f does one have to adopt within a classical design
procedure in order to have a failure probability less than a certain value α?

To answer this question, we define Qα
d as the design volumetric flow rate

corresponding to a failure probability α, and seek s?f so that Qα
d = s?fµQ. Here

µQ is the volumetric flow rate that a designer would use if, according to the classical
approach, the aquifer is regarded as homogeneous. Hence, the answer to the above
question is straightforwardly found from figure 7. Indeed, let us assume that α= 1 %,
then from the inset one recovers Q0.01

d /(KG1H) ≈ 30 for x? = I. Then (4.1) gives
s?f ≈ 30π/ ln(103)≈ 14. This value, which is far beyond the commonly accepted range
for s?f , clearly demonstrates that the heterogeneity may lead to predictions which are
significantly different from those obtained by classical methods. Such a difference is
magnified further if one aims to increase the safety level (for instance, when potential
risks for human lives are directly/indirectly involved into the design) by requiring
that α = 1h. In these cases some additional devices (such as the insertion of a cut
off) would be worth adopting.

5. Concluding remarks

We have developed a procedure to model seepage underneath a water-retaining wall
(figure 1) in heterogeneous formations of stationary log-conductivity Y . Unlike the
previous (numerical) studies (see e.g. Griffiths & Fenton 2007; Fenton & Griffiths
2008), here the problem is tackled by means of analytical methods. By dealing with
a highly anisotropic porous formation and by adopting a first-order expansion in the
variance σ 2

Y of the RSF Y , closed-form expressions for the second-order moments of
the head h, and the volumetric flow rate Q are derived.
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The main theoretical achievements of the present paper can be summarized as
follows. (i) We have demonstrated that large uncertainty in the head sampling
is confined to the close vicinity of the water-retaining wall. This result can be
used as a benchmark to check more involved numerical codes, as well as to
design proper sampling strategies to monitor the head distribution surrounding
the water-retaining structure. (ii) We have derived a general representation of the
mean head 〈h〉 = (1 − σ 2

Yψ)h
(0), where ψ is a characteristic heterogeneity function

that can be easily computed after specifying the autocorrelation function ρY . (iii)
We have shown that at large distances from the wall the flow behaves as a mean
uniform one driven by a mean head, which does not depend upon the shape of the
autocorrelation ρY .

Apart from the theoretical interest, the present analysis enables one to assess the risk
of occurrence of flow events which may cause the failure (e.g. piping and/or erosion)
of civil structures. We found that the probability of failure may be unacceptable even
when a relatively large safety factor is applied.

Although the present study shows how the stochastic approach can be successfully
applied to solve practical problems, there are still many topics (such as accounting
for highly heterogeneous formations or unsteady flow conditions) which remain
unresolved and require future investigations.
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Appendix A. Computation of the head covariance
In order to compute the head covariance Ch, we preliminarily derive (by the

method of moment equations) the cross-covariance ChY(x, y) ≡ 〈h(1)(x)Y ′(y)〉. Thus,
we multiply (2.6) by Y ′ evaluated at y 6= x, and then take the ensemble average to
get

∇2ChY(x, y)=−σ 2
Y∇ρY(x− y) · ∇h(0)(x?), (A 1)

the differentiations in (A 1) being in terms of x. Similarly, we multiply (2.6) by h(1)(y)
and average to yield

∇2Ch(x, y)=−∇CYh(x, y) · ∇h(0)(x?). (A 2)

The covariances ChY–Ch are not stationary in the domain �? due to the non-uniformity
of the mean flow there. Instead, they are stationary along the (perpendicular to �?)
x3-axis. It is therefore convenient to take the Fourier transform (FT), i.e.

