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Abstract

We investigate the Gross–Prasad conjecture and its refinement for the Bessel periods in
the case of (SO(5),SO(2)). In particular, by combining several theta correspondences,
we prove the Ichino–Ikeda-type formula for any tempered irreducible cuspidal auto-
morphic representation. As a corollary of our formula, we prove an explicit formula
relating certain weighted averages of Fourier coefficients of holomorphic Siegel cusp
forms of degree two, which are Hecke eigenforms, to central special values of L-functions.
The formula is regarded as a natural generalization of the Böcherer conjecture to the
non-trivial toroidal character case.

1. Introduction

The investigation of relations between periods of automorphic forms and special values of
L-functions is a main focus of research in number theory. The central special values are of
keen interest in light of the Birch and Swinnerton-Dyer conjecture and its generalizations.

Gross and Prasad [GP92, GP94] proclaimed a global conjecture relating non-vanishing of
certain period integrals on special orthogonal groups to non-vanishing of central special values
of certain tensor product L-functions, together with the local counterpart conjecture in the early
1990s. Later with Gan [GGP12], they extended the conjecture to classical groups and metaplec-
tic groups. Meanwhile a refinement of the Gross–Prasad conjecture, which is a precise formula
for the central special values of the tensor product L-functions for tempered cuspidal automor-
phic representations, was formulated by Ichino and Ikeda [II10] in the co-dimension-one special
orthogonal case. Subsequently Harris [Har14] formulated a refinement of the Gan–Gross–Prasad
conjecture in the co-dimension-one unitary case. Later an extension of the work of Ichino–Ikeda
and Harris to the general Bessel period case was formulated by Liu [Liu16] and to the general
Fourier–Jacobi period case for symplectic–metaplectic groups was formulated by Xue [Xue17].

In [FM17] we investigated the Gross–Prasad conjecture for Bessel periods for SO(2n+ 1) ×
SO(2) when the character on SO(2) is trivial, i.e. the special Bessel periods case and then, in the
sequel [FM21], we proved its refinement, i.e. the Ichino–Ikeda-type precise L-value formula under
the condition that the base field is totally real and all components at archimedean places are
discrete series representations. As a corollary of our special value formula in [FM21], we obtained
a proof of the long-standing conjecture by Böcherer in [Böc86], concerning central critical values
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of imaginary quadratic twists of spinor L-functions for holomorphic Siegel cusp forms of degree
two which are Hecke eigenforms, thanks to the explicit calculations of the local integrals by
Dickson, Pitale, Saha and Schmidt [DPSS20].

In this paper, for (SO(5),SO(2)), we vastly generalize the main results in [FM17, FM21].
Namely we prove the Gross–Prasad conjecture and its refinement for any Bessel period in the case
of (SO(5),SO(2)). As a corollary, we prove the generalized Böcherer conjecture in the square-free
case formulated in [DPSS20].

Let us introduce some notation and then state our main results precisely.

1.1 Notation
Let F be a number field. We denote its ring of adeles by AF , which is mostly abbreviated as A for
simplicity. Let ψ be a non-trivial character of A/F . For a ∈ F×, we denote by ψa the character
of A/F defined by ψa(x) = ψ(ax). For a place v of F , we denote by Fv the completion of F at v.
When v is non-archimedean, we denote by �v and qv a uniformizer of Fv and the cardinality of
the residue field of Fv, respectively.

Let E be a quadratic extension of F and AE be its ring of adeles. We denote by x �→ xσ the
unique non-trivial automorphism of E over F . Let us denote by NE/F the norm map from E
to F . We choose η ∈ E× such that ησ = −η and fix. Let d = η2. We denote by χE the quadratic
character of A× corresponding to the quadratic extension E/F . We fix a character Λ of A×

E/E
×

whose restriction to A× is trivial once and for all.

1.2 Measures
Throughout the paper, for an algebraic group G defined over F , we let Gv denote G(Fv), the
group of rational points of G over Fv, and we always take the measure dg on G(A) to be the
Tamagawa measure unless specified otherwise. For each v, we take the self-dual measure with
respect to ψv on Fv. Then recall that the product measure on A is the self-dual measure with
respect to ψ and is also the Tamagawa measure since Vol(A/F ) = 1. For a unipotent algebraic
group U defined over F , we also specify the local measure duv on U(Fv) to be the measure
corresponding to the gauge form defined over F , together with our choice of the measure on Fv,
at each place v of F . Thus, in particular, we have

du =
∏
v

duv and Vol(U(F )\U(A), du) = 1.

1.3 Similitudes
Various similitude groups appear in this article. Where there is no risk of confusion, we denote
by λ(g) the similitude of an element g of a similitude group for simplicity.

1.4 Bessel periods
First we recall that when V is a five-dimensional vector space over F equipped with a non-
degenerate symmetric bilinear form whose Witt index is at least one, there exists a quaternion
algebra D over F such that

SO(V ) = GD, (1.4.1)

where GD = GD/ZD, GD is a similitude quaternionic unitary group over F defined by

GD(F ) :=
{
g ∈ GL2(D) : tg

(
0 1
1 0

)
g = λ(g)

(
0 1
1 0

)
, λ(g) ∈ F×

}
(1.4.2)
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and ZD is the center of GD. Here

g :=
(
t u
w v

)
for g =

(
t u
w v

)
∈ GL2(D),

where denoted by x �→ x for x ∈ D is the canonical involution of D. In addition, we define a
quaternionic unitary group G1

D over F by

G1
D := {g ∈ GD : λ(g) = 1}.

Let

D− := {x ∈ D : trD(x) = 0},
where trD denotes the reduced trace of D over F . We recall that when D � Mat2×2(F ), GD is
isomorphic to the similitude symplectic group GSp2 which we denote by G, i.e.

G(F ) :=
{
g ∈ GL4(F ) : tg

(
0 12

−12 0

)
g = λ(g)

(
0 12

−12 0

)
, λ(g) ∈ F×

}
. (1.4.3)

In addition, we define the symplectic group Sp2, which we denote by G1, as

G1 := {g ∈ G : λ(g) = 1}.
We let PGSp2 = G/ZG by G, where ZG denotes the center of G. Thus, when D is split, GD �
G = GSp2, G1

D � G1 = Sp2 and GD � G = PGSp2.
The Siegel parabolic subgroup PD of GD has the Levi decomposition PD = MDND where

MD(F ) :=
{(

x 0
0 μ · x

)
: x ∈ D×, μ ∈ F×

}
, ND(F ) :=

{(
1 u
0 1

)
: u ∈ D−

}
.

For ξ ∈ D−(F ), let us define a character ψξ on ND(A) by

ψξ

(
1 u
0 1

)
:= ψ(trD(ξu)). (1.4.4)

We note that for
(
x 0
0 μ·x

) ∈MD(F ), we have

ψξ

[(
x 0
0 μ · x

)(
1 u
0 1

)(
x 0
0 μ · x

)−1 ]
= ψμ−1·x−1ξx

(
1 u
0 1

)
. (1.4.5)

Suppose that F (ξ) � E. Let us define a subgroup Tξ of D× by

Tξ := {x ∈ D× : x ξ x−1 = ξ}. (1.4.6)

Then since F (ξ) is a maximal commutative subfield of D, we have

Tξ(F ) = F (ξ)× � E×. (1.4.7)

We identify Tξ with the subgroup of MD given by{(
x 0
0 x

)
: x ∈ Tξ

}
. (1.4.8)

We note that by (1.4.5), we have

ψξ(tnt−1) = ψξ(n) for t ∈ Tξ(A) and n ∈ ND(A).

We define the Bessel subgroup Rξ of GD by

Rξ := TξND. (1.4.9)
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Then the Bessel periods defined below are indeed the periods in question in the Gross–Prasad
conjecture for (SO(5),SO(2)).

Definition 1.1. Let π be an irreducible cuspidal automorphic representation of GD(A) whose
central character is trivial and Vπ its space of automorphic forms. Let Λ be a character of A×

E/E
×

whose restriction to A× is trivial. Let ξ ∈ D−(F ) such that F (ξ) � E. Fix an F -isomorphism
Tξ � E× and regard Λ as a character of Tξ(A)/Tξ(F ). We define a character χξ,Λ on Rξ(A) by

χξ,Λ(tn) := Λ(t)ψξ(n) for t ∈ Tξ(A) and n ∈ ND(A). (1.4.10)

Then for f ∈ Vπ, we define Bξ,Λ,ψ(f), the (ξ,Λ, ψ)-Bessel period of f , by

Bξ,Λ,ψ(f) :=
∫

A×Rξ(F )\Rξ(A)
f(r)χξ,Λ(r)−1 dr. (1.4.11)

We say that π has the (ξ,Λ, ψ)-Bessel period when the linear form Bξ,Λ,ψ is not identically
zero on Vπ.

Remark 1.1. Here we record the dependency of Bξ,Λ,ψ on the choices of ξ and ψ. First we note
that for ξ′ ∈ D−(F ), we have F (ξ′) � E if and only if

ξ′ = μ · α−1ξα for some α ∈ D×(F ) and μ ∈ F× (1.4.12)

by the Skolem–Noether theorem. Suppose that ξ′ ∈ D−(F ) satisfies (1.4.12) and ψ′ = ψa where
a ∈ F×. Let m0 =

( α 0
0 a−1μ·α

) ∈MD(F ). Then by (1.4.5), we have

Bξ,Λ,ψ(π(m0)f) =
∫

A×Tξ′ (F )\Tξ′ (A)

∫
ND(F )\ND(A)

f(t′n′)Λ(t′)−1ψ′
ξ′(n

′) dt′ dn′

= Bξ′,Λ,ψ′(f), (1.4.13)

where we identify Tξ′(F ) with E× via the F -isomorphism F (ξ′) � x �→ αxα−1 ∈ F (ξ) � E.

Definition 1.2. Let (π, Vπ) be an irreducible cuspidal automorphic representation of GD(A)
whose central character is trivial. Let Λ be a character of A×

E/E
× whose restriction to A× is

trivial. Then we say that π has the (E,Λ)-Bessel period if there exist ξ ∈ D−(F ) such that
F (ξ) � E and a non-trivial character ψ of A/F so that π has the (ξ,Λ, ψ)-Bessel period. This
terminology is well-defined because of the relation (1.4.13).

1.5 Gross–Prasad conjecture
First we introduce the following definition which is inspired by the notion of local G-equivalence
in Hiraga and Saito [HS12, p. 23].

Definition 1.3. Let (π, Vπ) be an irreducible cuspidal automorphic representation of GD(A)
whose central character is trivial. Let D′ be a quaternion algebra over F and (π′, Vπ′) an
irreducible cuspidal automorphic representation of GD′(A). Then we say that π is locally
G+-equivalent to π′ if at almost all places v of F where D(Fv) � D′(Fv), there exists a character
χv of GD(Fv)/GD(Fv)+ such that πv ⊗ χv � π′v. Here

GD(F )+ := {g ∈ GD(F ) : λ(g) ∈ NE/F (E×)}. (1.5.1)

Remark 1.2. When π and π′ have weak functorial lifts to GL4(A), say Π and Π′, respectively,
the notion of local G+-equivalence is described simply as the following. Suppose that π and π′

are locally G+-equivalent. Then there exists a character ω of GD(A) such that π ⊗ ω is nearly
equivalent to π′, where ω may not be automorphic. Since ωv is either χEv or trivial at almost
all places v of F , we have BCE/F (Π) � BCE/F (Π′) where BCE/F denotes the base change lift
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to GL4(AE). Then by a result of Arthur and Clozel [AC89, Theorem 3.1], we have Π � Π′ or
Π′ ⊗ χE . Hence, π is nearly equivalent to either π′ or π′ ⊗ χE . The converse is clear.

Then our first main result is on the Gross–Prasad conjecture for (SO(5),SO(2)).

Theorem 1.1. Let E be a quadratic extension of F . Let (π, Vπ) be an irreducible cuspidal
automorphic representation of GD(A) with a trivial central character and Λ a character of
A×
E/E

× whose restriction to A× is trivial.

(i) Suppose that π has the (E,Λ)-Bessel period. Moreover, assume that:

there exists a finite place w of F such that

πw and its local theta lift to GSO4,2(Fw) are generic. (1.5.2)

Here GSO4,2 denotes the identity component of GO4,2, the similitude orthogonal group
associated to the six-dimensional orthogonal space (E,NE/F ) ⊕ H2 over F where H denotes
the hyperbolic plane over F .

Then there exists a finite set S0 of places of F containing all archimedean places of F
such that the partial L-function

LS
(

1
2 , π ×AI(Λ)

) 	= 0 (1.5.3)

for any finite set S of places of F with S ⊃ S0. Here, AI(Λ) denotes the automorphic
induction of Λ from GL1(AE) to GL2(A). Moreover, there exists a globally generic irreducible
cuspidal automorphic representation π◦ of G(A) which is locally G+-equivalent to π.

(ii) Assume that:

the endoscopic classification of Arthur,

i.e. [Art13, Conjectures 9.4.2, 9.5.4] holds for GD◦ . (1.5.4)

Here D◦ denotes an arbitrary quaternion algebra over F .
Suppose that π has a generic Arthur parameter, namely the parameter is of the form

Π0 or Π1 � Π2 where Πi is an irreducible cuspidal automorphic representation of GL4(A)
for i = 0 and of GL2(A) for i = 1, 2, respectively, such that L(s,Πi,∧2) has a pole at s = 1.

Then we have

L
(

1
2 , π ×AI(Λ)

) 	= 0 (1.5.5)

if and only if there exists a pair (D′, π′) whereD′ is a quaternion algebra over F containing E
and π′ an irreducible cuspidal automorphic representation of GD′ which is nearly equivalent
to π such that π′ has the (E,Λ)-Bessel period.

Moreover, when π is tempered, the pair (D′, π′) is uniquely determined.

Remark 1.3. In (1.5.5), L(s, π ×AI(Λ)) denotes the complete L-function defined as the
following.

When AI(Λ) is not cuspidal, i.e. Λ = Λ0 ◦ NE/F for a character Λ0 of A×/F×, we define

L(s, π ×AI(Λ)) := L(s, π × Λ0)L(s, π × Λ0χE),

where each factor on the right-hand side is defined by the doubling method as in Lapid and
Rallis [LR05] or Yamana [Yam14].

When AI(Λ) is cuspidal, the partial L-function LS(s, π ×AI(Λ)) may be defined by
Theorem C.1 in Appendix C for a finite set S of places of F such that πv and Π(Λ)v are
unramified at v 	∈ S. Further, we define the local L-factor at each place v ∈ S by the local
Langlands parameters for πv and Π(Λ)v, where the local Langlands parameters are given by
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Gan and Takeda [GT11a] for G(Fv) (also Arthur [Art13]), Gan and Tantono [GT14] for GD(Fv),
Kutzko [Kut80] for GL2(Fv) at finite places and by Langlands [Lan89] at archimedean places.

We note that the condition (1.5.3) and the condition (1.5.5) are equivalent from the definition
of local L-factors when π is tempered.

Remark 1.4. Suppose that at a finite place w of F , the group GD(Fw) is split and the repre-
sentation πw is generic and tempered. Then by Gan and Ichino [GI14, Proposition C.4], the big
theta lift of πw and the local theta lift of πw coincide. Thus, the genericity of the local theta
lift of πw follows from Gan and Takeda [GT11b, Corollary 4.4] for the dual pair (G,GSO3,3)
and from a local analogue of the computations in [Mor14a, § 3.1] for the dual pair (G+,GSO4,2),
respectively. Here

G(F )+ := {g ∈ G : λ(g) ∈ NE/F (E×)}. (1.5.6)

When a local representation πw is unramified and tempered, πw is generic as remarked in
[FM17, Remark 2]. Hence, the assumption (1.5.2) is fulfilled when π is tempered.

In our previous paper [FM17], Theorem 1.1 for the pair (SO(2n+ 1),SO(2)) was proved when
Λ is trivial. Meanwhile Jiang and Zhang [JZ20] studied the Gross–Prasad conjecture in a very
general setting assuming the endoscopic classification of Arthur, in general, by using the twisted
automorphic descent. Though Theorem 1.1 is subsumed in [JZ20] as a special case, we believe that
our method, which is different from theirs, has its own merits because of its concreteness. We also
note that because of the temperedness of π, the uniqueness of the pair (D′, π′) in Theorem 1.1(ii)
follows from the local Gan–Gross–Prasad conjecture for (SO(5),SO(2)) by Prasad and Takloo-
Bighash [PT11, Theorem 2] (see also Waldspurger [Wal85] in the general case) at finite places
and by Luo [Luo20] at archimedean places. We shall give another proof of this uniqueness by
reducing it to a similar assertion in the unitary group case.

1.6 Refined Gross–Prasad conjecture
Let (π, Vπ) be an irreducible cuspidal tempered automorphic representation of GD(A) with trivial
central character. For φ1, φ2 ∈ Vπ, we define the Petersson inner product (φ1, φ2)π on Vπ by

(φ1, φ2)π =
∫
ZD(A)GD(F )\GD(A)

φ1(g)φ2(g) dg,

where dg denotes the Tamagawa measure. Then at each place v of F , we take a GD(Fv)-invariant
hermitian inner product on Vπv so that we have a decomposition ( , )π =

∏
v( , )πv . In the definition

of the Bessel period (1.4.11), we take dr = dt du where dt and du are the Tamagawa measures
on Tξ(A) and ND(Z), respectively. We take and fix the local measures duv and dtv so that
du =

∏
v duv and

dt = Cξ
∏

dtv (1.6.1)

where Cξ is a constant called the Haar measure constant in [II10]. Then the local Bessel period
αξ,Λv : Vπv × Vπv → C and the local hermitian inner product ( , )πv are defined as in § 2.4.

Suppose that D is not split. Then by Li [Li92], there exists a pair (ξ′,Λ′) such that π has the
(ξ′,Λ′, ψ)-Bessel period. Here ξ′ ∈ D−(F ) such that E′ := F (ξ′) is a quadratic extension of F and
Λ′ is a character on A×

E′/A×E′×. Then by Proposition 4.1, which is a consequence of the proof
of Theorem 1.1(i), there exists an irreducible cuspidal automorphic representation π◦ of G(A)
which is generic and locally G+-equivalent to π. We take the functorial lift of π◦ to GL4(A) by
Cogdell, Kim, Piatetski-Shapiro and Shahidi [CKPS04], which is of the form Π1 � · · · � Π�0 with
Πi an irreducible cuspidal automorphic representation of GLmi(A) for each i. Then we define
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an integer �(π) by �(π) = �0. We note that π◦ may not be unique, but �(π) does not depend on
the choice of the pair (ξ′,Λ′) by Proposition 4.1 and Lemmas 4.2 and 4.3, and thus it depends
only on (π, Vπ). When D is split, then π has the functorial lift to GL4(A) by Arthur [Art13]
(see also Cai, Friedberg and Kaplan [CFK18]) and we define �(π) in a similar way.

Our second main result is the refined Gross–Prasad conjecture formulated by Liu [Liu16],
i.e. the Ichino–Ikeda-type explicit central value formula, in the case of (SO(5),SO(2)).

Theorem 1.2. Let (π, Vπ) be an irreducible cuspidal tempered automorphic representation of
GD(A) with a trivial central character.

Then for any non-zero decomposable cusp form φ = ⊗vφv ∈ Vπ, we have

|Bξ,Λ,ψ(φ)|2
(φ, φ)π

= 2−�(π)Cξ ·
( 2∏
j=1

ζF (2j)
)

L
(

1
2 , π ×AI(Λ)

)
L(1, π,Ad)L(1, χE)

·
∏
v

α�v(φv)
(φv, φv)πv

. (1.6.2)

Here ζF (s) denotes the complete zeta function of F and α�v(φv) is defined by

α�v(φv) =
L(1, πv,Ad)L(1, χE,v)

L(1/2, πv × Π(Λ)v)
∏2
j=1 ζFv(2j)

· αΛv ,ψξ,v
(φv, φv).

We note that α�v(φv)/(φv, φv)πv = 1 for almost all places v of F by [Liu16].

Remark 1.5. Under the assumption (1.5.4), we have |S(φπ)| = 2�(π), where φπ denotes the Arthur
parameter of π and S(φπ) the centralizer of φπ in the complex dual group Ĝ. Hence, (1.6.2)
coincides with the conjectural formula in Liu [Liu16, Conjecture 2.5 (3)]. Thus, when D is split,
i.e. GD � G, our theorem proves Liu’s conjecture since the assumption (1.5.4) is indeed fulfilled.
After submitting this paper, Ishimoto posted a preprint [Ish24] on arXiv, in which he gives
the endoscopic classification of representations of non-quasi-split orthogonal groups for generic
Arthur parameters. Hence, our theorem proves [Liu16, Conjecture 2.5 (3)] completely in the case
of (SO(5),SO(2)).

Remark 1.6. Let πgen denote the irreducible cuspidal globally generic automorphic representation
of G(A) which has the same L-parameter as π. When πv is unramified at any finite place v of
F , Chen and Ichino [CI23] proved an explicit formula of the ratio L(1, π,Ad)/(Φgen,Φgen) for a
suitably normalized cusp form Φgen in the space of πgen.

Remark 1.7. In the unitary case, remarkable progress has been made in the Gan–Gross–Prasad
conjecture and its refinement for Bessel periods, by studying the Jacquet–Rallis relative trace
formula. In the striking paper [BLZZ21] by Beuzart-Plessis, Liu, Zhang and Zhu, a proof in the
co-dimension-one case for irreducible cuspidal tempered automorphic representations of unitary
groups such that their base change lifts are cuspidal was given by establishing an ingenious
method to isolate the cuspidal spectrum. In yet another striking paper by Beuzart-Plessis,
Chaudouard and Zydor [BCZ22], a proof for all endoscopic cases in the co-dimension one set-
ting was given by a precise study of the relative trace formula. Very recently, in a remarkable
preprint by Beuzart-Plessis and Chaudouard [BC23], the above results are extended to arbitrary
co-dimension cases. Thus the Gan–Gross–Prasad conjecture and its refinement for Bessel periods
on unitary groups are now proved in general.

In contrast, the orthogonal case in general is still open. We note that, in the (SO(5),SO(2))
case, the first author has formulated relative trace formulas to approach the formula (1.6.2) and
proved the fundamental lemmas in his joint work with Shalika [FS03], Martin [FM11] and Martin
and Shalika [FM13a]. In order to deduce the L-value formula from these relative trace formulas,
several issues such as smooth transfer of test functions must be overcome. In the above-mentioned
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co-dimension-one unitary group case, reductions to Lie algebras played crucial roles to solve
similar issues. However Bessel periods in our case involves integration over unipotent subgroups
and it is not clear, at least to the first author, how to make the reduction to Lie algebras work.

Remark 1.8. In the co-dimension-one orthogonal group case, the refined Gross–Prasad conjecture
has been deduced from the Waldspurger formula [Wal85] in the (SO(3),SO(2)) case and from the
Ichino formula [Ich08] in the (SO(4),SO(3)) case, respectively. Gan and Ichino [GI11] studied the
(SO(5),SO(4))-case when the representation of SO(5) is a theta lift from GSO(4) by reduction
to the (SO(4),SO(3)) case.

Liu [Liu16] proved Theorem 1.2 when D is split and π is an endoscopic lift, i.e. a Yoshida
lift, by reducing it to the Waldspurger formula [Wal85]. The case when π is a non-endoscopic
Yoshida lift was proved later by Corbett [Cor17] in a similar manner.

As a corollary of Theorem 1.2, we prove the (SO(5),SO(2)) case of the Gan–Gross–Prasad
conjecture in the form as stated in [GGP12, Conjecture 24.1].

Corollary 1.1. Let (π, Vπ) be an irreducible cuspidal tempered automorphic representation
of GD(A) with a trivial central character. Then the following three conditions are equivalent:

(i) the (ξ,Λ, ψ)-Bessel period does not vanish on π;
(ii) L(1

2 , π ×AI(Λ)) 	= 0 and the local Bessel period αΛv ,ψξ,v
	≡ 0 on πv at any place v of F ;

(iii) L(1
2 , π ×AI(Λ)) 	= 0 and HomRξ,v

(πv, χ
ξ,Λ
v ) 	= {0} at any place v of F .

Remark 1.9. The equivalence between conditions (i) and (ii) is immediate from Theorem 1.2.
The equivalence

αΛv ,ψξ,v
	≡ 0 ⇐⇒ HomRξ,v

(πv, χξ,Λv ) 	= {0} (1.6.3)

is proved by Waldspurger [Wal12b] at any non-archimedean place v and by Luo [Luo20] recently
at any archimedean place v, respectively.

