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ABSTRACT

We investigate the Gross—Prasad conjecture and its refinement for the Bessel periods in
the case of (SO(5),S0(2)). In particular, by combining several theta correspondences,
we prove the Ichino—Ikeda-type formula for any tempered irreducible cuspidal auto-
morphic representation. As a corollary of our formula, we prove an explicit formula
relating certain weighted averages of Fourier coefficients of holomorphic Siegel cusp
forms of degree two, which are Hecke eigenforms, to central special values of L-functions.
The formula is regarded as a natural generalization of the Bocherer conjecture to the
non-trivial toroidal character case.

1. Introduction

The investigation of relations between periods of automorphic forms and special values of
L-functions is a main focus of research in number theory. The central special values are of
keen interest in light of the Birch and Swinnerton-Dyer conjecture and its generalizations.
Gross and Prasad [GP92, GP94] proclaimed a global conjecture relating non-vanishing of
certain period integrals on special orthogonal groups to non-vanishing of central special values
of certain tensor product L-functions, together with the local counterpart conjecture in the early
1990s. Later with Gan [GGP12], they extended the conjecture to classical groups and metaplec-
tic groups. Meanwhile a refinement of the Gross—Prasad conjecture, which is a precise formula
for the central special values of the tensor product L-functions for tempered cuspidal automor-
phic representations, was formulated by Ichino and Ikeda [II10] in the co-dimension-one special
orthogonal case. Subsequently Harris [Har14] formulated a refinement of the Gan—Gross—Prasad
conjecture in the co-dimension-one unitary case. Later an extension of the work of Ichino-Tkeda
and Harris to the general Bessel period case was formulated by Liu [Liul6] and to the general
Fourier—Jacobi period case for symplectic-metaplectic groups was formulated by Xue [Xuel7].
In [FM17] we investigated the Gross—Prasad conjecture for Bessel periods for SO(2n + 1) x
SO(2) when the character on SO(2) is trivial, i.e. the special Bessel periods case and then, in the
sequel [FM21], we proved its refinement, i.e. the Ichino—Tkeda-type precise L-value formula under
the condition that the base field is totally real and all components at archimedean places are
discrete series representations. As a corollary of our special value formula in [FM21], we obtained
a proof of the long-standing conjecture by Bocherer in [B6c86], concerning central critical values
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of imaginary quadratic twists of spinor L-functions for holomorphic Siegel cusp forms of degree
two which are Hecke eigenforms, thanks to the explicit calculations of the local integrals by
Dickson, Pitale, Saha and Schmidt [DPSS20].

In this paper, for (SO(5),S0(2)), we vastly generalize the main results in [FM17, FM21].
Namely we prove the Gross—Prasad conjecture and its refinement for any Bessel period in the case
of (SO(5),S0(2)). As a corollary, we prove the generalized Bocherer conjecture in the square-free
case formulated in [DPSS20].

Let us introduce some notation and then state our main results precisely.

1.1 Notation

Let F' be a number field. We denote its ring of adeles by A, which is mostly abbreviated as A for
simplicity. Let ¢ be a non-trivial character of A/F. For a € F*, we denote by ¥® the character
of A/F defined by ¢(x) = ¢(ax). For a place v of F', we denote by F), the completion of F' at v.
When v is non-archimedean, we denote by w, and ¢, a uniformizer of F; and the cardinality of
the residue field of F,,, respectively.

Let E be a quadratic extension of F' and A g be its ring of adeles. We denote by x — x7 the
unique non-trivial automorphism of E over F. Let us denote by Ng,p the norm map from F
to . We choose € E* such that ° = —n and fix. Let d = n?. We denote by xx the quadratic
character of A* corresponding to the quadratic extension E/F. We fix a character A of Ay /E*
whose restriction to A* is trivial once and for all.

1.2 Measures

Throughout the paper, for an algebraic group G defined over F', we let G, denote G(F}), the
group of rational points of G over F,, and we always take the measure dg on G(A) to be the
Tamagawa measure unless specified otherwise. For each v, we take the self-dual measure with
respect to ¢, on F,. Then recall that the product measure on A is the self-dual measure with
respect to 1 and is also the Tamagawa measure since Vol(A/F') = 1. For a unipotent algebraic
group U defined over F, we also specify the local measure du, on U(F,) to be the measure
corresponding to the gauge form defined over F', together with our choice of the measure on F},,
at each place v of F. Thus, in particular, we have

du =[] du, and Vol(U(F)\U(A),du) = 1.

1.3 Similitudes
Various similitude groups appear in this article. Where there is no risk of confusion, we denote
by A(g) the similitude of an element ¢ of a similitude group for simplicity.

1.4 Bessel periods
First we recall that when V is a five-dimensional vector space over F' equipped with a non-

degenerate symmetric bilinear form whose Witt index is at least one, there exists a quaternion
algebra D over F' such that

SO(V) = Gp, (1.4.1)

where Gp = Gp/Zp, Gp is a similitude quaternionic unitary group over F' defined by

Go(r)={secra): 9 (] ()o=20) (] ) Awer}  aaz
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and Zp is the center of Gp. Here

_ t u t u
g:= <w v) forg-(w U)EGLQ(D),

where denoted by x — T for « € D is the canonical involution of D. In addition, we define a
quaternionic unitary group G, over F by

GL:={geGp:Ayg) =1}
Let
D™ :={z e D :trp(z) =0},

where trp denotes the reduced trace of D over F. We recall that when D ~ Matoyo(F'), Gp is
isomorphic to the similitude symplectic group GSp, which we denote by G, i.e.

G(F) = {g € GLy(F) : Ig <_012 102> 9= Ag) <_012 102> L Mg) € F} (1.4.3)

In addition, we define the symplectic group Spy, which we denote by G, as
Gl:={geG:\g) =1}

We let PGSpy, = G/Zg by G, where Zg denotes the center of G. Thus, when D is split, Gp ~
G = GSpy, G}) ~ G' = Sp, and Gp ~ G = PGSp,.
The Siegel parabolic subgroup Pp of Gp has the Levi decomposition Pp = MpNp where

MD(F)::{(g M(?x):xeDX,MeFX}, Np(F) := {(é ?):UED}.

For £ € D™ (F), let us define a character ¢¢ on Np(A) by

1 w
ve(y 1) = vmnlen. (14.4)

We note that for (§ uox € Mp(F), we have

~1
x 1 w\/xz O 1 u
W66 D6 ) e D) e
Suppose that F'({) ~ E. Let us define a subgroup T¢ of D* by

T;={xeD* :ata ! =¢}. (1.4.6)

Then since F'(§) is a maximal commutative subfield of D, we have
T,(F) = F(§)* ~ E*. (1.4.7)
We identify T¢ with the subgroup of Mp given by

z 0
(5 0)-wem). s
We note that by (1.4.5), we have

Ye(tnt™) = e(n) for t € Te(A) and n € Np(A).
We define the Bessel subgroup R¢ of Gp by
Re :=T¢Np. (1.4.9)
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Then the Bessel periods defined below are indeed the periods in question in the Gross—Prasad
conjecture for (SO(5),S0(2)).

DEFINITION 1.1. Let 7 be an irreducible cuspidal automorphic representation of Gp(A) whose
central character is trivial and V its space of automorphic forms. Let A be a character of A%, /E*
whose restriction to A* is trivial. Let £ € D™ (F) such that F(§) ~ E. Fix an F-isomorphism
T¢ ~ E* and regard A as a character of T¢(A)/T¢(F). We define a character x** on R¢(A) by

XA (tn) := A(t)e(n) for t € T¢(A) and n € Np(A). (1.4.10)
Then for f € Vi, we define B¢ p 4 (f), the (£, A, ¢)-Bessel period of f, by
Beay(f) = / f(r)xf’A(r)_l dr. (1.4.11)
AXRe(F)\Re(A)

We say that m has the (£, A,v)-Bessel period when the linear form Bg 5 4 is not identically
zero on V.

Remark 1.1. Here we record the dependency of Bg¢ a4 on the choices of £ and . First we note
that for & € D™ (F), we have F(¢') ~ E if and only if

¢ =p-ata for some a € D*(F) and p € F* (1.4.12)

by the Skolem—Noether theorem. Suppose that £ € D~ (F) satisfies (1.4.12) and ¢’ = ¢* where
a € F*. Let mp = (§ a—lou'a) € Mp(F). Then by (1.4.5), we have

Be py(n(mo) f) = / / FERAE) 1 () de” di

AXTe (F)\Ter(A) J Np(F)\Np(A)

= Ber o (f), (1.4.13)
where we identify T (F') with E* via the F-isomorphism F(¢) 2 z — aza™! € F(§) ~ E.

DEFINITION 1.2. Let (m, V) be an irreducible cuspidal automorphic representation of Gp(A)
whose central character is trivial. Let A be a character of Ay /E* whose restriction to A* is
trivial. Then we say that m has the (F,A)-Bessel period if there exist £ € D™ (F') such that
F(§) ~ E and a non-trivial character ¢ of A/F so that 7 has the (&, A,)-Bessel period. This
terminology is well-defined because of the relation (1.4.13).

1.5 Gross—Prasad conjecture
First we introduce the following definition which is inspired by the notion of local G-equivalence
in Hiraga and Saito [HS12, p. 23].

DEFINITION 1.3. Let (m, V) be an irreducible cuspidal automorphic representation of Gp(A)
whose central character is trivial. Let D’ be a quaternion algebra over F and (7’,V,/) an
irreducible cuspidal automorphic representation of Gp/(A). Then we say that m is locally
G -equivalent to 7/ if at almost all places v of F where D(F,) ~ D'(F,), there exists a character
Xo of Gp(F,)/Gp(F,)" such that 7, ® x, ~ . Here

Gp(F)* :={g € Gp(F) : Mg) € Ng/p(E)}. (1.5.1)

Remark 1.2. When 7 and 7/ have weak functorial lifts to GL4(A), say IT and I, respectively,
the notion of local G*-equivalence is described simply as the following. Suppose that 7 and 7’
are locally GT-equivalent. Then there exists a character w of Gp(A) such that m ® w is nearly
equivalent to 7', where w may not be automorphic. Since w, is either g, or trivial at almost
all places v of F', we have BCp/p(I1) =~ BCg/p(Il') where BCp,p denotes the base change lift
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to GL4(Ag). Then by a result of Arthur and Clozel [AC89, Theorem 3.1], we have II ~ II' or
II' ® xg. Hence, 7 is nearly equivalent to either 7’ or 7’ ® xg. The converse is clear.

Then our first main result is on the Gross—Prasad conjecture for (SO(5),SO(2)).

THEOREM 1.1. Let E be a quadratic extension of F. Let (w,V;) be an irreducible cuspidal
automorphic representation of Gp(A) with a trivial central character and A a character of
A% /E* whose restriction to A* is trivial.

(i) Suppose that m has the (E, A)-Bessel period. Moreover, assume that:
there exists a finite place w of F' such that
mw and its local theta lift to GSOy42(Fy,) are generic. (1.5.2)

Here GSO,42 denotes the identity component of GOy, the similitude orthogonal group
associated to the six-dimensional orthogonal space (E,Ng / r) ® H? over F where H denotes
the hyperbolic plane over F'.

Then there exists a finite set Sy of places of F' containing all archimedean places of F
such that the partial L-function

L(%,m x AZ(A)) #0 (1.5.3)

for any finite set S of places of F' with S D Sy. Here, AZ(A) denotes the automorphic
induction of A from GL1(Ag) to GLa(A). Moreover, there exists a globally generic irreducible
cuspidal automorphic representation 7° of G(A) which is locally G*-equivalent to .

(ii) Assume that:

the endoscopic classification of Arthur,
i.e. [Art13, Conjectures 9.4.2, 9.5.4] holds for Gp, . (1.5.4)

Here D, denotes an arbitrary quaternion algebra over F'.
Suppose that m has a generic Arthur parameter, namely the parameter is of the form
Iy or II; BIIy where II; is an irreducible cuspidal automorphic representation of GL4(A)
for i = 0 and of GLy(A) for i = 1,2, respectively, such that L(s,II;, A?) has a pole at s = 1.
Then we have

L(%,mx AZ(A)) #0 (1.5.5)

if and only if there exists a pair (D', 7') where D’ is a quaternion algebra over F containing E
and 7' an irreducible cuspidal automorphic representation of G p, which is nearly equivalent
to m such that ©' has the (E, A)-Bessel period.

Moreover, when 7 is tempered, the pair (D', x") is uniquely determined.

Remark 1.3. In (1.5.5), L(s,m x AZ(A)) denotes the complete L-function defined as the
following.
When AZ(A) is not cuspidal, i.e. A = AgoNg,p for a character Ag of A*/F™, we define

L(s,m x AZ(A)) := L(s,7m x Ag)L(s, ™ x AoxE),

where each factor on the right-hand side is defined by the doubling method as in Lapid and
Rallis [LRO5] or Yamana [Yam14].

When AZ(A) is cuspidal, the partial L-function L°(s,m x AZ(A)) may be defined by
Theorem C.1 in Appendix C for a finite set S of places of F' such that m, and II(A), are
unramified at v € S. Further, we define the local L-factor at each place v € S by the local
Langlands parameters for m, and II(A),, where the local Langlands parameters are given by
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Gan and Takeda [GT11a] for G(F) (also Arthur [Art13]), Gan and Tantono [GT14] for Gp(Fy),
Kutzko [Kut80] for GLa(F,) at finite places and by Langlands [Lan89] at archimedean places.

We note that the condition (1.5.3) and the condition (1.5.5) are equivalent from the definition
of local L-factors when 7 is tempered.

Remark 1.4. Suppose that at a finite place w of F', the group Gp(F,) is split and the repre-
sentation m, is generic and tempered. Then by Gan and Ichino [GI14, Proposition C.4], the big
theta lift of m,, and the local theta lift of m, coincide. Thus, the genericity of the local theta
lift of m, follows from Gan and Takeda [GT11b, Corollary 4.4] for the dual pair (G,GSOs33)
and from a local analogue of the computations in [Morl4a, §3.1] for the dual pair (G*, GSO42),
respectively. Here

G(F)":={g9€G: \yg) € Ng/p(EX)}. (1.5.6)

When a local representation 7, is unramified and tempered, m,, is generic as remarked in
[FM17, Remark 2|. Hence, the assumption (1.5.2) is fulfilled when 7 is tempered.

In our previous paper [FM17], Theorem 1.1 for the pair (SO(2n + 1), SO(2)) was proved when
A is trivial. Meanwhile Jiang and Zhang [JZ20] studied the Gross—Prasad conjecture in a very
general setting assuming the endoscopic classification of Arthur, in general, by using the twisted
automorphic descent. Though Theorem 1.1 is subsumed in [JZ20] as a special case, we believe that
our method, which is different from theirs, has its own merits because of its concreteness. We also
note that because of the temperedness of 7, the uniqueness of the pair (D', 7’) in Theorem 1.1(ii)
follows from the local Gan—Gross—Prasad conjecture for (SO(5),SO(2)) by Prasad and Takloo-
Bighash [PT11, Theorem 2] (see also Waldspurger [Wal85] in the general case) at finite places
and by Luo [Luo20] at archimedean places. We shall give another proof of this uniqueness by
reducing it to a similar assertion in the unitary group case.

1.6 Refined Gross—Prasad conjecture
Let (m, Vz) be an irreducible cuspidal tempered automorphic representation of G p(A) with trivial
central character. For ¢1, ¢2 € Vi, we define the Petersson inner product (¢, ¢2)r on Vi by

(61, 62)r = / 61(9)82(9) do,
Zp(A)Gp(F)\Gp(A)

where dg denotes the Tamagawa measure. Then at each place v of F', we take a Gp(Fy,)-invariant
hermitian inner product on Vr, so that we have a decomposition (, ) = [[,(, )x,. In the definition
of the Bessel period (1.4.11), we take dr = dt du where dt and du are the Tamagawa measures
on T¢(A) and Np(Z), respectively. We take and fix the local measures du, and dt, so that
du =[], du, and

dt = C¢ [ [ dto (1.6.1)

where C¢ is a constant called the Haar measure constant in [I110]. Then the local Bessel period
ab™ Vz, X Vz, — C and the local hermitian inner product (,),, are defined as in §2.4.
Suppose that D is not split. Then by Li [Li92], there exists a pair (¢, A’) such that 7 has the
(&', N, 1))-Bessel period. Here &’ € D~ (F) such that E' := F(¢') is a quadratic extension of F' and
A’ is a character on A, /AXE' . Then by Proposition 4.1, which is a consequence of the proof
of Theorem 1.1(i), there exists an irreducible cuspidal automorphic representation 7° of G(A)
which is generic and locally GT-equivalent to . We take the functorial lift of 7° to GL4(A) by
Cogdell, Kim, Piatetski-Shapiro and Shahidi [CKPS04], which is of the form IT; B - - - B II,, with
II; an irreducible cuspidal automorphic representation of GLy,,(A) for each i. Then we define
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an integer ¢(m) by ¢(m) = £o. We note that 7° may not be unique, but ¢(7) does not depend on
the choice of the pair (£, A’) by Proposition 4.1 and Lemmas 4.2 and 4.3, and thus it depends
only on (m, V). When D is split, then 7 has the functorial lift to GL4(A) by Arthur [Art13]
(see also Cai, Friedberg and Kaplan [CFK18]) and we define /() in a similar way.

Our second main result is the refined Gross—Prasad conjecture formulated by Liu [Liul6],
i.e. the Ichino-Tkeda-type explicit central value formula, in the case of (SO(5),SO(2)).

THEOREM 1.2. Let (m,Vy) be an irreducible cuspidal tempered automorphic representation of
Gp(A) with a trivial central character.
Then for any non-zero decomposable cusp form ¢ = ®,¢, € V., we have

Beaw(@) _ o n o) LG x AZ(A)) o (¢v)
e 2 G (HCF@”) AL W Geoy 0

Here (r(s) denotes the complete zeta function of F' and ai(qﬁv) is defined by

ey Lm, ADL(Lxp.)
) L X T Ty Cr2g) e ()

We note that aEJ(qﬁv)/((bv, ¢u)r, = 1 for almost all places v of F' by [Liul6].

Remark 1.5. Under the assumption (1.5.4), we have |S(¢)| = 2, where ¢, denotes the Arthur
parameter of 7 and S(¢.) the centralizer of ¢, in the complex dual group G. Hence, (1.6.2)
coincides with the conjectural formula in Liu [Liul6, Conjecture 2.5 (3)]. Thus, when D is split,
i.e. Gp ~ G, our theorem proves Liu’s conjecture since the assumption (1.5.4) is indeed fulfilled.
After submitting this paper, Ishimoto posted a preprint [Ish24] on arXiv, in which he gives
the endoscopic classification of representations of non-quasi-split orthogonal groups for generic
Arthur parameters. Hence, our theorem proves [Liul6, Conjecture 2.5 (3)] completely in the case

of (SO(5),S0(2)).

Remark 1.6. Let mgen denote the irreducible cuspidal globally generic automorphic representation
of G(A) which has the same L-parameter as 7. When , is unramified at any finite place v of
F, Chen and Ichino [CI23] proved an explicit formula of the ratio L(1, 7, Ad)/(Pgen, Pgen) for a
suitably normalized cusp form ®4e, in the space of mgen.

Remark 1.7. In the unitary case, remarkable progress has been made in the Gan—Gross—Prasad
conjecture and its refinement for Bessel periods, by studying the Jacquet—Rallis relative trace
formula. In the striking paper [BLZZ21] by Beuzart-Plessis, Liu, Zhang and Zhu, a proof in the
co-dimension-one case for irreducible cuspidal tempered automorphic representations of unitary
groups such that their base change lifts are cuspidal was given by establishing an ingenious
method to isolate the cuspidal spectrum. In yet another striking paper by Beuzart-Plessis,
Chaudouard and Zydor [BCZ22], a proof for all endoscopic cases in the co-dimension one set-
ting was given by a precise study of the relative trace formula. Very recently, in a remarkable
preprint by Beuzart-Plessis and Chaudouard [BC23], the above results are extended to arbitrary
co-dimension cases. Thus the Gan—Gross—Prasad conjecture and its refinement for Bessel periods
on unitary groups are now proved in general.

In contrast, the orthogonal case in general is still open. We note that, in the (SO(5),SO(2))
case, the first author has formulated relative trace formulas to approach the formula (1.6.2) and
proved the fundamental lemmas in his joint work with Shalika [FS03], Martin [FM11] and Martin
and Shalika [FM13a]. In order to deduce the L-value formula from these relative trace formulas,
several issues such as smooth transfer of test functions must be overcome. In the above-mentioned
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co-dimension-one unitary group case, reductions to Lie algebras played crucial roles to solve
similar issues. However Bessel periods in our case involves integration over unipotent subgroups
and it is not clear, at least to the first author, how to make the reduction to Lie algebras work.

Remark 1.8. In the co-dimension-one orthogonal group case, the refined Gross—Prasad conjecture
has been deduced from the Waldspurger formula [Wal85] in the (SO(3), SO(2)) case and from the
Ichino formula [Ich08] in the (SO(4),SO(3)) case, respectively. Gan and Ichino [GI11] studied the
(SO(5),S0(4))-case when the representation of SO(5) is a theta lift from GSO(4) by reduction
to the (SO(4),SO(3)) case.

Liu [Liul6] proved Theorem 1.2 when D is split and 7 is an endoscopic lift, i.e. a Yoshida
lift, by reducing it to the Waldspurger formula [Wal85]. The case when 7 is a non-endoscopic
Yoshida lift was proved later by Corbett [Corl7] in a similar manner.

As a corollary of Theorem 1.2, we prove the (SO(5),S0(2)) case of the Gan-Gross—Prasad
conjecture in the form as stated in [GGP12, Conjecture 24.1].

COROLLARY 1.1. Let (m,Vy) be an irreducible cuspidal tempered automorphic representation
of Gp(A) with a trivial central character. Then the following three conditions are equivalent:

(i) the (&, A,v)-Bessel period does not vanish on 7;
ii) L(%, 7 x AZ(A)) # 0 and the local Bessel period o # 0 on m, at any place v of F’;
2 ’U?’¢'£,1}

(ili) L(3,7 x AZ(A)) # 0 and Hompg,  (,, x3™) # {0} at any place v of F.

Remark 1.9. The equivalence between conditions (i) and (ii) is immediate from Theorem 1.2.
The equivalence

Ny e, 7 0 < Hompg, (7, X5") # {0} (1.6.3)

is proved by Waldspurger [Wall2b] at any non-archimedean place v and by Luo [Luo20] recently
at any archimedean place v, respectively.

1.7 Method
In [FM17, FM21] we used the theta correspondence for the dual pair (SO(2n + 1), Mp,,).

The main tool in [FM17] was the pull-back formula by the first author [Fur95] for the
Whittaker period on Mp,,, which is expressed by a certain integral involving the Special Bessel
period on SO(2n + 1). This forced us the restriction that the character A on SO(2) is trivial.

In [FM21], to prove the refined Gross—Prasad conjecture for (SO(2n + 1), SO(2)) when A is
trivial, the following additional restrictions were necessary.

(i) The base field F is totally real and at every archimedean place v of F, the representation
7, is a discrete series representation.
(ii) The assumption (1.5.4).

An additional main tool needed in [FM21] was the Ichino-Tkeda-type formula for the Whit-
taker periods on Mp,, by Lapid and Mao [LM17], which imposed on us condition (i). In fact,
their proof was to reduce the global identity to certain local identities. They proved the local
identities in general at non-archimedean places. On the other hand, at archimedean places, their
proof was to note the equivalence between their local identities and the formal degree conjec-
ture by Hiraga, Ichino and Ikeda [HIIO8a, HIIO8b] and then to prove the latter when 7 is a
discrete series representation. Our proof in [FM21] was to reduce to the case when m has the
special Bessel period by the assumption (1.5.4) and to combine these two main tools with the
Siegel-Weil formula.
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It does not seem plausible that a straightforward generalization of the method of [FM17,
FM21] would allow us to remove these restrictions. Thus, we need to adopt a new strategy in
this paper.

Our main method here is again theta correspondence but we use it differently and in a more
intricate way. First we consider the quaternionic dual pair (G+, GSUs p) where GSU3 p denotes
the identity component of the similitude quaternion unitary group GUs p defined by (2.1.9) and
G, defined by (1.5.1). Then we recall the accidental isomorphism

PGSU&D ~ PGU4’5 (171)

when D ~ D, given by (2.1.1) and GUy. is the similitude unitary group defined by (2.1.14).
Hence, we have

QU ~ {GUZQ, when D is split, i.e. € € Ng/p(E™); (1.7.2)

GUs1, when D is non-split, i.e. € ¢ N/ p(E™).

Thus, our theta correspondence for (GJJ{), GSUs p) induces a correspondence for the pair
(Gp,PGUy4.). Then we note that the pull-back of a certain Bessel period on PGUy, is an
integral involving the (&, A, 1)-Bessel period on Gp.

Theorem 1.1 is reduced essentially to the Gan—Gross—Prasad conjecture for the Bessel periods
on GUy, which we proved in [FM22] using the theta correspondence for the pair (GUy, GU32).

Similarly Theorem 1.2 is reduced to the refined Gan—Gross—Prasad conjecture for the Bessel
periods on GUy.. For the reader’s sake, here we present an outline of the proof when the
(&, A, 1)-Bessel period does not vanish. Note that in the following paragraph the notation used
is provisional and the argument is not rigorous since our intention here is to present a rough
sketch of the main idea.

Let (7, V;) be an irreducible cuspidal tempered automorphic representation of Gp(A) with
a trivial central character. Suppose that the (£, A, v)-Bessel period, which we denote by B, does
not vanish on 7. Let 6(m) be the theta lift of 7 to GSUs p. When Gp = G and the theta lift of
7 to GSO3; is non-zero, 6(7) is not cuspidal but the explicit formula (1.6.2) has been already
proved by Corbett [Cor17]. Thus, suppose otherwise. Then é(7) is a non-zero irreducible cuspidal
tempered automorphic representation. The pull-back of a certain Bessel period, which we denote
by B on GSUjs p is written as an integral involving B. As in our previous paper [FM21], the
explicit formula for B is reduced to that for B, which we obtain in the following steps.

(1) Via the isomorphism (1.7.1), regard #(m) as an automorphic representation of GUy . and
then consider its theta lift 65 (6(m)), which depends on A, to GUjy 2. The temperedness of 7
implies that 65 (6(n)) is an irreducible cuspidal automorphic representation of GUj 2. Then
the pull-back of a certain Whittaker period W on GUg 3 is written as an integral involving
the Bessel period B. Then in [FM22], it is shown that the explicit formula for B follows
from that for W. Thus, we are reduced to show the explicit formula for W.

(2) Via the isomorphism PGUj 5 o~ PGSOy 2, regard 5 (6(7)) as an automorphic representation
of GSOy2. Let 7’ be the theta lift of 5(6(7)) to G = GSpy. Then it is shown that 7’ is a
globally generic cuspidal automorphic representation of G and indeed the pull-back of the
Whittaker period W on G is expressed as an integral involving V. Hence, we are reduced
to the explicit formula for W.

(3) Since the theta lift of the globally generic cuspidal automorphic representation ©’ of G to
either GSOg22 or GSO3 3 is non-zero and cuspidal, we are further reduced to the explicit
formulas for the Whittaker periods on PGSO» 2 and PGSO3 3 by the pull-back computation.
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(4) Recall the accidental isomorphisms PGSOz2 ~ PGLy x PGL2, PGSOz 3 ~ PGL4. Since
the explicit formula for the Whittaker period on PGL, is already proved by Lapid and
Mao [LM15], we are done.

Remark 1.10. Though we only consider the case when SO(2) is non-split in this paper, the split
case is proved by a similar argument as follows. First we note that D is necessarily split when
SO(2) is split and, hence, Gp ~ G. If the theta lift to GSO2 2 is non-zero, it is a Yoshida lift and
Liu [Liul6] proved the explicit formula. Suppose otherwise. Then the theta lift to GSO3 3 is non-
zero and cuspidal. The pull-back of a certain Bessel period on GSO3 3 is an integral involving the
split Bessel period on G (see §3.1.2). We recall the accidental isomorphism PGSO3 3 ~ PGLy.
We consider the theta correspondence for the pair (GL4, GL4) instead of (GUy., GUys,) in the
non-split case. Then the pull-back computation may be interpreted as expressing the pull-back
of the Whittaker period on GL4 as an integral involving the Bessel period on GSOs 3, which is
given in [FM22]. Thus, as in the non-split case, we are reduced to the Ichino-Tkeda-type explicit
formula for the Whittaker period on GLy4.