FT[f (x)]k ≡ f̃ (k)= (2π)−d/2
∫

dx f (x) exp(x · k) (A 3)
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(d being the dimensionality of the Fourier space) along r= x3− y3 (d≡ 1 in this case).
As a consequence, (A 1) is transformed into the following Helmholtz-type equation:

∇2C̃hY(x?, y?; k)− k2C̃hY(x?, y?; k)=−σ 2
Y∇ρ̃Y(x? − y?; k) · ∇h(0)(x?). (A 4)

The FT C̃hY is obtained by means of the Green’s function

Gk(x?; ξ ?)= 1
2π
[K0(|k|r−)−K0(|k|r+)], r2

∓ = (x1 ∓ ξ1)
2 + (x2 − ξ2)

2, (A 5)

solution of the equation ∇2Gk − k2Gk =−δ(x? − ξ ?). Thus, it yields (after integrating
by parts, and by accounting for the fact that h(0) is harmonic)

C̃hY(x?, y?; k)=−σ 2
Y

∫
�?

dξ ? ρ̃Y(ξ
? − y?; k)∇Gk(x?; ξ ?) · ∇h(0)(ξ ?). (A 6)

Insertion of FT

FT[ρY(x1)] = ρY(x1)

(2π)1/2

∫ +∞
−∞

dx3 exp(kx3)= (2π)1/2ρY(x1)δ(k) (A 7)

into (A 6), and recalling that

FT−1[δ(k)Gk(x?; ξ ?)] =−(2π)−3/2 ln
(

r−
r+

)
≡ (2π)−1/2G?(x?; ξ ?) (A 8)

(G? being the Green’s function pertaining to �?) leads to

ChY(x?; y?)= σ 2
Y

∫
�?

dξ ?ρY(ξ1 − y1)
∂

∂ξm
h(0)(ξ ?)

∂

∂ξm
G?(x?; ξ ?) (A 9)

(summation convention over m= 1, 2 has been adopted). Hence, integration by parts
yields

ChY

σ 2
Y
= [ρY(y1)− ρY(x1 − y1)]h(0)(x?)−

∫
�?

dξ ?
∂

∂ξ1
ρY(ξ1 − y1)h(0)(ξ ?)

∂

∂ξ1
G?(x?; ξ ?),

(A 10)

where we have used the property ∇2G?(x?; ξ ?) = δ(x? − ξ ?). The quadrature over
ξ2 appearing in the integral on the right-hand side of (A 10) is easily computed by
combining the definition of FT and convolution as follows:

I (x?; ξ1) =
∫ +∞
−∞

dξ2 h(0)(ξ ?)
∂

∂ξ1
G?(x?; ξ ?)= (2π)1/2 lim

k→0
FT
[

h(0)(ξ ?)
∂

∂ξ1
G?(x?; ξ ?)

]
k

= lim
k→0

∫ +∞
−∞

dp h̃(0)(ξ1, k− p)
∂

∂ξ1
G̃?(x?; ξ1, p). (A 11)

By recalling that

FT[h(0)(ξ ?)]k = 1H
(2π)1/2

exp(−|k|ξ1)

k
, (A 12)

FT[G?(x?; ξ ?)]k = exp(kx2)

2|k|(2π)1/2
{exp[−(x1 + ξ1)|k|] − exp(−|x1 − ξ1||k|)}, (A 13)
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one has

2I (x?; ξ)=−h(0)(2x1 + ξ, x2)− [χ(x1 − ξ)− χ(ξ − x1)]h(0)(x1 + |x1 − ξ |, x2), (A 14)

where χ ≡ χ(·) is the Heaviside step function. Insertion of (A 14) into (A 10) gives

ChY(x?; y1)= σ
2
Y

2
9hY(x?; y1), (A 15)

with

9hY(x?; y1)= 2[ρY(y1)− ρY(x1 − y1)]h(0)(x?)+
∫ x1

0
dξh(0)(2x1 − ξ, x2)

∂

∂ξ
ρY(ξ − y1)

+
∫ ∞

0
dξh(0)(2x1 + ξ, x2)

∂

∂ξ
ρY(ξ − y1)−

∫ ∞
x1

dξh(0)(ξ , x2)
∂

∂ξ
ρY(ξ − y1)

= 2ρY(y1)[h(0)(x?)− h(0)(2x1, x2)] −
∫ x1

0
dξρY(ξ − y1)

∂

∂ξ
h(0)(2x1 − ξ, x2)

+
∫ ∞

x1

dξρY(ξ − y1)
∂

∂ξ
h(0)(ξ , x2)−

∫ ∞
0

dξρY(ξ − y1)
∂

∂ξ
h(0)(2x1 + ξ, x2). (A 16)

For x1 = 0 the cross-covariance (A 15) vanishes due to the fact that the boundary
condition requires a given (i.e. deterministic) head, and therefore the head fluctuation
there is zero.