1.7 Method
In [FM17, FM21] we used the theta correspondence for the dual pair (SO(2n+ 1),Mpn).

The main tool in [FM17] was the pull-back formula by the first author [Fur95] for the
Whittaker period on Mpn, which is expressed by a certain integral involving the Special Bessel
period on SO(2n+ 1). This forced us the restriction that the character Λ on SO(2) is trivial.

In [FM21], to prove the refined Gross–Prasad conjecture for (SO(2n+ 1),SO(2)) when Λ is
trivial, the following additional restrictions were necessary.

(i) The base field F is totally real and at every archimedean place v of F , the representation
πv is a discrete series representation.

(ii) The assumption (1.5.4).

An additional main tool needed in [FM21] was the Ichino–Ikeda-type formula for the Whit-
taker periods on Mpn by Lapid and Mao [LM17], which imposed on us condition (i). In fact,
their proof was to reduce the global identity to certain local identities. They proved the local
identities in general at non-archimedean places. On the other hand, at archimedean places, their
proof was to note the equivalence between their local identities and the formal degree conjec-
ture by Hiraga, Ichino and Ikeda [HII08a, HII08b] and then to prove the latter when π is a
discrete series representation. Our proof in [FM21] was to reduce to the case when π has the
special Bessel period by the assumption (1.5.4) and to combine these two main tools with the
Siegel–Weil formula.
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It does not seem plausible that a straightforward generalization of the method of [FM17,
FM21] would allow us to remove these restrictions. Thus, we need to adopt a new strategy in
this paper.

Our main method here is again theta correspondence but we use it differently and in a more
intricate way. First we consider the quaternionic dual pair (G+

D,GSU3,D) where GSU3,D denotes
the identity component of the similitude quaternion unitary group GU3,D defined by (2.1.9) and
G+
D defined by (1.5.1). Then we recall the accidental isomorphism

PGSU3,D � PGU4,ε (1.7.1)

when D � Dε given by (2.1.1) and GU4,ε is the similitude unitary group defined by (2.1.14).
Hence, we have

GU4,ε �
{

GU2,2, when D is split, i.e. ε ∈ NE/F (E×);
GU3,1, when D is non-split, i.e. ε /∈ NE/F (E×).

(1.7.2)

Thus, our theta correspondence for (G+
D,GSU3,D) induces a correspondence for the pair

(GD,PGU4,ε). Then we note that the pull-back of a certain Bessel period on PGU4,ε is an
integral involving the (ξ,Λ, ψ)-Bessel period on GD.

Theorem 1.1 is reduced essentially to the Gan–Gross–Prasad conjecture for the Bessel periods
on GU4,ε, which we proved in [FM22] using the theta correspondence for the pair (GU4,ε,GU2,2).

Similarly Theorem 1.2 is reduced to the refined Gan–Gross–Prasad conjecture for the Bessel
periods on GU4,ε. For the reader’s sake, here we present an outline of the proof when the
(ξ,Λ, ψ)-Bessel period does not vanish. Note that in the following paragraph the notation used
is provisional and the argument is not rigorous since our intention here is to present a rough
sketch of the main idea.

Let (π, Vπ) be an irreducible cuspidal tempered automorphic representation of GD(A) with
a trivial central character. Suppose that the (ξ,Λ, ψ)-Bessel period, which we denote by B, does
not vanish on π. Let θ(π) be the theta lift of π to GSU3,D. When GD = G and the theta lift of
π to GSO3,1 is non-zero, θ(π) is not cuspidal but the explicit formula (1.6.2) has been already
proved by Corbett [Cor17]. Thus, suppose otherwise. Then θ(π) is a non-zero irreducible cuspidal
tempered automorphic representation. The pull-back of a certain Bessel period, which we denote
by B on GSU3,D is written as an integral involving B. As in our previous paper [FM21], the
explicit formula for B is reduced to that for B, which we obtain in the following steps.

(1) Via the isomorphism (1.7.1), regard θ(π) as an automorphic representation of GU4,ε and
then consider its theta lift θΛ(θ(π)), which depends on Λ, to GU2,2. The temperedness of π
implies that θΛ(θ(π)) is an irreducible cuspidal automorphic representation of GU2,2. Then
the pull-back of a certain Whittaker period W on GU2,2 is written as an integral involving
the Bessel period B. Then in [FM22], it is shown that the explicit formula for B follows
from that for W. Thus, we are reduced to show the explicit formula for W.

(2) Via the isomorphism PGU2,2 � PGSO4,2, regard θΛ(θ(π)) as an automorphic representation
of GSO4,2. Let π′ be the theta lift of θΛ(θ(π)) to G = GSp2. Then it is shown that π′ is a
globally generic cuspidal automorphic representation of G and indeed the pull-back of the
Whittaker period W on G is expressed as an integral involving W. Hence, we are reduced
to the explicit formula for W .

(3) Since the theta lift of the globally generic cuspidal automorphic representation π′ of G to
either GSO2,2 or GSO3,3 is non-zero and cuspidal, we are further reduced to the explicit
formulas for the Whittaker periods on PGSO2,2 and PGSO3,3 by the pull-back computation.
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(4) Recall the accidental isomorphisms PGSO2,2 � PGL2 × PGL2, PGSO3,3 � PGL4. Since
the explicit formula for the Whittaker period on PGLn is already proved by Lapid and
Mao [LM15], we are done.

Remark 1.10. Though we only consider the case when SO(2) is non-split in this paper, the split
case is proved by a similar argument as follows. First we note that D is necessarily split when
SO(2) is split and, hence, GD � G. If the theta lift to GSO2,2 is non-zero, it is a Yoshida lift and
Liu [Liu16] proved the explicit formula. Suppose otherwise. Then the theta lift to GSO3,3 is non-
zero and cuspidal. The pull-back of a certain Bessel period on GSO3,3 is an integral involving the
split Bessel period on G (see § 3.1.2). We recall the accidental isomorphism PGSO3,3 � PGL4.
We consider the theta correspondence for the pair (GL4,GL4) instead of (GU4,ε,GU4,ε) in the
non-split case. Then the pull-back computation may be interpreted as expressing the pull-back
of the Whittaker period on GL4 as an integral involving the Bessel period on GSO3,3, which is
given in [FM22]. Thus, as in the non-split case, we are reduced to the Ichino–Ikeda-type explicit
formula for the Whittaker period on GL4.

We now give the statement of the theorem in the split case.

Theorem 1.3. Let (π, Vπ) be an irreducible cuspidal automorphic representation of G(A) with
trivial central character. Suppose that D is split and the Arthur parameter of π is generic.

Let ξ ∈ D−(F ) such that F (ξ) � F ⊕ F and fix an F -isomorphism Tξ � F× × F×. For a
character Λ of A×/F×, we also denote by Λ the character of Tξ(A) defined by Λ(a, b) := Λ(ab−1).

The following assertions hold.

(1) The (ξ,Λ, ψ)-Bessel period does not vanish on Vπ if and only if π is generic and L(1
2 , π × Λ)

	= 0. Here we note that L(1
2 , π × Λ−1) is the complex conjugate of L(1

2 , π × Λ) since π is
self-dual.

(2) Further assume that π is tempered. Then for any non-zero decomposable cusp form φ =
⊗v φv ∈ Vπ, we have

|Bξ,Λ,ψ(φ)|2
(φ, φ)π

= 2−�(π)Cξ ·
( 2∏
j=1

ζF (2j)
)
L(1

2 , π × Λ)L(1
2 , π × Λ−1)

L(1, π,Ad)ζF (1)
·
∏
v

α�v(φv)
(φv, φv)πv

where ζF (1) stands for Ress=1 ζF (s).

1.8 Generalized Böcherer conjecture
Thanks to the meticulous local computation by Dickson, Pitale, Saha and Schmidt [DPSS20],
Theorem 1.2 implies the generalized Böcherer conjecture. For brevity, we only state the scalar-
valued full modular case here in the introduction. Indeed, a more general version shall be proved
in § 8.3 as Theorem 8.1.

Theorem 1.4. Let Φ be a holomorphic Siegel cusp form of degree two and weight k with respect
to Sp2(Z) which is a Hecke eigenform and π(Φ) the associated automorphic representation of
G(AQ). Let

Φ(Z) =
∑
T>0

a(Φ, T ) exp[2π
√−1 tr(TZ)], Z ∈ H2, (1.8.1)

be the Fourier expansion of Φ where T runs over semi-integral positive-definite two-by-two
symmetric matrices and H2 denotes the Siegel upper half-space of degree two.

Let E be an imaginary quadratic extension of Q. We denote by −DE its discriminant,
ClE its ideal class group and w(E) the number of distinct roots of unity in E. In (1.8.1),
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when T ′ = tγTγ for some γ ∈ SL2(Z), we have a(Φ, T ′) = a(Φ, T ). By the Gauss composition
law, we may naturally identify the SL2(Z)-equivalence classes of binary quadratic forms of dis-
criminant −DE with the elements of ClE . Thus, the notation a(Φ, c) for c ∈ ClE makes sense.
For a character Λ of ClE , we define BΛ(Φ, E) by

BΛ(Φ, E) := w(E)−1 ·
∑
c∈ClE

a(Φ, c)Λ−1(c).

Suppose that Φ is not a Saito–Kurokawa lift. Then we have

|BΛ(Φ, E)|2
〈Φ,Φ〉 = 22k−4 ·Dk−1

E · L(1
2 , π(Φ) ×AI(Λ))
L(1, π(Φ),Ad)

. (1.8.2)

Here

〈Φ,Φ〉 =
∫

Sp2(Z)\H2

|Φ(Z)|2 det(Y )k−3 dX dY where Z = X +
√−1Y .

Remark 1.11. In Theorem 8.1, we prove (1.8.2) allowing Φ to have a square-free level and to
be vector-valued. Moreover, assuming the temperedness of π(Φ), the weight 2 case, which is of
significant interest because of the modularity conjecture for abelian surfaces, is also included.

Formula (1.8.2) and its generalization (8.3.1) are expected to have a broad spectrum of inter-
esting applications both arithmetic and analytic. Some of the examples are [Blo19], [DPSS20, § 3],
[Dum22], [HY24], [Sah14] and [Wai19].

1.9 Organization of the paper
This paper is organized as follows. In § 2, we introduce some more notation and define local and
global Bessel periods. In § 3, we carry out the pull-back computation of Bessel periods. In § 4, we
shall prove Theorem 1.1 using the results in § 3. We also note some consequences of our proof of
Theorem 1.1(i), which will be used in the proof of Theorem 1.2 later. In § 5, we recall the Rallis
inner product formula for similitude groups. In § 6, we will give an explicit formula for Bessel
periods on GU4,ε in certain cases as explained in our strategy for the proof of Theorem 1.2. In
§ 7, we complete our proof of Theorem 1.2. In § 8, we prove the generalized Böcherer conjecture,
including the vector valued case. In Appendix A, we will give an explicit formula of Whittaker
periods for irreducible cuspidal tempered automorphic representations of G. In Appendix B, we
compute the local Bessel periods explicitly for representation of G(R) corresponding to vector-
valued holomorphic Siegel modular forms. This result is used in § 8. In Appendix C, we consider
the meromorphic continuation of the L-function for SO(5) × SO(2).

1.10 Index of notation

MD, ND, 2117
GD, 2116
G, 2117
G1
D, 2117

G1, 2117
Tξ, 2117
G+
D, 2118

Bξ,Λ,ψ, 2118
AI(Λ), 2119
BΛ(Φ, E), 2125
Jm, 2126

GOn+2,n,GSOn+2,n, 2126
GU3,D,GSU3,D, 2127
GU4,ε, 2127
ΦD, 2129
Φ, 2130
M , N , 2130
TS , 2130
BS,Λ,ψ, 2131
M3,D N3,D, 2131
MX,D, 2131
BX,χ,ψ, 2131

BDX,χ,ψ, 2131
M4,2 N4,2, 2132
MX , 2133
αχ,ψN

(φ, φ′), 2133
Type I-A, Type I-B, 2152
WψU , 2161
WψU , 2165
W◦
G,v,WG,v, 2163

L◦
v(φv, fv),Lv(φv, fv), 2164

WψUG
, 2163

φΦ,S , 2193
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2. Preliminaries

2.1 Groups
2.1.1 Quaternion algebras. Let X(E : F ) denote the set of F -isomorphism classes of central

simple algebras over F containing E. Then we recall that the map ε �→ Dε gives a bijection
between F×/NE/F (E×) and X(E : F ) (see [FS03, Lemma 1.3]) where

Dε :=
{(

a εb
bσ aσ

)
: a, b ∈ E

}
for ε ∈ F×. (2.1.1)

Here we regard E as a subalgebra of Dε by

E � a �→
(
a 0
0 aσ

)
∈ Dε.

We also note that Dε � Mat2×2(F ) when ε ∈ NE/F (E×). The canonical involution Dε � x �→
x̄ ∈ Dε is given by

x̄ =
(
aσ −εb
−bσ a

)
for x =

(
a εb
bσ aσ

)
.

We denote the reduced trace of D by trD.

2.1.2 Orthogonal groups. For a non-negative integer n, a symmetric matrix Sn ∈
Mat(2n+2)×(2n+2)(F ) is defined inductively by

S0 :=
(

2 0
0 −2d

)
and Sn :=

⎛⎝0 0 1
0 Sn−1 0
1 0 0

⎞⎠ for n ≥ 1. (2.1.2)

We recall that E = F (η) where η2 = d. Then we denote the corresponding orthogonal group, the
special orthogonal group and the similitude orthogonal group by

O(Sn) = On+2,n, SO(Sn) = SOn+2,n and GO(Sn) = GOn+2,n, (2.1.3)

respectively. Let GSOn+2,n denote the identity component of GOn+2,n. Thus,

GSOn+2,n(F ) = {g ∈ GOn+2,n(F ) : det(g) = λ(g)n+1}, (2.1.4)

where

GOn+2,n(F ) = {g ∈ GL2n+2(F ) : tg Sn g = λ(g)Sn, λ(g) ∈ F×}. (2.1.5)

For a positive integer n, we denote by J2n the 2n× 2n symmetric matrix with ones on the
non-principal diagonal and zeros elsewhere, i.e.

J2 =
(

0 1
1 0

)
and J2(n+1) =

⎛⎝0 0 1
0 J2n 0
1 0 0

⎞⎠ for n ≥ 1. (2.1.6)

Then the similitude orthogonal group GOn,n is defined by

GOn,n(F ) := {g ∈ GL2n(F ) : tg J2n g = λ(g)J2n, λ(g) ∈ F×} (2.1.7)

and we denote by GSOn,n its identity component, which is given by

GSOn,n(F ) = {g ∈ GOn,n(F ) : det(g) = λ(g)n}. (2.1.8)
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2.1.3 Quaternionic unitary groups. Let D be a quaternion algebra over F containing E.
Recall that GD denotes the similitude quaternionic unitary group of degree 2 defined by (1.4.2).

We define a similitude quaternionic unitary group GU3,D of degree 3 by

GU3,D(F ) := {g ∈ GL3(D) : tḡ Jη g = λ(g)Jη, λ(g) ∈ F×}, (2.1.9)

where we define a skew-hermitian matrix Jη by

Jη :=

⎛⎝0 0 η
0 η 0
η 0 0

⎞⎠ . (2.1.10)

Here Ā = (āij) for A = (aij) ∈ Matm×n(D). Let us denote by GSU3,D the identity component of
GU3,D. Then unlike the orthogonal case, as noted in [MVW87, p. 21–22], we have

GSU3,D(F ) = GU3,D(F )

and
GSU3,D(Fv) = GU3,D(Fv) when D ⊗F Fv is not split.

Moreover, when D ⊗F Fv is split at a place v of F , we have

GU3,D(Fv) �
{

GO4,2(Fv) if E ⊗ Fv is a quadratic extension of Fv;
GO3,3(Fv) if E ⊗ Fv � Fv ⊕ Fv.

(2.1.11)

We also define GU1,D by

GU1,D(F ) := {α ∈ D× : ᾱηα = λ(α)η, λ(α) ∈ F×} (2.1.12)

and denote its identity component by GSU1,D. Then we note that

GSU1,D(F ) = {α ∈ D× : ᾱηα = nD(α)η}
= {x ∈ D× | xη = ηx} = Tη, (2.1.13)

where Tη is defined by (1.4.6) with ξ = η and nD denotes the reduced norm of D.

2.1.4 Unitary groups. Suppose that D = Dε defined by (2.1.1). Then we define GU4,ε a
similitude unitary group of degree 4 by

GU4,ε(F ) := {g ∈ GL4(E) : tgσJεg = λ(g)Jε, λ(g) ∈ F×}, (2.1.14)

where we define a hermitian matrix Jε by

Jε :=

⎛⎜⎜⎝
0 0 0 1
0 −1 0 0
0 0 ε 0
1 0 0 0

⎞⎟⎟⎠ .

Here Aσ = (aσij) for A = (aij) ∈ Matm×n(E). Then we have

GU4,ε �
{

GU2,2, when D is split, i.e. ε ∈ NE/F (E×);
GU3,1, when D is non-split, i.e. ε /∈ NE/F (E×).

(2.1.15)

We also define GU2,ε a similitude unitary group of degree 2 by

GU2,ε(F ) := {g ∈ GL2(E) : tgσJεg = λ(g)Jε, λ(g) ∈ F×} where Jε =
(−1 0

0 ε

)
. (2.1.16)
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2.2 Accidental isomorphisms
We need to explicate the accidental isomorphisms of our concern, since we use them in a crucial
way to transfer an automorphic period on one group to the one on the other group. The reader
may consult, for example, Satake [Sat61] and Tsukamoto [Tsu61] about the details of the material
here.

2.2.1 PGSU3,D � PGU4,ε. Suppose that D = Dε. Then we may naturally realize GSU3,D(F )
as a subgroup of GL6(E). We note that⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −ε 0 0 0 0
0 0 1 0 0 0
0 0 0 −ε 0 0
0 0 0 0 1 0
0 0 0 0 0 −ε

⎞⎟⎟⎟⎟⎟⎟⎠
tḡ

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −ε 0 0 0 0
0 0 1 0 0 0
0 0 0 −ε 0 0
0 0 0 0 1 0
0 0 0 0 0 −ε

⎞⎟⎟⎟⎟⎟⎟⎠

−1

= tgσ

and ⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠
tḡ

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠

−1

= tg.

Thus, in this realization, we have

GSU3,D(F ) = {g ∈ GSO3,3(E) : tgσ J ◦
ε g = λ(g)J ◦

ε , λ(g) ∈ F×}, (2.2.1)

where

J ◦
ε = −

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 0 0 ε
0 0 1 0 0 0
0 0 0 ε 0 0
1 0 0 0 0 0
0 ε 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Here we recall that

GSO3,3(E) � GL4(E) × GL1(E)/{(z, z−2) : z ∈ E×}. (2.2.2)

In fact, the isomorphism (2.2.2) is realized as follows. Let us take the standard basis

b1 = t(1, 0, 0, 0), b2 = t(0, 1, 0, 0), b3 = t(0, 0, 1, 0), b4 = t(0, 0, 0, 1),

of E4. Then we may consider V := ∧2E4 as an orthogonal space over E with a quadratic form
( , )V defined by

v1 ∧ v2 = (v1, v2)V · b1 ∧ b2 ∧ b3 ∧ b4
for v1, v2 ∈ V . As a basis of V over E, we take {εi : 1 ≤ i ≤ 6} given by

ε1 = b1 ∧ b2, ε2 = b1 ∧ b3, ε3 = b1 ∧ b4, ε4 = b2 ∧ b3, ε5 = b4 ∧ b2, ε6 = b3 ∧ b4.
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Let the group GL4(E) × GL1(E) act on V by (g, a)(w1 ∧ w2) = a · (gw1 ∧ gw2) where
w1, w2 ∈ E4. This action defines a homomorphism

GL4(E) × GL1(E) → GSO3,3(E), (2.2.3)

where we take {εi : 1 ≤ i ≤ 6} as a basis of V and the homomorphism (2.2.3) induces the iso-
morphism (2.2.2). By a direct computation we observe that (−Jε, 1) is mapped to J ◦

ε under
(2.2.3) and the restriction of the homomorphism (2.2.3) gives a homomorphism

GU4,ε(F ) → GSU3,D(F ). (2.2.4)

Then it is easily seen that the isomorphism

ΦD : PGU4,ε(F ) ∼→ PGSU3,D(F ) (2.2.5)

is induced.

2.2.2 PGU2,2 � PGSO4,2. When ε ∈ NE/F (E×), the quaternion algebra D = Dε is split
and the isomorphism (2.2.5) gives an isomorphism PGU2,2 � PGSO4,2. We recall the concrete
realization of this isomorphism. First we define GU2,2 by

GU2,2 := {g ∈ GL4(E) : tgσ J4 g = λ(g)J4, λ(g) ∈ F×}, where J4 =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠
as (2.1.6). Let

V :=

⎧⎪⎪⎨⎪⎪⎩B((xi)1≤i≤6) :=

⎛⎜⎜⎝
0 ηx1 x3 + ηx4 x2

−ηx1 0 x5 −x3 + ηx4

−x3 − ηx4 −x5 0 η−1x6

−x2 x3 − ηx4 −η−1x6 0

⎞⎟⎟⎠ : xi ∈ F (1 ≤ i ≤ 6)

⎫⎪⎪⎬⎪⎪⎭ .

We define Ψ : V → F by

Ψ(B) := Tr
(
B

(
0 12

12 0

)
tBσ

(
0 12

12 0

))
.

Then we have

Ψ(B((xi)1≤i≤6)) = −4{x1x6 + x2x5 − (x2
3 − dx2

4)}.

Let GSU2,2 denote the identity component of GU2,2, i.e.

GSU2,2 = {g ∈ GU2,2 : det(g) = λ(g)2}.
We let GSU2,2 act on V by

GSU2,2 × V � (g,B) �→ (wgw)B(w tgw) ∈ V, where w =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠.

Then this action induces a homomorphism φ : GSU2,2 → GO(V). We note that

λ(φ(g)) = det(g) for g ∈ GSU2,2
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and this implies that the image of φ is contained in GSO(V). As a basis of V, we may take

f1 =

⎛⎜⎜⎝
0 η 0 0
−η 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , f2 =

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

⎞⎟⎟⎠ , f3 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞⎟⎟⎠ ,

f4 =

⎛⎜⎜⎝
0 0 η 0
0 0 0 η
−η 0 0 0
0 −η 0 0

⎞⎟⎟⎠ , f5 =

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎟⎠ , f6 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 η−1

0 0 −η−1 0

⎞⎟⎟⎠ .

With respect to this basis, we may regard φ as a homomorphism from GSU2,2 to GO4,2, where
the group GO4,2 is given by (2.1.5) for n = 2. Let us consider GSU2,2 � E× where the action of
α ∈ E× on g ∈ GSU2,2 is given by

α · g =

⎛⎜⎜⎝
α 0 0 0
0 1 0 0
0 0 1 0
0 0 0 (ασ)−1

⎞⎟⎟⎠ g

⎛⎜⎜⎝
α 0 0 0
0 1 0 0
0 0 1 0
0 0 0 (ασ)−1

⎞⎟⎟⎠
−1

.

Then as in [Mor14a, p. 32–34], φ may be extended to GSU2,2 � E× and we have a homomorphism
GSU2,2 � E× → PGSO4,2 which induces the isomorphism

Φ : PGU2,2
∼→ PGSO4,2. (2.2.6)

2.3 Bessel periods
Let us introduce Bessel periods on various groups.

2.3.1 Bessel periods on G = GSp2. Though we already introduced Bessel periods on GD in
general as (1.4.11), we would like to describe them concretely in the case of G here for our explicit
pull-back computations in the next section.

Let P be the Siegel parabolic subgroup of G with the Levi decomposition P = MN where

M(F ) =
{(

g 0
0 λ · tg−1

)
:
g ∈ GL2(F ),

λ ∈ F×

}
, N(F ) =

{(
1 X
0 1

)
: X ∈ Sym2(F )

}
.

Here Symn(F ) denotes the set of n by n symmetric matrices with entries in F for a positive
integer n. For S ∈ Sym2(F ), let us define a character ψS of N(A) by

ψS

(
1 X
0 1

)
= ψ[tr(SX)].

For S ∈ Sym2(F ) such that detS 	= 0, let

TS := {g ∈ GL2 : tgSg = det(g)S}.
We identify TS with the subgroup of G given by{(

g 0
0 det(g) · tg−1

)
: g ∈ TS

}
.