We now give the statement of the theorem in the split case.

THEOREM 1.3. Let (w,V; ) be an irreducible cuspidal automorphic representation of G(A) with
trivial central character. Suppose that D is split and the Arthur parameter of 7 is generic.
Let £ € D™(F) such that F({) ~ F® F and fix an F-isomorphism Tz ~ F* x F*. For a
character A of A* /F*, we also denote by A the character of T¢(A) defined by A(a,b) := A(ab™?).
The following assertions hold.

(1) The (&, A, v)-Bessel period does not vanish on V; if and only if 7 is generic and L(,m x A)
# 0. Here we note that L(1,m x A~1) is the complex conjugate of L(3,m x A) since 7 is
self-dual.

(2) Further assume that 7 is tempered. Then for any non-zero decomposable cusp form ¢ =
®y Oy € Vi, we have

Beaw(@®)? . yn 2 NLE, 7 x ALE 7 x AL o (¢
| i;:fi)())‘ 7 ZUC&'(E@Q‘”) (QL(T,W,)A((f)cF@ )'va,ﬁ))m

where (p(1) stands for Ress—1 (p(s).

1.8 Generalized Bo6cherer conjecture

Thanks to the meticulous local computation by Dickson, Pitale, Saha and Schmidt [DPSS20],
Theorem 1.2 implies the generalized Bocherer conjecture. For brevity, we only state the scalar-
valued full modular case here in the introduction. Indeed, a more general version shall be proved
in §8.3 as Theorem 8.1.

THEOREM 1.4. Let ® be a holomorphic Siegel cusp form of degree two and weight k with respect
to Spy(Z) which is a Hecke eigenform and 7(®) the associated automorphic representation of
G(AQ). Let
(2) =Y a(®T)exp2ny/=1tx(T2)], Z € $H, (1.8.1)
T>0

be the Fourier expansion of ® where 1" runs over semi-integral positive-definite two-by-two
symmetric matrices and $)s denotes the Siegel upper half-space of degree two.

Let E be an imaginary quadratic extension of Q. We denote by —Dpg its discriminant,
Clg its ideal class group and w(E) the number of distinct roots of unity in E. In (1.8.1),
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when T" = 'yTy for some vy € SLy(Z), we have a(®,T") = a(®,T). By the Gauss composition
law, we may naturally identify the SLs(7Z)-equivalence classes of binary quadratic forms of dis-
criminant —Dpg with the elements of Clg. Thus, the notation a(®,c) for ¢ € Clg makes sense.
For a character A of Clg, we define Bx(®, E) by

Bo(®,E) :=w(E)™" - Y a(®,c)A(c).
ceClg
Suppose that ® is not a Saito-Kurokawa lift. Then we have
|BA(®, E)|? _ 92k—4 k-1 L(z,m(®) x AZ(A))
(@, 9) BT L0, n(3),Ad)

(1.8.2)

Here
(®,®) = / 1®(Z)[>det(Y)F3dX dY where Z =X ++/—1Y.
Sp2(2)\ 92

Remark 1.11. In Theorem 8.1, we prove (1.8.2) allowing ® to have a square-free level and to
be vector-valued. Moreover, assuming the temperedness of m(®), the weight 2 case, which is of
significant interest because of the modularity conjecture for abelian surfaces, is also included.

Formula (1.8.2) and its generalization (8.3.1) are expected to have a broad spectrum of inter-
esting applications both arithmetic and analytic. Some of the examples are [Blo19], [DPSS20, § 3],
[Dum?22], [HY24], [Sah14] and [Wail9].

1.9 Organization of the paper

This paper is organized as follows. In § 2, we introduce some more notation and define local and
global Bessel periods. In § 3, we carry out the pull-back computation of Bessel periods. In §4, we
shall prove Theorem 1.1 using the results in § 3. We also note some consequences of our proof of
Theorem 1.1(i), which will be used in the proof of Theorem 1.2 later. In § 5, we recall the Rallis
inner product formula for similitude groups. In §6, we will give an explicit formula for Bessel
periods on GUy . in certain cases as explained in our strategy for the proof of Theorem 1.2. In
§ 7, we complete our proof of Theorem 1.2. In § 8, we prove the generalized Bocherer conjecture,
including the vector valued case. In Appendix A, we will give an explicit formula of Whittaker
periods for irreducible cuspidal tempered automorphic representations of GG. In Appendix B, we
compute the local Bessel periods explicitly for representation of G(R) corresponding to vector-
valued holomorphic Siegel modular forms. This result is used in §8. In Appendix C, we consider
the meromorphic continuation of the L-function for SO(5) x SO(2).

1.10 Index of notation

Mp,Np, 2117 GOn2,n, GSOp42.0, 2126 B§7X7w, 2131
Gp, 2116 GUs p,GSUs p, 2127 My Ny, 2132
G, 2117 GUy, 2127 Mx, 2133
GL, 2117 dp, 2129 iy (6, ¢)), 2133
G', 2117 ®, 2130 Type I-A, Type I-B, 2152
T, 2117 M, N, 2130 Wv¥v, 2161
GF, 2118 Ts, 2130 WU 2165
B&A?,ﬁ, 2118 BS,A,#M 2131 W%WWG’U, 2163
AT(A), 2119 Ms.p N3 p, 2131 LG, fo): Lo(u, fo), 2164
Ba(®, E), 2125 Mx p, 2131 Wiy,,» 2163
Im, 2126 Bx s 2131 ba.5, 2193
2125
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2. Preliminaries

2.1 Groups

2.1.1 Quaternion algebras. Let X (E : F') denote the set of F-isomorphism classes of central
simple algebras over F' containing E. Then we recall that the map € — D, gives a bijection
between F* /Np,p(E*) and X(E : F) (see [[FS03, Lemma 1.3]) where

b
D, = {(;U Zg> :a,beE} for e € F*. (2.1.1)
Here we regard E as a subalgebra of D, by

E>ar (g a00,> € D..

We also note that D =~ Matax2(F) when € € Ng,p(E£*). The canonical involution D, > z +—

x € D, is given by
- a’® —¢b for v — [ @ eb
S\ S\ a”% )

We denote the reduced trace of D by trp.

2.1.2 Orthogonal groups. For a non-negative integer n, a symmetric matrix S, €
Mat (2 42)x (2n+2) (F) is defined inductively by

9 0 0 0 1
Sy 1= and S, =10 S,-1 O forn > 1. (2.1.2)
0 —-2d 1 0 0

We recall that E = F(n) where n? = d. Then we denote the corresponding orthogonal group, the
special orthogonal group and the similitude orthogonal group by

O(Sn) = Opt2n, SO(S,) =8SO0p42, and GO(S,) = GOpiop, (2.1.3)
respectively. Let GSO,,42,, denote the identity component of GO, 42 ,. Thus,
GSOn12n(F) = {g € GOpyon(F) : det(g) = AMg)"*'}, (2.1.4)
where
GOy, (F) = {9 € GLans2(F) : 'g Sn g = Ag)Sn, Mg) € F*}. (2.1.5)

For a positive integer n, we denote by Ja, the 2n x 2n symmetric matrix with ones on the
non-principal diagonal and zeros elsewhere, i.e.

0 1 o 0 1
Jo = and  Jypy1)= (0 J2n O forn > 1. (2.1.6)
10 1 0 O

Then the similitude orthogonal group GO, ,, is defined by

GOnn(F) :={g € GLon(F) : 'g Jan g = Mg)Jon, A(g) € F*} (2.1.7)
and we denote by GSO,, ,, its identity component, which is given by
GSOnn(F) = {g € GOuu(F) : det(g) = A(9)"}- (2.1.8)
2126
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2.1.3 Quaternionic unitary groups. Let D be a quaternion algebra over F' containing F.
Recall that Gp denotes the similitude quaternionic unitary group of degree 2 defined by (1.4.2).
We define a similitude quaternionic unitary group GUs p of degree 3 by

GUs p(F) = {g € GL3(D) : '§J; 9 = Mg)Ty, Ag) € F*}, (2.1.9)
where we define a skew-hermitian matrix J,, by
0 0 n
J,=10 n 0]. (2.1.10)
n 0 O

Here A = (a;;) for A = (a;j) € Maty,xn(D). Let us denote by GSUj p the identity component of
GUs,p. Then unlike the orthogonal case, as noted in [MVW87, p. 21-22], we have

GSU3 p(F) = GUs p(F)

and
GSUs p(Fy) = GUs p(F,) when D ®p F, is not split.

Moreover, when D ®p F, is split at a place v of F', we have

GUs p(Fy) =~ GOy (Fy) ?f E ® F, is a quadratic extension of Fy; (2.1.11)
GO373(FU) fTERF,~F, &®F,.
We also define GUy p by
GUy p(F):={ae D" :ana = XNa)n, MN«a)e F*} (2.1.12)

and denote its identity component by GSU; p. Then we note that
GSU; p(F) ={a € D* : ana = np(a)n}
={zeD"|an=nz} =T, (2.1.13)
where T;, is defined by (1.4.6) with £ =7 and np denotes the reduced norm of D.
2.1.4 Unitary groups. Suppose that D = D, defined by (2.1.1). Then we define GUy, a
similitude unitary group of degree 4 by
GUy.(F) :={g € GL4(E) : '¢° Teg = AN(9) Tz, Ag) € F*}, (2.1.14)

where we define a hermitian matrix J. by

0 0 01
0 -1 0 O
Je = 0 0 ¢ O
1 0 0 0

Here A% = (af;) for A = (aij) € Maty,xn(E). Then we have

U, = {GUQ,Q, when D is split, i.e. ¢ € Ng/p(EX); (2115)

GUs1, when D is non-split, i.e. € ¢ N/ p(E™).
We also define GUs . a similitude unitary group of degree 2 by

GUa(F) :={g € GLa(E) : '¢° Jeg = A(g)Jz, A(g) € F*} where J. = <_01 g) . (2.1.16)
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2.2 Accidental isomorphisms

We need to explicate the accidental isomorphisms of our concern, since we use them in a crucial
way to transfer an automorphic period on one group to the one on the other group. The reader
may consult, for example, Satake [Sat61] and Tsukamoto [Tsu61] about the details of the material
here.

2.2.1 PGSU3 p ~ PGUy.. Suppose that D = D,. Then we may naturally realize GSU3 p(F)
as a subgroup of GLg(E). We note that

-1

1 0 0 0 0 0 1 0 0 0 0 0
0 — 0 0 0 0 0 — 0 0 0 0
00 1 0 0 0|, o o 1 0 0 o Y
00 0 —0 0910 0 0 -0 of 7Y
0 0 0 0 1 0 00 0 0 1 0
0 0 0 0 0 — 00 0 0 0 —¢
and
01 0 0 0 0 o1 0 0 0 o0\ '
10 0 0 0 0 10 0 0 0 0
o0 0o 10 o0o|l,lo o o0 1 0o o _,
0010 0 ol%[0o 0o =10 0o of =%
00 0 0 0 1 0O 0 0 0 0 1
0 0 0 0 -1 0 0 0 0 0 —1 0
Thus, in this realization, we have
GSUs p(F) = {g € GSO33(E) : '¢° T2 g = M9) TS, Ag) € F*}, (2.2.1)
where
0000T10
00000 ¢
. |00 1000
=10 00 0 0
1000 0 0
0 e 0000
Here we recall that
GSO033(FE) ~ GLy(E) x GL1(E)/{(2,272) : z € E*}. (2.2.2)

In fact, the isomorphism (2.2.2) is realized as follows. Let us take the standard basis
bl :t(l,0,0,0), b2:t(0317070)7 b3:t(0a07170), b4:t(0a0a0a1)7

of E*. Then we may consider V := A2E* as an orthogonal space over F with a quadratic form
(,)v defined by

V1 NV = (Ul,vg)v'bl/\bg/\bg/\b4
for v1, vy € V. As a basis of V over E, we take {¢; : 1 <i <6} given by

e1=b1ANby, e93=0bANbs, e3=b1 ANby, e€4=byNb3, e5=bsgANby, ecg=Db3Aby.
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Let the group GL4(E) x GL1(F) act on V by (g,a)(wi Awz)=a-(gwi A gws) where
w1, wy € E*. This action defines a homomorphism

GL4(E) X GLl(E) — GSO373(E), (2.2.3)

where we take {¢;: 1 <i <6} as a basis of V' and the homomorphism (2.2.3) induces the iso-
morphism (2.2.2). By a direct computation we observe that (—J:,1) is mapped to J° under
(2.2.3) and the restriction of the homomorphism (2.2.3) gives a homomorphism

GUy(F) — GSU3 p(F). (2.2.4)
Then it is easily seen that the isomorphism
®p : PGUy(F) = PGSU; p(F) (2.2.5)
is induced.
2.2.2 PGUy3 ~ PGSOy42. When ¢ € NE/F(EX), the quaternion algebra D = D, is split

and the isomorphism (2.2.5) gives an isomorphism PGUjy 2 >~ PGSOy 2. We recall the concrete
realization of this isomorphism. First we define GUj o by

0 0 0 1
t o % 0 010
GUz2 :={g € GL4(E) : "¢ Jag = A(g)Js, N(g) € F*}, where Jy = 010 0
1 0 0 O
as (2.1.6). Let
0 nT| T3 + Nry 2
—nx 0 Ts —x3 + Nxy )
= i i = 1T <1 <
v B((#:)1<i<6) v —nzs —as 0 e z; € F(1<i<6)
—T2 T3 —nry —N lwe 0
We define ¥ : V — F by
- 0 12 t po 0 12
¥(B) = ﬁ(B <12 O) B (12 0) )
Then we have
V(B((zi)1<i<6)) = —4H{a126 + wows — (25 — dz)}.
Let GSUg 5 denote the identity component of GUg 9, i.e.
GSUs s = {g € GUap : det(g) = A(g)*}.
We let GSUs 2 act on V by
1 0 0 O
. 0100
GSUsz2 xV 3 (g9,B) — (wgw)B(w'gw) € V, where w = 00 0 1
0 01 0

Then this action induces a homomorphism ¢ : GSU 2 — GO(V). We note that
A(#(g)) = det(g) for g € GSUszp
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and this implies that the image of ¢ is contained in GSO(V). As a basis of V, we may take

0 n 00 0 0 0 1 0 0 1 0
[-n 0 00 o o000 1o 00 -1
h=10o 000" 2710 00 of B -1 0 0 0|’

0 00 0 1.0 0 0 0 1 0 0
0 0 n o0 0 0 0 O 00 0 0
1o 0 0 g 1o 0 10 oo o 0
fa= —n 0 ool 5= o =1 00| 7100 o n!

0 -n 0 O 0 0 00 00 —pt 0

With respect to this basis, we may regard ¢ as a homomorphism from GSUj2 to GOy 2, where
the group GOy is given by (2.1.5) for n = 2. Let us consider GSUy 2 x E* where the action of
a € EX on g € GSUy, is given by

-1

a 00 0 a 00 0
a.920100 g0100

001 0 001 0

0 0 0 ()t 0 0 0 (o)t

Then as in [Morl4a, p. 32-34], ¢ may be extended to GSU3 2 X E* and we have a homomorphism
GSUjz 2 x EX — PGSOy4,2 which induces the isomorphism

® : PGUy = PGSOy . (2.2.6)

2.3 Bessel periods
Let us introduce Bessel periods on various groups.

2.3.1 Bessel periods on G = GSpy. Though we already introduced Bessel periods on Gp in
general as (1.4.11), we would like to describe them concretely in the case of G here for our explicit
pull-back computations in the next section.

Let P be the Siegel parabolic subgroup of G with the Levi decomposition P = M N where

ORI e NN () e

Here Sym,,(F) denotes the set of n by n symmetric matrices with entries in F for a positive
integer n. For S € Symy(F), let us define a character g of N(A) by

Vs ((1) )1() — [tr(SX)].
For S € Sym,(F) such that det S # 0, let
Ts := {g € GLy : 'gSg = det(g)S}.
We identify Ts with the subgroup of G given by

{(g det(g)o- tgl) e TS}'

DEFINITION 2.1. Let us take S € Sym,(F') such that T's(F') is isomorphic to E*. Let 7 be an
irreducible cuspidal automorphic representation of G(A) whose central character is trivial and
Vi its space of automorphic forms. Fix an F-isomorphism Ts(F) ~ E*. Let A be a character of
A% /E* such that A |4« is trivial. We regard A as a character of Tg(A)/A* Ts(F).
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Then for ¢ € Vi, we define Bg A (¢), the (S, A, 1)-Bessel period of ¢ by

Bgap(p) = / / (uh)A~Y (h)yg ! (u) dudh. (2.3.1)
AX Ts(F)\Ts(4) JN(F)\N(4)

We say that = has the (S, A, 1)-Bessel period when Bg s  #Z 0 on V. Then we also say that 7
has the (£, A)-Bessel period as in Definition 1.2.

2.3.2 Bessel periods on GSUs p. Let us introduce Bessel periods on the group GSUjzp
defined in §2.1.3. Let P3p be a maximal parabolic subgroup of GSUj3p with the Levi
decomposition P35 p = M3 pN3 p where

g € D*,

g 00 1 A B
Mg’D: 0 A O :hETn, s N3’D: 0 1 A GGSU&D
00 g 0 0 1

np(g) =np(h)

As for T;), we recall (2.1.13) and T;, ~ E*. For X € D*, we define a character 1)x,p of N3 p(A)

by
1 A B
wX,D 0o 1 A :w[trD(XA)].
0O 0 1

Then the identity component of the stabilizer of 1 x p in Mj p is

X 0 0
Mxp = 0 h 0 |:heT,p, whereh™ =XnX
0 0 ¥
We identify My with T;, by
X 0 0
Mxp>| 0 h 0 |—heT, (2.3.2)
0 0 ¥

and we fix an F-isomorphism 7T}, ~ E*.

DEFINITION 2.2. Let op be an irreducible cuspidal automorphic representation of GSUg p(A)
and V,, its space of automorphic forms. Let x be a character of A},/E* and we regard x as a
character of My p(A)/Mx p(F). Suppose that x|yx = ws,, the central character of op.

Then for ¢ € V,,, we define BY _ (), the (X, x,)-Bessel period of ¢ by

Xox,%
BR i) = |

/ olub)x(h) "xp(w) Ldudh.  (2.3.3)
AXMx p(F)\Mx p(A) J N3 p(F)\N3,p(A)

2.3.3 Bessel periods on GUye. In light of the accidental isomorphism (2.2.5), Bessel periods
on the group GUy, is defined as follows.
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Let P, . be a maximal parabolic subgroup of GU,. with the Levi decomposition My Ny .

where
a O 0
My (F) = 0 g 0 ca€ EX g€ GUy,(F) »,
0 0 Ag)(a)™!
1 A B
N475(F) = 0 1o Al e GU4,8(F)
0 0 1

Let us take an anisotropic vector e € E* of the form (0, *, *,0). Then we define a character y.
Of N4,€ (A) by

Xe(u) = ¥((ue,b1)s), where (z,y). = tx? J.y.

Here we recall that J. is as given in (2.1.16) and b; = %(1,0,0,0). Let D, denote the subgroup
of My, given by

1
D, = 0
0

o O

0
0] :heUsy,, he=ce
1

Then the group D.(A) stabilizes the character x. by conjugation. We note that
D.(F)~Uy(F):={a€ E* :aa=1}.

Hence, for a character A of Ay, which is trivial on A*, we may regard A as a character of D.(A)
by d +— A(det d). Then we define a character x.  of Rc(A) where R, := D.Ny. by

XeA(ts) :=A(t)xe(s) fort e Do(A), s€ Ny (A). (2.3.4)

DEFINITION 2.3. For a cusp form ¢ on GUy.(Ar) with a trivial central character, we define
Beay (@), the (e, A, 1))-Bessel period of ¢, by

Beaw(p) = /

/ Xea(ts) "t p(ts) ds dt. (2.3.5)
De(F)\De(Ap) J Ny e(F)\Nac(AF)

2.3.4 Bessel periods on GSO42 and GSOgz3. By combining the accidental isomorphisms
(2.2.5) and (2.2.6) in the split case, we shall define Bessel periods on GSO42 and GSO33 as
the following.

Let P42 denote a maximal parabolic subgroup of GSO4 2 with the Levi decomposition P2 =
M472N472 where

g 0 0 g€ GL27 1o A B
M4,2 = 0 h : , N4,2 = 0 1, Al e GSO472
0 0 g¢*-deth) N€GSO2 0 0 1
Here

. (0 1\, 4(0 1
g _<1 0)9 <1 0> for g € GLs.

Then for X € Matayxo(F'), we define a character 1x of Ny2(A) by

1, A' B

ox [0 1, A =y[tr(xA).
0 0 1o
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Suppose that det X # 0 and let

(deth)-(hX)* 0 0
My = 0 h 0 :h € GSO2p ¢,
0 0 h¥

where h* = XhX ! . Then Mx (A) stabilizes the character 1)x and M is isomorphic to GSO2.
We fix an isomorphism GSOz(F) ~ E* and we regard a character of A} as a character of
Mx(A).

DEFINITION 2.4. Let o be an irreducible cuspidal automorphic representation of GSOy42(A) with
its space of automorphic forms V,, and the central character w,. For a character x of A} such
that x|ax = ws, we define Bx y (), the (X, x,1)-Bessel period of ¢ € V; by

Bx xu(e) = /

/ o(uh)x(h) Y (1)~ du dh. (2.3.6)
Ny,2(F)\Na2(A) J Mx (F)AX\Mx (A)

When d € (F*)2, we know that GSO(S2) ~ GSO3 3. Hence, as above, for a cusp form ¢ on
GSO3 3 with central character w and characters A1, Ay of A*/F* such that AjAy = w, we define
(X, A1, A2, 1)-Bessel period by

Bx.au(e) = /

/ () xas pg () 4 )~
Nui2(F)\Na2(A) J Mx (F)AX\Mx (A)

Here, since My ~ GLy x GSO1,; and GSOy 1 (F) = {(a b) ta,be FX}, we define a character
XAp A, Of GSO11(A) by

s () = M@ 0)

When w is trivial, we have Ay = Afl. In this case, we simply call (X, Aq, Afl, 1)-Bessel period
as (X, A1, v)-Bessel period and simply write x ATL = Ay

2.4 Local Bessel periods
Let us introduce local counterparts to the global Bessel periods. Let k be a local field of
characteristic zero and D a quaternion algebra over k.

Since the local Bessel periods are deduced from the global ones in a uniform way, by abuse
of notation, let a quintuple (H,T, N, x, ¥ n) stand for one of

(GD,TS,ND,A,ﬂ)g) in (1411),
(GSpy, Ts, N, A, 1g) in (2.3.1) or
(GSU3,p, Mx, Na2,x,¥x) in (2.3.3).

Let (7, V) be an irreducible tempered representation of H = H (k) with trivial central character
and [, ] a H-invariant hermitian pairing on V., the space of 7. Let us denote by V> the space
of smooth vectors in V. When £ is non-archimedean, clearly V>° = V.. Let x be a character of
T = T'(k) which is trivial on Zy = Zy(k), where Zp denotes the center of H.

Suppose that k is non-archimedean. Then for ¢, ¢’ € V., we define the local Bessel period

all, (0,8) = Ay (6,¢) = ale, o) by
N st , L .
a(6.6) = | » [ o 613 o) du. (2.4.1)
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Here the inner integral of (2.4.1) is the stable integral in the sense of Lapid and Mao [LM15,
Definition 2.1, Remark 2.2]. Indeed it is shown that for any ¢t € T the inner integral stabilizes at
a certain compact open subgroup of N = N (k) and the outer integral converges by Liu [Liul6,
Proposition 3.1, Theorem 2.1]. We note that it is also shown in Waldspurger [Wall2a, §5.1,
Lemme]| that (2.4.1) is well-defined. We often simply write a(¢) = a(¢, ¢).

Now suppose that k is archimedean. Then the local Bessel period is defined as a regularized
integral whose regularization is achieved by the Fourier transform as in Liu [Liul6, 3.4]. Let us
briefly recall the definition. We define a subgroup N_o, of N = N(k) by

N_o = {(é 1;) € Np :trp(§u) = 0} in the G p-case,

N_o = {(é 11/) €N :tr(SY) = 0} in the GSp,-case,

1 A B
N_, = 0 1 A]eN3p:trp(XA)=0 in the GSU3 p-case,
0 0 1

respectively. Then it is shown in Liu [Liul6, Corollary 3.13] that for u € N,

Qg (U /T/ZG/ m(ust)p, ¢'] x(t) "t dsdt

converges absolutely for ¢, ¢’ € V> and it gives a tempered distribution on N/N_

For an abelian Lie group A, we denote by D(N) (respectively, S(N)) the space of tempered
distributions (respectively, Schwartz functions) on A. Then we recall that the Fourier transform
“: D(N) — D(N) is defined by the formula

(8,¢) = (a,¢) for a € DN) and ¢ € S(N),

where (,) denotes the natural pairing D(N) x S(NV) — C and ¢ is the Fourier transform of

» e SN).
Then by Liu [Liul6, Proposition 3.14], the Fourier transform @ » is smooth on the regular

locus (NT]\?oo)reg of the Pontryagin dual Nﬁ\fjoo and we define the local Bessel period a(¢, @)
by
ang (¢> ¢/) = Qx N (¢7 ¢/) = 04(¢a ¢/) = @(1/1]\,). (2-4-2)

As in the non-archimedean case, we often simply write a(¢) = a(¢, ¢).

3. Pull-back of Bessel periods

In this section, we establish the pull-back formulas of the global Bessel periods with respect to
the dual pairs, (GSpy, GSO42), (GSpy, GSO33) and (Gp, GSUs p). We recall that the first two
cases may be regarded as the special case when D is split of the last one, by the accidental
isomorphisms explained in §2.2.

3.1 (GSp,, GSOy4,2) and (GSp,, GSO33) case

3.1.1 Symplectic-orthogonal theta correspondence with similitudes. Let X (respectively, Y)
be a finite-dimensional vector space over F equipped with a non-degenerate alternating
(respectively, symmetric) bilinear form. Assume that dimg Y is even. We denote their similitude
groups by GSp(X) and GO(Y), and, their isometry groups by Sp(X) and O(Y'), respectively.
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We denote the identity component of GO(Y') and O(Y') by GSO(Y') and SO(Y'), respectively.
We let GSp(X) (respectively, GO(Y)) act on X from right (respectively, left). The space

Z =X ®Y has a natural non-degenerate alternating form (,), and we have an embedding
Sp(X) x O(Y) — Sp(Z) defined by

(z®@y)(g,h) =2zg®@hly, forze X, yeY, heO(), ge Sp(X). (3.1.1)

Fix a polarization Z = Z; @ Z_. Let us denote by (wy,S(Z(A))) the Schrédinger model of the

WEeil representation of é\f)(Z ) corresponding to this polarization with the Schwartz—Bruhat space
S(Z4) on Z;. We denote a typical element of Sp(Z) by

<A B> Lere AeHom(Zy,Zy), BeHom(Zy,Z_),
,  Wher
¢ D C € Hom(Z_,Z,), D€ Hom(Z_,Z).

Then the action of wy, on ¢ € S(Z,) is given by the following formulas:

o (5 i) e)oten) = e 20 (G d ) o). (312)

oo (5 0)we)eten=couy s [ u((22(0 0)))otas. @1z

where 7, (%) is a certain eighth root of unity called the Weil factor. Moreover, since the embedding
given by (3.1.1) splits in the metaplectic group Mp(Z), we obtain the Weil representation of
Sp(X,A) x O(Y, A) by restriction. We also denote this representation by w,.

We have a natural homomorphism

i: GSp(X) x GO(Y) — GSp(2)
given by the action (3.1.1). Then we note that A(i(g,h)) = A(g)A(h)~!. Let
R:={(g,h) € GSp(X) x GO(Y) | A(g) = A(h)} D Sp(X) x O(Y).

We may define an extension of the Weil representation of Sp(X, A) x O(Y,A) to R(A) as follows.
Let X = X ® X_ be a polarization of X and use the polarization Z+ = X1 ® Y of Z to realize
the Weil representation w,. Then we note that

wy(1,h)d(2) = ¢(i(h)"2) for h € O(A) and ¢ € S(Z4(A)).
Thus, we define an action L of GO(Y, A) on S(Z,(A)) by
L(h)$(z) = [A(h)|~ (/&) dim Xedim Xg,(j(p)=12),
Then we may extend the Weil representation wy, of Sp(X,A) x O(Y,A) to R(A) by
wy(g,h)p = wylg1, 1)L(h)¢ for ¢ € S(Z,(A)) and (g,h) € R(A),
where

G=9g <)\(%)1 (1)> € Sp(X,A).