The head covariance is obtained from (A 2) by means of the Green’s function

G(x; ξ)= 1
4π

(
1
ρ−
− 1
ρ+

)
, ρ∓ =

√
(x1 ∓ ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2 (A 17)

pertaining to �, and integrating by parts, i.e.

Ch(x, y)=
∫ ∞

0
dξ1ChY(y?, ξ1)

∫ +∞
−∞

∫ +∞
−∞

dξ2 dξ3
∂

∂ξm
h(0)(ξ ?)

∂

∂ξm
G(x; ξ). (A 18)

The double quadrature over ξh ≡ (ξ2, ξ3) ∈R2 is evaluated in analogy to (A 11) as∫
dξh

∂

∂ξm
G(x; ξ) ∂

∂ξm
h(0)(ξ ?)= 2π lim

kh→0
FT
[
∂

∂ξm
G(x; ξ) ∂

∂ξm
h(0)(ξ ?)

]
kh

= lim
kh→0

∫
dph FT

[
∂

∂ξm
G(x; ξ)

]
ph

FT
[
∂

∂ξm
h(0)(ξ ?)

]
kh−ph

(m= 1, 2). (A 19)

On skipping the algebraic derivations, one comes up with

2
∫

dξh
∂

∂ξm
G(x; ξ) ∂

∂ξm
h(0)(ξ ?)= χ(ξ1 − x1)

∂

∂ξ1
h(0)(2ξ1 − x1, x2)− ∂

∂ξ1
h(0)(2ξ1 + x1, x2).

(A 20)

Substitution into (A 18) leads to

Ch = 1
2

∫ ∞
x1

dξChY(y?, ξ)
∂

∂ξ
h(0)(2ξ − x1, x2)− 1

2

∫ ∞
0

dξChY(y?, ξ)
∂

∂ξ
h(0)(2ξ + x1, x2)

= σ 2
Y

4

∫ ∞
x1

dξ
[
9hY

(
y?,

ξ + x1

2

)
−9hY

(
y?,

ξ − x1

2

)]
∂

∂ξ
h(0)(ξ , x2), (A 21)

where we have accounted for (A 15). To reduce the computation of Ch to the
evaluation of a single quadrature, we insert (A 16) into (A 21) to give
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Ch(x?, y?)= σ
2
Y

4

4∑
k=1

Ck(x?, y?), (A 22)

where we have set

C1(x?, y?)= 2h(0)(y?)
∫ ∞

x1

dξ [R0(ξ)−Ry1(ξ)]
∂

∂ξ
h(0)(ξ , x2), (A 23)

C2(x?, y?)=
∫ ∞

x1

∫ y1

0
dξ ′ξ ′′h(0)(2y1 − ξ ′′, y2)

∂

∂ξ ′
h(0)(ξ ′, x2)

∂

∂ξ ′′
Rξ ′′(ξ

′), (A 24)

C3(x?, y?)=
∫ ∞

x1

∫ ∞
0

dξ ′ξ ′′h(0)(2y1 + ξ ′′, y2)
∂

∂ξ ′
h(0)(ξ ′, x2)

∂

∂ξ ′′
Rξ ′′(ξ

′), (A 25)

C4(x?, y?)=−
∫ ∞

x1

∫ ∞
y1

dξ ′ξ ′′h(0)(ξ ′′, y2)
∂

∂ξ ′
h(0)(ξ ′, x2)

∂

∂ξ ′′
Rξ ′′(ξ

′), (A 26)

and

Rα(β)≡ ρY

(
α − β + x1

2

)
− ρY

(
α − β − x1

2

)
. (A 27)

Integration by parts over ξ ′′ leads to

c̄ =
4∑

k=1

Ck(x?, y?)= 2[h(0)(y?)− h(0)(2y1, y2)]
∫ ∞

x1

dξR0(ξ)
∂

∂ξ
h(0)(ξ , x2)

−
∫ ∞

x1

dξ ′
∂

∂ξ ′
h(0)(ξ ′, x2)

[∫ y1

0
dξ ′′Rξ ′′(ξ

′)
∂

∂ξ ′′
h(0)(2y1 − ξ ′′, y2)

+
∫ ∞

0
dξ ′′Rξ ′′(ξ

′)
∂

∂ξ ′′
h(0)(2y1 + ξ ′′, y2)−

∫ ∞
y1

dξ ′′Rξ ′′(ξ
′)
∂

∂ξ ′′
h(0)(ξ ′′, y2)

]
.