Definition 2.1. Let us take S ∈ Sym2(F ) such that TS(F ) is isomorphic to E×. Let π be an
irreducible cuspidal automorphic representation of G(A) whose central character is trivial and
Vπ its space of automorphic forms. Fix an F -isomorphism TS(F ) � E×. Let Λ be a character of
A×
E/E

× such that Λ |A× is trivial. We regard Λ as a character of TS(A)/A× TS(F ).
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Then for ϕ ∈ Vπ, we define BS,Λ,ψ(ϕ), the (S,Λ, ψ)-Bessel period of ϕ by

BS,Λ,ψ(ϕ) =
∫

A× TS(F )\TS(A)

∫
N(F )\N(A)

ϕ(uh)Λ−1(h)ψ−1
S (u) du dh. (2.3.1)

We say that π has the (S,Λ, ψ)-Bessel period when BS,Λ,ψ 	≡ 0 on Vπ. Then we also say that π
has the (E,Λ)-Bessel period as in Definition 1.2.

2.3.2 Bessel periods on GSU3,D. Let us introduce Bessel periods on the group GSU3,D

defined in § 2.1.3. Let P3,D be a maximal parabolic subgroup of GSU3,D with the Levi
decomposition P3,D = M3,DN3,D where

M3,D =

⎧⎪⎨⎪⎩
⎛⎝g 0 0

0 h 0
0 0 g

⎞⎠ :

g ∈ D×,

h ∈ Tη,

nD(g) = nD(h)

⎫⎪⎬⎪⎭ , N3,D =

⎧⎨⎩
⎛⎝1 A′ B

0 1 A
0 0 1

⎞⎠ ∈ GSU3,D

⎫⎬⎭ .

As for Tη, we recall (2.1.13) and Tη � E×. For X ∈ D×, we define a character ψX,D of N3,D(A)
by

ψX,D

⎛⎝1 A′ B
0 1 A
0 0 1

⎞⎠ = ψ[trD(XA)].

Then the identity component of the stabilizer of ψX,D in M3,D is

MX,D =

⎧⎨⎩
⎛⎝hX 0 0

0 h 0
0 0 hX

⎞⎠ : h ∈ Tη

⎫⎬⎭ , where hX = XhX−1.

We identify MX with Tη by

MX,D �
⎛⎝hX 0 0

0 h 0
0 0 hX

⎞⎠ �→ h ∈ Tη (2.3.2)

and we fix an F -isomorphism Tη � E×.

Definition 2.2. Let σD be an irreducible cuspidal automorphic representation of GSU3,D(A)
and VσD its space of automorphic forms. Let χ be a character of A×

E/E
× and we regard χ as a

character of MX,D(A)/MX,D(F ). Suppose that χ|A× = ωσD , the central character of σD.
Then for ϕ ∈ VσD , we define BDX,χ,ψ(ϕ), the (X,χ, ψ)-Bessel period of ϕ by

BDX,χ,ψ(ϕ) =
∫

A×MX,D(F )\MX,D(A)

∫
N3,D(F )\N3,D(A)

ϕ(uh)χ(h)−1ψX,D(u)−1 du dh. (2.3.3)

2.3.3 Bessel periods on GU4,ε. In light of the accidental isomorphism (2.2.5), Bessel periods
on the group GU4,ε is defined as follows.
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Let P4,ε be a maximal parabolic subgroup of GU4,ε with the Levi decomposition M4,εN4,ε

where

M4,ε(F ) =

⎧⎨⎩
⎛⎝a 0 0

0 g 0
0 0 λ(g)(aσ)−1

⎞⎠ : a ∈ E×, g ∈ GU2,ε(F )

⎫⎬⎭ ,

N4,ε(F ) =

⎧⎨⎩
⎛⎝1 A B

0 12 A′

0 0 1

⎞⎠ ∈ GU4,ε(F )

⎫⎬⎭ .

Let us take an anisotropic vector e ∈ E4 of the form t(0, ∗, ∗, 0). Then we define a character χe
of N4,ε(A) by

χe(u) = ψ((ue, b1)ε), where (x, y)ε = txσJεy.

Here we recall that Jε is as given in (2.1.16) and b1 = t(1, 0, 0, 0). Let De denote the subgroup
of M4,ε given by

De :=

⎧⎨⎩
⎛⎝1 0 0

0 h 0
0 0 1

⎞⎠ : h ∈ U2,ε, he = e

⎫⎬⎭ .

Then the group De(A) stabilizes the character χe by conjugation. We note that

De(F ) � U1(F ) := {a ∈ E× : āa = 1}.
Hence, for a character Λ of A×

E which is trivial on A×, we may regard Λ as a character of De(A)
by d �→ Λ(det d). Then we define a character χe,Λ of Re(A) where Re := DeN4,ε by

χe,Λ(ts) := Λ(t)χe(s) for t ∈ De(A), s ∈ N4,ε(A). (2.3.4)

Definition 2.3. For a cusp form ϕ on GU4,ε(AF ) with a trivial central character, we define
Be,Λ,ψ(ϕ), the (e,Λ, ψ)-Bessel period of ϕ, by

Be,Λ,ψ(ϕ) =
∫
De(F )\De(AF )

∫
N4,ε(F )\N4,ε(AF )

χe,Λ(ts)−1 ϕ(ts) ds dt. (2.3.5)

2.3.4 Bessel periods on GSO4,2 and GSO3,3. By combining the accidental isomorphisms
(2.2.5) and (2.2.6) in the split case, we shall define Bessel periods on GSO4,2 and GSO3,3 as
the following.

Let P4,2 denote a maximal parabolic subgroup of GSO4,2 with the Levi decomposition P4,2 =
M4,2N4,2 where

M4,2 =

⎧⎨⎩
⎛⎝g 0 0

0 h 0
0 0 g∗ · deth

⎞⎠ :
g ∈ GL2,

h ∈ GSO2,0

⎫⎬⎭ , N4,2 =

⎧⎨⎩
⎛⎝12 A′ B

0 12 A
0 0 12

⎞⎠ ∈ GSO4,2

⎫⎬⎭ .

Here

g∗ =
(

0 1
1 0

)
tg−1

(
0 1
1 0

)
for g ∈ GL2.

Then for X ∈ Mat2×2(F ), we define a character ψX of N4,2(A) by

ψX

⎛⎝12 A′ B
0 12 A
0 0 12

⎞⎠ = ψ[tr(XA)].
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Suppose that detX 	= 0 and let

MX :=

⎧⎨⎩
⎛⎝(deth) · (hX)∗ 0 0

0 h 0
0 0 hX

⎞⎠ : h ∈ GSO2,0

⎫⎬⎭ ,

where hX = XhX−1 . Then MX(A) stabilizes the character ψX and MX is isomorphic to GSO2,0.
We fix an isomorphism GSO2,0(F ) � E× and we regard a character of A×

E as a character of
MX(A).

Definition 2.4. Let σ be an irreducible cuspidal automorphic representation of GSO4,2(A) with
its space of automorphic forms Vσ and the central character ωσ. For a character χ of A×

E such
that χ|A× = ωσ, we define BX,χ,ψ(ϕ), the (X,χ, ψ)-Bessel period of ϕ ∈ Vσ by

BX,χ,ψ(ϕ) =
∫
N4,2(F )\N4,2(A)

∫
MX(F )A×\MX(A)

ϕ(uh)χ(h)−1ψX(u)−1 du dh. (2.3.6)

When d ∈ (F×)2, we know that GSO(S2) � GSO3,3. Hence, as above, for a cusp form ϕ on
GSO3,3 with central character ω and characters Λ1,Λ2 of A×/F× such that Λ1Λ2 = ω, we define
(X,Λ1,Λ2, ψ)-Bessel period by

BX,Λ,ψ(ϕ) =
∫
N4,2(F )\N4,2(A)

∫
MX(F )A×\MX(A)

ϕ(uh)χΛ1,Λ2(h)
−1ψX(u)−1 du dh.

Here, since M4,2 � GL2 × GSO1,1 and GSO1,1(F ) =
{(

a
b

)
: a, b ∈ F×}, we define a character

χΛ1,Λ2 of GSO1,1(A) by

χΛ1,Λ2

(
a

b

)
= Λ1(a)Λ2(b).

When ω is trivial, we have Λ2 = Λ−1
1 . In this case, we simply call (X,Λ1,Λ−1

1 , ψ)-Bessel period
as (X,Λ1, ψ)-Bessel period and simply write χΛ1,Λ

−1
1

= Λ1.

2.4 Local Bessel periods
Let us introduce local counterparts to the global Bessel periods. Let k be a local field of
characteristic zero and D a quaternion algebra over k.

Since the local Bessel periods are deduced from the global ones in a uniform way, by abuse
of notation, let a quintuple (H,T,N, χ, ψN ) stand for one of

(GD, Tξ, ND,Λ, ψξ) in (1.4.11),

(GSp2, TS , N,Λ, ψS) in (2.3.1) or

(GSU3,D,MX , N4,2, χ, ψX) in (2.3.3).

Let (π, Vπ) be an irreducible tempered representation of H = H(k) with trivial central character
and [ , ] a H-invariant hermitian pairing on Vπ, the space of π. Let us denote by V∞

π the space
of smooth vectors in Vπ. When k is non-archimedean, clearly V∞

π = Vπ. Let χ be a character of
T = T (k) which is trivial on ZH = ZH(k), where ZH denotes the center of H.

Suppose that k is non-archimedean. Then for φ, φ′ ∈ Vπ, we define the local Bessel period
αHχ,ψN

(φ, φ′) = αχ,ψN
(φ, φ′) = α(φ, φ′) by

α(φ, φ′) :=
∫
T/ZH

∫ st

N
[π(ut)φ, φ′]χ(t)−1ψN (u)−1 du dt. (2.4.1)
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Here the inner integral of (2.4.1) is the stable integral in the sense of Lapid and Mao [LM15,
Definition 2.1, Remark 2.2]. Indeed it is shown that for any t ∈ T the inner integral stabilizes at
a certain compact open subgroup of N = N(k) and the outer integral converges by Liu [Liu16,
Proposition 3.1, Theorem 2.1]. We note that it is also shown in Waldspurger [Wal12a, § 5.1,
Lemme] that (2.4.1) is well-defined. We often simply write α(φ) = α(φ, φ).

Now suppose that k is archimedean. Then the local Bessel period is defined as a regularized
integral whose regularization is achieved by the Fourier transform as in Liu [Liu16, 3.4]. Let us
briefly recall the definition. We define a subgroup N−∞ of N = N(k) by

N−∞ :=
{(

1 u
0 1

)
∈ ND : trD(ξu) = 0

}
in the GD-case,

N−∞ :=
{(

1 Y
0 1

)
∈ N : tr(SY ) = 0

}
in the GSp2-case,

N−∞ :=

⎧⎨⎩
⎛⎝1 A′ B

0 1 A
0 0 1

⎞⎠ ∈ N3,D : trD(XA) = 0

⎫⎬⎭ in the GSU3,D-case,

respectively. Then it is shown in Liu [Liu16, Corollary 3.13] that for u ∈ N ,

αφ,φ′(u) :=
∫
T/ZG

∫
N−∞

[π(ust)φ, φ′]χ(t)−1 ds dt

converges absolutely for ϕ,ϕ′ ∈ V∞
π and it gives a tempered distribution on N/N−∞.

For an abelian Lie group N , we denote by D(N ) (respectively, S(N )) the space of tempered
distributions (respectively, Schwartz functions) on N . Then we recall that the Fourier transform
ˆ: D(N ) → D(N ) is defined by the formula

(â, φ) = (a, φ̂) for a ∈ D(N ) and φ ∈ S(N ),

where ( , ) denotes the natural pairing D(N ) × S(N ) → C and φ̂ is the Fourier transform of
φ ∈ S(N ).

Then by Liu [Liu16, Proposition 3.14], the Fourier transform α̂φ,φ′ is smooth on the regular
locus (N̂/N−∞)reg of the Pontryagin dual N̂/N−∞ and we define the local Bessel period α(φ, φ′)
by

αHχ,ψN
(φ, φ′) = αχ,ψN

(φ, φ′) = α(φ, φ′) := α̂φ,φ′(ψN ). (2.4.2)

As in the non-archimedean case, we often simply write α(φ) = α(φ, φ).

3. Pull-back of Bessel periods

In this section, we establish the pull-back formulas of the global Bessel periods with respect to
the dual pairs, (GSp2,GSO4,2), (GSp2,GSO3,3) and (GD,GSU3,D). We recall that the first two
cases may be regarded as the special case when D is split of the last one, by the accidental
isomorphisms explained in § 2.2.

3.1 (GSp2, GSO4,2) and (GSp2, GSO3,3) case
3.1.1 Symplectic-orthogonal theta correspondence with similitudes. Let X (respectively, Y )

be a finite-dimensional vector space over F equipped with a non-degenerate alternating
(respectively, symmetric) bilinear form. Assume that dimF Y is even. We denote their similitude
groups by GSp(X) and GO(Y ), and, their isometry groups by Sp(X) and O(Y ), respectively.
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We denote the identity component of GO(Y ) and O(Y ) by GSO(Y ) and SO(Y ), respectively.
We let GSp(X) (respectively, GO(Y )) act on X from right (respectively, left). The space
Z = X ⊗ Y has a natural non-degenerate alternating form 〈 , 〉, and we have an embedding
Sp(X) × O(Y ) → Sp(Z) defined by

(x⊗ y)(g, h) = xg ⊗ h−1y, for x ∈ X, y ∈ Y, h ∈ O(Y ), g ∈ Sp(X). (3.1.1)

Fix a polarization Z = Z+ ⊕ Z−. Let us denote by (ωψ,S(Z+(A))) the Schrödinger model of the
Weil representation of S̃p(Z) corresponding to this polarization with the Schwartz–Bruhat space
S(Z+) on Z+. We denote a typical element of Sp(Z) by(

A B
C D

)
, where

{
A ∈ Hom(Z+, Z+), B ∈ Hom(Z+, Z−),
C ∈ Hom(Z−, Z+), D ∈ Hom(Z−, Z−).

Then the action of ωψ on φ ∈ S(Z+) is given by the following formulas:

ωψ

((
A B
0 tA−1

)
, ε

)
φ(z+) = ε

γψ(1)
γψ(detA)

|det(A)|1/2ψ
(

1
2
〈z+A, z+B〉

)
φ(z+A), (3.1.2)

ωψ

((
0 I
−I 0

)
, ε

)
φ(z+) = ε(γψ(1))− dimZ+

∫
Z+

ψ

(〈
z′, z

(
0 I
−I 0

)〉)
φ(z′) dz′, (3.1.3)

where γψ(t) is a certain eighth root of unity called the Weil factor. Moreover, since the embedding
given by (3.1.1) splits in the metaplectic group Mp(Z), we obtain the Weil representation of
Sp(X,A) × O(Y,A) by restriction. We also denote this representation by ωψ.

We have a natural homomorphism

i : GSp(X) × GO(Y ) → GSp(Z)

given by the action (3.1.1). Then we note that λ(i(g, h)) = λ(g)λ(h)−1. Let

R := {(g, h) ∈ GSp(X) × GO(Y ) |λ(g) = λ(h)} ⊃ Sp(X) × O(Y ).

We may define an extension of the Weil representation of Sp(X,A) × O(Y,A) to R(A) as follows.
Let X = X+ ⊕X− be a polarization of X and use the polarization Z± = X± ⊗ Y of Z to realize
the Weil representation ωψ. Then we note that

ωψ(1, h)φ(z) = φ(i(h)−1z) for h ∈ O(A) and φ ∈ S(Z+(A)).

Thus, we define an action L of GO(Y,A) on S(Z+(A)) by

L(h)φ(z) = |λ(h)|−(1/8) dim X·dim Y φ(i(h)−1z).

Then we may extend the Weil representation ωψ of Sp(X,A) × O(Y,A) to R(A) by

ωψ(g, h)φ = ωψ(g1, 1)L(h)φ for φ ∈ S(Z+(A)) and (g, h) ∈ R(A),

where

g1 = g

(
λ(g)−1 0

0 1

)
∈ Sp(X,A).

In general, for any polarization Z = Z ′
+ ⊕ Z ′−, there exists an Sp(X,A) × O(Y )(A)-isomorphism

p : S(Z+(A)) → S(Z ′
+(A)) given by an integral transform (see Ichino and Prasanna

[IP21, Lemma 3.3]). Let us denote the realization of the Weil representation of
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Sp(X,A) × O(Y )(A) on S(Z ′
+(A)) by ω′

ψ. Then we may extend ω′
ψ to R(A) by

ω′
ψ(g, h) = p ◦ ωψ(g, h) ◦ p−1 for (g, h) ∈ R(A).

For φ ∈ S(Z+(A)), we define the theta kernel θφ by

θφψ(g, h) = θφ(g, h) :=
∑

z+∈Z+(F )

ωψ(g, h)φ(z+) for (g, h) ∈ R(A).

Let

GSp(X,A)+ = {g ∈ GSp(X,A) | λ(g) = λ(h) for some h ∈ GO(Y,A)} (3.1.4)

and GSp(X,F )+ = GSp(X,A)+ ∩ GSp(X,F ).
As in [HK92, § 5.1], for a cusp form f on GSp(X,A)+, we define its theta lift to GO(Y,A)

by

ΘX,Y
ψ (f, φ)(h) = Θ(f, φ)(h) :=

∫
Sp(X,F )\Sp(X,A)

θφ(g1g, h)f(g1g) dg1

for h ∈ GO(Y,A), where g ∈ GSp(X,A)+ is chosen so that λ(g) = λ(h). It defines an automorphic
form on GO(Y,A). For a cuspidal automorphic representation (π+, Vπ+) of GSp(X,A)+, we
denote by Θψ(π+) the theta lift of π+ to GO(Y,A). Namely,

ΘX,Y
ψ (π+) = Θψ(π+) := {Θ(f, φ) : f ∈ Vπ+ , φ ∈ S(Z+(A))}.

Furthermore, for an irreducible cuspidal automorphic representation (π, Vπ) of GSp(X,A), we
define

Θψ(π) := Θψ(π|GSp(X,A)+),

where π|GSp(X,A)+ denotes the automorphic representation of GSp(X,A)+ with its space of
automorphic forms {ϕ|GSp(X,A)+ : ϕ ∈ Vπ}.

As for the opposite direction, for a cusp form f ′ on GO(Y,A), we define its theta lift Θ(f ′, φ)
to GSp(X,A)+ by

Θ(f ′, φ)(g) :=
∫

O(Y,F )\O(Y,A)
θφ(g, h1h)f(h1h) dh1 for g ∈ GSp(X,A)+,

where h ∈ GO(Y,A) is chosen so that λ(g) = λ(h). For an irreducible cuspidal automorphic
representation (σ, Vσ) of GO(Y,A), we define the theta lift Θψ(σ) of σ to GSp(X,A)+ by

Θψ(σ) := {Θ(f ′, φ) : f ′ ∈ Vσ, φ ∈ S(Z+(A))}.
Moreover, we extend θ(f ′, φ) to an automorphic form on GSp(X,A) by the natural embedding

GSp(X,F )+\GSp(X,A)+ → GSp(X,F )\GSp(X,A)

and extension by zero. Then we define the theta lift Θψ(σ) of σ to GSp(X,A) as the GSp(X,A)
representation generated by such θ(f ′, φ) for f ′ ∈ Vσ and φ ∈ S(Z+(A)).

For some X and Y , theta correspondence for the dual pair (GSp(X)+,GO(Y )) gives theta
correspondence between GSp(X)+ and GSO(Y ) by the restriction of representations of GO(Y )
to GSO(Y ). Indeed, when dimX = 4 and dimY = 6, we may consider theta correspondence for
the pair (GSp(X)+,GSO(Y )). In Gan and Takeda [GT10, GT11b], they study the case when
GSO(Y ) � GSO3,3 or GSO5,1, and, in [Mor14a], the case when GSO(Y ) � GSO4,2 is studied. In
these cases, for a cusp form f on GSp(X,A)+, we denote by θ(f, φ) the restriction of Θ(f, φ) to
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GSO(Y,A). Moreover, for a cuspidal automorphic representation (π+, Vπ+) of GSp(X,A)+, we
define the theta lift θψ(π+) of π+ to GSO(Y,A) by

θX,Yψ (π+) = θψ(π+) := {θ(f, φ) : f ∈ Vπ+ , φ ∈ S(Z+(A))}.
Similarly, for a cusp form f ′ on GSO(Y,A), we define its theta lift θ(f ′, φ) to GSp(X,A)+ by

θ(f ′, φ)(g) :=
∫

SO(Y,F )\SO(Y,A)
θφ(g, h1h)f(h1h) dh1 for g ∈ GSp(X,A)+,

where h ∈ GSO(Y,A) is chosen so that λ(g) = λ(h). We extend it to an automorphic from on
GSp(X,A) as above. For a cuspidal automorphic representation (σ, Vσ) of GSO(Y,A), we define
the theta lift θψ(σ) of σ to GSp(X,A)+ by

θψ(σ) := {θ(f ′, φ) : f ′ ∈ Vσ, φ ∈ S(Z+(A))}.
Remark 3.1. Suppose that Θψ(π+) (respectively, θψ(σ)) is non-zero and cuspidal where (π+, Vπ+)
(respectively, (σ, Vσ)) is an irreducible cuspidal automorphic representation of GSp(X,A)+

(respectively, GO(Y,A)). Then Gan [Gan08, Proposition 2.12] has shown that the Howe dual-
ity, which was proved by Howe [How89] at archimedean places, by Waldspurger [Wal90] at odd
finite places and finally by Gan and Takeda [GT16] at all finite places, implies that Θψ(π+)
(respectively, θψ(σ)) is irreducible and cuspidal. Moreover, in the case of our concern, namely
when dimF X = 4 and dimF Y = 6, the irreducibility of Θψ(π+) implies that of θψ(π+) by the
conservation relation due to Sun and Zhu [SZ15].

3.1.2 Pull-back of the global Bessel periods for the dual pairs (GSp2,GSO4,2) and
(GSp2,GSO3,3). Our goal here is to prove the pull-back formula (3.1.6).

First we introduce the set-up. Let X be the space of four-dimensional row vectors over F
equipped with the symplectic form

〈w1, w2〉 = w1

(
0 12

−12 0

)
tw2.

Let us take the standard basis of X and name the basis vectors as

x1 = (1, 0, 0, 0), x2 = (0, 1, 0, 0), x−1 = (0, 0, 1, 0), x−2 = (0, 0, 0, 1). (3.1.5)

Then the matrix representation of GSp(X) with respect to the standard basis is G = GSp2

defined by (1.4.3). We let G act on X from the right.
Let Y be the space of six-dimensional column vectors over F equipped with the non-

degenerate symmetric bilinear form

(v1, v2) = tv1S2v2,

where the symmetric matrix S2 is given by (2.1.2). Let us take the standard basis of Y and name
the basis vectors as

y−2 = t(1, 0, 0, 0, 0, 0), y−1 = t(0, 1, 0, 0, 0, 0),

e1 = t(0, 0, 1, 0, 0, 0), e2 = t(0, 0, 0, 1, 0, 0),

y1 = t(0, 0, 0, 0, 1, 0), y2 = t(0, 0, 0, 0, 0, 1).

We note that (yi, yj) = δij , (e1, e1) = 2 and (e2, e2) = −2d. Since d ∈ F× \ (F×)2, with respect
to the standard basis, the matrix representations of GO(Y ) and GSO(Y ) are GO4,2 defined
by (2.1.5) and GSO4,2 defined by (2.1.4), respectively. In this section, we also study the
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theta correspondence for the dual pair (GSp(X),GSO3,3), for which, we may use the above
matrix representation with d ∈ (F×)2. Hence, in the remaining of this section, we study theta
correspondence for (GSp(X),GSO(Y )) for an arbitrary d ∈ F×.

We shall denote GSp(X,A)+ by G(A)+ and also GSp(X,F )+ by G(F )+. We note that when
d ∈ (F×)2, GSp(X)+ = GSp(X).

Let Z = X ⊗ Y and we take a polarization Z = Z+ ⊕ Z− as follows. First we take X =
X+ ⊕X− where

X+ = F · x1 + F · x2 and X− = F · x−1 + F · x−2

as the polarization of X. Then we decompose Y as Y = Y+ ⊕ Y0 ⊕ Y− where

Y+ = F · y1 + F · y2, Y0 = F · e1 + F · e2 and Y− = F · y−1 + F · y−2.

Then let
Z± = (X ⊗ Y±) ⊕ (X± ⊗ Y0),

where the double sign corresponds. To simplify the notation, we sometimes write z+ ∈ Z+ as
z+ = (a1, a2; b1, b2) when

z+ = a1 ⊗ y1 + a2 ⊗ y2 + b1 ⊗ e1 + b2 ⊗ e2 ∈ Z+, where ai ∈ X, bi ∈ X+ (i = 1, 2).