In general, for any polarization Z = Z/ @ Z'_, there exists an Sp(X, A) x O(Y")(A)-isomorphism
p:S(Z4(A)) — S(Z (A)) given by an integral transform (see Ichino and Prasanna
[IP21, Lemma 3.3]). Let us denote the realization of the Weil representation of
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Sp(X,A) x O(Y)(A) on S(Z', (A)) by wy,. Then we may extend w;, to R(A) by

wiy(g.h) =powy(g,h)op™" for (g,h) € R(A).
For ¢ € S(Z4(A)), we define the theta kernel #¢ by
05(9:h) =0%(9,h) = D wylg,h)(=:) for (9,h) € R(A).
Z+€Z+(F)
Let
GSp(X,A)T = {g € GSp(X,A) | A(g) = A(h) for some h € GO(Y,A)} (3.1.4)
and GSp(X, F)T = GSp(X,A)T N GSp(X, F).

As in [HK92, §5.1], for a cusp form f on GSp(X,A)*", we define its theta lift to GO(Y, A)
by

O (£,0)(h) = O£, 0)) = | 0% (919, 1) f(919) dgy
SP(X»F)\SP(X»A)
for h € GO(Y, A), where g € GSp(X, A)™ is chosen so that A(g) = A(h). It defines an automorphic
form on GO(Y,A). For a cuspidal automorphic representation (w4, Vy,) of GSp(X,A)T, we
denote by ©(m4) the theta lift of 71 to GO(Y, A). Namely,

O (my) = Oy(my) == {O(f,0) : f € Vo, ¢ € S(Z1(A))}.

Furthermore, for an irreducible cuspidal automorphic representation (7, Vy) of GSp(X,A), we
define

Oy (1) = Oy (T|asp(x,a)+);

where 7|ggp(x,a)+ denotes the automorphic representation of GSp(X ,A)T with its space of
automorphic forms {¢|ggp(x,a)+ : ¢ € Va}-

As for the opposite direction, for a cusp form f’ on GO(Y, A), we define its theta lift O(f’, ¢)
to GSp(X,A)* by

o(f, 6)(g) = / 09(g, ) f(hah)dhy for g € GSp(X, A)",
O(Y,F)\O(Y,A)

where h € GO(Y,A) is chosen so that A(g) = A(h). For an irreducible cuspidal automorphic
representation (o, V) of GO(Y, A), we define the theta lift ©4(c) of o to GSp(X, A)™ by

Op(0) :=={O(f, ¢): f' € Vs, ¢ € S(Z4(A))}.
Moreover, we extend 6(f’, ¢) to an automorphic form on GSp(X, A) by the natural embedding
GSp(X, F)"\GSp(X, A)" — GSp(X, F)\GSp(X, A)

and extension by zero. Then we define the theta lift ©,(c) of o to GSp(X, A) as the GSp(X, A)
representation generated by such 6(f', ¢) for f' € V, and ¢ € S(Z,(A)).

For some X and Y, theta correspondence for the dual pair (GSp(X)*, GO(Y)) gives theta
correspondence between GSp(X)T and GSO(Y') by the restriction of representations of GO(Y)
to GSO(Y). Indeed, when dim X = 4 and dimY = 6, we may consider theta correspondence for
the pair (GSp(X)*,GSO(Y)). In Gan and Takeda [GT10, GT11b], they study the case when
GSO(Y') ~ GSO33 or GSOs 1, and, in [Morl4al, the case when GSO(Y') >~ GSOy 2 is studied. In
these cases, for a cusp form f on GSp(X,A)™, we denote by 0(f, ¢) the restriction of O(f, ¢) to
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GSO(Y, A). Moreover, for a cuspidal automorphic representation (74, V., ) of GSp(X,A)™, we

T+
define the theta lift 6, (7) of m to GSO(Y,A) by

05 (m) = Oy(ms) = {0(f,0) : f € VL ¢ € S(Z4(A))}.
Similarly, for a cusp form f’ on GSO(Y, A), we define its theta lift (f’, ¢) to GSp(X, A)* by
e(f/7 ¢)<g> = / Gd)(gv hlh)f(hlh) dhl for g€ GSp(X7 A)+7
SO(Y,F)\SO(Y,A)

where h € GSO(Y, A) is chosen so that A(g) = A(h). We extend it to an automorphic from on
GSp(X, A) as above. For a cuspidal automorphic representation (o, V,) of GSO(Y, A), we define
the theta lift 6, (o) of o to GSp(X,A)™ by

Oy(0) =={0(f",0) : f' € Vo, ¢ € S(Z1(A))}.

Remark 3.1. Suppose that © () (respectively, 0,(c)) is non-zero and cuspidal where (7, V)
(respectively, (o,V,)) is an irreducible cuspidal automorphic representation of GSp(X,A)*
(respectively, GO(Y,A)). Then Gan [Gan08, Proposition 2.12] has shown that the Howe dual-
ity, which was proved by Howe [How89] at archimedean places, by Waldspurger [Wal90] at odd
finite places and finally by Gan and Takeda [GT16] at all finite places, implies that © (7 )
(respectively, 6, (c)) is irreducible and cuspidal. Moreover, in the case of our concern, namely
when dimp X =4 and dimp Y = 6, the irreducibility of ©,(7;) implies that of 6, (74) by the
conservation relation due to Sun and Zhu [SZ15].

3.1.2 Pull-back of the global Bessel periods for the dual pairs (GSpy, GSO42) and
(GSpy, GSO3.3). Our goal here is to prove the pull-back formula (3.1.6).

First we introduce the set-up. Let X be the space of four-dimensional row vectors over F'
equipped with the symplectic form

0 1
(wy,w2) = w <_12 02> baws.

Let us take the standard basis of X and name the basis vectors as
x1 =(1,0,0,0), x2=1(0,1,0,0), z_1=(0,0,1,0), x_o=1(0,0,0,1). (3.1.5)

Then the matrix representation of GSp(X) with respect to the standard basis is G = GSp,
defined by (1.4.3). We let G act on X from the right.

Let Y be the space of six-dimensional column vectors over F equipped with the non-
degenerate symmetric bilinear form

(v1,v2) = "v1Sovs,

where the symmetric matrix Ss is given by (2.1.2). Let us take the standard basis of Y and name
the basis vectors as

y_2 ="%1,0,0,0,0,0), y_1=1'0,1,0,0,0,0),
€1 :t(0,0,l,0,0,0), €2 :t(0,0,0,l,0,0),
y1 ="(0,0,0,0,1,0), y»="(0,0,0,0,0,1).

We note that (y;,y;) = 5, (e1,e1) = 2 and (ez,e2) = —2d. Since d € F* \ (F*)?, with respect
to the standard basis, the matrix representations of GO(Y) and GSO(Y') are GOy defined
by (2.1.5) and GSOy4p2 defined by (2.1.4), respectively. In this section, we also study the
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theta correspondence for the dual pair (GSp(X),GSOs3), for which, we may use the above
matrix representation with d € (F*)2. Hence, in the remaining of this section, we study theta
correspondence for (GSp(X), GSO(Y)) for an arbitrary d € F'*.

We shall denote GSp(X, A)™ by G(A)™ and also GSp(X, F)™ by G(F)". We note that when
d € (F*)?, GSp(X)T = GSp(X).

Let Z=X®Y and we take a polarization Z = Z, @ Z_ as follows. First we take X =
X4+ @& X_ where

Xy =F-21+F-29 and X_=F -z 1+ F -z
as the polarization of X. Then we decompose Y as Y =Y, & Yy @ Y_ where
Yiy=F-y1w+F -y, Yo=F-e1+F-e3 and Y_=F -y 1+ F y_o.
Then let
Zi = (XYL ® (XL @Y,
where the double sign corresponds. To simplify the notation, we sometimes write z, € Z, as
zy = (a1, a9;b1,by) when
2y =1 @Y1+ as @y + b1 ®e1 +ba®es € Z,, wherea; € X, b € X, (1 =1,2).

Let us compute the pull-back of (X, x,)-Bessel periods on GSO(Y) defined by (2.3.6) with
respect to the theta lift from G.

PROPOSITION 3.1. Let (m, V) be an irreducible cuspidal automorphic representation of G(A)
whose central character is w, and x a character of Ag such that x [px= wy L Let X € Matoxo(F)
such that det X # 0.

Then for f € V; and ¢ € S(Z4(A)), we have

Bxaol0lf o) = [ Bocrslr@)Dels Do) ds (319

where Bg, -1, is the (Sx,x ™', ¥)-Bessel period on G defined by (2.3.1).
Here, for X = (311 512), we define a vector vx € Zy by

vx = (96—2,93—1; %961 + %3327 —%fﬂl - 3;212952) (3.1.7)
and a 2-by-2 symmetric matrix Sx by
awziﬂbﬁ&m%ufxby (3.1.8)
We regard x as a character of GSO(Sx)(A) by
GSO(Sx) 3 k — x((J' X J)k(J! X Jy) ™t e C*. (3.1.9)

In particular, the (Sx, x~!,)-Bessel period does not vanish on Vy if and only if the (X, x,v)-
Bessel period does not vanish on 0y().

Proof. We compute the (X, x,1)-Bessel period defined by (2.3.6) in stages. We consider
subgroups of Ny 2 given by

1 —'X,S, 0 g
No(F) = quol@):= [0 L Xo|[Xo= || ¢; (3.1.10)
0 0 1
0
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1 0
1S - SiX .
Nl(F) = ul(sl,tl) = 0 14 Xl X1 = tl N (3111)
0 0 1 0
1 0 0 0 0
1
0 1 —'X5S0 —ifXQSOXQ 0 5
NQ(F) = ’U,Q(SQ,tg) = 0 0 12 XQ 0 X2 = (t;) ; (3112)
0 0 0 1 0
0 0 0 0 1

where Sy and S are given by (2.1.2). Then we have
Ny < NgN1 < NgN1Ng = Nyo.

Thus, we may write

B o(f : = 0 h
a0 )= [ L o 00 O @ et )

X 1/)({[}2181 + x92t1 + 21182 + :Elztg)_lx(h)_l dx d81 dtl d82 dtz dh. (3.1.13)
For h € GSO(Y,A), let us define

WoO(f : &) (h) = /F O (@)

From the definition of the theta lift, we have
Wo(o(f, 6)(h)
o Lo LD ) s e o)
x f(g1As(A(R))) dgi dz. (3.1.14)

Here, for a € A*, we let
(12 0
)‘s(a)_(o a‘12>'

Since Z_(1,up(x)) = Z_ and we have
zi(Liup(z)) =24+ (z- a1 Qy_2—x-a2 @ Yy_1),
we observe that
(wp(1,u0(2))9)(24) = P ({24, - a1 @y — - a2 @ y—1)) $(2+)
= p(—x(a1, az))p(z4). (3.1.15)

Thus, in the summation of the right-hand side of (3.1.14), only a; such that (aj,as) =0
contributes to the integral Wy(0(f, ¢)), and we obtain

Walo(7.6)(h) = |

GHFNG! (AF)

X > (wy (g1As(A(R)), h)@)(ar, az; br, b2) f(g1As(A(R))) dg.
a;€X,(a1,a2)=0,
bieXy
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Since the space spanned by a1 and as is isotropic, there exists v € G (F) such that a;y~!, asy ™! €
X _. Let us define an equivalence relation ~ on (X_)? by
(a1,az) ~ (a},ab) = there exists v € G'(F) such that a} = a;y for i = 1,2.
er.

Let us denote by X_ the set of equivalence classes (X_)%/ ~ and by (a1, as) the equivalence class
containing (a1, az) € (X_)2. Then we may write Wo(0(f, ¢))(h) as

> > D (wplgiAs(A(R)), h)¢) (a1, azy; b, bs)

(al,ag)GX_ 'YEV(alaQZ)\Gl(F) bi Xy

x f(g1As(A(h))) dgi-

/01 (FO\G'(AF)

Here
V(a1,a2) = {g € G'(F) | aijg = a; for i = 1,2}.

LEMMA 3.1. For any g € G(A)T and h € GSO(Y, A) such that A(g) = A(h),
> (wylg, h)o) (a1, agy,bi,ba) = Y (wy(vg,h)¢) (a1, az, br, by).

bl‘EXJr bieXJr
Proof. This is proved by an argument similar to that for [Fur95, Lemma 2]. O

Further, by an argument similar to the one for Wy(0(f, ¢))(h), we shall prove the following
lemma.

LEMMA 3.2. For any g € G(A)" and h € GSO(Y, A) such that A(g) = A(h),

/ ™ (wa151 + 2aat1) (Wi (g, ui(s1, t1)h) ) (a1, az, by, be) dsy dty
(F\Ap)?

(w9, 1)) ar,am, by, ba) if (an,br) = —21 and {az, by) = 22
0 otherwise

and
/ Y w1182 + T1ote) (wy (g, ua(sa, t2)h) @) (a1, as, b, be) dss dta
(F\Af)?

T11

. xT
(Ww(g, h)gb)(al,ag,bl,bg) if <a1,b1> = —7 and <a1,b2> = 12.

2
0 otherwise.
Proof. Since Z_ (1,u1(s1,t1)) = Z_ and we have
z(Liui(s1,t1)) = 24 + 251(b1 @ y—2) — 2dt1 (b2 ® y—2)
+ (=57 4+ 2d13)ag ® y_o9 — s1a2 @ €1 — t1ag @ ey,
we obtain
(wy(L,u1(s1,t1))0) (24) = ¥ (5(2s1(az, br) — 2dt1{az, b2)))
X Y(3((—sT +2dt7)(as, az) — 251 (b1, az) + 2dt1 (bs, a2))) d(2+)
= (2s1{ag, b1) — 2dt1{az, b2))P(z4).

Then the first assertion readily follows.
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Similarly, since Z_ (1, u2(s2,t2)) = Z_ and we have

2 (Liua(s2,t2)) = 24 + a1 @ ((s5 — dt3)y—1 — sze1 — taez) + 2501 @ y_1 — 2dtabs @ y_1,

we obtain
w(l UQ(SQ, tg))(f)(z_;,_) = w(l(—282<b1, a1> + 2dt2<b2, a1>))
X 1/)( (232<a1, b1> — 2dt2(a1, b2>))¢)(2’+)
= ¥ (2s2(a1, b1) — 2dta(a, b2))p(z4)
and the second assertion follows. O

Lemma 3.2 implies that

Bx xu(0(f : ¢)) = x(h)~!

/AXMx(F)\Mx(A) /Gl(F)\Gl(AF)

<D 2 2

(a1,a2)€X_ 7€V (a1,a2)\G* (F) b;€ X (ai,b1)=2i1/2,
(ai,be)=—(zi2/2d)

X (w@/)('}/gl)\s()‘(h))’ h)¢)(a17 az, bi, bQ)f(gl)‘S()‘(h))) dgy dh.

We note that a; and ag are linearly independent from the conditions on a; and det(X') # 0. Since

a; € X_ and dim X_ = 2, we may take (a1, a2) = (r_2,x_1) as a representative. Then we should
have
o1 1’11 x22 Z12
by = — by = —“22qq — )
I S T R 7 A

Hence, we get

Bx . (0(f : 0)) / / x(h)™
AX M (F)\Mx (&) JG1(F)\G1 (Ap)

x> (we(ygrAs(A(R), @) (vx) f (9126 (A(R))) dgy dh

YEN(F)\G'(F)

- /N(A)\Gl(AF) /AXMx(F)\Mx (A) /N(F)\N(A)
x x(h) " w(vgiAs(A(h)), h)p(vx) f(vg1As(A(h))) dvdgy dh,  (3.1.16)

where we put vx = (z_2,2_1; (x21/2)a:1 + x11/2a:2, (x22/2d)x1 — (212/2d)22).
For u = (102 12) where A = ( ) € Sym?, we have

(x 2@ + - 1®y2+<2 1+2a:2>®61+<—5;§x1—3;l2x2>®62>(u,1)

=T 2®UyY1 tz_ 1®y2+< 2

xr
21 (1171 +ar_1+bxr_ 2) + %(1’2 +br_1 + Cl’_g)) ® e1

22
+<—2d(az1+ax 1+ bx_ 2)—g(372+b$ 1+ cx— 2)>®e2'

2141

https://doi.org/10.1112/S0010437X24007267 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007267

M. FurusawA AND K. MORIMOTO

Hence, when we put
1y

Sx = 13 (2" X J2) So( o' X )
1 w3y — daj, T22T12 — dr21211 9
T 2d Sym?(F
2d (1?221’12 — dro1211 x%Z — dx% € Sym*(F),

for u € N(A), we have
(W (ugAs (A(R)), B)B) (x) = sy (1) " wy (gAs (A(R)), B)$(vx ).

Therefore, we get
/ / [
NANG (Ap) JAXMx (F)\Mx (A) J/N(F)\N(A)
X (wy(g1As(A(R)), h)d) (vx) f(ugi As (A1) s (u) ™! du dh dgy

x(h)~!

/N(A)\Gl(AF) /AXMx(F)\Mx(A) /N(F)\N(A)
x wy (s A g1, WA (0x AR F (uAs(A(R)) g1 s ()~ du dh dgy.
By a direct computation, we see that

(wyAs(A(h)g1, h)d)(vx) = IA(B)] 7> (wy (hoAs(A(R))g1, 1)9) (vx)

when we let

X \*
b (dEt h())(h ) 2 8 b= <(tXJ2)—1th(tXJ2) 0 >
0 o wx) 0 (LX) H (X))
For g € GSO(Sy), we have 'g = wgw and we may write
ho — (JQtXJ2>71th(J2tXJ2) 0
0~ 0 H(Jot X Jo) "V h(Jot X Jo)) 7t )

Since we have

GSO(Sx) = (J2' X J2) LGSO(Sp) (Jo! X J3),

we get

/ / [
N(A\G (Arp) JAX T (F)\Ts (&) J N(F)\N(4)

x (wy (g1, 1)9) (vx) f(uhg) sy (u) ™! dudhdg,

Bgy x—1(m(g1) f)(wy(g1,1)9) (vx) dan, (3.1.17)

/N(A)\Gl(AF)

where we regard x as a character of GSO(Sx)(A) by (3.1.9).

Finally, the last statement concerning the equivalence of the non-vanishing conditions on the
(Sx,x "1, 9)-Bessel period and the (X, x)-Bessel period follows from the pull-back formula (3.1.6)
by an argument similar to that in the proof of Proposition 2 in [FM17]. O

3.2 (Gp,GSUs p) case
3.2.1 Theta correspondence for quaternionic dual pair with similitudes. Let D be a quater-
nion division algebra over F. Let Xp (respectively, Yp) be a right (respectively, left) D-vector
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space of finite rank equipped with a non-degenerate hermitian bilinear form (,)x,, (respectively,
non-degenerate skew-hermitian bilinear form (,)y,). Hence (,)x, and (,)y, are D-valued
F-bilinear form on Xp and Yp satisfying

(z,2)x, = (@, 2)x,, (va,2'b)x, =a(z,z’)x,b,

W )vp = =W\ Wvps  (ay, ¥'b)yp, = aly, ¥ vy b,

for x,2' € Xp, y,y € Yp and a,b € D. We denote the isometry group of Xp and Yp by U(Xp)
and U(Yp), respectively. Then the space Zp = Xp ®p Yp is regarded as a symplectic space over
F with the non-degenerate alternating form (,) defined by

(1 ®y1, 22 ® y2) = trp((w1,22) x5 (Y1, Y2)vp) € F (3.2.1)
and we have a homomorphism U(Xp) x U(Yp) — Sp(Zp) defined by
(x®y)(9,h) =2g@h™ 'y forze X,ycY, hecU(Yp)and g € U(Xp). (3.2.2)

As in the case when D ~ Matay o, this mapping splits in the metaplectic group Mp(Zp). Hence
we have the Weil representation wy, of U(Xp,A) x U(Yp, A) by restriction.

From now on, we suppose that the rank of Xp is 2k and X p is maximally split, in the sense
that its maximal isotropic subspace has rank k.

Let us denote by GU(Xp) (respectively, GU(Yp)) the similitude unitary group of Xp (respec-
tively, Yp) with the similitude character Ap (respectively, vp). In addition, we denote the identity
component of GU(Yp) by GSU(Yp). Then the action (3.2.2) extends to a homomorphism

ip: GU(XD) X GU(YD) - GSp(ZD)
with the property A(ip(g,h)) = Ap(g9)vp(h)~!. Let
Rp :={(g9,h) € GU(Xp) x GU(Yp) | Ap(9) = vp(h)} D U(Xp) x U(YD).

Since Xp is maximally split, we have a Witt decomposition Xp = ng ® X with maximal
isotropic subspaces X ;. Then as in § 3.1.1, we may realize the Weil representation wy, of U(Xp) x
U(Yp) on S((X}, ® Yp)(A)). In this realization, for h € U(Yp) and ¢ € S((X}, ® Yp)(A)), we
have

wy(1,h)(2) = ¢(ip(h)~'2).
Hence, as in §3.1.1, we may extend wy, to Rp(A) by
wy (g, B)B(2) = [A(R)| 720k Xprank YDy, (g1, 1) (ip ()~ 2)
for (g, h) € Rp(A), where

n=g <AD%’)_1 ?) € U(Xp).

Then as in §3.1.1, we may extend the Weil representation wy, of U(Xp) x U(Yp) on S(Z4(AF)),
where Zp = Z}, ® Zp, is an arbitrary polarization, to Rp(A), by using the U(Xp) x U(Yp)-
isomorphism p: S((X}, ® Yp)(A)) — S(Z4(Ar)). Thus for ¢ € S(Z4(Ap)), the theta kernel
0% = 0¢ on Rp(A) is defined by

05(9,h) = 0%(g.h) = > wylg,h)e(z4) for (g,h) € Rp(A).
24 €Z5(F)
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Let us define
GU(XD,A)+ = {h S GU(XD,A) : /\D(h) S I/D(GU(YD,A))}

and
GU(Xp, F)* = GU(Xp,A)" NnGU(Xp, F).

We note that vp(GU(Yp, F,)) contains Np(D(F,)*) for any place v. Thus, if v is non-
archimedean or complex, we have GU(Xp, F,)" = GU(Xp, F},), and if v is real, |GU(Xp, F,)/
GU(Xp, F,)*"| < 2.

For a cusp form f on GU(Xp,A)", as in §3.1.1, we define the theta lift of f to GU(Yp,A)
by

o/, 6)(h) = / 0% (919, 1) f(919) don.

U(Xp,F)\U(Xp,A)

where g € GU(Xp,A)" is chosen so that Ap(g) = vp(h). It defines an automorphic form on
GU(Yp,A). When we regard O(f, ¢)(h) as an automorphic form on GSU(Yp, A) by the restric-
tion, we denote it as 0(f, ¢)(h). For an irreducible cuspidal automorphic representation (7, Vr, )
of GU(Xp,A)™, we denote by Oy (my) (respectively, 0, (m4)) the theta lift of 71 to GU(Yp, A)
(respectively, GSU(Yp, A)), namely

@w(ﬂ) = {@(f7 ¢) (fe V7T+7 ¢ € S(ZB(A))},
Oy(m) = 1{0(f,0): [ € Va0 € S(ZH(A))},

respectively. Moreover, for an irreducible cuspidal automorphic representation (m,V; ) of
GU(Xp,A), we define the theta lift ©,(m) (respectively, 6, (7)) of m to GU(Yp, A) (respectively,
GSU(YD,A)) by @w(ﬂ') = ew(ﬂ"GU(XD,A)*) (respectively, 9¢(7T) = ew(ﬂ‘GU(XD,A)Jr))-

As for the opposite direction, as in §3.1.1, for a cusp form f’ on GSU(Yp, A), we define the
theta lift of f' to GU(Xp,A)" by

o' )o) = | 0%(g. ah) (ah) b,
SU(Yp,F)\SU(Yp,A)

where h € GSU(Yp,A) is chosen so that Ap(g) = vp(h). For an irreducible cuspidal auto-

morphic representation (o,V,) of GSU(Yp,A), we denote by 6,(c) the theta lift of o to

GU(Xp, A)*. Moreover, we extend 0(f', ¢) to an automorphic form on GU(Xp, A) by the natural

embedding

GU(Xp, F)"\GU(Xp,A)" — GU(Xp, F)\GU(Xp, A)

and extension by zero. Then we define the theta lift ©,(c) of o to GU(Xp, A) as the GU(Xp, A)
representation generated by such 6(f', ¢) for f' € V, and ¢ € S(Z1(A)).

Remark 3.2. Suppose that (7, Vr, ) (respectively, (o, V;)) is an irreducible cuspidal automorphic
representation of GU(Xp, A)™ (respectively, GSU(Yp, A)). Suppose moreover that the theta lift
Oy (my) (respectively, 6y (0)) is non-zero and cuspidal. Then by Gan [Gan08, Proposition 2.12],
Oy (m4) (respectively, (o)) is an irreducible cuspidal automorphic representation because of
the Howe duality for quaternionic dual pairs proved by Gan and Sun [GS17] and Gan and
Takeda [GT16]. We shall study the case dimp Xp =2 and dimp Yp = 3. In this case, by the
conservation relation proved by Sun and Zhu [SZ15], the irreducibility of ©(m) implies that

of 9¢(7T+)
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3.2.2 Pull-back of the global Bessel periods for the dual pair (Gp,GSUs p). The set-up is as
follows.
Let Xp be the space of two-dimensional row vectors over D equipped with the hermitian

form
_(0 1
(z,2)x, =T <1 0> .

Let us take the standard basis of Xp and name the basis vectors as
zy = (1,0), z_ =(0,1).

Then G p defined by (1.4.2) is the matrix representation of the similitude unitary group GU(Xp)
for Xp with respect to the standard basis.

Let Yp be the space of three-dimensional column vectors over D equipped with the skew-
hermitian form

W, v )y, =" v

o3I O
o O3

0
y |0
n
Let us take the standard basis of Yp and name the basis vectors as

Y- :t(l,0,0), GIt(O,]_,O), Y- :t(ovov 1)

Then GSUs p defined in §2.1.3 is the matrix representation of the group GSU(Yp) for Yp with
respect to the standard basis.
We take a polarization Zp = Zp + ® Zp,— of Zp = Xp ®p Yp defined as follows. Let

Xp+=24+-D,
where the double sign corresponds. We decompose Yp as Yp =Yp 4 @ Yp o @ Yp,— where
Yp+=D-yy, Ypo=D-y, Yp-=D-y_.
Then let
Zpt=(Xp®Yps)® (Xp+®Yppo), (3.2.3)

where the double sign corresponds. To simplify the notation, we denote 2z € Zp y(A) as z =
(a,b) when
Z2y =a®ys +b®e where a € Xp(A) and be Xp 4 (A)

and ¢(z4) as ¢(a,b) for p € S(Zp +(A)).
Let us compute the pull-back of the (X, x,)-Bessel periods on GSUs p defined by (2.3.3)
with respect to the theta lift from Gp.

PROPOSITION 3.2. Let (mp,Vy,) be an irreducible cuspidal automorphic representation of
Gp(A) whose central character is wy and x a character of A%, such that x [yx= w;'. Let X € D*.
Then for f € V;, and ¢ € S(Zp (A)), we have

D 0(f: ) = 1 d 2.
BX . (0(f : ¢)) /]VD(A)\GlD(A)B$X7X w(m(9) f)(w(g,1)¢)(vp,x) dg, (3.2.4)
where
(x =XnX € D7(F), wvpx:=(x_,—n 'Xuzy)€ Zp_, (3.2.5)

and Bg -1, denotes the (éx,x ', v)-Bessel period on Gp defined by (1.4.11).
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In particular, the (£x,x ', )-Bessel period does not vanish on Vzp if and only if the
(X, x,¢)-Bessel period does not vanish on 0y (7p).

Proof. The proof of this proposition is similar to that for Proposition 3.1.
Let Ny p be a subgroup of N3 p given by

1 0 nz
N(),D(F): uD(a;) =10 1 0 x e F
0 0 1

Then we note that Ny p is a normal subgroup of N3 p and ¢ x p is trivial on Ny p(A). Since
Zp—(A)(1,up(z)) =Zp_(A) and zy(l,up(z)) =24 +a® (—nz)y— for x € A,

we have

(w(L,up(2))9)(z+) = ¥( = 3 trp((a, a)n’z)) (24 ).