(A 28)

We now change the order of integration in the double quadratures appearing in (A 28),
and compute one integral to get

c̄= 2[h(0)(y?)− h(0)(2y1, y2)]
∫ +∞

x1

dvR0(v)
∂

∂v
h(0)(v, x2)+ x2y2

(
1H
π

)2

Φ(x?, y?),

(A 29)
Φ(x?, y?)

4
=
∫ +∞
−∞

dvρY(v)F (2v + x1;∞)−
∫ y1−x1

−∞
dvρY(v)F (2v + x1; 2y1 − x1 − 2v)

−
∫ +∞

y1−x1

dvρY(v)F (2v + x1; x1)+
∫ +∞
−∞

dvρY(v)F (2v − x1 + 4y1;∞)

−
∫ 0

−∞
dvρY(v)F (2v − x1 + 4y1; x1 − 2v)−

∫ +∞
0

dvρY(v)F (2v − x1 + 4y1; x1)

+
∫ y1

−∞
dvρY(v)F (2v − x1 − 4y1; x1 + 2y1)−

∫ 0

−∞
dvρY(v)F (2v − x1 − 4y1; x1 − 2v)

−
∫ y1

0
dvρY(v)F (2v − x1 − 4y1; x1)−

∫ +∞
−∞

dvρY(v)F (2v − x1;∞)
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+
∫ y1

−∞
dvρY(v)F (2v − x1; 2y1 + x1 − 2v)+

∫ +∞
y1

dvρY(v)F (2v − x1; x1)

−
∫ +∞
−∞

dvρY(v)F (2v + x1 + 4y1;∞)+
∫ −x1

−∞
dvρY(v)F (2v + x1 + 4y1; −2v − x1)

+
∫ +∞
−x1

dvρY(v)F (2v + x1 + 4y1; x1)−
∫ y1−x1

−∞
dvρY(v)F (2v + x1 − 4y1;∞)

+
∫ −x1

−∞
dvρY(v)F (2v + x1 − 4y1; −2v − x1)+

∫ y1−x1

−x1

dvρY(v)F (2v + x1 − 4y1; x1),

(A 30)

with

F (α; u) = 1
[α2 + (x2 + 2y2)2][α2 + (x2 − 2y2)2]
×
{
α2 − (x2

2 − 4y2
2)

x2
arctan

(
u
x2

)
+ α2 + (x2

2 − 4y2
2)

2y2
arctan

(
u+ α
2y2

)
+ α ln

[
(α + u)2 + 4y2

2

u2 + x2
2

]}
. (A 31)

Appendix B. Computation of the normalized correction (2.10)

To compute it, we first derive the second-order correction h(2) to the head. This is
obtained from (2.4) for n= 2, and it is as follows:

h(2)(x)=−
∫
�

dξG(x; ξ) ∂
∂ξm

Y ′(ξ)
∂

∂ξm
h(1)(ξ)

=
∫
�

dξY ′(ξ)
∂

∂ξm
h(1)(ξ)

∂

∂ξm
G(x; ξ)− 1

2

∫
�

dξG(x; ξ) ∂
∂ξm

Y ′2(ξ)
∂

∂ξm
h(0)(ξ) (B 1)

(the last part has been obtained by virtue of (2.6)). Then, taking the expectation
into (B 1) and using the stationarity of Y , leads to

〈h(2)(x)〉 =
∫
�?

dξ ?σEmY(ξ
?)
∂

∂ξm

∫ +∞
−∞

dξ3G(x; ξ) (m= 1, 2), (B 2)

the cross-variance appearing in (B 2) being obtained from (A 15) in appendix A as

σEmY(x?)= lim
y1→x1

∂

∂xm
ChY(x?, y1). (B 3)

In (B 2) the quadrature over ξ3 is easily carried out after noting that∫ +∞
−∞

dξ3G(x; ξ)= (2π)1/2 lim
k→0

Gk(x?; ξ ?)=G?(x?; ξ ?). (B 4)

Hence, the σ 2
Y -order correction to the mean head is

〈h(2)(x?)〉 =
∫
�?

dξ ?σEmY(ξ
?)
∂

∂ξm
G?(x?; ξ ?). (B 5)
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Insertion of (A 15)–(A 16) into (B 5) provides