Let us compute the pull-back of (X,χ, ψ)-Bessel periods on GSO(Y ) defined by (2.3.6) with
respect to the theta lift from G.

Proposition 3.1. Let (π, Vπ) be an irreducible cuspidal automorphic representation of G(A)
whose central character is ωπ and χ a character of A×

E such that χ |A×= ω−1
π . Let X ∈ Mat2×2(F )

such that detX 	= 0.
Then for f ∈ Vπ and φ ∈ S(Z+(A)), we have

BX,χ,ψ(θ(f : φ)) =
∫
N(A)\G1(A)

BSX ,χ−1,ψ(π(g)f)(ωψ(g, 1)φ)(vX) dg, (3.1.6)

where BSX ,χ−1,ψ is the (SX , χ−1, ψ)-Bessel period on G defined by (2.3.1).
Here, for X =

(
x11 x12
x21 x22

)
, we define a vector vX ∈ Z+ by

vX :=
(
x−2, x−1;

x21

2
x1 +

x11

2
x2,−x22

2d
x1 − x12

2d
x2

)
(3.1.7)

and a 2-by-2 symmetric matrix SX by

SX :=
1
4d

t(J2
tXJ2)S0(J2

tXJ2). (3.1.8)

We regard χ as a character of GSO(SX)(A) by

GSO(SX) � k �→ χ((J2
tXJ2)k(J2

tXJ2)−1) ∈ C×. (3.1.9)

In particular, the (SX , χ−1, ψ)-Bessel period does not vanish on Vπ if and only if the (X,χ, ψ)-
Bessel period does not vanish on θψ(π).

Proof. We compute the (X,χ, ψ)-Bessel period defined by (2.3.6) in stages. We consider
subgroups of N4,2 given by

N0(F ) =

⎧⎪⎪⎨⎪⎪⎩u0(x) :=

⎛⎝1 −tX0S1 0
0 14 X0

0 0 1

⎞⎠∣∣∣∣∣∣X0 =

⎛⎜⎜⎝
x
0
0
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ; (3.1.10)
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N1(F ) =

⎧⎪⎪⎨⎪⎪⎩u1(s1, t1) :=

⎛⎜⎝1 −tX1S1 −1
2
tX1S1X1

0 14 X1

0 0 1

⎞⎟⎠
∣∣∣∣∣∣∣X1 =

⎛⎜⎜⎝
0
s1
t1
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ; (3.1.11)

N2(F ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u2(s2, t2) :=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0

0 1 −tX2S0 −1
2
tX2S0X2 0

0 0 12 X2 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
X2 =

(
s2
t2

)
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (3.1.12)

where S0 and S1 are given by (2.1.2). Then we have

N0 �N0N1 �N0N1N2 = N4.2.

Thus, we may write

BX,χ,ψ(θ(f : φ)) =
∫

A×MX(F )\MX(A)

∫
(F\AF )2

∫
(F\AF )2

∫
F\AF

θ(f, φ)(u0(x)u1(s1, t1)u2(s2, t2)h)

× ψ(x21s1 + x22t1 + x11s2 + x12t2)−1χ(h)−1 dx ds1 dt1 ds2 dt2 dh. (3.1.13)

For h ∈ GSO(Y,A), let us define

W0(θ(f : φ))(h) :=
∫
F\AF

θ(f, φ)(u0(x)h) dx.

From the definition of the theta lift, we have

W0(θ(f, φ))(h)

=
∫
F\AF

∫
G1(F )\G1(AF )

∑
ai∈X,bi∈X+

(ωψ(g1λs(ν(h)), u0(x)h)φ)(a1, a2; b1, b2)

× f(g1λs(λ(h))) dg1 dx. (3.1.14)

Here, for a ∈ A×, we let

λs(a) =
(

12 0
0 a · 12

)
.

Since Z−(1, u0(x)) = Z− and we have

z+(1, u0(x)) = z+ + (x · a1 ⊗ y−2 − x · a2 ⊗ y−1),

we observe that

(ωψ(1, u0(x))φ)(z+) = ψ
(

1
2〈z+, x · a1 ⊗ y−2 − x · a2 ⊗ y−1〉

)
φ(z+)

= ψ(−x〈a1, a2〉)φ(z+). (3.1.15)

Thus, in the summation of the right-hand side of (3.1.14), only ai such that 〈a1, a2〉 = 0
contributes to the integral W0(θ(f, φ)), and we obtain

W0(θ(f, φ))(h) =
∫
G1(F )\G1(AF )

×
∑

ai∈X,〈a1,a2〉=0,
bi∈X+

(ωψ(g1λs(λ(h)), h)φ)(a1, a2; b1, b2)f(g1λs(λ(h))) dg1.
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Since the space spanned by a1 and a2 is isotropic, there exists γ ∈ G1(F ) such that a1γ
−1, a2γ

−1 ∈
X−. Let us define an equivalence relation ∼ on (X−)2 by

(a1, a2) ∼ (a′1, a
′
2) ⇐⇒

def.
there exists γ ∈ G1(F ) such that a′i = aiγ for i = 1, 2.

Let us denote by X− the set of equivalence classes (X−)2/ ∼ and by (a1, a2) the equivalence class
containing (a1, a2) ∈ (X−)2. Then we may write W0(θ(f, φ))(h) as∫

G1(F )\G1(AF )

∑
(a1,a2)∈X−

∑
γ∈V (a1,a2)\G1(F )

∑
bi∈X+

(ωψ(g1λs(λ(h)), h)φ)(a1γ, a2γ; b1, b2)

× f(g1λs(λ(h))) dg1.

Here
V (a1, a2) = {g ∈ G1(F ) | aig = ai for i = 1, 2}.

Lemma 3.1. For any g ∈ G(A)+ and h ∈ GSO(Y,A) such that λ(g) = λ(h),∑
bi∈X+

(ωψ(g, h)φ)(a1γ, a2γ, b1, b2) =
∑
bi∈X+

(ωψ(γg, h)φ)(a1, a2, b1, b2).

Proof. This is proved by an argument similar to that for [Fur95, Lemma 2]. �
Further, by an argument similar to the one for W0(θ(f, φ))(h), we shall prove the following

lemma.

Lemma 3.2. For any g ∈ G(A)+ and h ∈ GSO(Y,A) such that λ(g) = λ(h),∫
(F\AF )2

ψ−1(x21s1 + x22t1)(ωψ(g, u1(s1, t1)h)φ)(a1, a2, b1, b2) ds1 dt1

=

⎧⎪⎨⎪⎩
(ωψ(g, h)φ)(a1, a2, b1, b2) if 〈a2, b1〉 = −x21

2
and 〈a2, b2〉 =

x22

2d
;

0 otherwise

and ∫
(F\AF )2

ψ−1(x11s2 + x12t2)(ωψ(g, u2(s2, t2)h)φ)(a1, a2, b1, b2) ds2 dt2

=

⎧⎪⎨⎪⎩
(ωψ(g, h)φ)(a1, a2, b1, b2) if 〈a1, b1〉 = −x11

2
and 〈a1, b2〉 =

x12

2d
;

0 otherwise.

Proof. Since Z− (1, u1(s1, t1)) = Z− and we have

z+(1, u1(s1, t1)) = z+ + 2s1(b1 ⊗ y−2) − 2dt1(b2 ⊗ y−2)

+ (−s21 + 2dt21)a2 ⊗ y−2 − s1a2 ⊗ e1 − t1a2 ⊗ e2,

we obtain

(ωψ(1, u1(s1, t1))φ)(z+) = ψ
(

1
2(2s1〈a2, b1〉 − 2dt1〈a2, b2〉)

)
× ψ

(
1
2((−s21 + 2dt21)〈a2, a2〉 − 2s1〈b1, a2〉 + 2dt1〈b2, a2〉)

)
φ(z+)

= ψ(2s1〈a2, b1〉 − 2dt1〈a2, b2〉)φ(z+).

Then the first assertion readily follows.
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Similarly, since Z− (1, u2(s2, t2)) = Z− and we have

z+ (1, u2(s2, t2)) = z+ + a1 ⊗ ((s22 − dt22)y−1 − s2e1 − t2e2) + 2s2b1 ⊗ y−1 − 2dt2b2 ⊗ y−1,

we obtain

ω(1, u2(s2, t2))φ(z+) = ψ
(

1
2(−2s2〈b1, a1〉 + 2dt2〈b2, a1〉)

)
× ψ

(
1
2(2s2〈a1, b1〉 − 2dt2〈a1, b2〉)

)
φ(z+)

= ψ(2s2〈a1, b1〉 − 2dt2〈a1, b2〉)φ(z+)

and the second assertion follows. �

Lemma 3.2 implies that

BX,χ,ψ(θ(f : φ)) =
∫

A×MX(F )\MX(A)

∫
G1(F )\G1(AF )

χ(h)−1

×
∑

(a1,a2)∈X−

∑
γ∈V (a1,a2)\G1(F )

∑
bi∈X+,〈ai,b1〉=xi1/2,
〈ai,b2〉=−(xi2/2d)

× (ωψ(γg1λs(λ(h)), h)φ)(a1, a2, b1, b2)f(g1λs(λ(h))) dg1 dh.

We note that a1 and a2 are linearly independent from the conditions on ai and det(X) 	= 0. Since
ai ∈ X− and dimX− = 2, we may take (a1, a2) = (x−2, x−1) as a representative. Then we should
have

b1 =
x21

2
x1 +

x11

2
x2, b2 = −x22

2d
x1 − x12

2d
x2.

Hence, we get

BX,χ,ψ(θ(f : φ)) =
∫

A×MX(F )\MX(A)

∫
G1(F )\G1(AF )

χ(h)−1

×
∑

γ∈N(F )\G1(F )

(ωψ(γg1λs(λ(h)), h)φ)(vX)f(g1λs(λ(h))) dg1 dh

=
∫
N(A)\G1(AF )

∫
A×MX(F )\MX(A)

∫
N(F )\N(A)

× χ(h)−1ω(vg1λs(λ(h)), h)φ(vX)f(vg1λs(λ(h))) dv dg1 dh, (3.1.16)

where we put vX = (x−2, x−1; (x21/2)x1 + x11/2x2,−(x22/2d)x1 − (x12/2d)x2).
For u =

(
12 A
0 12

)
where A =

(
a b
b c

) ∈ Sym2, we have(
x−2 ⊗ y1 + x−1 ⊗ y2 +

(
x21

2
x1 +

x11

2
x2

)
⊗ e1 +

(
− x22

2d
x1 − x12

2d
x2

)
⊗ e2

)
(u, 1)

= x−2 ⊗ y1 + x−1 ⊗ y2 +
(
x21

2
(x1 + ax−1 + bx−2) +

x11

2
(x2 + bx−1 + cx−2)

)
⊗ e1

+
(
− x22

2d
(x1 + ax−1 + bx−2) − x12

2d
(x2 + bx−1 + cx−2)

)
⊗ e2.
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Hence, when we put

SX =
1
4d

t(J2
tXJ2)S0(J2

tXJ2)

=
1
2d

(
x2

22 − dx2
21 x22x12 − dx21x11

x22x12 − dx21x11 x2
12 − dx2

11

)
∈ Sym2(F ),

for u ∈ N(A), we have

(ωψ(ugλs(λ(h)), h)φ)(vX) = ψSX
(u)−1ωψ(gλs(λ(h)), h)φ(vX).

Therefore, we get∫
N(A)\G1(AF )

∫
A×MX(F )\MX(A)

∫
N(F )\N(A)

χ(h)−1

× (ωψ(g1λs(λ(h)), h)φ)(vX)f(ug1λs(λ(h)))ψSX
(u)−1 du dh dg1

=
∫
N(A)\G1(AF )

∫
A×MX(F )\MX(A)

∫
N(F )\N(A)

χ(h)−1

× ωψ(λs(λ(h))g1, h)φ(vX)|λ(h)|3f(uλs(λ(h))g1)ψSX
(u)−1 du dh dg1.

By a direct computation, we see that

(ωψ(λs(λ(h))g1, h)φ)(vX) = |λ(h)|−3(ωψ(h0λs(λ(h))g1, 1)φ)(vX)

when we let

h =

⎛⎝(deth)(hX)∗ 0 0
0 h 0
0 0 hX

⎞⎠ , h0 =
(

(tXJ2)−1th(tXJ2) 0
0 (J2X)h−1(J2X)−1

)
.

For g ∈ GSO(S0), we have tg = wgw and we may write

h0 =
(

(J2
tXJ2)−1th(J2

tXJ2) 0
0 t((J2

tXJ2)−1th(J2
tXJ2))−1

)
.

Since we have
GSO(SX) = (J2

tXJ2)−1GSO(S0)(J2
tXJ2),

we get ∫
N(A)\G1(AF )

∫
A×TSX

(F )\TSX
(A)

∫
N(F )\N(A)

χ(h)

× (ωψ(g1, 1)φ)(vX)f(uhg1)ψSX
(u)−1 du dh dg1

=
∫
N(A)\G1(AF )

BSX ,χ−1(π(g1)f)(ωψ(g1, 1)φ)(vX) dg1, (3.1.17)

where we regard χ as a character of GSO(SX)(A) by (3.1.9).
Finally, the last statement concerning the equivalence of the non-vanishing conditions on the

(SX , χ−1, ψ)-Bessel period and the (X,χ)-Bessel period follows from the pull-back formula (3.1.6)
by an argument similar to that in the proof of Proposition 2 in [FM17]. �

3.2 (GD, GSU3,D) case
3.2.1 Theta correspondence for quaternionic dual pair with similitudes. Let D be a quater-

nion division algebra over F . Let XD (respectively, YD) be a right (respectively, left) D-vector
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space of finite rank equipped with a non-degenerate hermitian bilinear form ( , )XD
(respectively,

non-degenerate skew-hermitian bilinear form 〈 , 〉YD
). Hence ( , )XD

and 〈 , 〉YD
are D-valued

F -bilinear form on XD and YD satisfying

(x, x′)XD
= (x′, x)XD

, (xa, x′b)XD
= ā(x, x′)XD

b,

〈y, y′〉YD
= −〈y′, y〉YD

, 〈ay, y′b〉YD
= a〈y, y′〉YD

b̄,

for x, x′ ∈ XD, y, y′ ∈ YD and a, b ∈ D. We denote the isometry group of XD and YD by U(XD)
and U(YD), respectively. Then the space ZD = XD ⊗D YD is regarded as a symplectic space over
F with the non-degenerate alternating form 〈 , 〉 defined by

〈x1 ⊗ y1, x2 ⊗ y2〉 = trD((x1, x2)XD
〈y1, y2〉YD

) ∈ F (3.2.1)

and we have a homomorphism U(XD) × U(YD) → Sp(ZD) defined by

(x⊗ y)(g, h) = xg ⊗ h−1y for x ∈ X, y ∈ Y , h ∈ U(YD) and g ∈ U(XD). (3.2.2)

As in the case when D � Mat2×2, this mapping splits in the metaplectic group Mp(ZD). Hence
we have the Weil representation ωψ of U(XD,A) × U(YD,A) by restriction.

From now on, we suppose that the rank of XD is 2k and XD is maximally split, in the sense
that its maximal isotropic subspace has rank k.

Let us denote by GU(XD) (respectively, GU(YD)) the similitude unitary group ofXD (respec-
tively, YD) with the similitude character λD (respectively, νD). In addition, we denote the identity
component of GU(YD) by GSU(YD). Then the action (3.2.2) extends to a homomorphism

iD : GU(XD) × GU(YD) → GSp(ZD)

with the property λ(iD(g, h)) = λD(g)νD(h)−1. Let

RD := {(g, h) ∈ GU(XD) × GU(YD) |λD(g) = νD(h)} ⊃ U(XD) × U(YD).

Since XD is maximally split, we have a Witt decomposition XD = X+
D ⊕X−

D with maximal
isotropic subspacesX±

D . Then as in § 3.1.1, we may realize the Weil representation ωψ of U(XD) ×
U(YD) on S((X+

D ⊗ YD)(A)). In this realization, for h ∈ U(YD) and φ ∈ S((X+
D ⊗ YD)(A)), we

have

ωψ(1, h)φ(z) = φ(iD(h)−1z).

Hence, as in § 3.1.1, we may extend ωψ to RD(A) by

ωψ(g, h)φ(z) = |λ(h)|−2rank XD·rank YDωψ(g1, 1)φ(iD(h)−1z)

for (g, h) ∈ RD(A), where

g1 = g

(
λD(g)−1 0

0 1

)
∈ U(XD).

Then as in § 3.1.1, we may extend the Weil representation ωψ of U(XD) × U(YD) on S(Z+(AF )),
where ZD = Z+

D ⊕ Z−
D is an arbitrary polarization, to RD(A), by using the U(XD) × U(YD)-

isomorphism p : S((X+
D ⊗ YD)(A)) → S(Z+(AF )). Thus for φ ∈ S(Z+(AF )), the theta kernel

θφψ = θφ on RD(A) is defined by

θφψ(g, h) = θφ(g, h) =
∑

z+∈Z+
D(F )

ωψ(g, h)φ(z+) for (g, h) ∈ RD(A).
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Let us define

GU(XD,A)+ = {h ∈ GU(XD,A) : λD(h) ∈ νD(GU(YD,A))}

and

GU(XD, F )+ = GU(XD,A)+ ∩ GU(XD, F ).

We note that νD(GU(YD, Fv)) contains ND(D(Fv)×) for any place v. Thus, if v is non-
archimedean or complex, we have GU(XD, Fv)+ = GU(XD, Fv), and if v is real, |GU(XD, Fv)/
GU(XD, Fv)+| ≤ 2.

For a cusp form f on GU(XD,A)+, as in § 3.1.1, we define the theta lift of f to GU(YD,A)
by

Θ(f, φ)(h) :=
∫

U(XD,F )\U(XD,A)
θφ(g1g, h)f(g1g) dg1,

where g ∈ GU(XD,A)+ is chosen so that λD(g) = νD(h). It defines an automorphic form on
GU(YD,A). When we regard Θ(f, φ)(h) as an automorphic form on GSU(YD,A) by the restric-
tion, we denote it as θ(f, φ)(h). For an irreducible cuspidal automorphic representation (π+, Vπ+)
of GU(XD,A)+, we denote by Θψ(π+) (respectively, θψ(π+)) the theta lift of π+ to GU(YD,A)
(respectively, GSU(YD,A)), namely

Θψ(π) := {Θ(f, φ) : f ∈ Vπ+ , φ ∈ S(Z+
D(A))},

θψ(π) := {θ(f, φ) : f ∈ Vπ+ , φ ∈ S(Z+
D(A))},

respectively. Moreover, for an irreducible cuspidal automorphic representation (π, Vπ) of
GU(XD,A), we define the theta lift Θψ(π) (respectively, θψ(π)) of π to GU(YD,A) (respectively,
GSU(YD,A)) by Θψ(π) := Θψ(π|GU(XD,A)+) (respectively, θψ(π) := θψ(π|GU(XD,A)+)).

As for the opposite direction, as in § 3.1.1, for a cusp form f ′ on GSU(YD,A), we define the
theta lift of f ′ to GU(XD,A)+ by

θ(f ′, φ)(g) :=
∫

SU(YD,F )\SU(YD,A)
θφ(g, h1h)f(h1h) dh1

where h ∈ GSU(YD,A) is chosen so that λD(g) = νD(h). For an irreducible cuspidal auto-
morphic representation (σ, Vσ) of GSU(YD,A), we denote by θψ(σ) the theta lift of σ to
GU(XD,A)+. Moreover, we extend θ(f ′, φ) to an automorphic form on GU(XD,A) by the natural
embedding

GU(XD, F )+\GU(XD,A)+ → GU(XD, F )\GU(XD,A)

and extension by zero. Then we define the theta lift Θψ(σ) of σ to GU(XD,A) as the GU(XD,A)
representation generated by such θ(f ′, φ) for f ′ ∈ Vσ and φ ∈ S(Z+(A)).

Remark 3.2. Suppose that (π+, Vπ+) (respectively, (σ, Vσ)) is an irreducible cuspidal automorphic
representation of GU(XD,A)+ (respectively, GSU(YD,A)). Suppose moreover that the theta lift
Θψ(π+) (respectively, θψ(σ)) is non-zero and cuspidal. Then by Gan [Gan08, Proposition 2.12],
Θψ(π+) (respectively, θψ(σ)) is an irreducible cuspidal automorphic representation because of
the Howe duality for quaternionic dual pairs proved by Gan and Sun [GS17] and Gan and
Takeda [GT16]. We shall study the case dimD XD = 2 and dimD YD = 3. In this case, by the
conservation relation proved by Sun and Zhu [SZ15], the irreducibility of Θψ(π+) implies that
of θψ(π+).
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3.2.2 Pull-back of the global Bessel periods for the dual pair (GD,GSU3,D). The set-up is as
follows.

Let XD be the space of two-dimensional row vectors over D equipped with the hermitian
form

(x, x′)XD
= x̄

(
0 1
1 0

)
tx′.

Let us take the standard basis of XD and name the basis vectors as

x+ = (1, 0), x− = (0, 1).

Then GD defined by (1.4.2) is the matrix representation of the similitude unitary group GU(XD)
for XD with respect to the standard basis.

Let YD be the space of three-dimensional column vectors over D equipped with the skew-
hermitian form

〈y, y′〉YD
= ty

⎛⎝0 0 η
0 η 0
η 0 0

⎞⎠ y′.

Let us take the standard basis of YD and name the basis vectors as

y− = t(1, 0, 0), e = t(0, 1, 0), y− = t(0, 0, 1).

Then GSU3,D defined in § 2.1.3 is the matrix representation of the group GSU(YD) for YD with
respect to the standard basis.

We take a polarization ZD = ZD,+ ⊕ ZD,− of ZD = XD ⊗D YD defined as follows. Let

XD,± = x± ·D,
where the double sign corresponds. We decompose YD as YD = YD,+ ⊕ YD,0 ⊕ YD,− where

YD,+ = D · y+, YD,0 = D · y0, YD,− = D · y−.
Then let

ZD,± = (XD ⊗ YD,±) ⊕ (XD,± ⊗ YD,0), (3.2.3)

where the double sign corresponds. To simplify the notation, we denote z+ ∈ ZD,+(A) as z+ =
(a, b) when

z+ = a⊗ y+ + b⊗ e where a ∈ XD(A) and b ∈ XD,+(A)

and φ(z+) as φ(a, b) for φ ∈ S(ZD,+(A)).
Let us compute the pull-back of the (X,χ, ψ)-Bessel periods on GSU3,D defined by (2.3.3)

with respect to the theta lift from GD.

Proposition 3.2. Let (πD, VπD) be an irreducible cuspidal automorphic representation of
GD(A) whose central character is ωπ and χ a character of A×

E such that χ |A×= ω−1
π . LetX ∈ D×.

Then for f ∈ VπD and φ ∈ S(ZD,+(A)), we have

BDX,χ,ψ(θ(f : φ)) =
∫
ND(A)\G1

D(A)
BξX ,χ−1,ψ(π(g)f)(ω(g, 1)φ)(vD,X) dg, (3.2.4)

where

ξX := XηX̄ ∈ D−(F ), vD,X := (x−,−η−1Xx+) ∈ ZD,+, (3.2.5)

and BξX ,χ−1,ψ denotes the (ξX , χ−1, ψ)-Bessel period on GD defined by (1.4.11).
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In particular, the (ξX , χ−1, ψ)-Bessel period does not vanish on VπD if and only if the
(X,χ, ψ)-Bessel period does not vanish on θψ(πD).

Proof. The proof of this proposition is similar to that for Proposition 3.1.
Let N0,D be a subgroup of N3,D given by

N0,D(F ) =

⎧⎨⎩uD(x) :=

⎛⎝1 0 ηx
0 1 0
0 0 1

⎞⎠ : x ∈ F

⎫⎬⎭ .

Then we note that N0,D is a normal subgroup of N3,D and ψX,D is trivial on N0,D(A). Since

ZD,−(A)(1, uD(x)) = ZD,−(A) and z+(1, uD(x)) = z+ + a⊗ (−ηx)y− for x ∈ A,

we have

(ω(1, uD(x))φ)(z+) = ψ
(− 1

2 trD(〈a, a〉η2x)
)
φ(z+).