Thus, by an argument similar to that in the proof of Proposition 3.1, one may show that

/ 0(F;6) ()l (u) du
N3, p(F)\N3 p(A)

N /JVS,D(F)\NS,D(A) /GE(F)\GE(A) a Z Z Z

acXp,— veVp(a)\GL(F) beXp +
X (wygi AP (v(R)), uh)$) (a,b) f (g1 2s(v(h))) dgy du. (3.2.6)

Here Xp _ is the set of equivalence classes Xp _/ ~ where a ~ o’ if and only if there exists a
v € G}, (F) such that a’ = a, @ denotes the equivalence class of Xp _ containing a € Xp _, and,
V(a) = {y € GL(F) | ay = a}. Then we may rewrite (3.2.6) as

/ 0(f: 6) (hu)p (u) du
N3 p(F)\N3 p(A)

/NS,D(F)\Ns D(A) /Gl (F)\G(A)
<Y Y @A wh). uh)d) e, b f (g (h) dgy du. (32.7)

Np(F)\GL(F) beXp ¢

e
Since, for u = <é L An B) € N3.p(A), we have Zp _(A)(1,u) = Zp_(A) and
0 0 1

zi(Lu) =2y +2- @ (B'y- — Ade+yy) +b@ (n ' Any- +e)
=2y +2- @ (By- — Ae) +b@ (n~ ' Any-),

we obtain

(WL, u)p)(z4) = P(trp((b, z-) (e, —Ae))) (1) = P(trp(n(b, ) A))d(21).
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Hence, in (3.2.7), only b € Xp _ satisfying n(b,z_) = X, i.e. b = 21 (—Xn~!) contributes. Thus,
our integral is equal to

/ (g AP (1)), uh)6) (00 ) (91 AP () iy
Np (F)\Gp(4)

/ / w(ug AP (v(R)), ul)S(up x)
Np(A\GL(A) JNp(F)\Np(A)

X fugi A (v(R))) dgy du,
where vp x = (#_,z4(—Xn')). Further, for u = (}¢) € Np(A), we have
(w(ug, h)d)(vp,x) = ey (u) " (w(g, h)¢) (vp,x),

where we put £x = X7 X. Thus, our integral becomes

/ / Vex (1) (g AL (), W) d(vp x) f (ugi AL (v(R))) dudg,
Np(A\GH(A) JNp(F)\Np(A)

As for the integration over A*Mx p(F)\Mx p(A) in (2.3.3), by a direct computation, we see

that
WA W(h)gr1, B)d(vp x) = [v(R)|Pw(hoAs(v(h))g1, 1) (vp x),
where
np(h) - (K¥)* 0 0 =
h = 8 gL h(g( and hg = < 0 (hX)1>'

Therefore, as in the previous case, we obtain

BRae0 o) = [ B el D)0 x) do

The equivalence of the non-vanishing conditions follows from the pull-back formula (3.2.4) as
Proposition 3.1. ]

3.3 Theta correspondence for similitude unitary groups
In our proof of Theorems 1.1 and 1.2, we shall use theta correspondence for similitude unitary
groups in addition to theta correspondences for dual pairs (GSpy, GSOy42) and (Gp, GSUs p).
Let us recall the definition of the theta lifts in this case.

Let (X,(,)x) be an m-dimensional hermitian space over E, and let (Y,(,)y) be an
n-dimensional skew-hermitian space over . Then we may define the quadratic space

Wxy, ()xy) = Resp/pX @Y, Trg/r((,)x © (,)y))-

This is a 2mn-dimensional symplectic space over F'. Then we denote its isometry group by
Sp(Wx,y). For each place v of F, we denote the metaplectic extension of Sp(Wx y)(F,) by
Mp(Wx y)(Fy). In addition, Mp(Wx y)(A) denotes the metaplectic extension of Sp(Wx y)(A).

Let xx and xy be characters of A},/E* such that xx|yx = X% and xy|sx = x',. For each
place v of F, let

by + U(X)(Fy) x U(Y)(Fy) — Mp(Wx y)(Fy)

be the local splitting given by Kudla [Kud94] depending on the choice of a pair of characters
Xv = (XX,v, Xy,v)- Using this local splitting, we get a splitting

by UX)(A) x U(Y)(A) — Mp(Wx y)(A),

2147

https://doi.org/10.1112/S0010437X24007267 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007267

M. FurusawA AND K. MORIMOTO

depending on x = (xx,xy). Then by the pull-back, we obtain the Weil representation wy , of
U(X)(A) x U(Y)(A). When we fix a polarization Wx y = W;Y ® W y, we may realize wy, y so
that its space of smooth vectors is given by S (W;Y(A)), the space of Schwartz—Bruhat functions
on W;(:Y (A). We define

R:={(g,h) € GU(X) x GU(Y) : AM(g) = A(h)} D U(X) x U(Y).

Suppose that dim Y is even and Y is maximally split, in the sense that Y has a maximal isotropic
subspace of dimension % dim Y. In this case, as in §§ 3.1.1 and 3.2.1, we may extend wy, , to R(A).
On the other hand, in this case, we have an explicit local splitting of R(F,) — Sp(Wx y)(Fy)
by Zhang [Zhal3] and we may extend wy,, to R(A) using this splitting. These two extensions of
wy to R(A) coincide.

Then for ¢ € S(W;(:Y(A)), we define the theta function 93)7){ on R(A) by

O (o.h) = Y wnlg Wd(w). (3.3.1)
weW; o (F)

Let us define
GU(X)(A)" == {g € GUX)(A) : Mg) € MGU(Y)(A))},
GU(X)(F)T := GUX)(A)" N GU(X)(F).
We define GU(Y)(A)* and GU(Y)(F)* in a similar manner. Let (o, V,) be an irreducible cuspidal

automorphic representation of GU(X)(A)™. Then for ¢ € V, and ¢ € S (W;’Y(A)), we define the
theta lift of ¢ by

05, (p)(h) = 0(919)05 (919, h) dgn,

/U(X)(F)\U(X)(A)
where g1 € GU(X)(A)™ is chosen so that A(g) = A(h). Further, we define the theta lift of o by
O (o) = (00 (9);p € 7,0 € S(WH 1 (A))).

When the space we consider is clear, we simply write @z);;/ (0) = Oy (o). Similarly, for an

irreducible cuspidal automorphic representation 7 of U(Y')(A), we define @Zf(?) and we simply
write it by Oy (7).

4. Proof of the Gross—Prasad conjecture for (SO(5),S0O(2))

In this section we prove Theorem 1.1, i.e. the Gross—Prasad conjecture for (SO(5),SO(2)), based
on the pull-back formulas obtained in the previous section.

4.1 Proof of statement (i) in Theorem 1.1
Let (m, V) be as in Theorem 1.1(i). By the uniqueness of the Bessel model due to Gan, Gross and
Prasad [GGP12, Corollary 15.3] at finite places and to Jiang, Sun and Zhu [JSZ10, Theorem A]
at archimedean places, there exists uniquely an irreducible constituent Wf of 7 |q, (a)+ that has
the (&, A, 1)-Bessel period.

When D is split and 7r_]f is a theta lift from an irreducible cuspidal automorphic representation
of GSO31(A), our assertion has been proved by Corbett [Corl7]. Hence in the remainder of this
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subsection, we assume that:
when D s split, m is not a theta lift from GSOs3 1
of an irreducible cuspidal automorphic representation. (4.1.1)

Let us proceed under the assumption (4.1.1). By Propositions 3.1 and 3.2, the theta lift
0, (7B) of 78 to GSU3 p(A) has the (X¢, A~ 1))-Bessel period and, in particular, 6, (%) # 0
where we take X¢ € D™ (F) so that {x, = §. For example, when we take § =7, we may take
Xe=1.

LEMMA 4.1. The theta lift 0,(n?) is an irreducible cuspidal automorphic representation of
GSU3 p(A).

Proof. First we note that the irreducibility follows from the cuspidality by Remarks 3.1 and 3.2.

Let us show the cuspidality. Suppose in contrast that 6, (ﬂf ) is not cuspidal.

When D is not split, the Rallis tower property implies that the theta lift 6p ,(7%) of 72
to GSU; p(A) is non-zero and cuspidal. Let w be a finite place of F' such that D(F,) is split
and Wfﬂu is a generic representation of G(F,,)". Since Wf,w is generic, the theta lift of Wfﬂu
to GSO2(F,,) vanishes by the same argument as for [GRS97, Proposition 2.4]. We note that
GSU p(Fw) ~ GSO2(F,,) and, hence, the theta lift of Wf to GSU; p(A) must vanish. This is a
contradiction.

Suppose that D is split. Then the theta lift of ﬂf to GSO3,1 is non-zero by the Rallis tower
property. Moreover, it is not cuspidal by our assumption on 7. Thus, the theta lift of Wf to
GSO2 is non-zero, again by the Rallis tower property. Then we reach a contradiction by the
same argument as in the non-split case. O

We may regard Hw(ﬂ'f ) as an irreducible cuspidal automorphic representation of PGUg
or PGUsz; according to whether D is split or not, under the isomorphism @ in (2.2.6) or ®p
in (2.2.5). Recall our assumption that 6y, (ﬂ'fyw) is generic at a finite place w. Then the non-
vanishing of (X¢, A1, 9))-Bessel period on 6, (7?) implies the non-vanishing of the central value
of the standard L-function for 6, (%) of PGUy twisted by A™!, namely

L9 (3,0,(r%) x A1) #0
for any finite set S of places of F' containing all archimedean places because of the unitary group
case of the Gan—Gross—Prasad conjecture for 6, (wf ) proved by Proposition A.2 and Remark A.1
in [FM22]. Moreover, from the explicit computation of local theta correspondence in [GT11b,
Morl4a], we see that
L(s,m, x AZ(A),) = L(s, 9¢(7rf)v x A1)
at a finite place v where all data are unramified. Thus, when we take Sy, a finite set of places of
F containing all archimedean places, so that all data are unramified at v ¢ Sy, we have
L3 (L m x AT(A)) = L7 (%, 0,(7%) x A) # 0
for any finite set S of places of F' with S D Sp.

Let us show an existence of 7°. We denote 0, (Wf) by o. Then the theta lift ¥ :=
Oy, (a-1,4-1y(0) of o to GUz o which we may regard as an automorphic representation of GSOy 2
by the accidental isomorphism (2.2.6), is an irreducible cuspidal globally generic automorphic
representation with trivial central character by the proof of [FM22, Proposition A.2] since 6y, (7%)
has the (X¢, A7, 1))-Bessel period.

Here we recall that, by the conservation relation due to Sun and Zhu [SZ15, Theorems 1.10,
7.6], for any irreducible admissible representations 7 of GO42(k) (respectively, GO33(k)) over
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a local field k of characteristic zero, theta lifts of either 7 or 7 ® det to GSps(k)™ (respectively,
GSps(k)) is non-zero. Thus, we may extend 3 to an automorphic representation of GO42(A) as
in Harris, Soudry and Taylor [HST93, Proposition 2] so that its local theta lift to GSps(F,)" is
non-zero at every place v.

On the other hand, since ¥ is nearly equivalent to o, we have

L5(s, %, std) = L¥(s, m,std ® x5 )C2(s) (4.1.2)

for a sufficiently large finite set .S of places of F' containing all archimedean places by the explicit
computation of local theta correspondences in [GT11b, Morl4a]. Here

L5(1,m,std ® xg) # 0

by Yamana [Yam14, Proof of Theorems 10.2, 10.3], since the theta lift Gw(wf) of Wf to GSU3 p(A)
is non-zero and cuspidal. Hence, the left-hand side of (4.1.2) has a pole at s = 1. In particular, it
is non-zero and the theta lift of ¥ to GSps(A)™ is non-zero by Takeda [Tak11, Theorem 1.1 (1)].
Further, again by Takeda [Takll, Theorem 1.1 (1)], this theta lift actually descends to
GSpy(A)" = G(A)". Namely, the theta lift 7/, :==6,-1(X) of ¥ to G(A)T is non-zero since
L3(s,%,std) actually has a pole at s = 1.

Suppose that 7/, is not cuspidal. Then by the Rallis tower property, the theta lift of ¥ to
GLy(A)™ is non-zero and cuspidal. Meanwhile, the local theta lift of ¥, to GLo(F,)" vanishes
by a computation similar to that for [GRS97, Proposition 3.3 since ¥, is generic. This is a
contradiction and, hence, 7/, is cuspidal.

Since X is generic, so is 7', by [Morl4a, Proposition 3.3]. Let us take an extension 7° of 7/,
to G(A). Since |G(F,)/G(F,)T| =2, we have 7, ~ m, or 7, ~ m, ® xg, at almost all places v
such that 7Tg_’v o Wf}v. Hence, 7 is locally GT-nearly equivalent to 7°.

4.2 Some consequences of the proof of Theorem 1.1(i)
As preliminaries for our further considerations, we would like to discuss some consequence of the
proof of Theorem 1.1(i) and related results.

First we note the following result concerning the functorial transfer.

PROPOSITION 4.1. Let (m, Vi) be an irreducible cuspidal automorphic representation of Gp(A)
with a trivial central character. Assume that there exists a finite place w at which m,, is generic
and tempered.

Then there exists a globally generic irreducible cuspidal automorphic representation w° of
G(A) and an étale quadratic extension E° of F such that 7° is GTF°-nearly equivalent to .
In particular, we have a weak functorial lift of m to GL4(Apgo) with respect to BC o spin.

Moreover, 7 is tempered if and only if n° is tempered.

Remark 4.1. When D is split, our assumption implies that 7 has a generic Arthur parameter.
Though our assertion thus follows from the global descent method by Ginzburg, Rallis and
Soudry [GRS11] and Arthur [Art13], we shall present another proof which does not refer to
these papers.

Proof. Suppose that D is split. When 7 participates in the theta correspondence with GSOg 1,
our assertion follows from [Rob01]. Thus, we now assume that the theta lift of 7 to GSO3; is
zero. By [Li92], 7 has (Ss, Ao, 1¥)-Bessel period for some S, and A,. When GSO(S,) is not split,
the existence of a globally generic irreducible cuspidal automorphic representation follows from
Theorem 1.1(i). Suppose that GSO(S,) is split. Then by Proposition 3.1, the theta lift of 7 to
GSOg3 3 is non-zero. Since m, is generic, the local theta lift of m,, to GSO1 1 is zero as in the proof
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of Theorem 1.1(i) and, hence, the theta lift of 7 to GSOq; is zero. Hence, by the Rallis tower
property, either the theta lift of m to GSO2 2 or to GSO3 3 is non-zero and cuspidal. Then 7 itself
is globally generic by Proposition A.1 in the former case. In the latter case, the global genericity
of 7 readily follows from the proof of Soudry [Sou87, Proposition 1.1] (see also Theorem on p. 264
of [Sou87]).

In any case when D is split, we have a globally generic irreducible cuspidal automorphic
representation 7° of G(A) which is nearly equivalent to 7. Thus, when we take the strong lift of
m° to GL4(A) by [CKPS04], it is a weak lift of 7 to GL4(A).

Suppose that D is not split. Then by Li [Li92], there exist an 1, € D~ (F) where E; := F(n,)
is a quadratic extension of F', and a character A, of AEO /EZ A* such that 7 has the (7., As)-Bessel
period. Then there exists a desired automorphic representation 7° of G(A) by Theorem 1.1(i).

Let us discuss the temperedness. Denote o, ¥ and 7/, as in the proof of Theorem 1.1(i).
Suppose that 7 is tempered. Then the temperedness of o follows from a similar argument as
in Atobe and Gan [AG17, Proposition 5.5] (see also [GI14, Proposition C.1]) at finite places,
from Paul [Pau98, Theorems 15, 30], [Pau05, Theorems 15, 18, Corollary 24] and Li, Paul, Tan
and Zhu [LPTZ03, Theorems 4.20, 5.1] at real places and from Adams and Barbasch [AB95,
Theorem 2.7] at complex places. Then the temperedness of o implies that of ¥ by Atobe and
Gan [AG17, Proposition 5.5] at finite places, by Paul [Pau00, Theorem 3.4] at non-split real
places, by Maeglin [Moeg89, Proposition I11.9] at split real places and by Adams and Barbasch
[AB95, Theorem 2.6] at complex places. As we obtained the temperedness of o from that of r,
the temperedness of 3 implies that of 7/, and, hence, 7° is tempered. The opposite direction,
i.e. the temperedness of 7° implies that of 7, follows by the same argument. O

LEMMA 4.2. Let w be as in Theorem 1.1(i). Suppose that o = Hw(wf) is an irreducible cuspidal
automorphic representation of GSU3 p(A). Here Wf denotes the unique irreducible constituent
of |, a)+ such that Wf has the (E, A)-Bessel period. We regard o as an automorphic repre-
sentation of GUyc(A) via (2.2.5) or (2.2.6) and let Il denote the base change lift of oly, (a)
to GL4(Ag). Let ° be a globally generic irreducible cuspidal automorphic representation of
G(A) whose existence is proved in Theorem 1.1(i). We denote the functorial lift of 7° to GL4(A)
by Hﬂ—o .
Suppose that

Il =11 8---BII, (4.2.1)
where II; are irreducible cuspidal automorphic representations of GLy,, (A) and
I, =18 811, (4.2.2)

where H; are irreducible cuspidal automorphic representations of GLy,;(Ag).

Then we have Il, = BC(Ilzo), o 2110 ® xp and BC(Il;) is cuspidal for each i.
In particular, we have ¢ = k. Here BC denotes the base change from F to E.

Proof. By the explicit computation of local theta correspondences in [GT11b, Morl4a], we see
that (Il,), ~ BC(Il;0), at almost all finite places v of E. Thus, II, = BC(Il;-) by the strong
multiplicity one theorem. In addition, by [CKPS04], we know that £ =1 or 2.

Suppose that ¢ =1. We note that the cuspidality of BC(Il;o) is equivalent to Il o ®
XE # I o. Suppose otherwise, i.e. Il o =~ Ilo ® xp. Then Ilo = AZ(7) for some irreducible
cuspidal automorphic representation 7 of GLa(Ag). Since Il is a lift from PGSp,, the central
character of T needs to be trivial and, hence, 7 ~ 7V. On the other hand, we have

I, = BC(AZ(r)) = 7B 7°.
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Since this is a base change lift of oy, (), we have 7= (77)¥ and 7 % 77 by [AC89] (see also
[PR99, Proposition 3.1]). In particular, 7 22 7V and we have a contradiction. Thus, BC(II ) is
cuspidal and k£ = 1.

Suppose that ¢ = 2. First we show that Il o % Il;c ® xg. Suppose otherwise, i.e. Il;o ~
[I;o ® xg. Then either IT; ~ II; ® xg for i = 1,2 or Iy ~ II; ® xg. In the former case, we have
II; = AZ(x;) with a character x; of A5 /E* for i = 1,2. Then we have IIo = AZ(x1) B AZ(x2)
and II, = x1 B x7 B x2 B x§. Since o is a lift from PGSp,, the central character of AZ(y;)
is trivial and, hence, X; [sx= xg. On the other hand, since II, is a base change lift of o[y, _(a)
we see that x; |ax is trivial. This is a contradiction. In the latter case, we have BC(Ily) =
BC(II; ® xg) = BC(II;) and, hence, II, = BC(II;) B BC(II;). This implies that II, is not in the
image of the base change lift from the unitary group and again we have a contradiction. Thus, we
have Il;o 22 [1e ® xg. Then II; 2 II; ® xg at least one of i = 1,2. Suppose that this is so only
for one of the two, say i = 2. Then II; = AZ(x) for some character x of Aj,/E* and BC(IIy) is
cuspidal. We have I1.o = AZ(x) B I and I, = y B x° BBC(Ilz). Then x |4« is trivial from the
former equality and x |4x = xp from the latter equality as above. Hence, we have a contradiction.
Thus, BC(II;) for ¢ = 1,2 are both cuspidal, I, = BC(II;) B BC(Il3) and k = 2. O

The following lemma gives the uniqueness of the constant ¢(7) defined before Theorem 1.2.

LEMMA 4.3. Let m be as in Theorem 1.1(i). For i = 1,2, let E; be a quadratic extension of F’
and w{ an irreducible cuspidal automorphic representation of G(A) which is GHFiJocally near
equivalent to w. Let Il;o be the functorial lift of w7 to GL4(A) and consider the decomposition

Mo =T B By, fori=1,2
as (4.2.1). Then we have {; = (5.

Proof. Since the case when Fq = Fjs is trivial, suppose that Fq # Fs. Let K = E1FE5. From the
definition of the base change, we have

BCk/k, (BCg, /r(Ilze)) = BCxyp, (BCE, yp(Ilzg)).
Hence,
BCpg, r(Ilye) = BCp, yp(Ilzg) or BCg  p(llze) = BCg  r(Ilig) @ XKk,
where X /g, denotes the character of A% corresponding to K/E;. In the former case, we have
Hﬂf = Hrrg or Hrrf = ng &S XE,
and our claim follows. In the latter case, since xx/p, = XE, © Ng,/r, we have
Hpe =re @ Xp, or Ilze =1lre ® XE,XE,
and our claim follows. g

DEFINITION 4.1. Let 7 be as in Theorem 1.1(i). Then we say that 7 is of type I if 7 and 7 ® xg
are nearly equivalent. Moreover, we say that m is of type I-A if 7 participates in the theta
correspondence with GSO(S1) = GSO3 1 and that 7 is of type I-B if 7 participates in the theta
correspondence with GSO(X,) for some four-dimensional anisotropic orthogonal space X, over
F with discriminant algebra F.

Remark 4.2. From the proof of Theorem 1.1(i), if 7 is not of type I-A, then the theta lift of 7
to GSUj3 p is cuspidal. Further, we note that D is necessarily split when 7 is of type I-A or I-B,
by definition.
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In order to study an explicit formula using theta lifts from Gp(A), the following lemma will
be important later.

LEMMA 4.4. Let m be as in Theorem 1.1(i). Then w is either type I-A or I-B if and only if
7 is nearly equivalent to m ® xg. In particular, when 7 is neither of type I-A nor I-B, 7|g,, is
irreducible where

Gp = Zap(A)Gp(A)TGp(F). (4.2.3)
Proof. Suppose that m is nearly equivalent to 7 ® xgp. Then at almost all places v of F|
Indgﬁ gz;+(7r+7v) is irreducible where 7 , is an irreducible constituent of m, |, (fp,)+. This

implies that 7 and 7° are nearly equivalent and, hence, 7° is nearly equivalent to 7° ® xg. Thus,
II;0 is nearly equivalent to Il ® xg and, hence, Ilc =Il;c ® xg by the strong multiplicity one
theorem. When 7 is neither of type I-A nor I-B, this does not happen by Lemmas 4.1 and 4.2.

Suppose that 7 is either of type I-A or I-B. Then D is split and the functorial lift IL; of 7
to GL4(A) is of the form AZ(7) for an irreducible automorphic representation 7 of GLa2(Afg) by
Roberts [Rob01]. Then we have I, = II; ® xg. Hence, 7 is nearly equivalent to 7 ® xg.

When 7 is not nearly equivalent to ™ ® xg, 7 |g, is irreducible since Gp is of index 2 in
Gp(A). O

Remark 4.3. This lemma gives a classification of 7 such that the twist 7 ® xg of @ by xg has
the same Arthur parameter as w. A classification of 7 such that 7 and 7 ® xg are isomorphic
when Gp ~ G is given in Chan [Chal0].

4.3 Proof of statement (ii) in Theorem 1.1
Suppose that m has a generic Arthur parameter.

When there exists a pair (D', 7’) as described in Theorem 1.1(ii), = and 7’ share the
same generic Arthur parameter since they are nearly equivalent to each other. Hence, by
Theorem 1.1(i), we have

L¥(3,m x AZ(A)) = L5 (L, 7" x AZ(A)) #0
when S is a sufficiently large finite set of places of F. Then by Remark 1.3, we have
L(3,m x AZ(A)) #0,

i.e. (1.5.5) holds.

Conversely suppose that L(%, m X AZ(A)) # 0. There exists an irreducible cuspidal globally
generic automorphic representation 7° of G(A) which is nearly equivalent to 7 since 7 has a
generic Arthur parameter. Let U be a maximal unipotent subgroup of GSO42 and Yy be a
non-degenerate character of U(A) defined below by (6.1.2) and (6.1.3), which are the same as
[Morl4a, (2.4)] and [Morl4a, (3.1)], respectively. Let Ug be the maximal unipotent subgroup of
GSp, defined by (6.2.1) and )y, the non-degenerate character of Ug(A) defined by (6.2.2) in
§6.2. Note that in [Morl4a], Ug is denoted by N and vy, is denoted by ¢ in [Morl4a, p. 34]
and [Morl4a, (3.2)], respectively. Then we note that the restriction of ° to G(A)* contains a
unique ¢y,-generic irreducible constituent and we denote it by 75 . Let us consider the theta
lift 3 :=6y(73) of 75 to GSO42(A). Then by [Morl4a, Proposition 3.3], we know that ¥ is
Yy-globally generic and, hence, non-zero. We divide into two cases according to the cuspidality
of X.

Suppose that 3 is not cuspidal. Then by Rallis tower property, 7¢ participates in the theta
correspondence with GSOs31. As in the proof of Lemma 4.1, the theta lift of 75 to GSOg is zero
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since 75 is generic. Hence, the theta lift 7 := 05’51(
By Remark 3.1, 7 is also irreducible.

Recall that
GSOgyl(F) ~ GLQ(E) X FX/{(Z,NE/F(Z)> 1z e EX}, PGSO371(F> ~ PGLQ(E)

7% ) of 7% to GSOg,; is cuspidal and non-zero.

Then we may regard 7 as an irreducible cuspidal automorphic representation of GLa(Ag) with
a trivial central character since the central character of 77 is trivial.

Let II denote the strong functorial lift of 7° to GL4(A) by [CKPS04]. Then at almost all
finite places v of F, we have II, ~ AZ(7),, and thus by the strong multiplicity one theorem,
IT = AZ(7) holds. Since 7 is nearly equivalent to 7°, Remark 1.3 and our assumption imply that
for a sufficiently large finite set S of places of F', we have

LS(%,T X A)LS(%,T X A_l) = LS(%,TFO X .AI(A))
= LS(%,T(‘ x AZ(A)) # 0.

Then by Waldspurger [Wal85], 7 has the split torus model with respect to the character (A, A=1).
Hence, the equation in Corbett [Corl7, p. 78] implies that 7° has the (E, A)-Bessel period. Hence,
we may take D' = Matgyo and 7’ = 7°. Thus, the case when X is not cuspidal is settled.

Suppose that ¥ is cuspidal. We may regard 3 as an irreducible cuspidal globally generic
automorphic representation of GU(2,2) with trivial central character because of the acci-
dental isomorphism (2.2.6). As in the proof of Theorem 1.1(i), our assumption implies that
L(%,E x A) # 0. Then by [FM22, Proposition A.2], there exists an irreducible cuspidal auto-
morphic representation 3’ of GU(V) such that ¥’ is locally U(V')-nearly equivalent to ¥ and ¥
has the (e, A, 1)-Bessel period where V' is a 4-dimensional hermitian space over E whose Witt
index is at least 1. Then we note that PGU(V) ~ PGSOy or PGUjs p for some quaternion
division algebra D’ over F.

In the first case, we consider the theta lift 7/, := 6,,-1(X') of ¥’ to G(A)*. Then by the
same argument as in the proof of Theorem 1.1(i), we see that 7/ # 0 by Takeda [Takll,
Theorem 1.1 (1)] and that it is an irreducible cuspidal automorphic representation of G(A)*.
Since ¥’ has the (e, A, 1)-Bessel period, ', has the (E, A)-Bessel period by Proposition 3.1. From
the definition, 7/, is nearly equivalent to 75. Let us take an irreducible cuspidal automorphic
representation (7', Vo) of G(A) such that 7’ [ (a)+ D @’y. Then 7’ is locally G*-nearly equivalent,
and thus either 7’ or 7’ ® x g is nearly equivalent to = by Remark 1.2. Since both 7’ and 7’ ® x g
have the (F, A)-Bessel period, our claim follows.