σ−2
Y 〈h(2)(x?)〉 =

∫ 0

−x1

duρY(u)
∂

∂u
h(0)(x1 − u, x2)+

∫ ∞
−x1

duρY(u)
∂

∂u
h(0)(u+ 3x1, x2)

− x1

π

∫
�?

dξ ?ρY(ξ1)

x2
1 + (x2 − ξ2)2

∂

∂ξ1
h(0)(ξ ?)+ 2

∫
�?

dξ ?ρY(ξ1)
∂

∂ξm
G?(x?; ξ ?) ∂

∂ξm
h(0)(ξ ?)

− 2
∫
�?

dξ ?
∂

∂ξ1
G?(x?; ξ ?) ∂

∂ξ1
h(0)(ξ ?)− 2

∫
�?

dξ ?ρY(ξ1)
∂

∂ξ2
G?(x?; ξ ?) ∂

∂ξ2
h(0)(2ξ1, ξ2)

+
∫ ∞

0
duρY(u)

∂

∂u

∫
�?

dξ ?
∂

∂ξ2
G?(x?; ξ ?) ∂

∂ξ2
h(0)(u+ ξ1, ξ2). (B 6)

Finally, carrying out the inner quadratures and dividing the result by the zero-order
approximation (2.5) leads to (2.10).

Appendix C. Covariance of the vertical flux downstream the wall

To compute the covariance Cq1(x, y) = 〈q(1)(x)q(1)(y)〉 of q1, we represent the flux
fluctuation (2.7) as

−q(1)` (x)
KG

= Y ′(x)
∂

∂x`
h(0)(x?)+ ∂

∂x`

∫
�

dξY ′(ξ)
∂

∂ξm
G(x; ξ) ∂

∂ξm
h(0)(ξ ?) (m= 1, 2),

(C 1)

where we have expressed the head fluctuation h(1), the solution of (2.6), by means of
the Green’s function (A 17) pertaining to the half-space �. Hence, the covariance of
the vertical flux is written

Cq1(x
?, y?)= (KGσY)

2

[
ρY(x1 − y1)

∂

∂x1
h(0)(x?)

∂

∂y1
h(0)(y?)

+ 1
2
∂

∂x1
h(0)(x?)

∫ ∞
0

dξρY(ξ − x1)T (y?; ξ)+ 1
2
∂

∂y1
h(0)(y?)

∫ ∞
0

dξρY(ξ − y1)T (x?; ξ)

+ 1
4

∫ ∞
0

∫ ∞
0

dξ ′1 dξ ′′1 ρY(ξ
′
1 − ξ ′′1 )T (x?; ξ ′1)T (y?; ξ ′′1 )

]
, (C 2)

where we have set

T (x?; ξ1) = ∂

∂x1

∫
dξh

∂

∂ξm
G(x; ξ) ∂

∂ξm
h(0)(ξ ?)=−δ(ξ1 − x1)

∂

∂ξ1
h(0)(2ξ1 − x1, x2)

+χ(ξ1 − x1)
∂2

∂x1∂ξ1
h(0)(2ξ1 − x1, x2)− ∂2

∂x1∂ξ1
h(0)(2ξ1 + x1, x2) (C 3)

(the last part has been obtained by carrying out the derivative of the second of (A 20)
with respect to x1). Hence, the scaled covariance Cq1 in (4.3) can be written (after
reducing the double quadrature appearing in (C 2) to a single one) as

Cq1(x2, y2)= 1
x2y2
+ 4

x2y2

∫ ∞
0

du u
(1+ 4u2)2

[2ρY(y2u)+ ρY(x2u)]

+ ∂2

∂x2∂y2

∫ ∞
0

duρY(u)
4u2 + (x2 + y2)2

[
2π(x2 + y2)− A (u; x2, y2)+A (u; y2, x2)+B(u; x2, y2)

4u2 + (x2 − y2)2

]
,

(C 4)
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where

A (u; x2, y2)= y2(4u2 + y2
2 − x2

2) arctan
(

2u
y2

)
, (C 5)

B(u; x2, y2)= u(4u2 + y2
2 + x2

2) ln
(x2y2)

2

(4u2 + x2
2)(4u2 + y2

2)
. (C 6)
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