Thus, by an argument similar to that in the proof of Proposition 3.1, one may show that∫
N3,D(F )\N3,D(A)

θ(f ;φ)(hu)ψ−1
X,D(u) du

=
∫
N3,D(F )\N3,D(A)

∫
G1

D(F )\G1
D(A)

∑
a∈XD,−

∑
γ∈VD(a)\G1

D(F )

∑
b∈XD,+

× (ω(γg1λDs (ν(h)), uh)φ)(a, b)f(g1λs(ν(h))) dg1 du. (3.2.6)

Here XD,− is the set of equivalence classes XD,−/ ∼ where a ∼ a′ if and only if there exists a
γ ∈ G1

D(F ) such that a′ = aγ, ā denotes the equivalence class of XD,− containing a ∈ XD,−, and,
V (a) = {γ ∈ G1

D(F ) | aγ = a}. Then we may rewrite (3.2.6) as∫
N3,D(F )\N3,D(A)

θ(f ;φ)(hu)ψ−1
X,D(u) du

=
∫
N3,D(F )\N3,D(A)

∫
G1

D(F )\G1
D(A)

×
∑

ND(F )\G1
D(F )

∑
b∈XD,+

(ω(γg1λDs (ν(h)), uh)φ)(x−, b)f(g1λs(ν(h))) dg1 du. (3.2.7)

Since, for u =
(

1 −η−1Āη B
0 1 A
0 0 1

)
∈ N3,D(A), we have ZD,−(A)(1, u) = ZD,−(A) and

z+(1, u) = z+ + x− ⊗ (B′y− −Ae+ y+) + b⊗ (η−1Āηy− + e)

= z+ + x− ⊗ (B′y− −Ae) + b⊗ (η−1Āηy−),

we obtain

(ω(1, u)φ)(z+) = ψ(trD(〈b, x−〉(e,−Ae)))φ(z+) = ψ(trD(η〈b, x−〉A))φ(z+).
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Hence, in (3.2.7), only b ∈ XD,− satisfying η〈b, x−〉 = X, i.e. b = x+(−Xη−1) contributes. Thus,
our integral is equal to∫

ND(F )\G1
D(A)

(ω(g1λDs (ν(h)), uh)φ)(vD,X)f(g1λDs (ν(h))) dg1 du

=
∫
ND(A)\G1

D(A)

∫
ND(F )\ND(A)

ω(ug1λDs (ν(h)), uh)φ(vD,X)

× f(ug1λDs (ν(h))) dg1 du,

where vD,X = (x−, x+(−Xη−1)). Further, for u =
(

1 a
0 1

) ∈ ND(A), we have

(ω(ug, h)φ)(vD,X) = ψξX (u)−1(ω(g, h)φ)(vD,X),

where we put ξX = XηX. Thus, our integral becomes∫
ND(A)\G1

D(A)

∫
ND(F )\ND(A)

ψξX (u)−1ω(g1λDs (ν(h)), h)φ(vD,X)f(ug1λDs (ν(h))) du dg1.

As for the integration over A×MX,D(F )\MX,D(A) in (2.3.3), by a direct computation, we see
that

ω(λDs (ν(h))g1, h)φ(vD,X) = |ν(h)|−3ω(h0λs(ν(h))g1, 1)φ(vD,X),

where

h =

⎛⎝nD(h) · (hX)∗ 0 0
0 h 0
0 0 hX

⎞⎠ and h0 =
(
hX 0
0 (hX)−1

)
.

Therefore, as in the previous case, we obtain

BDX,χ,ψ(θ(f : φ)) =
∫
ND(A)\G1

D(A)
BξX ,χ−1,ψ(π(g1)f)(ω(g1, 1)φ)(vD,X) dg1.

The equivalence of the non-vanishing conditions follows from the pull-back formula (3.2.4) as
Proposition 3.1. �

3.3 Theta correspondence for similitude unitary groups
In our proof of Theorems 1.1 and 1.2, we shall use theta correspondence for similitude unitary
groups in addition to theta correspondences for dual pairs (GSp2,GSO4,2) and (GD,GSU3,D).
Let us recall the definition of the theta lifts in this case.

Let (X, ( , )X) be an m-dimensional hermitian space over E, and let (Y, ( , )Y ) be an
n-dimensional skew-hermitian space over E. Then we may define the quadratic space

(WX,Y , ( , )X,Y ) := (ResE/FX ⊗ Y,TrE/F (( , )X ⊗ ( , )Y )).

This is a 2mn-dimensional symplectic space over F . Then we denote its isometry group by
Sp(WX,Y ). For each place v of F , we denote the metaplectic extension of Sp(WX,Y )(Fv) by
Mp(WX,Y )(Fv). In addition, Mp(WX,Y )(A) denotes the metaplectic extension of Sp(WX,Y )(A).

Let χX and χY be characters of A×
E/E

× such that χX |A× = χmE and χY |A× = χnE . For each
place v of F , let

ιχv : U(X)(Fv) × U(Y )(Fv) → Mp(WX,Y)(Fv)

be the local splitting given by Kudla [Kud94] depending on the choice of a pair of characters
χv = (χX,v, χY,v). Using this local splitting, we get a splitting

ιχ : U(X)(A) × U(Y )(A) → Mp(WX,Y)(A),
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depending on χ = (χX , χY ). Then by the pull-back, we obtain the Weil representation ωψ,χ of
U(X)(A) × U(Y )(A). When we fix a polarization WX,Y = W+

X,Y ⊕W−
X,Y , we may realize ωψ,χ so

that its space of smooth vectors is given by S(W+
X,Y (A)), the space of Schwartz–Bruhat functions

on W+
X,Y (A). We define

R := {(g, h) ∈ GU(X) × GU(Y ) : λ(g) = λ(h)} ⊃ U(X) × U(Y ).

Suppose that dimY is even and Y is maximally split, in the sense that Y has a maximal isotropic
subspace of dimension 1

2 dimY . In this case, as in §§ 3.1.1 and 3.2.1, we may extend ωψ,χ to R(A).
On the other hand, in this case, we have an explicit local splitting of R(Fv) → Sp(WX,Y )(Fv)
by Zhang [Zha13] and we may extend ωψ,χ to R(A) using this splitting. These two extensions of
ωψ,χ to R(A) coincide.

Then for φ ∈ S(W+
X,Y (A)), we define the theta function θφψ,χ on R(A) by

θφψ,χ(g, h) =
∑

w∈W+
X,Y (F )

ωψ,χ(g, h)φ(w). (3.3.1)

Let us define

GU(X)(A)+ := {g ∈ GU(X)(A) : λ(g) ∈ λ(GU(Y )(A))},
GU(X)(F )+ := GU(X)(A)+ ∩ GU(X)(F ).

We define GU(Y )(A)+ and GU(Y )(F )+ in a similar manner. Let (σ, Vσ) be an irreducible cuspidal
automorphic representation of GU(X)(A)+. Then for ϕ ∈ Vσ and φ ∈ S(W+

X,Y (A)), we define the
theta lift of ϕ by

θφψ,χ(ϕ)(h) =
∫

U(X)(F )\U(X)(A)
ϕ(g1g)θ

φ
ψ,χ(g1g, h) dg1,

where g1 ∈ GU(X)(A)+ is chosen so that λ(g) = λ(h). Further, we define the theta lift of σ by

ΘX,Y
ψ,χ (σ) = 〈θφψ,χ(ϕ);ϕ ∈ σ, φ ∈ S(W+

X,Y (A))〉.

When the space we consider is clear, we simply write ΘX,Y
ψ,χ (σ) = Θψ,χ(σ). Similarly, for an

irreducible cuspidal automorphic representation τ of U(Y )(A), we define ΘY,X
ψ,χ (τ) and we simply

write it by Θψ,χ(τ).

4. Proof of the Gross–Prasad conjecture for (SO(5), SO(2))

In this section we prove Theorem 1.1, i.e. the Gross–Prasad conjecture for (SO(5),SO(2)), based
on the pull-back formulas obtained in the previous section.

4.1 Proof of statement (i) in Theorem 1.1
Let (π, Vπ) be as in Theorem 1.1(i). By the uniqueness of the Bessel model due to Gan, Gross and
Prasad [GGP12, Corollary 15.3] at finite places and to Jiang, Sun and Zhu [JSZ10, Theorem A]
at archimedean places, there exists uniquely an irreducible constituent πB+ of π |GD(A)+ that has
the (ξ,Λ, ψ)-Bessel period.

WhenD is split and πB+ is a theta lift from an irreducible cuspidal automorphic representation
of GSO3,1(A), our assertion has been proved by Corbett [Cor17]. Hence in the remainder of this
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subsection, we assume that:

when D is split, π is not a theta lift from GSO3,1

of an irreducible cuspidal automorphic representation. (4.1.1)

Let us proceed under the assumption (4.1.1). By Propositions 3.1 and 3.2, the theta lift
θψ(πB+) of πB+ to GSU3,D(A) has the (Xξ,Λ−1, ψ)-Bessel period and, in particular, θψ(πB+) 	= 0
where we take Xξ ∈ D−(F ) so that ξXξ

= ξ. For example, when we take ξ = η, we may take
Xξ = 1.

Lemma 4.1. The theta lift θψ(πB+) is an irreducible cuspidal automorphic representation of
GSU3,D(A).

Proof. First we note that the irreducibility follows from the cuspidality by Remarks 3.1 and 3.2.
Let us show the cuspidality. Suppose in contrast that θψ(πB+) is not cuspidal.
When D is not split, the Rallis tower property implies that the theta lift θD,ψ(πB+) of πB+

to GSU1,D(A) is non-zero and cuspidal. Let w be a finite place of F such that D(Fw) is split
and πB+,w is a generic representation of G(Fw)+. Since πB+,w is generic, the theta lift of πB+,w
to GSO2(Fw) vanishes by the same argument as for [GRS97, Proposition 2.4]. We note that
GSU1,D(Fw) � GSO2(Fw) and, hence, the theta lift of πB+ to GSU1,D(A) must vanish. This is a
contradiction.

Suppose that D is split. Then the theta lift of πB+ to GSO3,1 is non-zero by the Rallis tower
property. Moreover, it is not cuspidal by our assumption on π. Thus, the theta lift of πB+ to
GSO2,0 is non-zero, again by the Rallis tower property. Then we reach a contradiction by the
same argument as in the non-split case. �

We may regard θψ(πB+) as an irreducible cuspidal automorphic representation of PGU2,2

or PGU3,1 according to whether D is split or not, under the isomorphism Φ in (2.2.6) or ΦD

in (2.2.5). Recall our assumption that θψw(πB+,w) is generic at a finite place w. Then the non-
vanishing of (Xξ,Λ−1, ψ)-Bessel period on θψ(πB+) implies the non-vanishing of the central value
of the standard L-function for θψ(πB+) of PGU4 twisted by Λ−1, namely

LS
(

1
2 , θψ(πB+) × Λ−1

) 	= 0

for any finite set S of places of F containing all archimedean places because of the unitary group
case of the Gan–Gross–Prasad conjecture for θψ(πB+) proved by Proposition A.2 and Remark A.1
in [FM22]. Moreover, from the explicit computation of local theta correspondence in [GT11b,
Mor14a], we see that

L(s, πv ×AI(Λ)v) = L(s, θψ(πB+)v × Λ−1
v )

at a finite place v where all data are unramified. Thus, when we take S0, a finite set of places of
F containing all archimedean places, so that all data are unramified at v /∈ S0, we have

LS
(

1
2 , π ×AI(Λ)

)
= LS

(
1
2 , θψ(πB+) × Λ

) 	= 0

for any finite set S of places of F with S ⊃ S0.
Let us show an existence of π◦. We denote θψ(πB+) by σ. Then the theta lift Σ :=

Θψ,(Λ−1,Λ−1)(σ) of σ to GU2,2 which we may regard as an automorphic representation of GSO4,2

by the accidental isomorphism (2.2.6), is an irreducible cuspidal globally generic automorphic
representation with trivial central character by the proof of [FM22, Proposition A.2] since θψ(πB+)
has the (Xξ,Λ−1, ψ)-Bessel period.

Here we recall that, by the conservation relation due to Sun and Zhu [SZ15, Theorems 1.10,
7.6], for any irreducible admissible representations τ of GO4,2(k) (respectively, GO3,3(k)) over
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a local field k of characteristic zero, theta lifts of either τ or τ ⊗ det to GSp3(k)+ (respectively,
GSp3(k)) is non-zero. Thus, we may extend Σ to an automorphic representation of GO4,2(A) as
in Harris, Soudry and Taylor [HST93, Proposition 2] so that its local theta lift to GSp3(Fv)+ is
non-zero at every place v.

On the other hand, since Σ is nearly equivalent to σ, we have

LS(s,Σ, std) = LS(s, π, std ⊗ χE)ζSF (s) (4.1.2)

for a sufficiently large finite set S of places of F containing all archimedean places by the explicit
computation of local theta correspondences in [GT11b, Mor14a]. Here

LS(1, π, std ⊗ χE) 	= 0

by Yamana [Yam14, Proof of Theorems 10.2, 10.3], since the theta lift θψ(πB+) of πB+ to GSU3,D(A)
is non-zero and cuspidal. Hence, the left-hand side of (4.1.2) has a pole at s = 1. In particular, it
is non-zero and the theta lift of Σ to GSp3(A)+ is non-zero by Takeda [Tak11, Theorem 1.1 (1)].
Further, again by Takeda [Tak11, Theorem 1.1 (1)], this theta lift actually descends to
GSp2(A)+ = G(A)+. Namely, the theta lift π′+ := θψ−1(Σ) of Σ to G(A)+ is non-zero since
LS(s,Σ, std) actually has a pole at s = 1.

Suppose that π′+ is not cuspidal. Then by the Rallis tower property, the theta lift of Σ to
GL2(A)+ is non-zero and cuspidal. Meanwhile, the local theta lift of Σv to GL2(Fv)+ vanishes
by a computation similar to that for [GRS97, Proposition 3.3] since Σv is generic. This is a
contradiction and, hence, π′+ is cuspidal.

Since Σ is generic, so is π′+ by [Mor14a, Proposition 3.3]. Let us take an extension π◦ of π′+
to G(A). Since |G(Fv)/G(Fv)+| = 2, we have π′v � πv or π′v � πv ⊗ χEv at almost all places v
such that π′+,v � πB+,v. Hence, π is locally G+-nearly equivalent to π◦.

4.2 Some consequences of the proof of Theorem 1.1(i)
As preliminaries for our further considerations, we would like to discuss some consequence of the
proof of Theorem 1.1(i) and related results.

First we note the following result concerning the functorial transfer.

Proposition 4.1. Let (π, Vπ) be an irreducible cuspidal automorphic representation of GD(A)
with a trivial central character. Assume that there exists a finite place w at which πw is generic
and tempered.

Then there exists a globally generic irreducible cuspidal automorphic representation π◦ of
G(A) and an étale quadratic extension E◦ of F such that π◦ is G+,E◦

-nearly equivalent to π.
In particular, we have a weak functorial lift of π to GL4(AE◦) with respect to BC ◦ spin.

Moreover, π is tempered if and only if π◦ is tempered.

Remark 4.1. When D is split, our assumption implies that π has a generic Arthur parameter.
Though our assertion thus follows from the global descent method by Ginzburg, Rallis and
Soudry [GRS11] and Arthur [Art13], we shall present another proof which does not refer to
these papers.

Proof. Suppose that D is split. When π participates in the theta correspondence with GSO3,1,
our assertion follows from [Rob01]. Thus, we now assume that the theta lift of π to GSO3,1 is
zero. By [Li92], π has (S◦,Λ◦, ψ)-Bessel period for some S◦ and Λ◦. When GSO(S◦) is not split,
the existence of a globally generic irreducible cuspidal automorphic representation follows from
Theorem 1.1(i). Suppose that GSO(S◦) is split. Then by Proposition 3.1, the theta lift of π to
GSO3,3 is non-zero. Since πw is generic, the local theta lift of πw to GSO1,1 is zero as in the proof
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of Theorem 1.1(i) and, hence, the theta lift of π to GSO1,1 is zero. Hence, by the Rallis tower
property, either the theta lift of π to GSO2,2 or to GSO3,3 is non-zero and cuspidal. Then π itself
is globally generic by Proposition A.1 in the former case. In the latter case, the global genericity
of π readily follows from the proof of Soudry [Sou87, Proposition 1.1] (see also Theorem on p. 264
of [Sou87]).

In any case when D is split, we have a globally generic irreducible cuspidal automorphic
representation π◦ of G(A) which is nearly equivalent to π. Thus, when we take the strong lift of
π◦ to GL4(A) by [CKPS04], it is a weak lift of π to GL4(A).

Suppose that D is not split. Then by Li [Li92], there exist an η◦ ∈ D−(F ) where E◦ := F (η◦)
is a quadratic extension of F , and a character Λ◦ of A×

E◦/E
×◦ A× such that π has the (η◦,Λ◦)-Bessel

period. Then there exists a desired automorphic representation π◦ of G(A) by Theorem 1.1(i).
Let us discuss the temperedness. Denote σ, Σ and π′+ as in the proof of Theorem 1.1(i).

Suppose that π is tempered. Then the temperedness of σ follows from a similar argument as
in Atobe and Gan [AG17, Proposition 5.5] (see also [GI14, Proposition C.1]) at finite places,
from Paul [Pau98, Theorems 15, 30], [Pau05, Theorems 15, 18, Corollary 24] and Li, Paul, Tan
and Zhu [LPTZ03, Theorems 4.20, 5.1] at real places and from Adams and Barbasch [AB95,
Theorem 2.7] at complex places. Then the temperedness of σ implies that of Σ by Atobe and
Gan [AG17, Proposition 5.5] at finite places, by Paul [Pau00, Theorem 3.4] at non-split real
places, by Mœglin [Mœg89, Proposition III.9] at split real places and by Adams and Barbasch
[AB95, Theorem 2.6] at complex places. As we obtained the temperedness of σ from that of π,
the temperedness of Σ implies that of π′+ and, hence, π◦ is tempered. The opposite direction,
i.e. the temperedness of π◦ implies that of π, follows by the same argument. �
Lemma 4.2. Let π be as in Theorem 1.1(i). Suppose that σ = θψ(πB+) is an irreducible cuspidal
automorphic representation of GSU3,D(A). Here πB+ denotes the unique irreducible constituent
of π|GD(A)+ such that πB+ has the (E,Λ)-Bessel period. We regard σ as an automorphic repre-
sentation of GU4,ε(A) via (2.2.5) or (2.2.6) and let Πσ denote the base change lift of σ|U4,ε(A)

to GL4(AE). Let π◦ be a globally generic irreducible cuspidal automorphic representation of
G(A) whose existence is proved in Theorem 1.1(i). We denote the functorial lift of π◦ to GL4(A)
by Ππ◦ .

Suppose that

Ππ◦ = Π1 � · · · � Π�, (4.2.1)

where Πi are irreducible cuspidal automorphic representations of GLni(A) and

Πσ = Π′
1 � · · · � Π′

k, (4.2.2)

where Π′
j are irreducible cuspidal automorphic representations of GLmj (AE).

Then we have Πσ = BC(Ππ◦), Ππ◦ 	� Ππ◦ ⊗ χE and BC(Πi) is cuspidal for each i.
In particular, we have � = k. Here BC denotes the base change from F to E.

Proof. By the explicit computation of local theta correspondences in [GT11b, Mor14a], we see
that (Πσ)v � BC(Ππ◦)v at almost all finite places v of E. Thus, Πσ = BC(Ππ◦) by the strong
multiplicity one theorem. In addition, by [CKPS04], we know that � = 1 or 2.

Suppose that � = 1. We note that the cuspidality of BC(Ππ◦) is equivalent to Ππ◦ ⊗
χE 	� Ππ◦ . Suppose otherwise, i.e. Ππ◦ � Ππ◦ ⊗ χE . Then Ππ◦ = AI(τ) for some irreducible
cuspidal automorphic representation τ of GL2(AE). Since Ππ◦ is a lift from PGSp2, the central
character of τ needs to be trivial and, hence, τ � τ∨. On the other hand, we have

Πσ = BC(AI(τ)) = τ � τσ.
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Since this is a base change lift of σ|U4,ε(A), we have τ = (τσ)∨ and τ 	� τσ by [AC89] (see also
[PR99, Proposition 3.1]). In particular, τ 	� τ∨ and we have a contradiction. Thus, BC(Ππ◦) is
cuspidal and k = 1.

Suppose that � = 2. First we show that Ππ◦ 	� Ππ◦ ⊗ χE . Suppose otherwise, i.e. Ππ◦ �
Ππ◦ ⊗ χE . Then either Πi � Πi ⊗ χE for i = 1, 2 or Π2 � Π1 ⊗ χE . In the former case, we have
Πi = AI(χi) with a character χi of A×

E/E
× for i = 1, 2. Then we have Ππ◦ = AI(χ1) � AI(χ2)

and Πσ = χ1 � χσ1 � χ2 � χσ2 . Since Ππ◦ is a lift from PGSp2, the central character of AI(χi)
is trivial and, hence, χi |A×= χE . On the other hand, since Πσ is a base change lift of σ|U4,ε(A),
we see that χi |A× is trivial. This is a contradiction. In the latter case, we have BC(Π2) =
BC(Π1 ⊗ χE) = BC(Π1) and, hence, Πσ = BC(Π1) � BC(Π1). This implies that Πσ is not in the
image of the base change lift from the unitary group and again we have a contradiction. Thus, we
have Ππ◦ 	� Ππ◦ ⊗ χE . Then Πi 	� Πi ⊗ χE at least one of i = 1, 2. Suppose that this is so only
for one of the two, say i = 2. Then Π1 = AI(χ) for some character χ of A×

E/E
× and BC(Π2) is

cuspidal. We have Ππ◦ = AI(χ) � Π2 and Πσ = χ� χσ � BC(Π2). Then χ |A× is trivial from the
former equality and χ |A×= χE from the latter equality as above. Hence, we have a contradiction.
Thus, BC(Πi) for i = 1, 2 are both cuspidal, Πσ = BC(Π1) � BC(Π2) and k = 2. �

The following lemma gives the uniqueness of the constant �(π) defined before Theorem 1.2.

Lemma 4.3. Let π be as in Theorem 1.1(i). For i = 1, 2, let Ei be a quadratic extension of F
and π◦i an irreducible cuspidal automorphic representation of G(A) which is G+,Ei-locally near
equivalent to π. Let Ππ◦

i
be the functorial lift of π◦i to GL4(A) and consider the decomposition

Ππ◦
i

= Πi,1 � · · · � Πi,�i for i = 1, 2

as (4.2.1). Then we have �1 = �2.

Proof. Since the case when E1 = E2 is trivial, suppose that E1 	= E2. Let K = E1E2. From the
definition of the base change, we have

BCK/E1
(BCE1/F (Ππ◦

1
)) = BCK/E1

(BCE1/F (Ππ◦
2
)).

Hence,

BCE1/F (Ππ◦
1
) = BCE1/F (Ππ◦

2
) or BCE1/F (Ππ◦

1
) = BCE1/F (Ππ◦

2
) ⊗ χK/E1

where χK/E1
denotes the character of A×

E corresponding to K/E1. In the former case, we have

Ππ◦
1

= Ππ◦
2

or Ππ◦
1

= Ππ◦
2
⊗ χE1

and our claim follows. In the latter case, since χK/E1
= χE2 ◦NE1/F , we have

Ππ◦
1

= Ππ◦
2
⊗ χE2 or Ππ◦

1
= Ππ◦

2
⊗ χE2χE1

and our claim follows. �
Definition 4.1. Let π be as in Theorem 1.1(i). Then we say that π is of type I if π and π ⊗ χE
are nearly equivalent. Moreover, we say that π is of type I-A if π participates in the theta
correspondence with GSO(S1) = GSO3,1 and that π is of type I-B if π participates in the theta
correspondence with GSO(X◦) for some four-dimensional anisotropic orthogonal space X◦ over
F with discriminant algebra E.

Remark 4.2. From the proof of Theorem 1.1(i), if π is not of type I-A, then the theta lift of π
to GSU3,D is cuspidal. Further, we note that D is necessarily split when π is of type I-A or I-B,
by definition.
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In order to study an explicit formula using theta lifts from GD(A), the following lemma will
be important later.

Lemma 4.4. Let π be as in Theorem 1.1(i). Then π is either type I-A or I-B if and only if
π is nearly equivalent to π ⊗ χE . In particular, when π is neither of type I-A nor I-B, π|GD

is
irreducible where

GD = ZGD
(A)GD(A)+GD(F ). (4.2.3)

Proof. Suppose that π is nearly equivalent to π ⊗ χE . Then at almost all places v of F ,
IndGD(Fv)

GD(Fv)+
(π+,v) is irreducible where π+,v is an irreducible constituent of πv |GD(Fv)+ . This

implies that π and π◦ are nearly equivalent and, hence, π◦ is nearly equivalent to π◦ ⊗ χE . Thus,
Ππ◦ is nearly equivalent to Ππ◦ ⊗ χE and, hence, Ππ◦ = Ππ◦ ⊗ χE by the strong multiplicity one
theorem. When π is neither of type I-A nor I-B, this does not happen by Lemmas 4.1 and 4.2.