In the second case, we consider the theta lift of ¥/ to Gp/(A). Then by an argument similar
to that in the first case, we may show that the theta lift of ¥’ to Gp/(A) contains an irreducible
constituent which is cuspidal, locally G*-nearly equivalent to 7 and has the (E, A)-Bessel period.
Here we use [Yam14, Lemma 10.2] and its proof in the case of (I;) with n = 3, m = 2, noting
Remark 4.5. This completes our proof of the existence of a pair (D', n’).

Let us show the uniqueness of a pair (D', 7') under the assumption that 7 is tempered.
Suppose that for ¢ = 1,2 there exists a pair (D;, 7;) where D; is a quaternion algebra over F' and
m; is an irreducible cuspidal automorphic representation of Gp, (A) which is nearly equivalent to
7 such that m; has the (E, A)-Bessel period.

Suppose that 7; is nearly equivalent to m; ® xg for ¢ = 1,2. Then by Lemma 4.4, w1, mo
are of type I-A or I-B and, in particular, D >~ Dy ~ Matoxs. Hence, for ¢ = 1,2, there exist
a four-dimensional orthogonal space X; over F with discriminant algebra E and an irre-
ducible cuspidal automorphic representation o; of GSO(X;,A) such that m; = 6,(0;). Since
PGSO(X;, F) ~ (D})*(E)/E* for some quaternion algebra D) over F, we may regard o; as
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an automorphic representation of (D})*(Ag) with the trivial central character. Since m; has
the (E, A)-Bessel period, o; has the split torus period with respect to a character (A,A~!) by
[Corl7, p. 78]. Hence, D.(E) ~ Matax2(E) by [Wal85]. Since o} is nearly equivalent to o2, we
have o1 = g9 by the strong multiplicity one. Thus, 71 ~ 7s.

Suppose that m; is neither type I-A nor I-B for i = 1,2. For each i, let us take a unique
irreducible constituent ﬂf ", of TFi’GDi (a)+ that has the (&;, A,v)-Bessel period. Note that ﬂf .
and 7T£ , are nearly equivalent to each other.

Now let o; denote the theta lift 9¢(7Tf +) of Wf ', to GSU3 p,. Then we regard o; as an auto-
morphic representation of GUy . via (2.2.5), (2.2.6) and let 3; := ©,, (y-1 -1y denote the theta
lift of 0; to GUy 2. In turn, we regard X; as an automorphic representation of GSO4 2 via (2.2.6)
and we denote by 7] , its theta lift to G(A)™. Then from the proof of Theorem 1.1(i), oy, ¥; and
m; . are irreducible and cuspidal. Moreover, 71 | and 7 , are both globally generic and nearly
equivalent to each other. Furthermore, since 7; is tempered, o; = 0y, (ﬂf ') is tempered at finite
places by an argument similar to that in Atobe and Gan [AG17, Proposition 5.5] (see also [GI14,
Proposition C.1]) and similarly at real and complex places by Paul [Pau98, Theorems 15, 30]
and Li, Paul, Tan and Zhu [LPTZ03, Theorems 4.20, 5.1] and, by Adams and Barbasch [AB95,
Theorem 2.7], respectively. Similarly ¥; and 7T£7 , are also tempered.

By Propositions 3.1 and 3.2, we know that o; has the (X, A,1)-Bessel period. Let GU;
denote the similitude unitary group which modulo center is isomorphic to PGSU3 p, by (2.2.5).
Then o; |y, has a unique irreducible constituent v; which has the (X¢,, A, 1)-Bessel period. Then
by Beuzart-Plessis [Beul6, Beu20] (also by Xue [Xue23] at the real place), we see that U; ~ U,
since 11 and vy are equivalent to each other. This implies that D; ~ Ds and, hence, Gp, ~ Gp,.
Let D' ~ D; fori =1, 2.

We take an irreducible cuspidal automorphic representation 7, of G(A) such that =, \G(A)+
contains 7; , . Then by Remark 1.2, we may suppose that 7 is nearly equivalent to 75 or 75 ® X -
Thus replacing 7 by 75 ® x g if necessary, we may assume that 7] and 7/ are nearly equivalent
to each other. Then since 7} and 7} are generic and they have the same L-parameter because of
the temperedness of 7}, we have ] ~ 7} by the uniqueness of the generic member in the L-packet
by Atobe [Atol7] or Varma [Varl7] at finite places and by Vogan [Vog78] at archimedean places.
Hence, in particular, 7 , =~ 77’27+.

From the definition of 7rﬁr7i, we get wf L 7T2B7 +- Then, we see that m ~ my ® w for some
character w of Gp/(A) such that w, is trivial or x g, at each place v of F. Since 7 and 7 have
the same L-parameter, m, and 7, ® w, are in the same L-packet for every place v of F.

Let us take a place v of F, and write the L-parameter of 1 , as ¢, : WDp, — G1(C). If ¢, is
an irreducible four-dimensional representation, the L-packet of ¢, is singleton and, thus, 7, ~
o . Thus, let us suppose that ¢, = ¢1 © ¢2 with two-dimensional irreducible representations ¢;.
Further, we may suppose that w, = x g, since there is nothing to prove when w, is trivial. This
implies that ¢, ® xgu =~ ¢». Then, by [PR99, Proposition 3.1], we have ¢; = m(x;) for some
character x; of E) for i =1,2. Moreover, any member of the L-packet of 7; is given by the
theta lift from an irreducible representation JL(m(x1)) X w(x2) of D'(F,)* x GLa(F),) where JL
denotes the Jacquet—Langlands transfer. Since the theta lift preserves the character twist, we
see that

O(IL(m(xi)) M m(x;)) © xgw ~ O(JL(m(xi)) W w(x;))

by m(xi) ® XEw =~ m(x;). This shows that in this case, any element in the L-packet is invariant
under the twist by xg,. Thus 71, ® XE,» =~ ™2, and, hence, 71, ~ T2 ,.
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Remark 4.4. As we remarked in the end of § 1.5, the uniqueness of (D', ') follows from the local
Gan—Gross—Prasad conjecture for (SO(5),SO(2)), which is proved by Luo [L.uo20] at archimedean
places and by Prasad and Takloo-Bighash [PT11] (see also Waldspurger [Wall2b] in general case)
at finite places. Our proof gives another proof of the uniqueness.

Remark 4.5. There is a typo in the statement of [Yam14, Lemma 10.2]. The first condition stated
there should be the holomorphy at s = —s,, + %

5. Rallis inner product formula for similitude groups

In this section, as a preliminary for the proof of Theorem 1.2, we recall Rallis inner product
formulas for similitude dual pairs.

5.1 For the theta lift from G to GSOy4 >
In this section, we shall recall the Rallis inner product formula for the theta lift from G to GSOy42.
It is derived from the isometry case in a manner similar to that in Gan and Ichino [GI11, §6],
where the case of the theta lift from GLo to GSO3; is treated.

Let (m,Vz) be an irreducible cuspidal automorphic representation of G(A) with a trivial
central character. Let us define a subgroup G of G(A) by

G = Zg(A)G(A)TG(F) (5.1.1)
and in this section we assume that:
the restriction of w to G is irreducible, i.e. T @ Ygp # T (5.1.2)

for our later use.

Let us recall the notation in § 3.1.2. Thus X denotes the four-dimensional symplectic space on
which G acts on the right and Y denotes the six-dimensional orthogonal space on which GS5Oy42
acts on the left. Then Z = X ® Y is a symplectic space over F'. Here we take X4+ ® Y as the
polarization and we realize the Weil representation wy of Mp(Z)(A) on V,, := S((X4+ ® Y)(A)).

Put XY = X & (—X). Then X" is naturally a symplectic space. Let G := GSp(XD) and we
denote by G a subgroup of G x G given by

G :={(g91,92) € G x G : A(g1) = Ng2)},

which has a natural embedding ¢ : G — G. We define the canonical pairing B, : V,® V, = C
by

B, (p1,2) ::/ v1(x)p2(x)dx  for p1,p2 €V,
(X1+QY)(A)

where dr denotes the Tamagawa measure on (X ® Y)(A).
Let Z = XY ®Y and we take a polarization Z = Z, & Z_ with

Zj: = (X:t D (—X:t)) & Y?

where the double sign corresponds. Let us denote by w,, the Weil representation of Mp(Z (A))
on S(Z*(A)). On the other hand, let

XVi.={(z,-z):zeX} and XV:=XVQY.
Then we have a natural isomorphism

V@V, ~S(XV(A))
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by which we regard SN()NCV(A)) as a representation of Mp(Z)(A) x Mp(Z)(A). Meanwhile, we
may realize &y, on S(XV(A)) and indeed we have an isomorphism

5 S(Z,(8) — S(XV(A))
as representations of Mp(Z)(A) such that

3(p1 @ Py)(0) = Bu(p1,92) for 1,02 € V.

Let us define Petersson inner products on G(A) and G(A)™ as follows. For f1, fo € V., we define
the Petersson inner product (, ), on G(A) by

(f1, f2)x ;:/ f1(9)f2(9) dg
AXG(F)\G(A)

where dg denotes the Tamagawa measure. Then regarding f1, fo as automorphic forms on G(A)*,
we define

(i fo)t = / £ (0 Fo(h) d,

AXG(F)T\G(A)T
where the measure dh is normalized so that
vol(AXG(F)+\G(A)+) =1.
Then from our assumption (5.1.2) on 7, as in [GI11, Lemma 6.3], we see that

(f1. )7 = 5(f1, fo)m

since Vol(AXG(F)\G(A)) = 2. For each place v of F, we take a hermitian G(F})-invariant local
pairing (, )z, of m, so that

(fl,f2)7r = H(fl,vafZ,v)ﬂ'v for fz = Qyp fi,v € Vﬂ' (Z = 172)- (5~1'3)

v

We also choose a local Haar measure dg, on G(F;) for each place v of F' so that Vol(Kg 4, dg,) =1

at almost all v, where K¢ , is a maximal compact subgroup of G(F,). We define positive constants
Cg by

dg = Cq - [ ] dgo-

Local doubling zeta integrals are defined as follows. Let I(s) denote the degenerate principal
series representation of G(A) defined by

G(h)

I(s) :== Indf)(A)

s/9

where P denotes the Siegel parabolic subgroup of G. Then for each place v, we define a local
zeta integral by

Zo(5,®o, fros fo) = / Bu(1(g0s 1), 5) (To(g0) fros fo0)ms dgo

GL(Fy)

for ®, € I(s), fiv, fop € Vr,, where G' ={g € G : \(g) = 1}. The integral converges absolutely
L when ®, € I,(s) is a holomorphic section by [PR, Proposition 6.4] (see also [CGI11,

at s =3
Lemma 6.5]). Moreover, when we define a map S(XV(A)) 3 ¢ — [¢] € I(3) by

2
6l(0:5) = o (G (M yg,) 7)) O

we may naturally extend [p] to a holomorphic section in I(s).
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By an argument similar to that in the proof of [GI11, Proposition 6.10], we may derive
the following Rallis inner product formula in the similitude groups case from the one [GQT14,
Theorem 8.1] in the isometry groups case.

PROPOSITION 5.1. Keep the above notation.
Then for decomposable vectors f = Qf, € V; and ¢ = Q¢,, € V,,, we have

(©(f:9).0(f;9)) _ 1 L(1,m,std ® xg) 1
(f: f)7r B CG . 5 ‘ L(3,XE)L(2, ]_)L(E4’ ]_) 1:[Z5<2? [5(¢v & ¢v)]a fva fv)

Here we recall that ©(f;¢) is the theta lift of f to GO4p, (,) denotes the Petersson inner
product with respect to the Tamagawa measure and we define

1 1 L(37XEU/FU)L(271”U)L(4? 1U)
Zﬁ =0 v v)ls Jus Jv | =
v<27[ (0 ® d0)], f f) (fos fo)m L(l,ﬂv,std®XEv/Fv)

which is equal to 1 at almost all places v of F' by [PR].

Recall that 0(f; ¢) denotes the restriction of ©y(f;¢) to GSOy42(A), namely the theta lift of
f to GSO4 2. Then as in [GI11, Lemma 2.1}, we see that

2(0(f;9),0(f;0)) = (0(f;¢),0(f;9)),
where the right-hand side denotes the Petersson inner product on GSO42 with respect to the
Tamagawa measure. Hence, Proposition 5.1 yields

(0(f:9),0(f;9)) _ L, m Std®><E §
G De SO LB L 112 <

5.2 Theta lift from Gp to GSU3 p

In this subsection, we shall consider the Rallis inner product formula for the theta lift from Gp

to GSU3z p as in the previous section. We recall that the formula in the case of isometry groups is

proved by Yamana [Yam14, Lemma 10.1] where our case corresponds to (I3) with m = 3,n = 2.
Let (m,Vy) be an irreducible cuspidal automorphic representation of Gp(A) with a trivial

central character. Recall that Gp denotes the subgroup of Gp(A) given by (4.2.3). In this section,

assume that

Z, @ [5(60 ® 60)], for fv>,

3(dv @ b))l fo, fu>. (5.1.4)

the restriction of m to Gp s irreducible (5.2.1)

for our later use.

Let us recall the notation in §3.2.2. Thus, Xp denotes the hermitian space of degree two
over D on which Gp acts on the right and Yp denotes the skew-hermitian space of degree three
over D on which GSU3 p acts on the left. Then Zp = Xp ®p Yp is a symplectic space over F
by (3.2.1). Here we take Xp + ®p Yp as the polarization and we realize the Weil representation
wy of Mp(Zp)(A) on V,, p := S((Xp,+ @p Yp)(A)). N

Put Xg = Xp @& Xp. Then Xg is naturally a hermitian space over D. Let Gp := GU(XE)
and we denote by Gp a subgroup of Gp x Gp given by

Gp :={(91,92) € Gp X Gp : A(g1) = Mg2)},

which has a natural embedding ¢: Gp — G p- We define the canonical pairing B, : Vi, p ®
Vo,p — C by

B, (¢1,p2) = / o1(x) pa(x)dx  for vy, € V,, p,
(XDp,+®YD)(A)

where dz denotes the Tamagawa measure on (Xp + ® Yp)(A).
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Let ZD = Xg ® Yp and we take a polarization ZD = ZD’JF @ ZD,, with
Zp+=(Xp+®—-Xpzx)® YD,

where the double sign corresponds. Let us denote by w,, the Weil representation of Mp(Zp)(A)
on 8(Zp,+(A)). On the other hand, let

Xy :={(z,%):z € Xp} and X3 :=Xy®Yp.
Then we have a natural isomorphism
Viop ®@Vup ~S(XF(A))

by which we regard S()Zg (A)) as a representation of Mp(Zp)(A) x Mp(Zp)(A). Meanwhile, we
may realize @y, on S(XY(A)) and indeed we have an isomorphism

0:8(Zp+(A)) = S(XF(A))
as representations of Mp(Zp)(A) such that

5(p1 ® ©9)(0) = Bu(p1,p2) for 1,02 € V,, p.

Let us define Petersson inner products on Gp(A) and Gp(A)™T as follows. For fi, fo € Vi, we
define the Petersson inner product (,)r, on Gp(A) by

(f1, f2)mp == J1(g) f2(9) dg,

/AXGD(F)\GD(A)

where dg denotes the Tamagawa measure. Then regarding fi, fo as automorphic forms on
Gp(A)T, we define

(nmg:/ J1(h) Fol) dh,

AXGp(F)*\Gp(A)*t
where the measure dh is normalized so that
vol(A*Gp(F)"\Gp(A)T) = 1.
Then from our assumption (5.2.1) on mp, as in [GI11, Lemma 6.3], we see that

(f1, f2)5, = 5(f1, f2)mp

since Vol(A*Gp(F)\Gp(A)) = 2. For each place v of F, we take a hermitian G p(F,)-invariant
local pairing (, )rp, of 7p, so that

(f17f2)ﬂ'p = H(fl,va f2,v)7rDyU for fz = Qy fi,v S Vﬂ—D (’L = 1,2). (522)

v

As in the previous section, we choose local Haar measures dg, on Gp(F),) at each place v of F
and we have

dg = Ce, - | [ dgo
v

for some positive constant Cg .
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Local doubling zeta integrals are defined as follows. Let Ip(s) denote the degenerate principal
series representation of Gp(A) defined by

Gp(A s/9
Ip(s) = IndZ20 (xe 857,

where ZSD denotes the Siegel parabolic subgroup of G p. Then for each place v, we define a local
zeta integral for @, € Ip (s), fiv, fop € Vap, By

Zv(37 D, fLU? fQ,U) = / @U(L(gw 1)7 3)(7rD,v (gv)fl,va f2,v)7rv dgy,
Gp(Fo)

where G}, = {g € Gp : A(g) = 1}. The integral converges absolutely at s = 1 when ®, € Ip ,(s)
is a holomorphic section by [PR, Proposition 6.4] (see also [GI11, Lemma 6.5]). Moreover, when
we define a map S(XY(A)) 2 ¢ — [¢] € Ip(3) by

6l(0:3) = @ (G (M yg,)9)) O

we may naturally extend [¢] to a holomorphic section in Ip(s).

By an argument similar to that in the proof of [GI11, Proposition 6.10], we may derive the
following Rallis inner product formula in the similitude groups case from that [Yam13, Theorem 2]
in the isometry groups case.

PROPOSITION 5.2. Keep the above notation.
Then for decomposable vectors f = ®f, € Vz,, and ¢ = ®¢, € V,, p, we have

O(f;0),0(f;0))  L(,7 std®x
(frps frp) L(3 xe)L(2, 5 Hzﬁ< 6(Pv ® bu)], f’vav>-

Here recall that 0,,(f; ¢) is the theta lift of f to GSUs p, (,) denotes the Petersson inner product
with respect to the Tamagawa measure and we define

1 L(37XEU/F1,)L(27 1’1))L(47 1U)
(fU’fU)T"D U L(l TrU’Std@XEv/Fv)

< 2o 518060 0] S f ).

Zg <;7 [5(¢v ® QZ)U)]? f’U7 fv> =

which is equal to 1 at almost all places v of F' by [PR].

6. Explicit formula for Bessel periods on GU(4)

Let GU(4) stand for one of GUg 2 or GUs 1. In [FM22], the explicit formula for the Bessel periods
on GU(4) is proved under the assumption that the explicit formula for the Whittaker periods
on GUgz2 holds. In this section we shall show that this assumption is indeed satisfied in the
cases we need, from the explicit formula for the Whittaker periods on G = GSp,, which, in turn,
will be proved in Appendix A. Thus, the explicit formula for the Bessel periods on GU(4) holds
by [FM22], in the cases which we need for the proof of Theorem 1.2.

6.1 Explicit formulas
Let (m, V%) be an irreducible cuspidal tempered globally generic automorphic representation of

G(A) such that 7|g is irreducible. We recall that the subgroup G of G(A) is defined by (5.1.1). Let
7° denote the unique generic irreducible constituent of 7| a)+. Let (3, V) denote the theta lift of
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7m° to GSOy4,2(A). Then as in [Morl4a, Proposition 3.3], we know that 3 is an irreducible globally
generic cuspidal tempered automorphic representation. Here we prove the explicit formula for
the Whittaker periods for ¥ assuming the explicit formula for the Whittaker periods for .

Let us recall some notation. Let X,Y, Y, and Z be as in §3.1.2 and we use a polarization
Z =74 @ Z_ with

Z:t = (X & Y:t) b (X:t X Yg),
where the double sign corresponds. We write z; = (a1, ag; b1, ba) when
2 =01 QY1 +a2®@y2+b1 e +ba®ex € 2, witha; € X, b € X5

Recall that the unipotent subgroups No, N1 and Na of GSOy 2 are defined by (3.1.10), (3.1.11)
and (3.1.12), respectively. Let us define an unipotent subgroup U of GSOy4 2 by

) 1 —'XS 0\ _ 8
U:=<a():=10 14 X|:X= 0 , (6.1.1)
0 0 1 b
where Sj is given by (2.1.2). Let
U = NyoU. (6.1.2)

Then U is a maximal unipotent subgroup of GSO4 2 and we have
N() < NQNl < N()NlNQ = N472 < N472U =U.
Then we define a non-degenerate character ¢y of U(A) by

wU(uo(x)ul(sl, tl)UQ(SQ, tg)ﬂ(b)) = @D(thg + b) (6.1.3)
By [Morl4a, Proposition 3.3], X is ¢y-generic. Namely

W () = / o) (u) du for p € Vi,
U(F)\U(A)

is not identically zero on V5. Now we regard ¥ as an automorphic representation of GUg 2 by the
accidental isomorphism (2.2.6) and let ITy = II} B - - - BT} denote the base change lift of X |y, ,
to GL4(Ag) where IT; is an irreducible cuspidal automorphic representations of GLy,, (Ag). Here
the existence of Iy, follows from [KMSW14].

Recall that in §5.1, the Petersson inner products on G(A) and GSO42(A) using the
Tamagawa measures, denoted respectively as (,) and (,), are introduced. Moreover at each
place v of F', we choose and fix an G(F})-invariant hermitian inner product (, ), on Vzo so that
the decomposition formula (5.1.3) holds. Similarly at each place v, we choose and fix a
GSOy,2(F,)-invariant hermitian inner product (,), on Vs, so that the decomposition formula

(61, 82) = [ [(@1.0: D200)0 for ¢ = ®upi € Vo (i =1,2) (6.1.4)

v
holds.
Then as in §2.4, at each place v of F'; we may define a local period W, (¢,) for ¢, € Vs, by
the stable integral

Syt (ny) dny (6.1.5)

W) = [ Srelov oy

U(Fy) {Pus Po)o

when v is finite. When v is archimedean, we use the Fourier transform to define W, (p,). See
[Liul6, Propositions 3.5, 3.15] for the details.
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We shall prove the following theorem, namely the explicit formula for the Whittaker periods
on Vy, in §6.2.

THEOREM 6.1. For a non-zero decomposable vector p = Ry, € Vs, we have

W¥u ()2 1
\ (e* H L(j, %) HWO o),

= 6.1.6
<(P7(P> 24 L(l HEaAS ( )

where
L(1,1Iy,, AsT )

1
Hj:l L(y, XEv)
Here we note that Wg(y,) = 1 at almost all places v by Lapid and Mao [LM15].

W, (o) = W (pu)-

Before proceeding to the proof of Theorem 6.1, by assuming it, we prove the following
theorem, namely the explicit formula for the Bessel periods on GU(4).

THEOREM 6.2. Let (m,V;) be an irreducible cuspidal tempered automorphic representation of
Gp(A) with trivial central character. Suppose that m has the (£, A,1)-Bessel period and that
is neither of type I-A nor type I-B. Let ﬂf denote the unique irreducible constituent of 7| p(A)+
which has the (£, A, 1)-Bessel period. We denote by (o, V,) the theta lift ofwf to GSU3 p, which
is an irreducible cuspidal automorphic representation by Lemmas 4.1 and 4.4.

Then for a non-zero decomposable vector ¢ = @, € V,, we have

|Bx,p.a(p L(,0x A7) h
(0.0) L v/
2£ H 1 7T7Std®XE)L(17XE) IZICKAU&/)X,U(SD )

(9090

where

-1

L(1,my,std © xpo)L(1, XEB,) QA (P0)

nvd)XU (’Dv _<HL1XE’U> ( : 1 U)—l( ) = -
’ L(ivav X Ay ) (@m@v)v

and X € D* is taken so that £ = Sx in (3.2.5).

Proof. Let us regard o as an automorphic representation of GU(4) with trivial central character
via the accidental isomorphisms ® (2.2.6) or ®p (2.2.5), depending whether D is split or not.
Let 0(0) = Oy (A-1,o-1)(0) denote the theta lift of o to GUz 2 with respect to ¢ and (A=H A7),
By [FM22, Proposition 3.1], f(o) is globally generic and, in particular, non-zero. By the same
argument as in the proof of [FM22, Theorem 1], we see that 6(c) is cuspidal and hence irreducible
by Remarks 3.1 and 3.2. Moreover by the unramified computations in [Kud86] and [Morl4a,
(3.6)], we see that L%(s,%,A?) has a pole at s = 1 when S is a sufficiently large finite set of
places of F containing all archimedean places, where L (5,3, A2) denotes the twisted exterior
square L-function of ¥ (see [FM13b, §2.1.1] for the definition). Since (o) is generic, [FM13b,
Theorem 4.1] implies that it has the unitary Shalika period defined in [FM13b, (2.5)]. Then,
by [Morl4a, Theorem B], the theta lift of 8(c) to G(A)T, which we denote by (7, Vi), is an
irreducible cuspidal globally generic automorphic representation of G(A)". We note that ﬂf is
nearly equivalent to 7/, .

Let us take an irreducible cuspidal automorphic representation (7’, V) of G(A) such that
Varlgeay+ 2 Vz, . Then 7' is globally generic. Moreover, ™ ® yg is not nearly equivalent to 7’
by our assumption on 7. Hence, 7’|g is irreducible. Thus, we may apply Theorem 6.1, taking
7° =7’ and ¥ = 6(0), and we obtain the explicit formula for the Whittaker periods on 6(o).
Then by [FM22, Theorem A.1], the required explicit formula for the Bessel periods follows. [

2162

https://doi.org/10.1112/S0010437X24007267 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007267

GROSS—PRASAD CONJECTURE AND BOCHERER CONJECTURE

6.2 Proof of Theorem 6.1
We reduce Theorem 6.1 to a certain local identity in §6.2.2 and then prove the local identity in
§6.2.3.

As we stated in the beginning of this section, what we do essentially is to deduce the explicit
formula (6.1.6) for the Whittaker periods on GSOy4 2 from (6.2.3) below, the one for the Whittaker
periods on G.

6.2.1 Explicit formula for the Whittaker periods on G = GSp,. Let Ug denote the maximal
unipotent subgroup of G. Namely

Ug = {m(n) (102 f) : X € Symg,n € Ng}, (6.2.1)
2
where m(h) = (g thql) for h € GLs and N, denotes the group of upper unipotent matrices
in GLy. Then we define a non-degenerate character vy, of Ug(A) by
Yug(u) == P(u12 + dugs) for u= (u;;) € Ug(A). (6.2.2)

Then for an automorphic form ¢ on G(A), we define the Whittaker period W, (¢) of ¢ by

Wy () = / $(n) ¥ (n) dn.
¢ Uc(F)\Ug(A)

The following theorem shall be proved in Appendix A.

THEOREM 6.3. Suppose that (mw, V) is an irreducible cuspidal tempered globally generic auto-
morphic representation of G(A). Let Il =11, B---B1II; denote the functorial lift of m to
GL4(A).

Then for any non-zero decomposable vector ¢ = R, € V;, we have

Woug ) _ 1 T2 10 6.3
op) L sy L) 02
Here W¢, ,(¢v) is defined by

L(1,1, ,, Sym?)

W (00) =
A | e

WG,U(SO'U)

and Wea ., (py) is defined by

Wa (o) = /

Ug(Fy) (¢vs Pv)

st (71'5 (n)@va @v) 1/]561‘, (n) dn,

when v is finite and by the Fourier transform when v is archimedean.

6.2.2 Reduction to a local identity. Let us go back to the situation stated in the beginning
of §6.1.
First we note that the unramified computation in [Kud86] implies the following lemma.

LEMMA 6.1. There exists a finite set Sy of places of F' containing all archimedean places such
that for a place v ¢ Sy, we have

L(1,1y,,AsT) = L(1, my, std ® xg)L(1,11x, Sym®)L(1, x&,)-
Let us recall the following pull-back formula for the Whittaker period on ¥ = 6, (7°).
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PROPOSITION 6.1 [Morl4a, p. 40]. Let f € Vzo and ¢ € S(Z1(A)). Then
WP (6(; 1)) =/ (wy (91, 1)) (22, 21,0, 22)) Wy, (7°(91) f) dg. (6.2.4)
N(A\G!(A)

Suppose that f=®f, and ¢ = ®¢,. Then by an argument similar to that in obtaining
[FM21, (2.27)], when Wy, (f) # 0, we have

WP (0(; 1)) = Car - Wa, (F) - T £3(60 1),

where

Lo, fo) = (W, (91, 1)) (-2, 21, 0, 22))WV50 (m5(91) fo) dg1,0

/N(Fv)\Gl(Fv)
when ¢ = ®,¢, and f = ®,f,. We also define

[5206020)  £3(6s f)

Ly(bv, fo) = L(LHW’U’Sym% WG’,U(f’U) .

Here the measures are taken as the following. Let dg, be the measure on G'(F,) defined by the
gauge form and dn, the measure on N(F),) defined in the manner stated in §1.2. Then we take
the measure dg; , on N(F,)\G(F,) so that dg, = dn, dgi ».