Suppose that π is either of type I-A or I-B. Then D is split and the functorial lift Ππ of π
to GL4(A) is of the form AI(τ) for an irreducible automorphic representation τ of GL2(AE) by
Roberts [Rob01]. Then we have Ππ = Ππ ⊗ χE . Hence, π is nearly equivalent to π ⊗ χE .

When π is not nearly equivalent to π ⊗ χE , π |GD
is irreducible since GD is of index 2 in

GD(A). �

Remark 4.3. This lemma gives a classification of π such that the twist π ⊗ χE of π by χE has
the same Arthur parameter as π. A classification of π such that π and π ⊗ χE are isomorphic
when GD � G is given in Chan [Cha10].

4.3 Proof of statement (ii) in Theorem 1.1
Suppose that π has a generic Arthur parameter.

When there exists a pair (D′, π′) as described in Theorem 1.1(ii), π and π′ share the
same generic Arthur parameter since they are nearly equivalent to each other. Hence, by
Theorem 1.1(i), we have

LS
(

1
2 , π ×AI(Λ)

)
= LS

(
1
2 , π

′ ×AI(Λ)
) 	= 0

when S is a sufficiently large finite set of places of F . Then by Remark 1.3, we have

L
(

1
2 , π ×AI(Λ)

) 	= 0,

i.e. (1.5.5) holds.
Conversely suppose that L(1

2 , π ×AI(Λ)) 	= 0. There exists an irreducible cuspidal globally
generic automorphic representation π◦ of G(A) which is nearly equivalent to π since π has a
generic Arthur parameter. Let U be a maximal unipotent subgroup of GSO4,2 and ψU be a
non-degenerate character of U(A) defined below by (6.1.2) and (6.1.3), which are the same as
[Mor14a, (2.4)] and [Mor14a, (3.1)], respectively. Let UG be the maximal unipotent subgroup of
GSp2 defined by (6.2.1) and ψUG

the non-degenerate character of UG(A) defined by (6.2.2) in
§ 6.2. Note that in [Mor14a], UG is denoted by N and ψUG

is denoted by ψN in [Mor14a, p. 34]
and [Mor14a, (3.2)], respectively. Then we note that the restriction of π◦ to G(A)+ contains a
unique ψUG

-generic irreducible constituent and we denote it by π◦+. Let us consider the theta
lift Σ := θψ(π◦+) of π◦+ to GSO4,2(A). Then by [Mor14a, Proposition 3.3], we know that Σ is
ψU -globally generic and, hence, non-zero. We divide into two cases according to the cuspidality
of Σ.

Suppose that Σ is not cuspidal. Then by Rallis tower property, π◦+ participates in the theta
correspondence with GSO3,1. As in the proof of Lemma 4.1, the theta lift of π◦+ to GSO2 is zero
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since π◦+ is generic. Hence, the theta lift τ := θX,S1

ψ (π◦+) of π◦+ to GSO3,1 is cuspidal and non-zero.
By Remark 3.1, τ is also irreducible.

Recall that

GSO3,1(F ) � GL2(E) × F×/{(z,NE/F (z)) : z ∈ E×}, PGSO3,1(F ) � PGL2(E).

Then we may regard τ as an irreducible cuspidal automorphic representation of GL2(AE) with
a trivial central character since the central character of π◦+ is trivial.

Let Π denote the strong functorial lift of π◦ to GL4(A) by [CKPS04]. Then at almost all
finite places v of F , we have Πv � AI(τ)v, and thus by the strong multiplicity one theorem,
Π = AI(τ) holds. Since π is nearly equivalent to π◦, Remark 1.3 and our assumption imply that
for a sufficiently large finite set S of places of F , we have

LS
(

1
2 , τ × Λ

)
LS
(

1
2 , τ × Λ−1

)
= LS

(
1
2 , π

◦ ×AI(Λ)
)

= LS
(

1
2 , π ×AI(Λ)

) 	= 0.

Then by Waldspurger [Wal85], τ has the split torus model with respect to the character (Λ,Λ−1).
Hence, the equation in Corbett [Cor17, p. 78] implies that π◦ has the (E,Λ)-Bessel period. Hence,
we may take D′ = Mat2×2 and π′ = π◦. Thus, the case when Σ is not cuspidal is settled.

Suppose that Σ is cuspidal. We may regard Σ as an irreducible cuspidal globally generic
automorphic representation of GU(2, 2) with trivial central character because of the acci-
dental isomorphism (2.2.6). As in the proof of Theorem 1.1(i), our assumption implies that
L(1

2 ,Σ × Λ) 	= 0. Then by [FM22, Proposition A.2], there exists an irreducible cuspidal auto-
morphic representation Σ′ of GU(V ) such that Σ′ is locally U(V )-nearly equivalent to Σ and Σ′

has the (e,Λ, ψ)-Bessel period where V is a 4-dimensional hermitian space over E whose Witt
index is at least 1. Then we note that PGU(V ) � PGSO4,2 or PGU3,D′ for some quaternion
division algebra D′ over F .

In the first case, we consider the theta lift π′+ := θψ−1(Σ′) of Σ′ to G(A)+. Then by the
same argument as in the proof of Theorem 1.1(i), we see that π′+ 	= 0 by Takeda [Tak11,
Theorem 1.1 (1)] and that it is an irreducible cuspidal automorphic representation of G(A)+.
Since Σ′ has the (e,Λ, ψ)-Bessel period, π′+ has the (E,Λ)-Bessel period by Proposition 3.1. From
the definition, π′+ is nearly equivalent to π◦+. Let us take an irreducible cuspidal automorphic
representation (π′, Vπ′) of G(A) such that π′ |G(A)+⊃ π′+. Then π′ is locally G+-nearly equivalent,
and thus either π′ or π′ ⊗ χE is nearly equivalent to π by Remark 1.2. Since both π′ and π′ ⊗ χE
have the (E,Λ)-Bessel period, our claim follows.

In the second case, we consider the theta lift of Σ′ to GD′(A). Then by an argument similar
to that in the first case, we may show that the theta lift of Σ′ to GD′(A) contains an irreducible
constituent which is cuspidal, locally G+-nearly equivalent to π and has the (E,Λ)-Bessel period.
Here we use [Yam14, Lemma 10.2] and its proof in the case of (I1) with n = 3,m = 2, noting
Remark 4.5. This completes our proof of the existence of a pair (D′, π′).

Let us show the uniqueness of a pair (D′, π′) under the assumption that π is tempered.
Suppose that for i = 1, 2 there exists a pair (Di, πi) where Di is a quaternion algebra over F and
πi is an irreducible cuspidal automorphic representation of GDi(A) which is nearly equivalent to
π such that πi has the (E,Λ)-Bessel period.

Suppose that πi is nearly equivalent to πi ⊗ χE for i = 1, 2. Then by Lemma 4.4, π1, π2

are of type I-A or I-B and, in particular, D1 � D2 � Mat2×2. Hence, for i = 1, 2, there exist
a four-dimensional orthogonal space Xi over F with discriminant algebra E and an irre-
ducible cuspidal automorphic representation σi of GSO(Xi,A) such that πi = θψ(σi). Since
PGSO(Xi, F ) � (D′

i)
×(E)/E× for some quaternion algebra D′

i over F , we may regard σi as
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an automorphic representation of (D′
i)
×(AE) with the trivial central character. Since πi has

the (E,Λ)-Bessel period, σi has the split torus period with respect to a character (Λ,Λ−1) by
[Cor17, p. 78]. Hence, D′

i(E) � Mat2×2(E) by [Wal85]. Since σ1 is nearly equivalent to σ2, we
have σ1 = σ2 by the strong multiplicity one. Thus, π1 � π2.

Suppose that πi is neither type I-A nor I-B for i = 1, 2. For each i, let us take a unique
irreducible constituent πBi,+ of πi|GDi

(A)+ that has the (ξi,Λ, ψ)-Bessel period. Note that πB1,+
and πB2,+ are nearly equivalent to each other.

Now let σi denote the theta lift θψ(πBi,+) of πBi,+ to GSU3,Di . Then we regard σi as an auto-
morphic representation of GU4,ε via (2.2.5), (2.2.6) and let Σi := Θψ,(Λ−1,Λ−1) denote the theta
lift of σi to GU2,2. In turn, we regard Σi as an automorphic representation of GSO4,2 via (2.2.6)
and we denote by π′i,+ its theta lift to G(A)+. Then from the proof of Theorem 1.1(i), σi, Σi and
π′i,+ are irreducible and cuspidal. Moreover, π′1,+ and π′2,+ are both globally generic and nearly
equivalent to each other. Furthermore, since πi is tempered, σi = θψ(πBi,+) is tempered at finite
places by an argument similar to that in Atobe and Gan [AG17, Proposition 5.5] (see also [GI14,
Proposition C.1]) and similarly at real and complex places by Paul [Pau98, Theorems 15, 30]
and Li, Paul, Tan and Zhu [LPTZ03, Theorems 4.20, 5.1] and, by Adams and Barbasch [AB95,
Theorem 2.7], respectively. Similarly Σi and π′i,+ are also tempered.

By Propositions 3.1 and 3.2, we know that σi has the (Xξi ,Λ, ψ)-Bessel period. Let GUi

denote the similitude unitary group which modulo center is isomorphic to PGSU3,Di by (2.2.5).
Then σi |Ui has a unique irreducible constituent νi which has the (Xξi ,Λ, ψ)-Bessel period. Then
by Beuzart-Plessis [Beu16, Beu20] (also by Xue [Xue23] at the real place), we see that U1 � U2

since ν1 and ν2 are equivalent to each other. This implies that D1 � D2 and, hence, GD1 � GD2 .
Let D′ � Di for i = 1, 2.

We take an irreducible cuspidal automorphic representation π′i of G(A) such that π′i|G(A)+

contains π′i,+. Then by Remark 1.2, we may suppose that π′1 is nearly equivalent to π′2 or π′2 ⊗ χE .
Thus replacing π′2 by π′2 ⊗ χE if necessary, we may assume that π′1 and π′2 are nearly equivalent
to each other. Then since π′1 and π′2 are generic and they have the same L-parameter because of
the temperedness of π′i, we have π′1 � π′2 by the uniqueness of the generic member in the L-packet
by Atobe [Ato17] or Varma [Var17] at finite places and by Vogan [Vog78] at archimedean places.
Hence, in particular, π′1,+ � π′2,+.

From the definition of π′+,i, we get πB1,+ � πB2,+. Then, we see that π1 � π2 ⊗ ω for some
character ω of GD′(A) such that ωv is trivial or χE,v at each place v of F . Since π1 and π2 have
the same L-parameter, π1,v and π1,v ⊗ ωv are in the same L-packet for every place v of F .

Let us take a place v of F , and write the L-parameter of π1,v as φv : WDFv → G1(C). If φv is
an irreducible four-dimensional representation, the L-packet of φv is singleton and, thus, π1,v �
π2,v. Thus, let us suppose that φv = φ1 ⊕ φ2 with two-dimensional irreducible representations φi.
Further, we may suppose that ωv = χE,v since there is nothing to prove when ωv is trivial. This
implies that φv ⊗ χE,v � φv. Then, by [PR99, Proposition 3.1], we have φi = π(χi) for some
character χi of E×

v for i = 1, 2. Moreover, any member of the L-packet of π1 is given by the
theta lift from an irreducible representation JL(π(χ1)) � π(χ2) of D′(Fv)× × GL2(Fv) where JL
denotes the Jacquet–Langlands transfer. Since the theta lift preserves the character twist, we
see that

θ(JL(π(χi)) � π(χj)) ⊗ χE,v � θ(JL(π(χi)) � π(χj))

by π(χi) ⊗ χE,v � π(χi). This shows that in this case, any element in the L-packet is invariant
under the twist by χE,v. Thus π1,v ⊗ χE,v � π2,v and, hence, π1,v � π2,v.
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Remark 4.4. As we remarked in the end of § 1.5, the uniqueness of (D′, π′) follows from the local
Gan–Gross–Prasad conjecture for (SO(5),SO(2)), which is proved by Luo [Luo20] at archimedean
places and by Prasad and Takloo-Bighash [PT11] (see also Waldspurger [Wal12b] in general case)
at finite places. Our proof gives another proof of the uniqueness.

Remark 4.5. There is a typo in the statement of [Yam14, Lemma 10.2]. The first condition stated
there should be the holomorphy at s = −sm + 1

2 .

5. Rallis inner product formula for similitude groups

In this section, as a preliminary for the proof of Theorem 1.2, we recall Rallis inner product
formulas for similitude dual pairs.

5.1 For the theta lift from G to GSO4,2

In this section, we shall recall the Rallis inner product formula for the theta lift fromG to GSO4,2.
It is derived from the isometry case in a manner similar to that in Gan and Ichino [GI11, § 6],
where the case of the theta lift from GL2 to GSO3,1 is treated.

Let (π, Vπ) be an irreducible cuspidal automorphic representation of G(A) with a trivial
central character. Let us define a subgroup G of G(A) by

G := ZG(A)G(A)+G(F ) (5.1.1)

and in this section we assume that:

the restriction of π to G is irreducible, i.e. π ⊗ χE 	� π (5.1.2)

for our later use.
Let us recall the notation in § 3.1.2. Thus X denotes the four-dimensional symplectic space on

which G acts on the right and Y denotes the six-dimensional orthogonal space on which GSO4,2

acts on the left. Then Z = X ⊗ Y is a symplectic space over F . Here we take X± ⊗ Y as the
polarization and we realize the Weil representation ωψ of Mp(Z)(A) on Vω := S((X+ ⊗ Y )(A)).

Put X� = X ⊕ (−X). Then X� is naturally a symplectic space. Let G̃ := GSp(X�) and we
denote by G a subgroup of G×G given by

G := {(g1, g2) ∈ G×G : λ(g1) = λ(g2)},
which has a natural embedding ι : G → G̃. We define the canonical pairing Bω : Vω ⊗ Vω → C
by

Bω(ϕ1, ϕ2) :=
∫

(X+⊗Y )(A)
ϕ1(x)ϕ2(x) dx for ϕ1, ϕ2 ∈ Vω

where dx denotes the Tamagawa measure on (X+ ⊗ Y )(A).
Let Z̃ = X� ⊗ Y and we take a polarization Z̃ = Z̃+ ⊕ Z̃− with

Z̃± := (X± ⊕ (−X±)) ⊗ Y,

where the double sign corresponds. Let us denote by ω̃ψ the Weil representation of Mp(Z̃(A))
on S(Z̃+(A)). On the other hand, let

X∇ := {(x,−x) : x ∈ X} and X̃∇ := X∇ ⊗ Y.

Then we have a natural isomorphism

Vω ⊗ Vω � S(X̃∇(A))
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by which we regard S(X̃∇(A)) as a representation of Mp(Z)(A) × Mp(Z)(A). Meanwhile, we
may realize ω̃ψ on S(X̃∇(A)) and indeed we have an isomorphism

δ : S(Z̃+(A)) → S(X̃∇(A))

as representations of Mp(Z̃)(A) such that

δ(ϕ1 ⊗ ϕ2)(0) = Bω(ϕ1, ϕ2) for ϕ1, ϕ2 ∈ Vω.

Let us define Petersson inner products on G(A) and G(A)+ as follows. For f1, f2 ∈ Vπ, we define
the Petersson inner product ( , )π on G(A) by

(f1, f2)π :=
∫

A×G(F )\G(A)
f1(g)f2(g) dg

where dg denotes the Tamagawa measure. Then regarding f1, f2 as automorphic forms on G(A)+,
we define

(f1, f2)+π :=
∫

A×G(F )+\G(A)+
f1(h)f2(h) dh,

where the measure dh is normalized so that

vol(A×G(F )+\G(A)+) = 1.

Then from our assumption (5.1.2) on π, as in [GI11, Lemma 6.3], we see that

(f1, f2)+π = 1
2(f1, f2)π

since Vol(A×G(F )\G(A)) = 2. For each place v of F , we take a hermitian G(Fv)-invariant local
pairing ( , )πv of πv so that

(f1, f2)π =
∏
v

(f1,v, f2,v)πv for fi = ⊗v fi,v ∈ Vπ (i = 1, 2). (5.1.3)

We also choose a local Haar measure dgv on G(Fv) for each place v of F so that Vol(KG,v, dgv) = 1
at almost all v, whereKG,v is a maximal compact subgroup ofG(Fv). We define positive constants
CG by

dg = CG ·
∏
v

dgv.

Local doubling zeta integrals are defined as follows. Let I(s) denote the degenerate principal
series representation of G̃(A) defined by

I(s) := IndG̃(A)

P̃ (A)
(χE δ

s/9

P̃
),

where P̃ denotes the Siegel parabolic subgroup of G̃. Then for each place v, we define a local
zeta integral by

Zv(s,Φv, f1,v, f2,v) :=
∫
G1(Fv)

Φv(ι(gv, 1), s)(πv(gv)f1,v, f2,v)πv dgv

for Φv ∈ I(s), f1,v, f2,v ∈ Vπv , where G1 = {g ∈ G : λ(g) = 1}. The integral converges absolutely
at s = 1

2 when Φv ∈ Iv(s) is a holomorphic section by [PR, Proposition 6.4] (see also [GI11,
Lemma 6.5]). Moreover, when we define a map S(X̃∇(A)) � ϕ �→ [ϕ] ∈ I(1

2) by

[ϕ]
(
g,

1
2

)
:= |ν(g)|−4

(
ω̃ψ

((
14

λ(g)−114

)
g

)
ϕ

)
(0),

we may naturally extend [ϕ] to a holomorphic section in I(s).
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By an argument similar to that in the proof of [GI11, Proposition 6.10], we may derive
the following Rallis inner product formula in the similitude groups case from the one [GQT14,
Theorem 8.1] in the isometry groups case.

Proposition 5.1. Keep the above notation.
Then for decomposable vectors f = ⊗fv ∈ Vπ and φ = ⊗φv ∈ Vω, we have

〈Θ(f ;φ),Θ(f ;φ)〉
(f, f)π

= CG · 1
2
· L(1, π, std ⊗ χE)
L(3, χE)L(2,1)L(4,1)

∏
v

Z�v

(
1
2
, [δ(φv ⊗ φv)], fv, fv

)
.

Here we recall that Θψ(f ;φ) is the theta lift of f to GO4,2, 〈 , 〉 denotes the Petersson inner
product with respect to the Tamagawa measure and we define

Z�v

(
1
2
, [δ(φv ⊗ φv)], fv, fv

)
:=

1
(fv, fv)πv

L(3, χEv/Fv
)L(2,1v)L(4,1v)

L(1, πv, std ⊗ χEv/Fv
)

Zv

(
1
2
, [δ(φv ⊗ φv)], fv, fv

)
,

which is equal to 1 at almost all places v of F by [PR].

Recall that θ(f ;φ) denotes the restriction of Θψ(f ;φ) to GSO4,2(A), namely the theta lift of
f to GSO4,2. Then as in [GI11, Lemma 2.1], we see that

2〈Θ(f ;φ),Θ(f ;φ)〉 = 〈θ(f ;φ), θ(f ;φ)〉,
where the right-hand side denotes the Petersson inner product on GSO4,2 with respect to the
Tamagawa measure. Hence, Proposition 5.1 yields

〈θ(f ;φ), θ(f ;φ)〉
(f, f)π

= CG · L(1, π, std ⊗ χE)
L(3, χE)L(2,1)L(4,1)

∏
v

Z�v

(
1
2
, [δ(φv ⊗ φv)], fv, fv

)
. (5.1.4)

5.2 Theta lift from GD to GSU3,D

In this subsection, we shall consider the Rallis inner product formula for the theta lift from GD
to GSU3,D as in the previous section. We recall that the formula in the case of isometry groups is
proved by Yamana [Yam14, Lemma 10.1] where our case corresponds to (I3) with m = 3, n = 2.

Let (π, Vπ) be an irreducible cuspidal automorphic representation of GD(A) with a trivial
central character. Recall that GD denotes the subgroup of GD(A) given by (4.2.3). In this section,
assume that

the restriction of π to GD is irreducible (5.2.1)
for our later use.

Let us recall the notation in § 3.2.2. Thus, XD denotes the hermitian space of degree two
over D on which GD acts on the right and YD denotes the skew-hermitian space of degree three
over D on which GSU3,D acts on the left. Then ZD = XD ⊗D YD is a symplectic space over F
by (3.2.1). Here we take XD,± ⊗D YD as the polarization and we realize the Weil representation
ωψ of Mp(ZD)(A) on Vω,D := S((XD,+ ⊗D YD)(A)).

Put X�
D = XD ⊕XD. Then X�

D is naturally a hermitian space over D. Let G̃D := GU(X�
D)

and we denote by GD a subgroup of GD ×GD given by

GD := {(g1, g2) ∈ GD ×GD : λ(g1) = λ(g2)},
which has a natural embedding ι : GD → G̃D. We define the canonical pairing Bω : Vω,D ⊗
Vω,D → C by

Bω(ϕ1, ϕ2) :=
∫

(XD,+⊗YD)(A)
ϕ1(x)ϕ2(x) dx for ϕ1, ϕ2 ∈ Vω,D,

where dx denotes the Tamagawa measure on (XD,+ ⊗ YD)(A).

2158

https://doi.org/10.1112/S0010437X24007267 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007267


Gross–Prasad conjecture and Böcherer conjecture

Let Z̃D = X�
D ⊗ YD and we take a polarization Z̃D = Z̃D,+ ⊕ Z̃D,− with

Z̃D,± = (XD,± ⊕−XD,±) ⊗ YD,

where the double sign corresponds. Let us denote by ω̃ψ the Weil representation of Mp(Z̃D)(A)
on S(Z̃D,+(A)). On the other hand, let

X∇
D := {(x, x) : x ∈ XD} and X̃∇

D := X∇
D ⊗ YD.

Then we have a natural isomorphism

Vω,D ⊗ Vω,D � S(X̃∇
D (A))

by which we regard S(X̃∇
D (A)) as a representation of Mp(ZD)(A) × Mp(ZD)(A). Meanwhile, we

may realize ω̃ψ on S(X̃∇
D (A)) and indeed we have an isomorphism

δ : S(Z̃D,+(A)) → S(X̃∇
D (A))

as representations of Mp(Z̃D)(A) such that

δ(ϕ1 ⊗ ϕ2)(0) = Bω(ϕ1, ϕ2) for ϕ1, ϕ2 ∈ Vω,D.

Let us define Petersson inner products on GD(A) and GD(A)+ as follows. For f1, f2 ∈ VπD , we
define the Petersson inner product ( , )πD on GD(A) by

(f1, f2)πD :=
∫

A×GD(F )\GD(A)
f1(g) f2(g) dg,

where dg denotes the Tamagawa measure. Then regarding f1, f2 as automorphic forms on
GD(A)+, we define

(f1, f2)+πD
:=
∫

A×GD(F )+\GD(A)+
f1(h) f2(h) dh,

where the measure dh is normalized so that

vol(A×GD(F )+\GD(A)+) = 1.

Then from our assumption (5.2.1) on πD, as in [GI11, Lemma 6.3], we see that

(f1, f2)+πD
= 1

2(f1, f2)πD

since Vol(A×GD(F )\GD(A)) = 2. For each place v of F , we take a hermitian GD(Fv)-invariant
local pairing ( , )πD,v of πD,v so that

(f1, f2)πD =
∏
v

(f1,v, f2,v)πD,v for fi = ⊗v fi,v ∈ VπD (i = 1, 2). (5.2.2)

As in the previous section, we choose local Haar measures dgv on GD(Fv) at each place v of F
and we have

dg = CGD
·
∏
v

dgv

for some positive constant CGD
.
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Local doubling zeta integrals are defined as follows. Let ID(s) denote the degenerate principal
series representation of G̃D(A) defined by

ID(s) := IndG̃D(A)

P̃D(A)
(χE δ

s/9

P̃D
),

where P̃D denotes the Siegel parabolic subgroup of G̃D. Then for each place v, we define a local
zeta integral for Φv ∈ ID,v(s), f1,v, f2,v ∈ VπD,v by

Zv(s,Φv, f1,v, f2,v) :=
∫
G1

D(Fv)
Φv(ι(gv, 1), s)(πD,v(gv)f1,v, f2,v)πv dgv,

where G1
D = {g ∈ GD : λ(g) = 1}. The integral converges absolutely at s = 1

2 when Φv ∈ ID,v(s)
is a holomorphic section by [PR, Proposition 6.4] (see also [GI11, Lemma 6.5]). Moreover, when
we define a map S(X̃∇

D (A)) � ϕ �→ [ϕ] ∈ ID(1
2) by

[ϕ]
(
g,

1
2

)
:= |λ(g)|−4

(
ω̃ψ

((
14

λ(g)−114

)
g

)
ϕ

)
(0),

we may naturally extend [ϕ] to a holomorphic section in ID(s).
By an argument similar to that in the proof of [GI11, Proposition 6.10], we may derive the

following Rallis inner product formula in the similitude groups case from that [Yam13, Theorem 2]
in the isometry groups case.