Let O(my, ¥y) := Homg g, )+ (y,, T) where €y, is the extended local Weil representation of
G(F,)" x GSO42(F,) realized on S(Z,(F},)), the space of Schwartz—Bruhat functions on Z, (F,).
We recall that the action of G(F,)" x GSOu42(F,) on S(Z4(F,)) via Qy, is defined as in the
global case (see, e.g., [Morl4a, 2.2]). We also recall that for ¥ = 6,(7°), we have ¥ = ®,%,
where ¥, = 0y, (my) is the local theta lift of 7y.

Let

0, : S(Z,(F,)) ® Vas — Vi,

be a G(F,)* x GSO42(F),)-equivariant linear map, which is unique up to a scalar multiplication.
Since the global mapping

S(Z4+(8) ® Ve 3 (¢, f') = 0y(¢: f) € Vs

is G(F,)" x GSO42(F),)-equivariant at any place v, by the uniqueness of 6,, we may adjust {6, },
so that

‘9¢<¢/;f/) = ®v9v(¢; ® fz,J) for f/ = ®vf1/; € Ve, ¢/ = Qo (% € S(Z+(A)).

Then as in [FM21, §2.4], combining Theorem 6.3, the Rallis inner product formula (5.1.4),
Lemmas 6.1 and 4.2 and Proposition 6.1, we see that a proof of Theorem 6.1 is reduced to a
proof of the following local identity (6.2.5).

PrROPOSITION 6.2. Let v be an arbitrary place of F. For a given f, € VS5 satisfying

Wa v(fv) # 0, there exists ¢, € S(Z4(F,)) such that the local integral Ev(gbv,f:,) converges
absolutely, L,(¢y, fu) # 0 and the equality

ZU(QbUa fvaﬂ'v) : Wv(0(¢v X fv))
1L0(Pos fo)?

holds with respect to the specified local measures.

=We.o(fo) (6.2.5)
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Let us define a hermitian inner product B,,, on S(Z4(F,)) by

Bo (6 ¢) = / o) (x)dz for b.¢ € S(Z4(F)).

Z4(Fy)

Here on Z, (F,) ~ (F,)'2, we take the product measure of the one on F,. Then we consider the
integral

2 S 6.8 = / (72(9) s 1'oBus (wi (9) b, &) o

G

L(Fy)
— / / (72(9) s 1Yo (i, (9, @) (2)F () dedg for £, f € Vas. (6.2.6)
GY(Fy) J Z 1 (Fy)

The integral (6.2.6) converges absolutely by Yamana [Yaml4, Lemma 7.2]. As in Gan and
Ichino [GI14, 16.5], we may define a GSOyz2(F,)-invariant hermitian inner product By, :
VEU X VEU — C by

B(0(¢ @ f),0(¢' © f)) := 2’ (f. ['; 6, &)
Here we note that for h € SO42(F,), we have

Bs(E(h)0(¢ @ f),0(¢' @ ) = Bs(0(wy(1, )¢ @ f),0(¢ @ ).
As in the definition of W,,, we define

st

WwU((gl,(ZNSQ) = / Bz(z(n)(gl,(gﬁ’lﬁ(](n)fl dn for 5@ €3y (Z = 1,2).

U(F»)

Then by an argument similar to that in [FM21, 3.2-3.3], indeed word for word, Proposition 6.2 is
reduced to the following another local identity, which is regarded as a local pull-back computation
of the Whittaker periods with respect to the theta lift.

PROPOSITION 6.3. For any f, f' € Vo and any ¢,¢' € C°(Z4(F,)), we have
Wy (000 1,06/ @ 1) = [ /
N(Fy)\G*(Fy) J N(Fy)\G*(Fy)

X Waw(m3(9) f, 70 (9) f) (wy, (9,1)8) (20) (wy, (¢, 1)8") (z0) dg dg'.
(6.2.7)

Remark 6.1. Since {g- 7o : g € G}(F,)} is locally closed in Z, (F,), the mappings
N(ENGH(F) 2 g ¢(g7 -m0) €C, N(F)\GH(F,) 3¢ = ¢'(g7" - a0) € C

are compactly supported and, thus, the right-hand side of (6.2.7) converges absolutely for ¢, ¢’ €

Ce(Z4(Fy)).

6.2.3 Local pull-back computation. Here we shall prove Proposition 6.3 and, thus, complete
our proof of Theorem 6.1.

Since we work over a fixed place v of F, we shall suppress v from the notation in this
subsection, e.g. ' means F,,. Further, for any algebraic group K over F', we denote its group of
F-rational points K (F) by K for simplicity.
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The case when F is mon-archimedean. Suppose that F' is non-archimedean. From the
definition, the local Whittaker period is equal to

[ ]| @olamo @@ @), /() de dg dn.
v JarJz,

Recall that we have defined subgroups No, N1, Ny and U of U in (3.1.10), (3.1.11), (3.1.12) and
(6.1.1), respectively. Then because of the absolute convergence of the integral (6.2.6), the above
local integral can be written as

/ / /N1 /No /Z+ /Gl wy (g, upurus) @) ()¢ ()

x (7°(9) f, [ v (uat) ™t da dg dug duy dus di. (6.2.8)

Let us define Z, , := {(a1,a2;0,0) € Zy : a; and ag are linearly independent}. Then since
Z4+0@® (X4 ®Y)p) is open and dense in Z,, we have

/ D(2)dz = / / D(z1 + 22) dzadzy
Z+ Z+,o X+®YO

for any ® € L1(Z,). We consider a map p : Z; , — F defined by p((a1, a2;0,0)) = (a1, as). This
is clearly surjective. For each t € F', we fix z; € Z , such that p(z;) = t. Then by Witt’s theorem,
the fiber p~!(x;) of z; := (a}, ab;0,0) is given by

p_l(act) ={y -z := (vatl,’ya'; :0,0):y € Gl}.

We may identify this space with G/ R; as a G'-homogeneous space. Here R; denotes the stabilizer
of z; in G'. From this observation, the following lemma readily follows (cf. [FM21, Lemma 3]).

LEMMA 6.2. For each x; € Z, ., there exists a Haar measure dr; on Ry such that

/ D(z) dz—// / (g~ -z + 2) dzdg, dt.
Zy FJRN\G J X1 0Y)

Here dg; denotes the quotient measure dri\dg on R;\G".

Further, we note that the following lemma, which is proved by an argument similar to that
for [Liul6, Lemma 3.20] (cf. [FM21, Lemma 3]).

LEMMA 6.3. For ¢1, ¢ € C° (Z+) and f1, fo € Vo, let

Gon i o (2) / / (99)™" - 2)da(g™" - @) (x*(¢) fr, o) dg do!
Gt Rt\Gl

for t € F'. Then the integral is absolutely convergent and is locally constant.

Remark 6.2. When F is archimedean, by an argument similar to that for [Liul6,
Proposition 3.22], we see that this integral is absolutely convergent and is a continuous function
on F' not only for C2°(Z,) but also for S(Z;).

By Lemma 6.2, the integral (6.2.8) can be written as

/No/ /Rt\G1 /X+®Y0 /Gl wy(g, uoh)d) (v @+ 2)¢ (7w + 2)

m°(9) [, [') dg dz dy dt dug.
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Moreover, by the computation in [Morl4a, §3.1], we have

(wy (g, u0(2)h)9) (v - @i+ 2) = Y(—at)d(y ™" -z + 2).

Then because of Lemma 6.3, we may apply the Fourier inversion with respect to x and ¢, and
thus the above integral is equal to

/ / / wy(9,h)9) (v - w0 + 2)¢/ (YL zo + 2)
]:i()\c;'1 X1+ ®Yo G1
7°(9)f, ') dg dz dryo dt dug

/Ro\Gl /X+®y0 /Gl wy (79, M) @) (zo + 2)(wy (v, 1)¢) (w0 + 2)

x (7°(g)f, ') dg dz do. (6.2.9)

The support of ¢/ (7~ - 29 + 2) as a function of X} ® Y; is compact since ¢’ € C°(Z,.). Therefore
this integral converges absolutely and is equal to

/ / / (Wi (19, 1)) (@0 + 2) (@ (7, DF) @0 + 2)(w°(9) f. ) dg dryo d.
X, 0Y JRo\GY JG1

Now, let us take (x_9,z_1 : 0,0) as xg. Then we have
Ry=N
Let us define a map ¢ : X4 ® Yy — Mataxa by

q(by ®e1 + by ®eg) = <<1’_2, b1) (z_2, b2>>

(z_1,01) (x-1,b2)
with b; € X4. Clearly this map is bijective. Hence, there exists a measure dT" on Matayo such
that we have
/ O(x_g,x_1:2)dz = / O(x_g,x_1 :xp)dT
X+ ®Yy Matax2

with 27 = ¢~ 1(T). Here we note that the measure dz on X ® Yj is taken to be the Tamagawa
measure and hence we have the Fourier inversion

/ / @(T)@b(tr(TSOT,)) dT dT" = ®(0)
Matoyx2 J Matox2

with the above Haar measures dT',dT” on Matgys if the integral converges. Thus, we have

/ L[] g + 266 09+ 2
N Jxpev, NG Jar
x (7°(g) f, ') dg dro dz duy dug

st
:/ / / / /(Ww(WgaUWZh)@)(mo+xT)(w¢(fy,1)¢’)(;z;0+;pT)
N JN; JMatax2 /N\G! JG1
x (7°(g) f, ) dg dyo dT duy dus.

Moreover, similarly to the global computation in [Morl4a, §3.1], we may write this integral as

[y e oy A G (i )

X (wy (79, h)p) (w0 + z7) (W (7, 1)) (w0 + 27)(7°(9) f, f') dg dryo dT duy dug, — (6.2.10)
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where we let u; = u1(s1,t1) and ug = ua(sa,t2), and we put Ty = (8 (1’) By an argument similar
to the proof to show (6.2.9), we may apply the Fourier inversion to this integral, and we see that
this is equal to

[ arg. o) + on) ool D90 T 2,) (2% ). ) dy o
Np\Gt Jar

Now we note that from the argument to obtain (6.2.9), this integral converges absolutely. Then
by telescoping the G'-integration, we obtain

/N\Gl /N\Gl /N(Ww(rg, h)o)(xo + 1) (wy (v, 1)@') (xo + z1,)

x (7°(rg) f, 7 () f) dr dg dvo.

Put zp = xo + z1, = (v—2,2-1,0,z2). Recall that from the computation in [Morl4a, §3.1], we

have
wy(v(A)g, u(b)h)p(20) = ¥(—daz)wy (g, u(b)h)¢(20) (6.2.11)
when we let A = (1! 412), and we have
z0(1,a(b)) = zo(w(b), 1). (6.2.12)

Therefore, Wy, (0(¢ ® f),0(¢' ® f')) is equal to

/ S / / / B(=B)(wp(rg, 5(1))6) (20) @p (7, DF)(20)
F JN\Gt JN\Gt N
x (w°(rg) f,7°(v)f') dr dg dryo db

_ / / / U(=b = dags)(wy(w(b)g, 1)9) (20)
F JN\G! JN\G! JSym

X (wy (7, 1)) (20)(m°(v(A)g) f, 7 (7) ') dA dg dryo db.

By an argument similar to that in [FM21] showing that [FM21, (3.30)] is equal to a(7(g)¢, w(h)¢')
there, indeed word for word, we see that this integral is equal to

st S
Lo vt ests, 06) o) @l DGl (ng) 7 () dndg d.
N\G! JN\G! JUg
Thus, Proposition 6.3 in the non-archimedean case is proved.

The case when F' is archimedean. Suppose that F' is archimedean. Recall that
W¢U((Z)17(Z)2) = @Q(Qﬁw for QEZ e x> (Z = 172)7
where we set

Wi, 6, (1) = /U ) Bsy(S(nu)é1, do)oy (nu) du for n e U,

which converges absolutely and gives a tempered distribution on U/U_ by [Liul6,
Corollary 3.13]. Let us define U' = NgN1Na. Then U’ = U_~. Moreover, for any @ € U and
v € U, we have a/a ' (u') "t € U’ anc~l we obtain Wy 5 (au') = W5 5
regard it as a tempered distribution on U x (U’/U’” ). Then for a tempered distribution I on

(u'%). Hence, we may
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x (U'JU. ), we define partial Fourier transforms I of T for j=1,2 by

(Lhep)=ILfoh) ad (LAofk)=(hH6/h),
where f1 € S(U) and fy € S(U'/U" ), respectively. Then we have

<1 22 ~
12 (Yu) =I' (Yv) = I(Yv).

From the definition of By, we have

Weasef)0(0'af) (1 / /Gl/Z+ww97nu )(x)¢! ()
7°(9)f, f)v5" (nu) d dg du

/_ /NO/NO/Gl /Z+ wy (g, nuou) ) (x)¢! (z)

< (7°(g9) f, )¢5 (nu) dx dg dug du,

for ¢,¢' € S(Z4) and f, f' € V5. Clearly, Lemma 6.2 holds in the archimedean case also. Then
as in (6.2.9), because of Remark 6.2 and the Fourier inversion, the above integral is equal to

I o /N\Gl /X@YO | @vtgmd) e+ 2) @l D)o+ 2

x (7°(g)f, ') dg dz dryo du.

As (6.2.9), this integral converges absolutely. Let us denote this integral by Jy 4 ¢ /(n). Then,
from the definition,

Jos. 1.8 = W9(¢®f) 0(¢/®f)-
Again, from the definition, for ¢ € S(U'/U’ ), we have

(J¢¢/ff/ A - 9) = (g, VU - ) / / / / /
’/U/ ! /N() N\Gl X1+ ®Yo Gt

x (wy (g, nu)§) (zo + 2) (wy (7, 1)¢') (o + 2)
x (x°(g)f, FH@(n)vy" (n) dg dz dyo dudn.

By a computation similar to that used to obtain (6.2.10), this integral is equal to

/N1 /N2 /N\@ /X+®Y0 /Gl (wy (79, urugu) @) (zo + 2)(wy (v, 1)) (x0 + 2)
x (7°(9)f, [P U1U2)1/JU (uug) dg dz dyo du duy dus

N e A G e E))

X (Ww(Wg, h)¢)($0 + xT)(w¢(7, )¢/)($0 + ZCT)
x (7°(9) f, ) P(uruz) dg dryo dT duy dus.

As above, we may apply the Fourier inversion and, thus, this is equal to

5(1) - / / (wy (79, 1)0) (w0 + 21 ) (Wi (7, 1)) (w0 + 21, )(7°(9) £, ') dg dryo.
met Jar
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Hence,

Toar o) = [ . /G (wu(19, D) (w0 + 21) (00 (7, DF (@0 + 1) {7 (9), f') dg do.

Here, we note that by Remark 6.2, this integral converges absolutely. Then this identity shows
that we have

—_—
— 2

1
T’ @ = [ [ ] 0000+ en) @6 D060+ m)

< (m°(9)f, ') (b) dg dyo db (6.2.13)
for ¢ € S(U). As in the non-archimedean case, by (6.2.11) and (6.2.12), we may easily show that

this is equal to
/N\Gl /N\@ [ [ vk o@m wla. 16) o) Gon . D)

x (m°(v(@)ng) f,7° (M) f)e(t(x)) da dn dg dyo

since the integral in (6.2.13) converges absolutely. Thus, Proposition 6.3 is proved in the
archimedean case also.

7. Proof of Theorem 1.2

In this section, we complete our proof of Theorem 1.2. Let (m, V;) be an irreducible cuspidal
tempered automorphic representation of Gp(A) with a trivial central character. Throughout
this section, we suppose that 7 is neither of type I-A nor type I-B. When 7 is one of these types,
our theorem is already proved in [Corl7, Theorem 7.5].

The case when B¢ 5, 7Z 0 on Vi is treated in §7.1 and the case when B¢ p 4 =0 on V; is
treated in § 7.2, respectively.

7.1 Proof of Theorem 1.2 when B¢z, Z 0

7.1.1 Reduction to a local identity. Suppose that Bga . #Z 0 on Vi. Let (0,V;) denote the
theta lift of 7 to GSUs p(A), which is an irreducible cuspidal automorphic representation. As
in the proof of Theorem 6.1, our theorem may be reduced to a certain local identity. Let us set
some notation to explain our local identity.

As in §§5.1 and 5.2, we fix the Petersson inner product (,) on V; and the local hermitian
pairing (, ), on m,. As in (3.2.3), we define the maximal isotropic subspaces Zp . Let

GDU:S(ZDJr( ))@V — Vs,

be the Gp(F,)t x GSU3 p(F,)-equivariant linear map, which is unique up to multiplication by
a scalar. As in §6.1, let us adjust {6p ,}, so that

9D,w(¢/§ f/) = ®v9D,v(¢; ® f{))

for f'=®,f, € Vz and ¢' = @,¢), € S(Zp +(A)). Let us choose X € D*(F) so that Sx = ¢.
Then by Proposition 3.2, we have

By a-1(0(f : ¢)) = Bea(f Hic (fui d0), (7.1.1)
where f =®f, € Vz, and ¢ = ®¢, € S(Zp +(A)), and we define

Kolfos d0) = / e, (m0(9) f)bu(g ™" vpx) da.
Np(Fo)\GL (Fy)
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Here, we take the measure dh, on G5 (F,) defined by the gauge form, the measure dn,
on Ng,(F,) defined in §1.2 under the identification D(F,) ~ F;} and the measure dg;, on
Ng, (F,)\Gh(F,) such that dh, = dn, dgi .

Then by combining the explicit formula of the Bessel periods on ¢ given in Theorem 6.2, the
Rallis inner product formulas (5.1.4) and Proposition 5.2, Lemmas 6.1 and 4.2, and the above
pull-back formula (7.1.1), we see that Theorem 1.2 is reduced to the following local identity.

PROPOSITION 7.1. Let v be an arbitrary place of F'. For a given f, € V., satisfying e p »(fv) # 0,
there exists ¢, € S(Zp 4+ (Fy)) such that the local integral K,(fy;¢,) converges absolutely,
Ko(fv; &y) # 0 and the equality

Z’U(¢U7f’U77T’l})aA;1’¢X’U(9<¢U ®fv) O‘Aming,v(fU)

’lc’t)(fv;(bU)P B (fv:fv)v

holds.
Remark 7.1. In Corollary 7.1, the existence of f, with aa, . ,(fy) # 0 is shown.
Let us define hermitian inner product on S(Zp +(F,)) by

Bon(6,4) = / H@)F(x)dz for 6,8 € S(Zp+(F)).

Zp,+(Fv)
Then we consider the integral
2 S50 = [ 0SB enle)dr o) dy

for f,f' em, and ¢,¢' € S(Zp+(F,)). As in §6.2, this converges absolutely and gives a
GSUs p(Fy)-invariant hermitian inner product

By, : Vo, x Vg, — C
by
By, (0(¢® [),0(¢' @ f') := Z*(f, [': 6, ).

By the Rallis inner product formula (5.1.4) and Proposition 5.2, at any place v, there exist

fo, f1, @, ¢’ such that Z*(f, f'; ¢, ¢') # 0 since 0y p(m) # 0. Thus, B, # 0.
For ¢; € o,, we define

A, @) = / / Bo (00(nt) b1, d2)Apo () po ()~ dt .
N3 p(Fy) J Mx (Fy)

Here, at an archimedean place v, a stable integration means the Fourier transform as in the
definition of ay, 4, . Then by an argument similar to that in [FM21, 3.2-3.3], we may reduce
Proposition 7.1 to the following identity.

PROPOSITION 7.2. For any f, f' € Vi, and any ¢, ¢’ € C°(Zp +(F,)), we have

A6 ® 1,006 © ') = /

/ Ay e, (olh) £, 7o (W) 1)
Np(Fo)\GY (Fy) J Np(Fu)\GL (F»)

< (wy, (h, 1)) (0) g, (7, 1)) o) dh d' (7.1.2)

Before proceeding to a proof of this proposition, we give some corollaries of this identity.
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COROLLARY 7.1. For an arbitrary place v of F', we have ap, ., # 0 on my.

Proof. Since B, # 0, (7.1.2) implies that an, ., # 0 on 7, if and only if p=1 oy % 0 on oy.
Moreover, by [FM21, Corollary 5.1], gty # 0 on o, since the theta lift of o, to GUg2(F,)
is generic. Thus, our claim follows. ’ U

As another corollary, a non-vanishing of local theta lifts follows from a non-vanishing of local
periods.

COROLLARY 7.2. Let k be a local field of characteristic zero and D be a quaternion algebra
over k. Let T be an irreducible admissible tempered representation of Gp with a trivial central
character. Let Sp € D! and x be a character of Tp g,,. Suppose that Oy sy %0 on 7. Then
A# 0 on 0y p(T) x 0y p(T). In particular, 6, p(T) # 0 and Z*(p, ¢, f, f') # 0 for some f, f' € T
and ¢,¢' € S(Zp +).

Remark 7.2. By [Yaml4, Lemma 8.6, Remark 8.4 (1)], we know that the existence of such
I, f', ¢, ¢ is equivalent to the non-vanishing of the theta lift of 7 to GSUs p when k # R. Though
the equivalence is not clear when k =R, we shall use Corollary 7.2 to show that the local
non-vanishing of the theta lifts implies the global non-vanishing of the theta lifts in §7.2.

Proof. By our assumption, the right-hand side of (7.1.2) is not zero for some f, f’, ¢, ¢ when
F, # R. Hence, the left-hand side is not zero and, in particular, Z*(¢, ¢, f, f') # 0. O

7.1.2 Local pull-back computation. Here we shall prove the identity (7.1.2) and, thus, we
complete our proof of Theorem 1.2 when B¢, A # 0. Here we give a proof of (7.1.2) only in
the non-archimedean case since the archimedean case is similarly proved as in the proof of
Proposition 6.3. Our proof is a local analogue of the proof of Propositions 3.1 and 3.2. Moreover,
we will consider only the case when D is split since the proof is similar and indeed is easier in
the non-split case as in the global computation. Since the argument in this subsection is purely
local, in order to simplify the notation, we omit subscripts v and we simply write K(F') by K
for any algebraic group K defined over F' = F,,.

From the definition, we may write the left-hand side of (7.1.2) as

/N42 /MX /G1 /Z+ "N wy (g, nt)¢) ()¢ () A(t)ihx ()~ da dg dt dn,

where X is chosen so that Sy = S. Further as in (3.1.13), this is equal to

Jo o Jo Ly o L testo o tyten o

x (m(g) f, fYN(t) (w2181 + Taaty + w1182 + w12t0) " da dg dt dsg dty dsy dty ds

when we let X = (71! $12). For each r € F, we may take A, = (af,a5,0,0) € Z; such that af, a}
are linearly independent and (a7, a}) = 7. Let us denote by @, the stabilizer of x, in G'. Then
as in the proof of Proposition 6.3, for each r € F, there is a Haar measure dg, of @), such that

/ @(m)dx:// / ®(h~'- A, +b)dbdh, dr
Z4 FJQA\G! /X2
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with dh, = dg,\dh, provided that the both sides converge. Then applying the Fourier inversion,
because of (3.1.15), our integral becomes

/ / / / / / A(t)p (2181 + xooty + x1152 + $12t2)71
Mx JGr JQo\G* /X2

X (wy(hg, u1(s1,t1)ua(s2,t2)t)9) (Ao + b)(wy (h, 1)¢') (Ao + b)
X dbdh dz dg dt dss dto ds1 dt,

with Ag = (z_2,2_-1,0,0). This is verified by an argument similar to that for [Liul6, Lemma 3.20].
We note that Qo = N from the definition. Moreover, as in [Liul6, Lemma 3.19], the inner integral
f My Jen fQo\Gl S x2 converges absolutely and, thus, this is equal to

/ / / / / / A(t)ap(x2181 + ooty + 21182 + 19ta) !
2 Jooar Jar Juy Jxz

X (wy (hg, u1(s1,t1)ua(s2,t2)t) @) (Ag + b)(wy (h, 1)¢’) (Ao + b)
X dbdh dx dg dt d82 dtg d81 dtl.

From the proof of Lemma 3.2, this integral is equal to

/F: /F%t /Qo\Gl /G1 /MX /X2 (w(9)f, ') (wis(hg, t)8)(Ag + b)

; sy t2 (x_2,01) (v_2,b2) _
<ot Do+ oA (u (22 (50 (2 ) )
x dbdh dx dg dt dsy dts ds, dt. (7.1.3)

Now we claim that we may define the stable integral

A [ 91 00,000 o+ T T 5

x A(t)w(tr <§f 2) <SO <g—f23 éi—fg) —X>)dbd52 dts dsy dtr

and we may choose a sufficiently large compact open subgroup F; of F' (1 <i<4) so that
it depends only on ¢ and [ ;2 ;2 = [ Ji, [, [p, -+ This claim easily follows from the
following lemma in the one-dimensional case.

LEMMA 7.1. Let f be a locally constant function on F which is in L*(F). Then there exists
a compact open subgroup Fy of F' such that for any compact open subgroups F' and F" of F
containing Fy, we have

/F,/Ff(iv) (zy dﬂ«"dy—/FN/ f(@)¢(zy) da dy. (7.1.4)

Proof. Suppose that 9 is trivial on Fy := @™Op and not trivial on @™ 'Op. Put F/ = o™ Op
with m/ < m. Then we may write the left-hand side of (7.1.4) as

/, F\Of(JU (zy d$dy+/// f(x)(zy) dx dy. (7.1.5)
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The first integral of (7.1.5) converges absolutely. Hence by interchanging the order of integration,

it is equal to
[ [a@eenasae= [ e [ vtnar)as=o
\O JF F\O F'

since y — 1 (xy) is a non-trivial character of F’ for each z € F'\ O. As for the second integral of
(7.1.5), we have

/// f(@)Y(zy dxdy—/wmo/ f(x xy)dwder/wm’(')\wmof(x)</ow(xy) dy)d:):,

where the inner integral of the second integral vanishes as above. Thus, the left-hand side of

(7.1.4) is equal to
/ / f(z)Y(xy) dx dy.
wmO

Similarly the right-hand side of (7.1.4) becomes as above, and our claim follows. O

By Lemma 7.1, we see that (7.1.3) is equal to

/N\G1 /Gl /MX/ / /Xz "V (wy (hg, t)$) (Ao + b)

% @l D) (Ao T A (tr (2 ﬁj) <50 (gj; e ‘;25) - X))
X dbdh dx dg dt dss dto ds; dt;.

Then applying the Fourier inversion, we get

/ / / (r(9) 1, )@y (hg, 1) 6) (Ao + Bo)(wn (i 1) @) (Ao + Bo)A(t) db dh da dg dt,
mat Jar Sy
(7.1.6)

where B() = (0,0, (x21/2)x1 + (3:11/2)3:2, —(x22/2d)a;1 — (xlg/Qd)xg) and o = A() + Bo. By
[Liul6, Proposition 3.1], for a sufficiently large compact open subgroup Ny of N, we have

/MX /]:tf(nt)x(nt) dndt = /NO s F(nt)x(nt) dndt

and, thus, we may define

/St f(nt)x(nt) dn dt.
N Jumx

Further, we note a simple fact that we have

/g(h) dh:/N\G/:g(nh) dn dh

when both sides are defined. Thus, (7.1.6) is equal to

Joor T Ju o

x (wy (hg, 1)) (Ao + Bo){wy (h, 1)@ (Ao + Bo)A(t) dbdh d dg dt.
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Then the same computation as that to get (3.1.17) from (3.1.16) may be applied to the above
integral, and, thus, we see that our integral is equal to

Lo g s 7)) )0) o Gt (T o)

Hence, the identity (7.1.2) holds when Bg¢ s # 0.

7.2 Proof of Theorem 1.2 when B¢ a o =0
First we note the following proposition concerning the non-vanishing of the L-values.

PROPOSITION 7.3. Let w be an irreducible cuspidal tempered automorphic representation of
Gp(A) with trivial central character. If Gp ~ G and w is a theta lift from GSOs;, then
L(s,m,std ® xg) has a simple pole at s = 1. Otherwise L(s,m,std ® xg) is holomorphic and
non-zero at s = 1.

Proof. Suppose that Gp ~ G, i.e. D is split. Then there exists an irreducible cuspidal globally
generic automorphic representation 7y of G(A) such that 7 and 7y are nearly equivalent. Then
our claim follows from [Yam14, Lemma 10.2] and [Sha81, Theorem 5.1].

Suppose that D is not split. Let us take a quadratic extension Ey of F' such that 7 has
(Eo, Ag)-Bessel period for some character Ag of A]XEO/ E§. Then by Theorem 1.1(i), we see that
there exists an irreducible cuspidal tempered automorphic representation mp of G(A) such that
for a sufficiently large finite set S of places of F' containing all archimedean places, m,, T, are
unramified and BCg, /p(my) ~ BCg, p(m0,) for v € S. This implies that

L% (s, m, std @ xyx2) L° (s, 70, std ® xg) = L (s, 7,5td @ xyx) L° (s, 7, 5td ® x)-

From the case when Gp ~ G, the left-hand side of this identity is not zero at s = 1, and, thus,
so is the right-hand side, which possibly has a pole at s = 1.

Suppose that L (s, 7, std ® XE,/FXE) has a pole at s = 1. We may take a quadratic extension
E, C D of F such that xg, = xg,xe- Then by Yamana [Yam14, Lemma 10.2], 7 is a theta lift
from GSU; p, which is a similitude quaternion unitary group of degree one defined by an element
in F as in (2.1.12). In this case, 7 is not tempered and, thus, it contradicts our assumption on
7. Thus, L°(s, m,std ® x Fo/FXE) is holomorphic at s = 1. Further, by an argument similar to
that for L5 (s, r,std ® XEo/FXE), We see that L3(s,m,std ® xg) is holomorphic. Therefore, it is
holomorphic and non-zero at s = 1. ]

Suppose that Be py =0 on V. We shall show that the right-hand side of (1.6.2) is zero.
If L(%,w x AZ(A)) = 0, then there is nothing to prove. Hence, we may suppose that L(%,w X

AZ(A)) # 0. Then we shall show that for some place v of F, we have ay, 4., =0 on m,.

B.,loc

Assume the contrary, i.e. ap,y,, #0 on m, for any v. Let us denote by 7/ the unique

irreducible constituent of 7|, (a)+ such that as, 4., #Z 0 on Wf”,ljoc for any v. From our assump-

tion ay, 4., Z 0 on m, and Corollary 7.2, we see that p=1 # 0 on the theta lift 0y, p(m,)

of m, to GSUs p(Fy) and Z,(¢y, fu,m) # 0 for some f, € m, and ¢, € S(Zp 4+ (Fy)). Since 7’ is
B.,loc

nearly equivalent to 7, we have L(1,7,std ® xg) # 0. Therefore, the theta lift 0y p(7"") of
721 to GSUs p(A) is non-zero by Yamana [Yam14, Theorem 10.3], which states that the non-
vanishing of local theta lifts at all places together with the non-vanishing of the L-value implies
the non-vanishing of the global theta lift. We note that actually in [Yam14, Theorem 10.3], there
is an assumption that D is not split at real places, which was necessary to ensure that the non-

vanishing of the local theta lift implies Z,(¢y, fy, ) # 0 for some f, € m, and ¢, € S(Zp 4+ (Fy)).
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Since the non-vanishing of Z,(¢,, f,, ) for some f, and ¢, is shown in our case by the argument
above, we may apply [Yam14, Theorem 10.3] regardless of the assumption.

Recall that from the proof of Theorem 1.1(i), 8y p(72"'°°) is tempered. Let us regard

Oy, D(Wf’loc) as automorphic representations of GUy.. By the uniqueness of the Bessel model
for GUy4 . proved in [FM22, Proposition A.1], there uniquely exists an irreducible constituent 7
of Gw,D(wf’loc)]U(@ such that 7 has the local (X, A, !, ,)-Bessel model at any place v.

On the other hand, we note L(1/2, 7 x A~!) # 0 since L(3,7 x AZ(A)) # 0. Then by [FM22,
Theorem 1.2], there exists an irreducible cuspidal automorphic representation 7 of U(V,) with
four-dimensional hermitian space Vj over E such that 7 has (X, A,,1,)-Bessel period. Then
we know that 7 and 7/ have the same L-parameter, in particular, 7, ~ 7/ when v is split. At a
non-split place v, by the uniqueness of an element of the tempered L-packet which has the same
Bessel period due to Beuzart-Plessis [Beul6, Beu20], we see that U(V) ~ U(Jp) and 7 ~ 7'
Moreover, by Mok [Mok15], we have 7 = 7/. Therefore, 7 = 7/ has (X, A~!,4)-Bessel period,
and this implies that 6, p(77"°) also has (X, A!,¢)-Bessel period. Then Propositions 3.1
and 3.2 show that 7 has (E, A)-Bessel period, and this is a contradiction. Thus, (1.6.2) holds
when B§7Aﬂl} =0 on Vﬂ.

8. Generalized Bo6cherer conjecture

In this section we prove the generalized Bocherer conjecture. In fact, we shall prove Theorem 8.1
below, which is more general than Theorem 1.4 stated in the introduction.

8.1 Temperedness condition
In order to apply Theorem 1.2 to holomorphic Siegel cusp forms of degree two, we need to verify
the temperedness for corresponding automorphic representations.

PrOPOSITION 8.1. Suppose that F' is totally real. Let T be an irreducible cuspidal automorphic
representation of Gp(A) with a trivial central character such that 7, is a discrete series represen-
tation for every real place v of F'. Suppose moreover that T is not CAP (cuspidal representation
associated to parabolic subgroup). Then T is tempered.

Remark 8.1. When D is split, i.e. Gp ~ G, Weissauer [Wei09] proved that 7, is tempered at a
place v when 7, is unramified. Moreover, when 7, is a holomorphic discrete series representation at
each archimedean place v, Jorza [Jor13] showed the temperedness at finite places not dividing 2.

Proof. First suppose that Gp ~ G. Let II denote the functorial lift of 7 to GL4(A) established
by Arthur [Art13] (see also Cai, Friedberg and Kaplan [CFK18]).

When II is not cuspidal, since 7 is not CAP, II is of the form II = II; HIIs with irreducible
cuspidal automorphic representations II; of GLo(A). Since 7, is a discrete series representation
for any real place v, II; , is also a discrete series representation. Then II; is tempered by [Bla06]
and, thus, the Langlands parameter of II, is tempered at all places v of F'. Hence, T is tempered.

Suppose that IT is cuspidal. Then by Raghuram and Sarnobat [RS18, Theorem 5.6], IT,, is tem-
pered and cohomological at any real place v. Let us take an imaginary quadratic extension E of
F such that the base change lift BC(II) of IT to GL4(Ag) is cuspidal. Note that BC(II) is cohomo-
logical and that BC(II)V ~ BC(ITV) ~ BC(IT) ~ BC(I1)°. Then Caraiani [Car12, Theorem 1.2]
shows that BC(II) is tempered at all finite places. This implies that II, is also tempered for any
finite place v. Thus, 7 is tempered.

Now let us consider the case when D is not split. Since 7 is not CAP, by Proposition 4.1, there
exists an irreducible cuspidal automorphic representation 7’ of G(A) and a quadratic extension
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Ey of F such that 7/ is GTF0-locally equivalent to 7. Moreover 7 is tempered if and only if 7/ is
tempered. By [LPTZ03, Moeg89, Pau9s, Pau00], 7, is a discrete series representation at any real
place v. Then the temperedness of 7/ follows from the split case. Hence, 7 is also tempered. [

As an application of Proposition 8.1, the following corollary holds.

COROLLARY 8.1. Suppose that F is totally real. Let T be an irreducible cuspidal globally generic
automorphic representation of G(A) such that 7, is a discrete series representation at any real
place v. Then T is tempered and, hence, the explicit formula (6.2.3) for the Whittaker periods
holds for any non-zero decomposable vector in V.

Proof. Recall that the functorial lift IT of 7 to GL4(A) is cuspidal or an isobaric sum of irre-
ducible cuspidal automorphic representations of GLy by [CKPS04]. In particular, 7 is not
CAP by Arthur [Art13]. Then by Proposition 8.1, 7 is tempered and our claim follows from
Theorem 6.3. g

8.2 Vector-valued Siegel cusp forms and Bessel periods

Let $)5 be the Siegel upper half-space of degree two, i.e. the set of two-by-two symmetric com-
plex matrices whose imaginary parts are positive definite. Then the group G(R)* = {g € G(R) :
v(g) > 0} acts on $H2 by

g(Z) = (AZ + B)(CZ + D)™! for g = (é g

) € G(R)' and Z € 99
and the factor of automorphy J(g, Z) is defined by
J(9,2) = CZ + D.
For an integer N > 1, let
[o(N) = {’y ceGYZ):vy = (é‘ g) , C' =0 (mod NZ)}.

8.2.1 Vector-valued Siegel cusp forms. Let (o,V,) be an algebraic representation of GLa(C).
Then a holomorphic mapping ® : $2 — V, is a Siegel cusp form of weight o with respect to T'o(N)
when ® vanishes at the cusps and satisfies

O(v(Z)) = 0(J(v,2))®(Z) foryeTo(N) and Z € $s. (8.2.1)

We denote by S,(I'o(IV)) the complex vector space of Siegel cusp forms of weight o with respect
to I'o(V). Then @ € S,(I'y(N)) has a Fourier expansion

o(Z) = Z a(T, ®) exp[2nyV/—1tr(T'Z)] where Z € $ and a(T, P) € V.
T>0

Here T runs over positive-definite two-by-two symmetric matrices which are semi-integral, i.e. T
is of the form T' = (b72 béz)’ a,b,c € Z. We note that (8.2.1) implies
a(e T'e,®) = o(e)a(T,®) for ¢ € GLy(Z). (8.2.2)

From now until the end of this paper, we assume p to be irreducible. It is well known that
the irreducible algebraic representations of GLy(C) are parametrized by

L= {(n1,n2) S Zz Ny > ng}. (823)
Namely the parametrization is given by assigning

0k = Sym™ " @ det™ to k = (ny,ng) € L.
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Suppose that ¢ = g, with kK = (n+ k, k) € L. Then we realize ¢ concretely by taking its space
of representation V, to be C[X,Y],, the space of degree n homogeneous polynomials of X and
Y, where the action of GL2(C) is given by

0(9)P(X,Y) = (det g)¥ - P((X,Y)g) for g € GLy(C) and P € C[X,Y],.
Let us define a bilinear form

CIX,Y]n x CX, Y], 3 (P,Q) = (P,Q)n € C

by
(n
. o . —1) £ i—=n:
(XY XTIy iy, = (=1) (z) Herg = (8.2.4)
0 otherwise.
Then we have
(2(9)P, 0(9)Q)n = (det )" (P, Q),, for g € GLy(C). (8.2.5)
We define a positive-definite hermitian inner product (,), on V, by
= 0 1
(PQ)o = (P, o(w0)Q@)n  where wp = <_1 0>. (8.26)

Here @@ denotes the polynomial obtained from by taking the complex conjugates of its
coefficients. Then (8.2.5) implies that we have

{o(g)v,w), = (v, o(*g)w), for g € GLz(C) and v, w € V. (8.2.7)
In particular, the hermitian inner product (, ), is Uz(R)-invariant. Then for ®, &’ € S,(I'o(V)),
we define the Petersson inner product (®, ®'), by
1
[Sp2(Z) : To(N)]
where X = Re(Z) and Y = Im(Z). The space S,(I'9(V)) has a natural orthogonal decomposition
with respect to the Petersson inner product

Sp(To(N)) = Sp(To(N))*! @ Sy(To(N)"™

into the oldspace and the newspace in the sense of Schmidt [Sch05, 3.3]. We note that when n
is odd, we have S,(I'o(NN)) = {0} for o with k = (n+ k, k) by (8.2.1) since —14 € I'g(NN).

(®,9"), = / (D(2),9'(2Z)),(det Y)k_?’ dX dY, (8.2.8)
Lo (N)\$H2

8.2.2 Adelization. Given ® € S,(I'g(IV)), its adelization pg : G(A) — V, is defined as follows
(cf. [Sah15, 3.1] and [Sch05, 3.2]). For each prime number p, let us define a compact open subgroup
Py ,(N) of G(Qp) by
A B
P ,(N)=39g€G(Zp): 9= c D ,C =0 (mod NZp) ;.
Then we define a mapping ¢ : G(A) — V, by
00(9) = V(goo) "7 0(J (g0, V=112)) "' ®(goo (v =1 12)) (8.2.9)

when

9 ="gocko with v € G(Q), goo € GR)" and kg € [ Prp(IV).

p<oo

Let L be any non-zero linear form on V,. Then L(yg): G(A) — C defined by L(ps)(g) =
L(pa(g)) is a scalar-valued automorphic form on G(A). Let V(@) denote the space generated by
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right G(A)-translates of L(pg). Then V(®) does not depend on the choice of L and we denote
by 7 (®) the right regular representation of G(A) on V(®). Note that the central character of
m(P) is trivial.

We recall that for scalar-valued automorphic forms ¢, ¢’ on G(A) with a trivial central
character, their Petersson inner product (¢, ¢’) is defined by

(¢.9') = ¢'(g) dy,

/ZG(A)G(Q)\G(A)
where Zg denotes the center of G and dg is the Tamagawa measure.

LEMMA 8.1. Let L be a non-zero linear form on V,. Take v € V, such that L(v) = (v,v"), for
any v € V,.
Then we have

(L(pe), L(pe)) = C(v) - (2,2), for any € So(To(N)),

where

n_ Vol(Za(A)G(Q\G(A)) (v, ),
W) = —NolSp,@N\y)  dmV, " (8:2.10)

Proof. Let Koo = Ua(R). We identify K as a subgroup of Spy(R) via
Ke>A+V_1Bw (g ‘AB> € Spy(R).

Let dk be the Haar measure on K, such that Vol(K ., dk) = 1. Then by the Schur orthogonality
relations, we have

On the other hand, it is easily seen that for ® € S,(I'g(N)), we have

<(I)7(I)>Q _ <90<I>790<I’>Q
Vol(Sps(Z)\$2) ~ Vol(Za(A)G(Q)\G(A))’

where
(0 P0)p = / (a(9), 9o(9))odg.
Zg(A)G(Q)\G(A)
Hence,
(@, ®), -1 / L(o(k) "o (q)) 2 di dg
Zg(A)G(Q)\G(A)
. / Loloh))? dg dk
Koo J Zc: (A
CW)" - (Liga). L(%)) O
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8.2.3 Bessel periods of vector-valued Siegel cusp forms. Let E be an imaginary quadratic
field of Q and —Dp its discriminant. We put

0 Dp/4
Sp = (8.2.11)

( . 1/2 ) when D = —1 (mod 4).

1 0
( > when D =0 (mod 4);

1/2 (14 Dg)/4
Given S = Sg as above, we define Ts, N and ¢g as in §2.3.1. Then Ts(Q) ~ E*.
Let A be a character of Ts(A) which is trivial on A*Ts(Q). Let ¢ be the unique character
of A/Q such that 1 (2) = e 2"V=1% and the conductor of 1y is Z, for any prime number /.
Then for a scalar-valued automorphic form ¢ on G(A) with a trivial central character, we
define its (S, A, 1))-Bessel period Bg a (¢) by (2.3.1) with the Haar measures du on N(A) and
dt = dtoo dty on Te(A) = Ts(R) x Tg(Ay) are taken so that Vol(N(Q)\N(A),du) =1 and

VOl(RX\T5(R), dtes) = Vol(Ts(Zy), dt ) = 1.

Then we note that

2hg
w(E)
For a V,-valued automorphic form ¢ with a trivial central character, it is clear that for a linear
form L : V, — C we have

Baas(te) =2 [

Recall that we may identify the ideal class group Clg of E with the quotient group

Vol(A*Ts(Q)\Ts(A), dt) =

/ AW~ s ()~ o (tar) it du . (8.2.12)
“ TS @\Ts(8) IN@)\N ()

Ts(A)/Ts(Q)Ts(R)Ts(Z).
Let {t.:c€ Clg} be a set of representatives of Clg such that t. €[, 7T(Qp). We let
te = Ve me ke With 4, € GL2(Q), m. € {g € GL2(R) : det g > 0}, k. € Hp<oo GL2(Zp). Let S, =
(detye)~! - 'y.S7.. Then the set {S.:c € Clg} is a set of representatives for the SLo(Z)-
equivalence classes of primitive semi-integral positive-definite two-by-two symmetric matrices

of discriminant Dpg.
Thus, when ¢ = pg for ® € Sy,(I'0(N)) and A is a character of Clg, we may write (8.2.12)

Bsaw(L(¢a)) =2 e >™5) . L(BA(9; E)), (8.2.13)
where
BA(®; E) := w(E)l-Trg< > AT -a(Sc,(I))> (8.2.14)
ceClg

is the vector-valued (S, A, 1))-Bessel period where
Ty = / o(t)dt with Td = SLy N Tys, Vol(T4(R),dt) = 1 (8.2.15)
T3(R)

(e.g. Dickson et al. [DPSS20, Proposition 3.5] and Sugano [Sug85, (1-26)]).

Remark 8.2 (An erratum to [FM17]). The definition of B(®;E) in the vector-valued case in
[FM17, Theorem 5] should be replaced by (8.2.14). The statement and the proof of [FM17,
Theorem 5] remain valid.
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Suppose that ¢ = g, where k = (2r 4+ k, k) € L. We define Qg, € C[X,Y]s, by

Qs,0(X,Y) = ((X, Y)S <‘§> > (det $)~(@+R)/2) where § = Sg in (8.2.11).  (8.2.16)

Then for ® € S,(I'o(NN)), the scalar-valued (S, A, v)-Bessel period By (®; E) of ® is defined by
BA(®; E) := (BA(®; E), Qs,0)2r- (8.2.17)

8.3 Explicit L-value formula in the vector-valued case
Let us state our explicit formula for holomorphic Siegel modular forms. In what follows, whenever
we refer to a type of an admissible representation of G over a non-archimedean local field, we
use the standard classification due to Roberts and Schmidt [RS18].

Let N be a squarefree integer. We say that a non-zero ® € S,(I'o(V)) is a newform if:

(1) @ € S,(Lo(N))";

(2) ® is an eigenform for the local Hecke algebras for all primes p not dividing N and an
eigenfunction of the local U(p) operator (see Saha and Schmidt [SS13, 2.3]) for all primes
dividing N;

(3) the representation m(®) of G(A) is irreducible.

Then the following theorem is derived from Theorem 1.2 exactly as in Dickson, Pitale, Saha
and Schmidt [DPSS20, Theorem 1.13] except that we need to compute local Bessel periods
at the real place adapting to the vector valued case. We perform the computation of them in
Appendix B.

THEOREM 8.1. Let N > 1 be an odd squarefree integer. Let ¢ = g, where k = (2r + k, k) with
k > 2. Let ® be a non-CAP newform in S,(I'o(IN)). Suppose that (Dg/p) = —1 for all primes p
dividing N. When k = 2, suppose moreover that m(®) is tempered.

Then we have

(8.3.1)

Ba(®; E)? 21467 [(1/2,7(®) x AZ(A)) e
(®,9),  Dg L(1,7(®), Ad) N P

where ¢ =5 if ® is a Yoshida lift in the sense of Saha [Sahl5, §4] and ¢ =4 otherwise. The
quantities J,, for p dividing N are given by
1 if m(®), is of type Illa;
Jo=0+p HA+p ) x<2 ifn(®), is of type VIb;
0 otherwise.

Remark 8.3. When k > 3, m(®) is tempered by Proposition 8.1.
Remark 8.4. Since B(®; E) = 28D ,*/? . B(®; E) when r =0, (1.8.2) follows from (8.3.1) by
putting N =1 and r = 0.

Remark 8.5. In the statement of the theorem, we used the notion of Yoshida lifts in the sense of
Saha [Sah15]. Though it is necessary to extend the arguments concerning Yoshida lifts in [Sah15,
§4] in the scalar-valued case to the vector-valued case to be rigorous, we omit it here since it is
straightforward. We also mention that the arguments in [Sah15, 4.4] now work unconditionally
since the classification theory in Arthur [Art13] is complete for G = PGSp, ~ SO(3,2).

Remark 8.6. Recall that the L-functions in (8.3.1) are complete L-functions. We may rewrite
the explicit formula in terms of the finite parts of the L-functions by observing that the relevant
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archimedean L-factors are given by
L(1/2,71(®)oo X AL(A)oo) = 24 (2m) 2F D (k + 7 — 1)’T(r + 1)?
and
L(1, (D)oo, Ad) = 26(270) " 4F6m DD (& 4 20)D(k — 1)T(2r + 2)0(2k + 21 — 2),
respectively.

Remark 8.7. Let us consider the case when D is a quaternion algebra over Q which is split
at the real place, i.e. D(R) ~ Matay2(R). Assuming that the endoscopic classification holds for
Gp = Gp/Zp, we may apply Theorem 1.2 to holomorphic modular forms on Gp(A). In this
case, Hsieh and Yamana [HY24] compute local Bessel periods and show an explicit formula
for Bessel periods such as (8.3.1) for scalar-valued holomorphic modular forms, including the
case when Gp = G and N is an even squarefree integer. Meanwhile, we shall maintain N to be
odd in Theorem 8.1, since our computation of the local Bessel period at the real place in the
vector-valued case in Appendix B is performed under the assumption that N is odd.

As we noted in Remark 1.5, after the submission of this paper, Ishimoto [Ish24] showed the
endoscopic classification of SO(4, 1) for generic Arthur parameters. Therefore, we may apply our
theorem to the case of Gp ~ SO(4, 1).

Remark 8.8. A global explicit formula such as (8.3.1) is obtained in a certain non-squarefree
level case by Pitale, Saha and Schmidt [PSS23, Theorem 4.8].
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Appendix A. Explicit formula for the Whittaker periods on G = GSp,

Here we shall prove Theorem 6.3.

Let (m, Vz) be an irreducible cuspidal globally generic automorphic representation of G(A).
Then Soudry [Sou87] has shown that the theta lift of 7 to GSOg33 is non-zero and globally
generic. We may divide into two cases according to whether the theta lift of m to GSO33 is
cuspidal or not.

Suppose that the theta lift of 7 to GSOg3 3 is cuspidal. Since PGSO3 3 ~ PGL4 and the explicit
formula for the Whittaker periods on GL,, is known by Lapid and Mao [LM15], the arguments
in §6.2 and 6.2.3, which are used to obtain (6.1.6) in Theorem 6.1 from (6.2.3), work mutatis
mutandis to obtain (6.2.3) from the Lapid-Mao formula in the case of GLy.

Suppose that the theta lift of 7 to GSO3 3 is not cuspidal. Then the theta lift of 7 to GSO2 2
is non-zero and cuspidal.

Thus, here we give a proof of Theorem 6.3 only in the case when 7 is a theta lift from GSOg 2.
Recall that PGSOg 2 ~ PGLy x PGLj. Our argument is similar to that for [Liul6, Theorem 4.3].
Indeed, we shall prove (6.2.3) by pushing forward the Lapid-Mao formula for GSO > to G.

A.1 Global pull-back computation
Let (X, (,)) be the four-dimensional symplectic space as in §3.1.2 and let {x1,z2,2v_1,2_2} be
the standard basis of X given by (3.1.5).

Let Y = F* be an orthogonal space with a non-degenerate symmetric bilinear form defined
by

(v1,v2) = vy Jyvy  for v, v €Y
where .J; is given by (2.1.6). We take a standard basis {y_2,y_1,%1,%2} of Y = F* given by
y_o ="(1,0,0,0), y_1="0,1,0,0), y1 =7%0,0,1,0), w2 ="0,0,0,1).

We note that (y;,y—;) = d;; for 1 <i,5 <2.
Put Z=X®Y. Then Z is naturally a symplectic space over F. We take a polarization
Z =74 & Z_ where
7y =X QY
and Xy = F-241 4+ F - 219. Here all the double signs correspond. When z; =21 ® a1 + 22 ®
ag € Z4(A) where aj,a2 € Y, we let 2z = (a1,a2) and ¢(z4) = ¢(aq,ae) for ¢ € S(Z4(A)).
Let N> denote the group of upper triangular unipotent matrices of GO2, i.e.

1 =z y —ay
_ 01 0 -—y
NQQ(F)— 00 1 _ 1’,y€F
0 0 0 1
We define a non-degenerate character 122 of Nao2(A) by
1 =z y —uxy
01 0 —y |
Y22l 0 1 —x | T P(x +y).
0 0 0 1

Then for a cusp form f on GSO22(A), we define its Whittaker period Wa2(f) by

Waa(f) = (")¢2,2(”)71 dn.
N2 2(F)\Naa(
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The following identity is stated in [GRS97, p. 113] but without a proof. Though it is shown by an
argument similar to that for [GRS97, Proposition 2.6], here we give a proof for the convenience
of the reader.

PROPOSITION A.1. Let ¢ be a cusp form on GOz 2(A). For ¢ € S(Z(A)4), let ©y (¢, @) (respec-
tively, 0y(p,®)) be the theta lift of o (respectively, the restriction of ¢ to GSO22(A)) to
G(A).

Then we have

Wi, (O, 0)) = /N o 20 2 U)W (o0)¢) do (A.L1)

where Ny denotes the unipotent subgroup

1 z —x a2
01 0 -z
M=91o0 1 = ’

0 0 0 1

which is the stabilizer of y_o and y_1 + y1.
Similarly, we have
Wa, (6u0,0) = [ O™ (y-2,y-1 + 1)) Wy (0(9)9) do. (A12)

No(A)\SO2,2(A)

Proof. Since the proofs are similar, we prove only (A.1.1). From the definition of the theta lift,
we may write

/ Oy (v, ¢)(ug)bug (u)~t du
N(F)\N(A)

Z wy (g, h)é(a1,az)p(h) dh,

a1,a2)€X

= {aa ey (o) ) - (0 )

Then as in [Fur95, Lemma 1], only (a;,as) € X such that a; and ag are linearly independent
contributes in the above sum. Thus, by Witt’s theorem, we may rewrite the above integral as

/02,2(F)\02,2(A) (

where

o wplg. Wo(r y—2, v Y1 +11))e(h) dh
YENo(F)\O2,2(F)

ST wilg, vh)SW-2.y-1 +y1)p(h) dh
YENo(F)\O2,2(F)

/02,2(F)\02,2(A)

- /02,2<F>\oz,z(A>

/ wy (g, M) d(y—2,y-1 + y1)p(h) dh
No(F)\O2,2(A)

- / / ww(ga h)QS(y,Q, Y—1+ y1)<,0(nh) dn dh.
No(A)\Oz2,2(A) J No(F)\No(A)
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Thus, by (6.2.1) we have

Wy, (Oy(0, 9)) =/ / /
No(A)\O2,2(A) J Na(F)\N2(A) J No(F)\No(A)

x wy (m(u)g, B)d(y—2, y—1 + y1)p(nh) Yy, (m(u))~* dh du. (A.1.3)
Here we have

w¢(m(u)g, h)p(y—2,y-1+y1) = w¢(97 mo(u)h)d(y—2,y-1 +y1),

where
1 a/2 a/2 a?/4
lo1 0 —a2 (1 a
mW =1 o 1 _ap| frues <o 1> ’
0 O 0 1
since Yy, (m(u)) ™t = ¢(—a). By noting the decomposition
L rFy w4y @4y [ roy  w-y (z—y)?
Lz y -y 2 2 e 2 2 A
010 —y|_Jlo 1 o ¥ 1lo 1 0—2y
00 0 1 0 0 1 - 0 0 o
0 0 0 1 0 0 0 1
the required identity (A.1.1) follows from (A.1.3). O
Recall the exact sequence
1 — GSO22 — GOg9 — g — 1.
Hence, we have
Oulv.0)(o) = | ule  °)(o) .
p2(F)\p2(A)
where ¢° = o(¢)p and ¢° = wy()¢. Thus, we have
Wy @ulo )P = [ Wiy, (6%, 6°)) de.
p2(F)\p2(A)

where

W, Oule" ) = [ oy W 0606 6N 0T ) e
H2 p2

A.2 Lapid—Mao formula
Let us recall the Lapid—Mao formula in the GLg case. Let (7, V;) denote an irreducible cuspidal
unitary automorphic representation of GLg(A). Then for f € V;, its Whittaker period is defined

by
wan= [ 1(y 1)ecna

with the Tamagawa measure dz = [[dz,. Let v be a place of F. For f, € 7, and ﬁ, € Ty,
by [Liul6] (see also [LM15, §2]), we may define

W2(fvafv):/F B, (To(@0) fo, fo)u(—20) dy.