Proposition 5.2. Keep the above notation.
Then for decomposable vectors f = ⊗fv ∈ VπD and φ = ⊗φv ∈ Vω,D, we have

〈θ(f ;φ), θ(f ;φ)〉
(fπD , fπD)

=
L(1, π, std ⊗ χE)

L(3, χE)L(2,1)L(4,1)

∏
v

Z�v

(
1
2
, [δ(φv ⊗ φv)], fv, fv

)
.

Here recall that θψ(f ;φ) is the theta lift of f to GSU3,D, 〈 , 〉 denotes the Petersson inner product
with respect to the Tamagawa measure and we define

Z�v

(
1
2
, [δ(φv ⊗ φv)], fv, fv

)
:=

1
(fv, fv)πD,v

L(3, χEv/Fv
)L(2,1v)L(4,1v)

L(1, πv, std ⊗ χEv/Fv
)

× Zv

(
1
2
, [δ(φv ⊗ φv)], fv, fv

)
,

which is equal to 1 at almost all places v of F by [PR].

6. Explicit formula for Bessel periods on GU(4)

Let GU(4) stand for one of GU2,2 or GU3,1. In [FM22], the explicit formula for the Bessel periods
on GU(4) is proved under the assumption that the explicit formula for the Whittaker periods
on GU2,2 holds. In this section we shall show that this assumption is indeed satisfied in the
cases we need, from the explicit formula for the Whittaker periods on G = GSp2, which, in turn,
will be proved in Appendix A. Thus, the explicit formula for the Bessel periods on GU(4) holds
by [FM22], in the cases which we need for the proof of Theorem 1.2.

6.1 Explicit formulas
Let (π, Vπ) be an irreducible cuspidal tempered globally generic automorphic representation of
G(A) such that π|G is irreducible. We recall that the subgroup G of G(A) is defined by (5.1.1). Let
π◦ denote the unique generic irreducible constituent of π|G(A)+ . Let (Σ, VΣ) denote the theta lift of
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π◦ to GSO4,2(A). Then as in [Mor14a, Proposition 3.3], we know that Σ is an irreducible globally
generic cuspidal tempered automorphic representation. Here we prove the explicit formula for
the Whittaker periods for Σ assuming the explicit formula for the Whittaker periods for π.

Let us recall some notation. Let X,Y, Y0 and Z be as in § 3.1.2 and we use a polarization
Z = Z+ ⊕ Z− with

Z± = (X ⊗ Y±) ⊕ (X± ⊗ Y0),

where the double sign corresponds. We write z+ = (a1, a2; b1, b2) when

z+ = a1 ⊗ y1 + a2 ⊗ y2 + b1 ⊗ e1 + b2 ⊗ e2 ∈ Z+ with ai ∈ X, bi ∈ X+.

Recall that the unipotent subgroups N0, N1 and N2 of GSO4,2 are defined by (3.1.10), (3.1.11)
and (3.1.12), respectively. Let us define an unipotent subgroup Ũ of GSO4,2 by

Ũ :=

⎧⎪⎪⎨⎪⎪⎩ũ(b) :=

⎛⎝1 −tX̃S1 0
0 14 X̃
0 0 1

⎞⎠ : X̃ =

⎛⎜⎜⎝
0
0
0
−b

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , (6.1.1)

where S1 is given by (2.1.2). Let
U := N4,2Ũ . (6.1.2)

Then U is a maximal unipotent subgroup of GSO4,2 and we have

N0 � N0N1 � N0N1N2 = N4,2 � N4,2Ũ = U.

Then we define a non-degenerate character ψU of U(A) by

ψU (u0(x)u1(s1, t1)u2(s2, t2)ũ(b)) := ψ(2dt2 + b). (6.1.3)

By [Mor14a, Proposition 3.3], Σ is ψU -generic. Namely

WψU (ϕ) :=
∫
U(F )\U(A)

ϕ(u)ψ−1
U (u) du for ϕ ∈ VΣ,

is not identically zero on VΣ. Now we regard Σ as an automorphic representation of GU2,2 by the
accidental isomorphism (2.2.6) and let ΠΣ = Π′

1 � · · · � Π′
� denote the base change lift of Σ |U2,2

to GL4(AE) where Π′
i is an irreducible cuspidal automorphic representations of GLmi(AE). Here

the existence of ΠΣ follows from [KMSW14].
Recall that in § 5.1, the Petersson inner products on G(A) and GSO4,2(A) using the

Tamagawa measures, denoted respectively as ( , ) and 〈 , 〉, are introduced. Moreover at each
place v of F , we choose and fix an G(Fv)-invariant hermitian inner product ( , )v on Vπ◦

v
so that

the decomposition formula (5.1.3) holds. Similarly at each place v, we choose and fix a
GSO4,2(Fv)-invariant hermitian inner product 〈 , 〉v on VΣv so that the decomposition formula

〈φ1, φ2〉 =
∏
v

〈φ1,v, φ2,v〉v for φi = ⊗vφi,v ∈ VΣ (i = 1, 2) (6.1.4)

holds.
Then as in § 2.4, at each place v of F , we may define a local period Wv(ϕv) for ϕv ∈ VΣv by

the stable integral

Wv(ϕv) :=
∫ st

U(Fv)

〈Σv(nv)ϕv, ϕv〉v
〈ϕv, ϕv〉v · ψ−1

U (nv) dnv (6.1.5)

when v is finite. When v is archimedean, we use the Fourier transform to define Wv(ϕv). See
[Liu16, Propositions 3.5, 3.15] for the details.
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We shall prove the following theorem, namely the explicit formula for the Whittaker periods
on VΣ, in § 6.2.

Theorem 6.1. For a non-zero decomposable vector ϕ = ⊗ϕv ∈ VΣ, we have

|WψU (ϕ)|2
〈ϕ,ϕ〉 =

1
2�

·
∏4
j=1 L(j, χjE)

L(1,ΠΣ,As+)
·
∏
v

W◦
v (ϕv), (6.1.6)

where

W◦
v (ϕv) :=

L(1,ΠΣv ,As+)∏4
j=1 L(j, χjEv

)
· Wv(ϕv).

Here we note that W◦
v (ϕv) = 1 at almost all places v by Lapid and Mao [LM15].

Before proceeding to the proof of Theorem 6.1, by assuming it, we prove the following
theorem, namely the explicit formula for the Bessel periods on GU(4).

Theorem 6.2. Let (π, Vπ) be an irreducible cuspidal tempered automorphic representation of
GD(A) with trivial central character. Suppose that π has the (ξ,Λ, ψ)-Bessel period and that π
is neither of type I-A nor type I-B. Let πB+ denote the unique irreducible constituent of π|GD(A)+

which has the (ξ,Λ, ψ)-Bessel period. We denote by (σ, Vσ) the theta lift of πB+ to GSU3,D, which
is an irreducible cuspidal automorphic representation by Lemmas 4.1 and 4.4.

Then for a non-zero decomposable vector ϕ = ⊗ϕv ∈ Vσ, we have

|BX,ψ.Λ(ϕ)|2
(ϕ,ϕ)

=
1
2�

( 4∏
j=1

L(1, χjE)
)

L(1
2 , σ × Λ−1)

L(1, π, std ⊗ χE)L(1, χE)

∏
v

α�Λv ,ψX,v
(ϕv),

where

α�Λv ,ψX,v
(ϕv) =

( 4∏
j=1

L(1, χjE,v)
)−1L(1, πv, std ⊗ χE,v)L(1, χEv)

L(1
2 , σv × Λ−1

v )
· αΛv ,ψX,v

(ϕv)
(ϕv, ϕv)v

and X ∈ D× is taken so that ξ = SX in (3.2.5).

Proof. Let us regard σ as an automorphic representation of GU(4) with trivial central character
via the accidental isomorphisms Φ (2.2.6) or ΦD (2.2.5), depending whether D is split or not.
Let θ(σ) = Θψ,(Λ−1,Λ−1)(σ) denote the theta lift of σ to GU2,2 with respect to ψ and (Λ−1,Λ−1).
By [FM22, Proposition 3.1], θ(σ) is globally generic and, in particular, non-zero. By the same
argument as in the proof of [FM22, Theorem 1], we see that θ(σ) is cuspidal and hence irreducible
by Remarks 3.1 and 3.2. Moreover by the unramified computations in [Kud86] and [Mor14a,
(3.6)], we see that LS(s,Σ,∧2

t ) has a pole at s = 1 when S is a sufficiently large finite set of
places of F containing all archimedean places, where LS(s,Σ,∧2

t ) denotes the twisted exterior
square L-function of Σ (see [FM13b, § 2.1.1] for the definition). Since θ(σ) is generic, [FM13b,
Theorem 4.1] implies that it has the unitary Shalika period defined in [FM13b, (2.5)]. Then,
by [Mor14a, Theorem B], the theta lift of θ(σ) to G(A)+, which we denote by (π′+, Vπ′

+
), is an

irreducible cuspidal globally generic automorphic representation of G(A)+. We note that πB+ is
nearly equivalent to π′+.

Let us take an irreducible cuspidal automorphic representation (π′, Vπ′) of G(A) such that
Vπ′ |G(A)+ ⊃ Vπ′

+
. Then π′ is globally generic. Moreover, π′ ⊗ χE is not nearly equivalent to π′

by our assumption on π. Hence, π′|G is irreducible. Thus, we may apply Theorem 6.1, taking
π◦ = π′ and Σ = θ(σ), and we obtain the explicit formula for the Whittaker periods on θ(σ).
Then by [FM22, Theorem A.1], the required explicit formula for the Bessel periods follows. �
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6.2 Proof of Theorem 6.1
We reduce Theorem 6.1 to a certain local identity in § 6.2.2 and then prove the local identity in
§ 6.2.3.

As we stated in the beginning of this section, what we do essentially is to deduce the explicit
formula (6.1.6) for the Whittaker periods on GSO4,2 from (6.2.3) below, the one for the Whittaker
periods on G.

6.2.1 Explicit formula for the Whittaker periods on G = GSp2. Let UG denote the maximal
unipotent subgroup of G. Namely

UG :=
{
m(n)

(
12 X
0 12

)
: X ∈ Sym2, n ∈ N2

}
, (6.2.1)

where m(h) =
(
h 0
0 th−1

)
for h ∈ GL2 and N2 denotes the group of upper unipotent matrices

in GL2. Then we define a non-degenerate character ψUG
of UG(A) by

ψUG
(u) := ψ(u1 2 + d u2 4) for u = (ui j) ∈ UG(A). (6.2.2)

Then for an automorphic form φ on G(A), we define the Whittaker period WψUG
(φ) of φ by

WψUG
(φ) =

∫
UG(F )\UG(A)

φ(n)ψ−1
UG

(n) dn.

The following theorem shall be proved in Appendix A.

Theorem 6.3. Suppose that (π, Vπ) is an irreducible cuspidal tempered globally generic auto-
morphic representation of G(A). Let Ππ = Π1 � · · · � Πk denote the functorial lift of π to
GL4(A).

Then for any non-zero decomposable vector ϕ = ⊗ϕv ∈ Vπ, we have

|WψUG
(ϕ)|2

(ϕ,ϕ)
=

1
2k

·
∏2
j=1 ξF (2j)

L(1,Ππ,Sym2)
·
∏
v

W◦
G,v(ϕv). (6.2.3)

Here W◦
G,v(ϕv) is defined by

W◦
G,v(ϕv) =

L(1,Ππ,v,Sym2)∏2
j=1 ζFv(2j)

WG,v(ϕv)

and WG,v(ϕv) is defined by

WG,v(ϕv) =
∫ st

UG(Fv)

(π◦v(n)ϕv, ϕv)
(ϕv, ϕv)

ψ−1
UG

(n) dn

when v is finite and by the Fourier transform when v is archimedean.

6.2.2 Reduction to a local identity. Let us go back to the situation stated in the beginning
of § 6.1.

First we note that the unramified computation in [Kud86] implies the following lemma.

Lemma 6.1. There exists a finite set S0 of places of F containing all archimedean places such
that for a place v /∈ S0, we have

L(1,ΠΣv ,As+) = L(1, πv, std ⊗ χE)L(1,Ππ,v,Sym2)L(1, χEv).

Let us recall the following pull-back formula for the Whittaker period on Σ = θψ(π◦).
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Proposition 6.1 [Mor14a, p. 40]. Let f ∈ Vπ◦ and φ ∈ S(Z+(A)). Then

WψU (θ(φ; f)) =
∫
N(A)\G1(A)

(ωψ(g1, 1)φ)((x−2, x−1, 0, x2))WψUG
(π◦(g1)f) dg1. (6.2.4)

Suppose that f = ⊗fv and φ = ⊗φv. Then by an argument similar to that in obtaining
[FM21, (2.27)], when WψUG

(f) 	= 0, we have

WψU (θ(φ; f)) = CG1 ·WψUG
(f) ·

∏
v

L◦
v(φv, fv),

where

L◦
v(φv, fv) :=

∫
N(Fv)\G1(Fv)

(ωψv(g1, 1)φv)((x−2, x−1, 0, x2))W◦
G,v(π

◦
v(g1)fv) dg1,v

when φ = ⊗vφv and f = ⊗vfv. We also define

Lv(φv, fv) :=

∏2
j=1 ξf (2j)

L(1,Ππ,v,Sym2)
L◦
v(φv, fv)

WG,v(fv)
.

Here the measures are taken as the following. Let dgv be the measure on G1(Fv) defined by the
gauge form and dnv the measure on N(Fv) defined in the manner stated in § 1.2. Then we take
the measure dg1,v on N(Fv)\G1(Fv) so that dgv = dnv dg1,v.

Let Θ(π◦v , ψv) := HomG(Fv)+(Ωψv , π̄
◦
v) where Ωψv is the extended local Weil representation of

G(Fv)+ × GSO4,2(Fv) realized on S(Z+(Fv)), the space of Schwartz–Bruhat functions on Z+(Fv).
We recall that the action of G(Fv)+ × GSO4,2(Fv) on S(Z+(Fv)) via Ωψv is defined as in the
global case (see, e.g., [Mor14a, 2.2]). We also recall that for Σ = θψ(π◦), we have Σ = ⊗vΣv

where Σv = θψv(π
◦
v) is the local theta lift of π◦v .

Let

θv : S(Z+(Fv)) ⊗ Vπ◦
v
→ VΣv

be a G(Fv)+ × GSO4,2(Fv)-equivariant linear map, which is unique up to a scalar multiplication.
Since the global mapping

S(Z+(A)) ⊗ Vπ◦ � (φ′, f ′) �→ θψ(φ′; f ′) ∈ VΣ

is G(Fv)+ × GSO4,2(Fv)-equivariant at any place v, by the uniqueness of θv, we may adjust {θv}v
so that

θψ(φ′; f ′) = ⊗vθv(φ′v ⊗ f ′v) for f ′ = ⊗vf
′
v ∈ Vπ◦ , φ′ = ⊗v φ

′
v ∈ S(Z+(A)).

Then as in [FM21, § 2.4], combining Theorem 6.3, the Rallis inner product formula (5.1.4),
Lemmas 6.1 and 4.2 and Proposition 6.1, we see that a proof of Theorem 6.1 is reduced to a
proof of the following local identity (6.2.5).

Proposition 6.2. Let v be an arbitrary place of F . For a given fv ∈ V∞
π◦

v
satisfying

WG,v(fv) 	= 0, there exists φv ∈ S(Z+(Fv)) such that the local integral Lv(φv, fv) converges
absolutely, Lv(φv, fv) 	= 0 and the equality

Zv(φv, fv, πv) · Wv(θ(φv ⊗ fv))
|Lv(φv, fv)|2 = WG,v(fv) (6.2.5)

holds with respect to the specified local measures.
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Let us define a hermitian inner product Bωv on S(Z+(Fv)) by

Bωv(φ, φ
′) =

∫
Z+(Fv)

φ(x)φ′(x) dx for φ, φ′ ∈ S(Z+(Fv)).

Here on Z+(Fv) � (Fv)12, we take the product measure of the one on Fv. Then we consider the
integral

Z�(f, f ′;φ, φ′) =
∫
G1(Fv)

〈π◦v(g)f, f ′〉vBωv(ωψ(g)φ, φ′) dg

=
∫
G1(Fv)

∫
Z+(Fv)

〈π◦v(g)f, f ′〉v(ωψv(g, 1)φ)(z)φ′(z) dx dg for f, f ′ ∈ Vπ◦
v
. (6.2.6)

The integral (6.2.6) converges absolutely by Yamana [Yam14, Lemma 7.2]. As in Gan and
Ichino [GI14, 16.5], we may define a GSO4,2(Fv)-invariant hermitian inner product BΣv :
VΣv × VΣv → C by

BΣ(θ(φ⊗ f), θ(φ′ ⊗ f ′)) := Z�(f, f ′;φ, φ′).

Here we note that for h ∈ SO4,2(Fv), we have

BΣ(Σ(h)θ(φ⊗ f), θ(φ′ ⊗ f ′)) = BΣ(θ(ωψ(1, h)φ⊗ f), θ(φ′ ⊗ f ′)).

As in the definition of Wv, we define

WψU (φ̃1, φ̃2) :=
∫ st

U(Fv)
BΣ(Σ(n)φ̃1, φ̃2)ψU (n)−1 dn for φ̃i ∈ Σv (i = 1, 2).

Then by an argument similar to that in [FM21, 3.2–3.3], indeed word for word, Proposition 6.2 is
reduced to the following another local identity, which is regarded as a local pull-back computation
of the Whittaker periods with respect to the theta lift.

Proposition 6.3. For any f, f ′ ∈ Vπ◦
v

and any φ, φ′ ∈ C∞
c (Z+(Fv)), we have

WψU
(θ(φ⊗ f), θ(φ′ ⊗ f ′)) =

∫
N(Fv)\G1(Fv)

∫
N(Fv)\G1(Fv)

×WG,v(π◦v(g)f, π
◦
v(g

′)f ′)(ωψv(g, 1)φ)(x0)(ωψv(g′, 1)φ′)(x0) dg dg′.
(6.2.7)

Remark 6.1. Since {g · x0 : g ∈ G1(Fv)} is locally closed in Z+(Fv), the mappings

N(Fv)\G1(Fv) � g �→ φ(g−1 · x0) ∈ C, N(Fv)\G1(Fv) � g′ �→ φ′(g−1 · x0) ∈ C

are compactly supported and, thus, the right-hand side of (6.2.7) converges absolutely for φ, φ′ ∈
C∞
c (Z+(Fv)).

6.2.3 Local pull-back computation. Here we shall prove Proposition 6.3 and, thus, complete
our proof of Theorem 6.1.

Since we work over a fixed place v of F , we shall suppress v from the notation in this
subsection, e.g. F means Fv. Further, for any algebraic group K over F , we denote its group of
F -rational points K(F ) by K for simplicity.
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The case when F is non-archimedean. Suppose that F is non-archimedean. From the
definition, the local Whittaker period is equal to∫ st

U

∫
G1

∫
Z+

(ωψ(g, n)φ)(x)φ′(x)〈π◦(g)f, f ′〉ψU (n)−1 dx dg dn.

Recall that we have defined subgroups N0, N1, N2 and Ũ of U in (3.1.10), (3.1.11), (3.1.12) and
(6.1.1), respectively. Then because of the absolute convergence of the integral (6.2.6), the above
local integral can be written as∫ st

Ũ

∫ st

N

∫
N1

∫
N0

∫
Z+

∫
G1

(ωψ(g, u0u1u2ũ)φ)(x)φ′(x)

× 〈π◦(g)f, f ′〉ψU (u2ũ)−1 dx dg du0 du1 du2 dũ. (6.2.8)

Let us define Z+,◦ := {(a1, a2; 0, 0) ∈ Z+ : a1 and a2 are linearly independent}. Then since
Z+,◦ ⊕ (X+ ⊗ Y0) is open and dense in Z+, we have∫

Z+

Φ(z) dz =
∫
Z+,◦

∫
X+⊗Y0

Φ(z1 + z2) dz2 dz1

for any Φ ∈ L1(Z+). We consider a map p : Z+,◦ → F defined by p((a1, a2; 0, 0)) = 〈a1, a2〉. This
is clearly surjective. For each t ∈ F , we fix xt ∈ Z+,◦ such that p(xt) = t. Then by Witt’s theorem,
the fiber p−1(xt) of xt := (at1, a

t
2; 0, 0) is given by

p−1(xt) = {γ · xt := (γat1, γa
t
2 : 0, 0) : γ ∈ G1}.

We may identify this space withG1/Rt as aG1-homogeneous space. Here Rt denotes the stabilizer
of xt in G1. From this observation, the following lemma readily follows (cf. [FM21, Lemma 3]).

Lemma 6.2. For each xt ∈ Z+,◦, there exists a Haar measure drt on Rt such that∫
Z+

Φ(z) dz =
∫
F

∫
Rt\G1

∫
X+⊗Y0

Φ(g−1 · xt + z) dz dgt dt.

Here dgt denotes the quotient measure drt\dg on Rt\G1.

Further, we note that the following lemma, which is proved by an argument similar to that
for [Liu16, Lemma 3.20] (cf. [FM21, Lemma 3]).

Lemma 6.3. For φ1, φ2 ∈ C∞
c

(
Z+

)
and f1, f2 ∈ Vπ◦ , let

Gφ1,φ2,f1,f2(t) =
∫
G1

∫
Rt\G1

φ1((gg′)−1 · xt)φ2(g−1 · xt)〈π◦(g′)f1, f2〉 dg dg′

for t ∈ F . Then the integral is absolutely convergent and is locally constant.

Remark 6.2. When F is archimedean, by an argument similar to that for [Liu16,
Proposition 3.22], we see that this integral is absolutely convergent and is a continuous function
on F not only for C∞

c (Z+) but also for S(Z+).

By Lemma 6.2, the integral (6.2.8) can be written as∫
N0

∫
F

∫
Rt\G1

∫
X+⊗Y0

∫
G1

(ωψ(g, u0h)φ)(γ−1 · xt + z)φ′(γ−1 · xt + z)

× 〈π◦(g)f, f ′〉 dg dz dγt dt du0.
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Moreover, by the computation in [Mor14a, § 3.1], we have

(ωψ(g, u0(x)h)φ)(γ−1 · xt + z) = ψ(−xt)φ(γ−1 · xt + z).

Then because of Lemma 6.3, we may apply the Fourier inversion with respect to x and t, and
thus the above integral is equal to∫

R0\G1

∫
X+⊗Y0

∫
G1

(ωψ(g, h)φ)(γ−1 · x0 + z)φ′(γ−1 · x0 + z)

× 〈π◦(g)f, f ′〉 dg dz dγ0 dt du0

=
∫
R0\G1

∫
X+⊗Y0

∫
G1

(ωψ(γg, h)φ)(x0 + z)(ωψ(γ, 1)φ′)(x0 + z)

× 〈π◦(g)f, f ′〉 dg dz dγ0. (6.2.9)

The support of φ′(γ−1 · x0 + z) as a function ofX+ ⊗ Y0 is compact since φ′ ∈ C∞
c (Z+). Therefore

this integral converges absolutely and is equal to∫
X+⊗Y0

∫
R0\G1

∫
G1

(ωψ(γg, h)φ)(x0 + z)(ωψ(γ, 1)φ′)(x0 + z)〈π◦(g)f, f ′〉 dg dγ0 dz.

Now, let us take (x−2, x−1 : 0, 0) as x0. Then we have

R0 = N.