2185

https://doi.org/10.1112/S0010437X24007267 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007267

M. FurusawA AND K. MORIMOTO

Put
L(1,7,,Ad)

QFU(2) WQ(fUafv)7

Wi(for f) =

which is equal to 1 at almost all places v by [LM15, Proposition 2.14]. Let us define

(. f) = / (o) dg.
AXGLy(F)\GLa(A)

where dg is the Tamagawa measure. We note that Vol(A*GL2(F)\GL2(A), dg) = 2. Further, let
us take a local GLo(F,)-invariant pairing (), on 7, X 7, such that (f, f) = [[{fv, fo)». Then by
[LM15, Theorem 4.1], we have

Wa(HPF =5 7 1 - Ad [Twsso. 7o (A2.1)

for a factorizable vector f = ®f, € V.

A.3 Local pull-back computation

We fix a place v of F which will be suppressed from the notation in this appendix. Further, we
simply write X (F') by X for any object X defined over F. Let o be an irreducible tempered
representation of GOz 9 such that its big theta lift ©(c) to H is non-zero. Because of the Howe
duality proved by Howe [How89], Waldspurger [Wal90] and Gan and Takeda [GT16], combined
with Roberts [Rob96], © (o) has a unique irreducible quotient, which we denote by 7. Put R =
{(g,h) € G x GOg232 : A(g9) = v(h)}. Then we have a unique R-equivariant map

0:wy®@0— .

Let B, : wy ® wy, — C be the canonical bilinear pairing defined by

B(6.9) = [ ola)ie)do.
By [GI11, Lemma 5.6], the pairing Z : (6 ® ) ® (wy ® wy;) — C, defined as

- Cr(2)Cr(4)

20 0.6:0) = T ) [ Belws)8)o(h)e, @),

which converges absolutely by [Liul6, Lemma 3.19], gives a pairing B, : 7 @ T — C by

Br(0(p,9),0(2,9)) = Z(¢, 5,6, 9)-
PROPOSITION A.2. We let yo = (y—2,y—1 + y1). For any u € No,

-1 st ~
<EF<§35FEQ) NHBH m(w)0(2, 8), 0(3, 3 (n) ™" dn

/ / o9, m() )50 B(h—1 - 30) (0 (9) 0, o (1)F) dg .
O2,2 NO\SOQQ

Let us define
st

W, (f1,f2)) = Bw(ﬂ(u)fl,fz)wai(u) du

Ug
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Take the measure dhg = 2dh|so, ,. Then
Cr(2)Cr(4) )~
(S Dy 06,0005
o R O e e O e
O32,2 Y No\SO2 2
By an argument similar to that for [FM21, §3.4.2] and [FM22, §5.4], we see that this is equal to

. " (@l m(w)d) 0)a(h—L - y0) (o (9)e, o (h)F) dg dh du.
No\Oz2,2 /No\SO2,2 J N2 2

Further, it is equal to

/N\So /N\so /N (@ (g, m(u)67) (90) (h 1 - y0) (0 (9)%, 0 (h)F) dg dh du
e=+1 0 2,2 0 2,2 2,2

= / / (57" 90)d(h " o) Waa(o(9)¢F, o (W)P) dgdh,  (A3.1)
e=+1 NQ\SOQQ No\SOQQ
where we define
st
Waalora) = [ (olwenpaisdu)du for i € Vi
Na 2

Let us introduce a measure d'h = (r(2)%dh. Then we get

WE (0, 0),0(3, ) = e 1 .
b 0000600 = 3 /N o /N o, w0 )
X Wg,z(a(g)sﬂg, o(h)@)dgd'h.

Here
L(1,01,Ad)L(1, 09, Ad)
(r(2)?

Wi o(0(9)¢%, o(h)@) = Wh2(0(9)¢*, o (h)@).

A.4 Proof of Theorem 6.3

Let (0,V,) be an irreducible cuspidal automorphic representation of the group GOgz2(A).
Suppose that o is induced by the representation o1 X o9 of GLa(A) x GLo(A). For f = f1 ® fa €
Vo, ® Vi, we have

= [ 1((* ) [ o 2o

for h = (h1, h2) € SO22(A). Moreover, for any place v of F', we have

W3,2(@vv 951)) = Wg(sol,v) @1,U)W3(902,m &2,1})
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with ¢, = (1,0, p2,0) and @, = ($1,4, P2,v). Then by (A.1.2) and the Lapid-Mao formula (A.2.1),
we obtain

a1 (r(2)°
W¢U (9#1(90 7)) =~ (1,01,Ad)L(1,09,Ad)

4L
/M oL n//.. o QIR CIREMCTNERS)

a=1,2
X ¢5(95 " 10) by (hy - o) dg dh

1 Cr(2)? / n//
4L(1,(71,Ad) (1 O'Q,Ad) M2(F)\M2 A) " No F, )\802 2)2
X Wi (0 (90)00s 7o (h0)B0) 85 (9, - 90)6u (B - yo) dg dh.
y (A.3.1), this is equal to

S SAC)oa0) o
ZL(lao'lanAd) }El UQ,Ad 1_[]/VHU (¢U’¢U)79(30v7¢v))7

and, thus, this completes our proof of Theorem 6.3.

Appendix B. Explicit computation of local Bessel periods at the real place

The goal of this appendix is to compute explicitly the local Bessel periods at the real place and
to complete our proof of Theorem 8.1. In this appendix, we use the same notation as in § 8.

For a newform ® € S,(I'y(N)) in Theorem 8.1, we define a scalar-valued automorphic form
$o,5 on G(A) by

b3,5(9) = (pa(g),Qs,)2r for g € G(A), (B.0.1)

where ¢g is the adelization of ® given by (8.2.9) and Qg, by (8.2.16). We note that by the
argument in [DPSS20, 3.2], ¢o s is a factorizable vector ¢o 5 = ®, ¢po s, For a place v of Q, we
define J, by

o (Pa,50, D5,50)

<¢<I>,S,v; ¢(D,S,’U>U

It is clear that J, remains invariant under replacing ¢¢ g, by its non-zero scalar multiple. Further,

Jy = (B.0.2)

we put

¢a(2)Go(4)
C=Ce- (%(1 SE) (B.0.3)

with the Haar measure constant C¢ defined by (1.6.1). Then the following identity holds.

THEOREM B.1. We have
94k+6r—1,—4m tr(S)

C(QS,Q)CJOO = DE

Recall that C(Qsg,,) is defined by (8.2.10) for v/ = Qg.,.

(B.0.4)

Remark B.1. In the scalar-valued case, i.e. » = 0, the explicit computation of J,, is done in
Dickson et al. [DPSS20, 3.5] using the explicit formula for matrix coefficients when k& > 3.
Meanwhile Hsieh and Yamana [HY24, Proposition 5.7] compute J in a different way when
k > 2, based on Shimura’s work on confluent hypergeometric functions.
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We note that the left-hand side of (B.0.4) depends only on the archimedean representation
T(®)oo and the vector ¢o go0. Thus, our strategy is to first obtain an explicit formula (B.1.12)
for the Bessel periods of vector-valued Yoshida lifts by combining the results in Hsieh and
Namikawa [HN17, HN18], Chida and Hsieh [CH18], Martin and Whitehouse [MW09], and, then
to evaluate C(Qg,)CJs by singling out the real place contribution, comparing (B.1.12) with
(1.6.2).

B.1 Explicit formula for Bessel periods of Yoshida lifts
For a prime number p, let

) ={ (¢ ) €802 =0 (moa )}

and S, (F(()l)(p)) the space of cusp forms of weight k& with respect to F(()l)(p).
In order to insure what follows to be non-vacuous, first we shall prove the following technical
lemma.

LEMMA B.1. Let k; and ke be integers with ki > ko > 0. Then there is a constant N =
N(ki, ko, E) € R such that for any prime p > N, there exist distinct normalized newforms

fi € Sgki+2(r(()1)(p)) for i = 1,2 satisfying the condition:

the Atkin—Lehner eigenvalues of f; at p for i = 1,2 coincide. (B.1.1)

Proof. We divide into the following two cases:
k1 = ke (mod 2); (B.1.2a)
ki+1=ky=0 (mod 2). (B.1.2b)

Suppose that (B.1.2a) holds. Then by Iwaniec, Luo and Sarnak [ILS00, Corollary 2.14], there
is a constant N(k1,k2) such that, for any prime p > N(ki, k2), there exist distinct normalized

newforms f; € Sgki+2(I‘él) (p)) for i = 1,2 such that
e(1/2,m) = €e(1/2,m2),

where 7; denotes the automorphic representation of GLo(A) corresponding to f; for i = 1,2.
Since m; is unramified at all prime numbers different from p, we have

(—D)FH e (1/2,m1) = (—1)F2 T g, (1/2, ).

Hence, €,(1/2,m) = €p(1/2,m2) by (B.1.2a). Then by the relationship between the local e-factor

at p and the Atkin-Lehner eigenvalue at p (e.g. [HN18, 4.4]), we see that (B.1.1) holds.
Suppose that (B.1.2b) holds. Then by Michel and Ramakrishnan [MR12, Theorem 3| or

Ramakrishnan and Rogawski [RR05, Corollary B], there exists a constant N1 = Nj(ky, F) such

that for any prime p > Nj, there exists a normalized newform f; € Sle+2(Fél)(p)) such that
L(1/2,m)L(1/2,m x xg) # 0.
In particular, €(1/2,71) = 1 and, thus, as in the previous case, we have
(—DkH e (1/2,m) = 1.

Moreover, by [ILS00, Corollary 2.14], there exists a constant Na = Na(k2) such that for any
prime p > Na, there exists a normalized newform f; € Sgk2+2(Fél)(p)) such that

e(1/2,m) = —1.
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Then by taking the constant N to be max(Nj, N3), the condition (B.1.1) holds by the same
argument as above. ([l

B.1.1 Vector-valued Yoshida lift. As for the Yoshida lifting, we refer the reader to our main
references by Hsieh and Namikawa [HN17, HN18]| for the details.

Let k1 and kg be integers with k; > ko > 0. Then by Lemma B.1, we may take a prime
number p satisfying the condition:

p is odd, and inert and unramified in F (B.1.3)

and may take distinct normalized newforms f; € Sa, 12 (F(()l) (p)) (i = 1,2) satisfying the condition
(B.1.1).

For a non-negative integer r, we denote by (7,, W,) the representation (g, V,) of GLy(C)
where 0 = 9, _;), i.e. T, = Sym?” ® det™". We note that the action of the center of GLy(C) on
W, by 7, is trivial and the pairing (, )9, is GLa(C)-invariant by (8.2.5). Let p be a prime number
and D = D,, , the unique division quaternion algebra over Q which ramifies prec1sely at p and oo.
Let Op be the maximal order of D specified as in [HN17, 3.2] and we put Op = Op @z Z.

DEFINITION B.1. We have A,(D*(A),Op), the space of automorphic forms of weight 7 and
level Op on D*(A) is a space of functions g : D*(A) — W, satisfying

g(zvhu) = Tr(hOO)ilg(hf)
for 2 € AX, v € D*(Q), u € OF and h = (hoo, hf) € DX(R) x D*(Aj).

For i =1,2, let m; be the irreducible cuspidal automorphic representation of GLa(A)
corresponding to f;. Let P be the Jacquethanglands transfer of m; to D*(A).
We denote by Ay, (D*(A), Op)[xP] the wP-isotypic subspace of Ay, (D*(A),Op). Then
Ay, (D*(A), Op)[xP] has a subspace of newforms which is one dimensional. Let us take new-
forms f; € Aki(DX(A) Op)[xP] for i =1,2 and fix. Then to the pair f = (f;,f,), Hsich and
Namikawa [HN17, 3.7] assomate the Yoshida lift 0f, a V,-valued cuspidal automorphic form on
G(A) where ¢ = g, with

K:(k1+k2+2,k1—k2+2)€]14.

The classical Yoshida lift 6F € S,(I'o(p)) is also attached to f in [HN17, 3.7] so that ¢ is obtained
from 6§ by the adelization procedure in (8.2.9).

B.1.2 Bessel periods of Yoshida lifts. Let ¢¢ s denote a scalar-valued automorphic form
attached to 6§ as in (B.0.1). Hsieh and Namikawa evaluated the Bessel periods of ¢¢ g in [HN17].

First we remark that by [HN17, Theorem 5.3], for any sufficiently large prime number ¢
which is different from p, we may take a character Ag of A}, satisfying:

L(1/2,m1 ® AZ(Ag))L(1/2,m ® AZ(Ay')) # 0; (B.1.4a)
the conductor of Ag is ¢"'Op where m > 0; (B.1.4b)
Ao |px is trivial; (B.1.4¢)

Ag o is trivial. (B.1.4d)

Then [HN17, Proposition 4.7] yields the following formula.

2190

https://doi.org/10.1112/S0010437X24007267 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007267

GROSS—PRASAD CONJECTURE AND BOCHERER CONJECTURE

LEMMA B.2. We have
2

B pow(drs) = ¢*™ - (—2y/—1)fthz o= 2mT(S) Hp(fi, AG 19), (B.1.5)
i=1
where o;; = (—1)"! and
PO = [ (XY 6O AF () dt
EXAX\AX
From (B.1.5), we have
2
‘BS,Ao,w((bf,S)‘z _ q4m . 22(k1+k2) . e—47rtr(5’) . H ’P(fh AS"', 12)’2_ (B.l.ﬁ)

i=1
Since p is odd and inert in E, we may evaluate the right-hand side of (B.1.6) by Martin and

Whitehouse [MWO09]. Namely the following formula holds by [MW09, Theorem 4.1].

LEMMA B.3. We have
[P(fi, Ay, 1) 1 €(2)  L(1/2,m ® AZ(AGY)) |
b, 12 4 (o,(2) L(1,mi, Ad)
['(2k; +2)
2w DY T (k; + 1)

(1+p

(B.1.7)

where £(s) denotes the complete Riemann zeta function, ¢g, the scalar-valued automorphic form
on D*(A) defined by

o, (h) = (XY)Ki £i(h))ar, for h € D*(A)

and

g, |2 = / (65, (1) [ .
AXDX(Q)\D*(A)

Here dh is the Tamagawa measure on A*\D*(A) and, thus,
Vol(AX DX(Q, )\D*(A), dh) = 2.

Remark B.2. The factor i in (B.1.7) originates from the difference of measures between the one
used here and the one in [MWO09].

In order to utilize the explicit inner product formula for vector-valued Yoshida lifts in Hsieh
and Namikawa [HN18|, we need the following lemma.

LEMMA B.4. Let us define an inner product (f;, f;) for i = 1,2 by

1
(fi,£;) = ;<fi(a)7fi<a)>mi AT,
where (, ), is defined by (8.2.6), a runs over double coset representatives of D*(Q)\D*(Ay)/
OF and T, = (aOFa~' N D*(Q))/{£1}.
Then for i = 1,2, we have

(B.1.8)

—1 ]-_‘(kl + 1)2 1

J7=2%-3-p7 (1 —pH)" '
I, P ) o) Ot D)

S (£, £). (B.1.9)
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Proof. Since ||¢g,||> = || 7P (hoo) 1, ||* for hoo € D*(R), we have
D Jeesoei s 2
o¢,(hhoo)|” dh dhoo
VOI(RX\DX(R),(HLOO) R*\DX(R) AXDX(Q)\DX(A)| ( )|
By interchanging the order of integration, we have
. I 2
o¢,(hhoo)|” dhoo dh.
Vol(R*\D*(R), dhoo) Jax px (@)\D* (a) JrX\D* (R) 198, (hoo)|
Here the Schur orthogonality implies
.
VOI(RX\DX< dh ) R*X\DX(R)
= d; - (XYM (XY) o, - (£:(h), £(R))aw

g, |I* =

g, I* =

[((XY)¥ £;(hhoo)) ok, |* dhog

where d; = dim Sym?% = 2k; + 1 and ((XY)*, (XY )Fi)op, = (—l)ki(Qk]fi )71. Hence,

—1
2k; _
6612 = ( ) e [ (£,(h), (7))o, dbn.
AXD>X(Q)\D*(A)

By [HN17, Lemma 6], we have
(=)
/AXDX(@)\DX(A) 2k +1 /AXDX(@)\DX(A)
Finally by Chida and Hsieh [CH18, (3.10)] with the following Remark B.3, we obtain (B.1.9). O

(£:(h), £i(h))2k, dh =

(£:(h), £i(h))r,, dh.  (B.1.10)

Remark B.3. In [CH18], the Eichler mass formula is used to express the right-hand side of
(B.1.10) in terms of the inner product defined by (B.1.8). There is a typo in the Eichler mass
formula in [CH18, p. 103]. The right-hand side of the formula quoted there should be multiplied
by 2.

Let us recall the inner product formula for 6§ by Hsieh and Namikawa [HN18, Theorem A].

ProprosiTiON B.1. We have
0% p* 9—(2k1+6) 1
M L(l T X 7-‘-2) . 5 — 5 -
(f1,f1)(f2, f2) (2k1 +1)(2k2 +1) p?(1+p~H)(1+p72)

Here (03,0f), is given by

(0, 0% )

(B.1.11)

1
~ [Spa(2Z) : To(p)]
with o = o, where k = (k1 + ko + 2,k1 — ko + 2).
Thus, by combining (B.1.6), (B.1.7), (B.1.9) and (B.1.11), we have

[ @0y axay
Lo(p)\$2

| Bs,ng,0(0¢,5) 7 _ k1 +2ko+5 o —dm tr(S)

<0;‘<7‘9;>Q DE

L(1/2,m1 ® AT(Ag))L(1/2,m @ AZ(Ag1))

L(1,m,Ad)L(1, 7, Ad)L(1,m X m2)

Here we note that the both sides of (B.1.12) are non-zero due to the conditions (B.1.1) and
(B.1.4).

2(14+p A +p?) -

(B.1.12)
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B.2 Proof of Theorem B.1
Since the Ichino—Tkeda-type formula has been proved for Yoshida lifts by Liu [Liul6,
Theorem 4.3], the computations in Dickson et al. [DPSS20] imply

|Bs,po,u (0,92 _ CJx
(¢¢,5, 0£.5) 22

L(1/2,m1 ® AZ(Ag))L(1/2,m ® AZ(Ay1))
L(1,7m,Ad)L(1, 2, Ad)L(1,m X mo)

21 +p H(A+p7?) -,

(B.2.1)

Thus, in order to evaluate J, we need to determine J,.

Here we use a scalar-valued Yoshida lift to evaluate J,. First we recall that (B.0.4) holds in the
scalar-valued case, i.e. when k2 = 0, as we noted in Remark B.1. By Lemma B.1, when ¢ is large
enough, there also exist distinct normalized newforms f| € 52k1+2(F81)(p)) and f5 € Sy (F(()l)(p))
satisfying the condition (B.1.1), and a character A, of A}, satisfying the conditions (B.1.4) for 7}
(i = 1,2) where 7, is the automorphic representation of GLy(A). Define f similarly for 7} and

7h. Since (B.0.4) is valid in the scalar-valued case, we have

|BS,A071/; (QSf/’S) |2 _ 94k1+5 o —4m tr(.S)
(bgr 5, dgr.5) Dy

’ C(QS@(M,M))_I

CL(1/2, 7] © AT(Ap))L(1/2,mh @ AT(Ay™Y))

20 4+p H(A+p7?) - J,
W p )P ) o =P R L1, 7, AL (L, ] x )

We note that J; here is the same as that in (B.2.1). Then by comparing the formula above with
(B.1.12) for £ and A}, we have J, = ¢*™.
Finally, by comparing (B.1.12) with (B.2.1) substituting .J, = ¢*™, we have

24k1 +2ko +76—47r tr(S)

C(QS,Q)CJOO = DE

(B.2.2)

in the general case.
For @ in Theorem 8.1, a scalar-valued automorphic form ¢4 g defined by

P0.5(9) = (pa(9), Qsg)2r for g€ G(A)
is factorizable, i.e. ¢pa 5 = ®y0a 5. Let us choose k1 and ko so that
2r+k, k)= (k1 +ka+2,k1 —ka+2), ieki=r+k—2 ky=r

Then for ¢¢ g = ®@yd¢ 5, in (B.2.1), the archimedean factor ¢¢ g is a non-zero scalar multiple
of ¢ 500 Thus, (B.0.4) follows from (B.2.2).

B.3 Proof of Theorem 8.1
Let us complete our proof of Theorem 8.1.
By Theorem 1.2, we have

Bsaw(Gos) _ Cle L(1/2,7(®) x AT(N))
@ag L

(o5, 005)  2¢73 L(L,7(® (B.3.1)

where ¢ is as stated in Theorem 8.1. By (8.2.13) and (8.2.17), we have
Bsya(das) =2- ¢ 7" By(®; B).
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Since (¢a 5, ¢3,5) = C(Qs,) - (P, P), by Lemma 8.1, we have

BA(® E)* _ |Bsaw(@es)® ooz aruis) B
@8y,  (bos.dos) ¢ (@sie): (B3.2)

Thus, by combining (B.3.1), (B.3.2) and (B.0.4), the identity (8.3.1) holds.

Appendix C. Meromorphic continuation of L-functions for SO(5) x SO(2)

As we remarked in Remark 1.3, here we show the meromorphic continuation of L(s, 7 x AZ(A))
in Theorem 1.1, when AZ(A) is cuspidal and S is a sufficiently large finite set of places of F
containing all archimedean places. The following theorem clearly suffices.

THEOREM C.1. Let 7 (respectively, T) be an irreducible unitary cuspidal automorphic represen-
tation ™ of Gp(A) (respectively, GLa(A)) with a trivial central character. Then L°(s, 7 x 7) has
a meromorphic continuation to C and it is holomorphic at s = % for a sufficiently large finite set
S of places of F' containing all archimedean places.

When D is split, then Gp ~ G and the theorem follows from Arthur [Art13]. Hence, from
now on we assume that D is non-split.

By [Li92], for some & and A, 7 has the (£, A, 1)-Bessel period. Thus, we may use the integral
representation of the L-function for Gp x GLg introduced in [Morl4b]. Then the meromorphic
continuation of the Siegel Eisenstein series on GUj3 3, which is used in the integral representation
is known by the main theorem of Tan [Tan99] (see also [PSS14, Proposition 3.6.2]). Hence, by the
standard argument, our theorem is reduced to the analysis of the local zeta integrals. Meanwhile
the non-archimedean local integrals are already studied in [Mor14b, Lemma 5.1]. Hence, it suffices
for us to investigate the archimedean ones. Since the case when F, is a quadratic extension field
of F, is similar to, and indeed simpler than, the split case, here we only consider the split case.

Let us briefly recall our local zeta integral (see [Morl4b, (28)]). Let v be an archimedean
place of F. Since we consider the split case, D, is split and we may assume that Gp(F,) =
G(F,) = GSpy(F,) and & = (§ % ). Then we have

Ti(F) = {9 € GLa(P) | ‘g6 = e} = { (1 ¥) € GLa() }.

In what follows, we omit the subscript v from any object in order to simplify the notation. Let
A be a unitary character of F'*. Then we regard A as a character of T¢(F) by

A0 ) =B e (DY) eme

For a non-trivial character ¢ of F', let Bg a (7) denote the (&, A,1))-Bessel model of 7, i.e. the
space of functions B : G(F') — C such that

B(tug) = A(t)ye(u)B(g) fort € T¢(F), u € N(F) and g € G(F),

which affords 7 by the right regular representation. Let YW(7) denote the Whittaker model of 7,
i.e. the space of functions W : GLy(F) — C such that

W( (5 ”f) g) — ()W (g) for € F and g € GLo(F),
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which affords 7 by the right translation. Let Go(F) = GL2(F) x G(F) and we regard G as a
subgroup of GLg(F') by the embedding

G S a b A B o
o c d)'\c C
Let us define a subgroup Hy of Gg as

= fn( )3 sl ) (5 1)) |remern)

where

S GL@(F).

oa o9
Qoo
o oo
oo

v(h) =z —y forh= <”yc g) € Te(F).

Let Ps be the maximal parabolic subgroup of GLg defined by

hi X
P3: {(01 h2> Zhl,hQ EGLg}

Then we consider a principal series representation
det hy

det hy
I(A,s) =1 fs: GL - =A :
( 73> {fs G 6( )_>(C fs(( 0 hQ)h> (deth2> det ho fs(h)}
For fs € I(A,s), B € Bepp(m) and W € W(T), our local zeta integral Z(fs, B, W) is given by

35+3/2

2(.8.0) = | (60 (91, 92)) Blg2)W (91) g dga,
Zo(F)Ho(F)\Go(F)
where Z; denotes the center of Gy and
0O 0 0 0 0 -1
0O 1 000 O
B0 = 1 0 0 0 0 O
1 -1 1 0 0 O
0 0 00 1 -1

0 0 01 0 -1

As explained above, Theorem C.1 follows by the standard argument if we prove the following
lemma.

LEmMA C.1. Let sy be an arbitrary point in C. Then we may choose fs, B and W so that
Z(fs, B,W) has a meromorphic continuation to C and is holomorphic and non-zero at s = sg.

Proof. For ¢ € C°(GLg(F)), we may define Ps[p] € I(A, s) by

/GL3 oo Juan? (G ) 0 2)1)

det hy *3”3/ 2 [ dethn
det hy det ho

In what follows we construct ¢ of a special form, whose support is contained in the open double
coset Pg(F)GQGo(F) in GLG(F).

-1
) dhy dhs dX.
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Let By be the group of upper triangular matrices in GLs and let Py be the mirabolic subgroup

of GLo, i.e.
a b

We define a subgroup M, of G by

Mo(F) = {(g A_?h_1> ‘ NeFX he BO(F)}

acF*, beF}.

and M = «(Py, My). Then by the Iwasawa decomposition for Go(F') and the inclusion
Ho(F) C Go(F) N6y " P3(F)by, (C.0.1)

we have
P3(F)00Go(F) = P3(F)0gM(F)Ky,

where Kj is a maximal compact subgroup of Go(F). We take Ko = (K1, K2) where K;
(respectively, K2) is a maximal compact subgroup of GLa(F') (respectively, G(F')). By direct
computations, we see that

0o N(F) 05" N P3(F) = {16};
0o M(F) 05t N P3(F) = 6o A(F) 65"
0o Ko 0y " N P5(F) = {1¢},

where

Let us define subgroups Ty, Ny of Gy by

(

x
To(F) = { <“ 1>, S Lo,y A EFX Y
Ayt
, 1y
No(F) =<1 (1 Lf), 1 1 cx,y €F
—y 1

Then for ¢1 € C(No(F)), @2 € CX(To(F)), w3, 04 € CX(GL3(F)), w5 € C°(Matsx3(F))
and ¢ € CX(Kp), we may construct ¢’ € C°(GLg(F)), whose support is contained in
Py (F)00Go(F), by

A ) ()

=<P6(/<7)<P3(h1)904(h2)<P5(X)<P1(n0)/A(F) pa(toa)d”a,

where ng € No(F'), to € To(F) and k € K.
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Then the local zeta integral Z(Ps[¢'], B, W) is written as
Z(Ps[¢], B,W)

h 0 1 X
= [ ! 3 t(no,1,mn0,2)t(to,1, to2)e(k1, k2)
0 hy 13

det hy |73513/2 A(det hy

det h2 det hz

—1
> W(n071t0’1k1)B(n072t072k§2) dhl dh2 dX dno dto dk‘
det h
= /%(L(’fl, k2))3(h1)pa(he)es(X)e1(no)pa(toa)| o — h;

73s+3/2A det hl —1
det h2
X W(n(]’lto,lk'l)B(no’gtogkg) an dhl dh2 dX dno dto dk

det by |22 det by \ T
= [ st kg tesCOnmbente) St A ()

o A0 Al 0
x AN)|A]? 9/2W<no,1 <O 1) t0,1k1>3<n072 < 0 2 12> t0,2k2>

X d*Xdhy dhg dX dng dto dk,

where we let ng = ¢(no,1,n0.2) € No(F), to = t(to1,t02) € To(F) and k = u(k1, k2) € Kp. Since
we may vary ¢; (1 <i < 6), our assertion in Lemma C.1 follows from the same assertion for the

integral
/ ANN>*92B Arla 00 g (A 0) oy (C.0.2)
o 0 1 0 1

For any ¢ € C°(F*), there exists W, € W(7) such that Wy(g9) = é(a) by the the-
ory of Kirillov model for GLo(R) by Jacquet [JaclO, Proposition 5] and for GLy(C) by
Kemarsky [Kem15, Theorem 1]. Thus, our assertion clearly holds for the integral (C.0.2). O
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