Let us define a map q : X+ ⊗ Y0 → Mat2×2 by

q(b1 ⊗ e1 + b2 ⊗ e2) =
(〈x−2, b1〉 〈x−2, b2〉
〈x−1, b1〉 〈x−1, b2〉

)
with bi ∈ X+. Clearly this map is bijective. Hence, there exists a measure dT on Mat2×2 such
that we have ∫

X+⊗Y0

Φ(x−2, x−1 : z) dz =
∫

Mat2×2

Φ(x−2, x−1 : xT ) dT

with xT = q−1(T ). Here we note that the measure dz on X+ ⊗ Y0 is taken to be the Tamagawa
measure and hence we have the Fourier inversion∫

Mat2×2

∫
Mat2×2

Φ(T )ψ(tr(TS0T
′)) dT dT ′ = Φ(0)

with the above Haar measures dT, dT ′ on Mat2×2 if the integral converges. Thus, we have∫ st

N2

∫
N1

∫
X+⊗Y0

∫
N\G1

∫
G1

(ωψ(γg, u1u2h)φ)(x0 + z)(ωψ(γ, 1)φ′)(x0 + z)

× 〈π◦(g)f, f ′〉 dg dγ0 dz du1 du2

=
∫ st

N

∫
N1

∫
Mat2×2

∫
N\G1

∫
G1

(ωψ(γg, u1u2h)φ)(x0 + xT )(ωψ(γ, 1)φ′)(x0 + xT )

× 〈π◦(g)f, f ′〉 dg dγ0 dT du1 du2.

Moreover, similarly to the global computation in [Mor14a, § 3.1], we may write this integral as∫ st

N2

∫
N1

∫
Mat2×2

∫
N\G1

∫
G1

ψ

(
tr
((

s1 s2
t1 t2

)
S0(xT − xT0)

))
× (ωψ(γg, h)φ)(x0 + xT )(ωψ(γ, 1)φ′)(x0 + xT )〈π◦(g)f, f ′〉 dg dγ0 dT du1 du2, (6.2.10)
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where we let u1 = u1(s1, t1) and u2 = u2(s2, t2), and we put T0 =
(

0 0
0 1

)
. By an argument similar

to the proof to show (6.2.9), we may apply the Fourier inversion to this integral, and we see that
this is equal to∫

NH\G1

∫
G1

(ωψ(γg, h)φ)(x0 + xT0)(ωψ(γ, 1)φ′)(x0 + xT0)〈π◦(g)f, f ′〉 dg dγ0.

Now we note that from the argument to obtain (6.2.9), this integral converges absolutely. Then
by telescoping the G1-integration, we obtain∫

N\G1

∫
N\G1

∫
N

(ωψ(rg, h)φ)(x0 + xT0)(ωψ(γ, 1)φ′)(x0 + xT0)

× 〈π◦(rg)f, π◦(γ)f ′〉 dr dg dγ0.

Put z0 = x0 + xT0 = (x−2, x−1, 0, x2). Recall that from the computation in [Mor14a, § 3.1], we
have

ωψ(v(A)g, ũ(b)h)φ(z0) = ψ(−da22)ωψ(g, ũ(b)h)φ(z0) (6.2.11)

when we let A =
(
a11 a12
a21 a22

)
, and we have

z0(1, ũ(b)) = z0(w(b), 1). (6.2.12)

Therefore, WψU
(θ(φ⊗ f), θ(φ′ ⊗ f ′)) is equal to∫ st

F

∫
N\G1

∫
N\G1

∫
N
ψ(−b)(ωψ(rg, ũ(b))φ)(z0)(ωψ(γ, 1)φ′)(z0)

× 〈π◦(rg)f, π◦(γ)f ′〉 dr dg dγ0 db

=
∫ st

F

∫
N\G1

∫
N\G1

∫
Sym2

ψ(−b− da22)(ωψ(w(b)g, 1)φ)(z0)

× (ωψ(γ, 1)φ′)(z0)〈π◦(v(A)g)f, π◦(γ)f ′〉 dAdg dγ0 db.

By an argument similar to that in [FM21] showing that [FM21, (3.30)] is equal to α(π(g)φ, π(h)φ′)
there, indeed word for word, we see that this integral is equal to∫

N\G1

∫
N\G1

∫ st

UG

ψ−1
UG

(n)(ωψ(g, 1)φ)(z0)(ωψ(γ, 1)φ′)(z0)〈π◦(ng)f, π◦(γ)f ′〉 dn dg dγ0.

Thus, Proposition 6.3 in the non-archimedean case is proved.

The case when F is archimedean. Suppose that F is archimedean. Recall that

WψU (φ̃1, φ̃2) = Ŵφ̃1,φ̃2
(ψU ) for φ̃i ∈ Σ∞ (i = 1, 2),

where we set

Wφ̃1,φ̃2
(n) =

∫
U−∞

BΣ(Σ(nu)φ̃1, φ̃2)ψ−1
U (nu) du for n ∈ U,

which converges absolutely and gives a tempered distribution on U/U−∞ by [Liu16,
Corollary 3.13]. Let us define U ′ = N0N1N2. Then U ′−∞ = U−∞. Moreover, for any ũ ∈ Ũ and
u′ ∈ U ′, we have ũu′ũ−1(u′)−1 ∈ U ′−∞ and we obtain Wφ̃1,φ̃2

(ũu′) = Wφ̃1,φ̃2
(u′ũ). Hence, we may

regard it as a tempered distribution on Ũ × (U ′/U ′−∞). Then for a tempered distribution I on
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Ũ × (U ′/U ′−∞), we define partial Fourier transforms Îj of I for j = 1, 2 by

〈I, f̂1 ⊗ f2〉 = 〈Î1, f1 ⊗ f2〉 and 〈I, f1 ⊗ f̂2〉 = 〈Î2, f1 ⊗ f2〉,
where f1 ∈ S(Ũ) and f2 ∈ S(U ′/U ′−∞), respectively. Then we have

̂̂
I2

1

(ψU ) = ̂̂
I1

2

(ψU ) = Î(ψU ).

From the definition of BΣ, we have

Wθ(φ⊗f),θ(φ′⊗f ′)(n) =
∫
U−∞

∫
G1

∫
Z+

(ωψ(g, nu)φ)(x)φ′(x)

× 〈π◦(g)f, f ′〉ψ−1
U (nu) dx dg du

=
∫
U−∞/N0

∫
N0

∫
G1

∫
Z+

(ωψ(g, nu0u)φ)(x)φ′(x)

× 〈π◦(g)f, f ′〉ψ−1
U (nu) dx dg du0 du,

for φ, φ′ ∈ S(Z+) and f, f ′ ∈ V∞
π◦ . Clearly, Lemma 6.2 holds in the archimedean case also. Then

as in (6.2.9), because of Remark 6.2 and the Fourier inversion, the above integral is equal to∫
U−∞/N0

∫
N\G1

∫
X+⊗Y0

∫
G1

(ωψ(γg, nu)φ)(x0 + z)(ωψ(γ, 1)φ′)(x0 + z)

× 〈π◦(g)f, f ′〉 dg dz dγ0 du.

As (6.2.9), this integral converges absolutely. Let us denote this integral by Jφ,φ′,f,f ′(n). Then,
from the definition,

̂Jφ,φ′,f,f ′ = ̂Wθ(φ⊗f),θ(φ′⊗f ′).

Again, from the definition, for ϕ ∈ S(U ′/U ′−∞), we have

( ̂Jφ,φ′,f,f ′
2
, ψU · ϕ) = (Jφ,φ′,f,f ′ , ψ̂U · ϕ) =

∫
U ′/U ′

−∞

∫
U ′
−∞/N0

∫
N\G1

∫
X+⊗Y0

∫
G1

× (ωψ(γg, nu)φ)(x0 + z)(ωψ(γ, 1)φ′)(x0 + z)

× 〈π◦(g)f, f ′〉ϕ̂(n)ψ−1
U (n) dg dz dγ0 du dn.

By a computation similar to that used to obtain (6.2.10), this integral is equal to∫
N1

∫
N2

∫
N\G1

∫
X+⊗Y0

∫
G1

(ωψ(γg, u1u2u)φ)(x0 + z)(ωψ(γ, 1)φ′)(x0 + z)

× 〈π◦(g)f, f ′〉ϕ̂(u1u2)ψ−1
U (u1u2) dg dz dγ0 du du1 du2

=
∫
N1

∫
N2

∫
Mat2×2

∫
N\G1

∫
G1

ψ

(
tr
((

s1 s2
t1 t2

)
S0(xT − xT0)

))
× (ωψ(γg, h)φ)(x0 + xT )(ωψ(γ, 1)φ′)(x0 + xT )

× 〈π◦(g)f, f ′〉ϕ̂(u1u2) dg dγ0 dT du1 du2.

As above, we may apply the Fourier inversion and, thus, this is equal to

ϕ̂(1) ·
∫
N\G1

∫
G1

(ωψ(γg, 1)φ)(x0 + xT0)(ωψ(γ, 1)φ′)(x0 + xT0)〈π◦(g)f, f ′〉 dg dγ0.
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Hence,

̂Jφ,φ′,f,f ′
2
(ψU ) =

∫
N\G1

∫
G1

(ωψ(γg, 1)φ)(x0 + xT0)(ωψ(γ, 1)φ′)(x0 + xT0)〈π◦(g)f, f ′〉 dg dγ0.

Here, we note that by Remark 6.2, this integral converges absolutely. Then this identity shows
that we have

̂
̂Jφ,φ′,f,f ′

2
1

(ϕ) =
∫
Ũ

∫
N\G1

∫
G1

(ωψ(γg, b)φ)(x0 + xT0)(ωψ(γ, 1)φ′)(x0 + xT0)

× 〈π◦(g)f, f ′〉ϕ(b) dg dγ0 db (6.2.13)

for ϕ ∈ S(Ũ). As in the non-archimedean case, by (6.2.11) and (6.2.12), we may easily show that
this is equal to ∫

N\G1

∫
N\G1

∫
N

∫
F
ψ−1
UG

(v(x)n)(ωψ(g, 1)φ)(z0)(ωψ(γ, 1)φ′)(z0)

× 〈π◦(v(x)ng)f, π◦(γ)f ′〉ϕ(ũ(x)) dx dn dg dγ0

since the integral in (6.2.13) converges absolutely. Thus, Proposition 6.3 is proved in the
archimedean case also.

7. Proof of Theorem 1.2

In this section, we complete our proof of Theorem 1.2. Let (π, Vπ) be an irreducible cuspidal
tempered automorphic representation of GD(A) with a trivial central character. Throughout
this section, we suppose that π is neither of type I-A nor type I-B. When π is one of these types,
our theorem is already proved in [Cor17, Theorem 7.5].

The case when Bξ,Λ,ψ 	≡ 0 on Vπ is treated in § 7.1 and the case when Bξ,Λ,ψ ≡ 0 on Vπ is
treated in § 7.2, respectively.

7.1 Proof of Theorem 1.2 when Bξ,Λ,ψ �≡ 0
7.1.1 Reduction to a local identity. Suppose that Bξ,Λ,ψ 	≡ 0 on Vπ. Let (σ, Vσ) denote the

theta lift of π to GSU3,D(A), which is an irreducible cuspidal automorphic representation. As
in the proof of Theorem 6.1, our theorem may be reduced to a certain local identity. Let us set
some notation to explain our local identity.

As in §§ 5.1 and 5.2, we fix the Petersson inner product ( , ) on Vπ and the local hermitian
pairing ( , )v on πv. As in (3.2.3), we define the maximal isotropic subspaces ZD,±. Let

θD,v : S(ZD,+(Fv)
)⊗ Vπv → Vσv

be the GD(Fv)+ × GSU3,D(Fv)-equivariant linear map, which is unique up to multiplication by
a scalar. As in § 6.1, let us adjust {θD,v}v so that

θD,ψ(φ′; f ′) = ⊗vθD,v(φ′v ⊗ f ′v)

for f ′ = ⊗vf
′
v ∈ Vπ and φ′ = ⊗vφ

′
v ∈ S(ZD,+(A)). Let us choose X ∈ D×(F ) so that SX = ξ.

Then by Proposition 3.2, we have

BX,Λ−1(θ(f : φ)) = Bξ,Λ(f) ·
∏
v

Kv(fv;φv), (7.1.1)

where f = ⊗fv ∈ VπD and φ = ⊗φv ∈ S(ZD,+(A)), and we define

Kv(fv;φv) =
∫
ND(Fv)\G1

D(Fv)
αΛv ,ψξ,v

(πv(g)fv)φv(g−1 · vD,X) dg.
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Here, we take the measure dhv on G1
D(Fv) defined by the gauge form, the measure dnv

on NGD
(Fv) defined in § 1.2 under the identification D(Fv) � F 4

v and the measure dg1,v on
NGD

(Fv)\G1
D(Fv) such that dhv = dnv dg1,v.

Then by combining the explicit formula of the Bessel periods on σ given in Theorem 6.2, the
Rallis inner product formulas (5.1.4) and Proposition 5.2, Lemmas 6.1 and 4.2, and the above
pull-back formula (7.1.1), we see that Theorem 1.2 is reduced to the following local identity.

Proposition 7.1. Let v be an arbitrary place of F . For a given fv∈Vπv satisfying αξ,Λ,v(fv) 	= 0,
there exists φv ∈ S(ZD,+(Fv)) such that the local integral Kv(fv;φv) converges absolutely,
Kv(fv;φv) 	= 0 and the equality

Zv(φv, fv, πv)αΛ−1
v ,ψX,v

(θ(φv ⊗ fv)

|Kv(fv;φv)|2 =
αΛv ,ψξ,v

(fv)
(fv, fv)v

holds.

Remark 7.1. In Corollary 7.1, the existence of fv with αΛv ,ψξ,v
(fv) 	= 0 is shown.

Let us define hermitian inner product on S(ZD,+(Fv)) by

Bωv ,D(φ, φ′) =
∫
ZD,+(Fv)

φ(x)φ′(x) dx for φ, φ′ ∈ S(ZD,+(Fv)).

Then we consider the integral

Z•(f, f ′;φ, φ′) =
∫
G1(Fv)

〈πv(g)f, f ′〉vBωv(ωψ(g)φ, φ′) dg

for f, f ′ ∈ πv and φ, φ′ ∈ S(ZD,+(Fv)). As in § 6.2, this converges absolutely and gives a
GSU3,D(Fv)-invariant hermitian inner product

Bσv : Vσv × Vσv → C

by

Bσv(θ(φ⊗ f), θ(φ′ ⊗ f ′)) := Z•(f, f ′;φ, φ′).

By the Rallis inner product formula (5.1.4) and Proposition 5.2, at any place v, there exist
fv, f

′
v, φ, φ

′ such that Z•(f, f ′;φ, φ′) 	= 0 since θψ,D(π) 	= 0. Thus, Bσv 	≡ 0.
For φ̃i ∈ σv, we define

A(φ̃1, φ̃2) :=
∫ st

N3,D(Fv)

∫
MX(Fv)

Bσv(σv(nt)φ̃1, φ̃2)ΛD,v(t)ψX,D,v(n)−1 dt dn.

Here, at an archimedean place v, a stable integration means the Fourier transform as in the
definition of αχ,ψN

. Then by an argument similar to that in [FM21, 3.2–3.3], we may reduce
Proposition 7.1 to the following identity.

Proposition 7.2. For any f, f ′ ∈ Vπv and any φ, φ′ ∈ C∞
c (ZD,+(Fv)), we have

A(θ(φ⊗ f), θ(φ′ ⊗ f ′)) =
∫
ND(Fv)\G1

D(Fv)

∫
ND(Fv)\G1

D(Fv)
αΛv ,ψξ,v

(πv(h)f, πv(h′)f ′)

× (ωψv(h, 1)φ)(x0)(ωψv(h′, 1)φ′)(x0) dh dh′. (7.1.2)

Before proceeding to a proof of this proposition, we give some corollaries of this identity.
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Corollary 7.1. For an arbitrary place v of F , we have αΛv ,ψξ,v
	≡ 0 on πv.

Proof. Since Bσv 	≡ 0, (7.1.2) implies that αΛv ,ψξ,v
	≡ 0 on πv if and only if αΛ−1

v ,ψX,v
	≡ 0 on σv.

Moreover, by [FM21, Corollary 5.1], αΛ−1
v ,ψX,v

	≡ 0 on σv since the theta lift of σv to GU2,2(Fv)
is generic. Thus, our claim follows. �

As another corollary, a non-vanishing of local theta lifts follows from a non-vanishing of local
periods.

Corollary 7.2. Let k be a local field of characteristic zero and D be a quaternion algebra
over k. Let τ be an irreducible admissible tempered representation of GD with a trivial central
character. Let SD ∈ D1 and χ be a character of TD,SD . Suppose that αχ,ψSD 	≡ 0 on τ . Then
A 	≡ 0 on θψ,D(τ) × θψ,D(τ). In particular, θψ,D(τ) 	= 0 and Z•(φ, φ′, f, f ′) 	= 0 for some f, f ′ ∈ τ
and φ, φ′ ∈ S(ZD,+).

Remark 7.2. By [Yam14, Lemma 8.6, Remark 8.4 (1)], we know that the existence of such
f, f ′, φ, φ′ is equivalent to the non-vanishing of the theta lift of τ to GSU3,D when k 	= R. Though
the equivalence is not clear when k = R, we shall use Corollary 7.2 to show that the local
non-vanishing of the theta lifts implies the global non-vanishing of the theta lifts in § 7.2.

Proof. By our assumption, the right-hand side of (7.1.2) is not zero for some f, f ′, φ, φ′ when
Fv 	= R. Hence, the left-hand side is not zero and, in particular, Z•(φ, φ′, f, f ′) 	= 0. �

7.1.2 Local pull-back computation. Here we shall prove the identity (7.1.2) and, thus, we
complete our proof of Theorem 1.2 when Bξ,ψ,Λ 	≡ 0. Here we give a proof of (7.1.2) only in
the non-archimedean case since the archimedean case is similarly proved as in the proof of
Proposition 6.3. Our proof is a local analogue of the proof of Propositions 3.1 and 3.2. Moreover,
we will consider only the case when D is split since the proof is similar and indeed is easier in
the non-split case as in the global computation. Since the argument in this subsection is purely
local, in order to simplify the notation, we omit subscripts v and we simply write K(F ) by K
for any algebraic group K defined over F = Fv.

From the definition, we may write the left-hand side of (7.1.2) as∫ st

N4,2

∫
MX

∫
G1

∫
Z+

〈π(g)f, f ′〉(ωψ(g, nt)φ)(x)φ′(x)Λ(t)ψX(n)−1 dx dg dt dn,

where X is chosen so that SX = S. Further as in (3.1.13), this is equal to∫ st

F

∫ st

F 2

∫ st

F 2

∫
MX

∫
G1

∫
Z+

(ωψ(g, u0(s)u1(s1, t1)u2(s2, t2)t)φ)(x)φ′(x)

× 〈π(g)f, f ′〉Λ(t)ψ(x21s1 + x22t1 + x11s2 + x12t2)−1 dx dg dt ds2 dt2 ds1 dt1 ds

when we let X =
(
x11 x12
x21 x22

)
. For each r ∈ F , we may take Ar = (ar1, a

r
2, 0, 0) ∈ Z+ such that ar1, a

r
2

are linearly independent and 〈ar1, ar2〉 = r. Let us denote by Qr the stabilizer of xr in G1. Then
as in the proof of Proposition 6.3, for each r ∈ F , there is a Haar measure dqr of Qr such that∫

Z+

Φ(x) dx =
∫
F

∫
Qr\G1

∫
X2

+

Φ(h−1 ·Ar + b) db dhr dr
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with dhr = dqr\dh, provided that the both sides converge. Then applying the Fourier inversion,
because of (3.1.15), our integral becomes∫ st

F 2

∫ st

F 2

∫
MX

∫
G1

∫
Q0\G1

∫
X2

+

〈π(g)f, f ′〉Λ(t)ψ(x21s1 + x22t1 + x11s2 + x12t2)−1

× (ωψ(hg, u1(s1, t1)u2(s2, t2)t)φ)(A0 + b)(ωψ(h, 1)φ′)(A0 + b)

× db dh dx dg dt ds2 dt2 ds1 dt1

with A0 = (x−2, x−1, 0, 0). This is verified by an argument similar to that for [Liu16, Lemma 3.20].
We note that Q0 = N from the definition. Moreover, as in [Liu16, Lemma 3.19], the inner integral∫
MX

∫
G1

∫
Q0\G1

∫
X2

+
converges absolutely and, thus, this is equal to∫ st

F 2

∫ st

F 2

∫
Q0\G1

∫
G1

∫
MX

∫
X2

+

〈π(g)f, f ′〉Λ(t)ψ(x21s1 + x22t1 + x11s2 + x12t2)−1

× (ωψ(hg, u1(s1, t1)u2(s2, t2)t)φ)(A0 + b)(ωψ(h, 1)φ′)(A0 + b)

× db dh dx dg dt ds2 dt2 ds1 dt1.

From the proof of Lemma 3.2, this integral is equal to∫ st

F 2

∫ st

F 2

∫
Q0\G1

∫
G1

∫
MX

∫
X2

+

〈π(g)f, f ′〉(ωψ(hg, t)φ)(A0 + b)

× (ωψ(h, 1)φ′)(A0 + b)Λ(t)ψ
(

tr
(
s2 t2
s1 t1

)(
S0

(〈x−2, b1〉 〈x−2, b2〉
〈x−1, b1〉 〈x−1, b2〉

)
−X

))
× db dh dx dg dt ds2 dt2 ds1 dt1. (7.1.3)

Now we claim that we may define the stable integral∫ st

F 2

∫ st

F 2

∫
X2

+

〈π(g)f, f ′〉(ωψ(hg, t)φ)(A0 + b)(ωψ(h, 1)φ′)(A0 + b)

× Λ(t)ψ
(

tr
(
s2 t2
s1 t1

)(
S0

(〈x−2, b1〉 〈x−2, b2〉
〈x−1, b1〉 〈x−1, b2〉

)
−X

))
db ds2 dt2 ds1 dt1

and we may choose a sufficiently large compact open subgroup Fi of F (1 ≤ i ≤ 4) so that
it depends only on ψ and

∫ st
F 2

∫ st
F 2 · · · =

∫
F1

∫
F2

∫
F3

∫
F4

· · · . This claim easily follows from the
following lemma in the one-dimensional case.

Lemma 7.1. Let f be a locally constant function on F which is in L1(F ). Then there exists
a compact open subgroup F0 of F such that for any compact open subgroups F ′ and F ′′ of F
containing F0, we have∫

F ′

∫
F
f(x)ψ(xy) dx dy =

∫
F ′′

∫
F
f(x)ψ(xy) dx dy. (7.1.4)

Proof. Suppose that ψ is trivial on F0 := �mOF and not trivial on �m−1OF . Put F ′ = �m′OF

with m′ ≤ m. Then we may write the left-hand side of (7.1.4) as∫
F ′

∫
F\O

f(x)ψ(xy) dx dy +
∫
F ′

∫
O
f(x)ψ(xy) dx dy. (7.1.5)
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The first integral of (7.1.5) converges absolutely. Hence by interchanging the order of integration,
it is equal to ∫

F\O

∫
F ′
f(x)ψ(xy) dy dx =

∫
F\O

f(x)
(∫

F ′
ψ(xy) dy

)
dx = 0

since y �→ ψ(xy) is a non-trivial character of F ′ for each x ∈ F \ O. As for the second integral of
(7.1.5), we have∫

F ′

∫
O
f(x)ψ(xy) dx dy =

∫
�mO

∫
O
f(x)ψ(xy) dx dy +

∫
�m′O\�mO

f(x)
(∫

O
ψ(xy) dy

)
dx,

where the inner integral of the second integral vanishes as above. Thus, the left-hand side of
(7.1.4) is equal to ∫

�mO

∫
O
f(x)ψ(xy) dx dy.

Similarly the right-hand side of (7.1.4) becomes as above, and our claim follows. �

By Lemma 7.1, we see that (7.1.3) is equal to∫
N\G1

∫
G1

∫
MX

∫ st

F 2

∫ st

F 2

∫
X2

+

〈π(g)f, f ′〉(ωψ(hg, t)φ)(A0 + b)

× (ωψ(h, 1)φ′)(A0 + b)Λ(t)ψ
(

tr
(
s2 t2
s1 t1

)(
S0

(〈x−2, b1〉 〈x−2, b2〉
〈x−1, b1〉 〈x−1, b2〉

)
−X

))
× db dh dx dg dt ds2 dt2 ds1 dt1.

Then applying the Fourier inversion, we get∫
N\G1

∫
G1

∫
MX

〈π(g)f, f ′〉(ωψ(hg, t)φ)(A0 +B0)(ωψ(h, 1)φ′)(A0 +B0)Λ(t) db dh dx dg dt,

(7.1.6)

where B0 = (0, 0, (x21/2)x1 + (x11/2)x2,−(x22/2d)x1 − (x12/2d)x2) and x0 = A0 +B0. By
[Liu16, Proposition 3.1], for a sufficiently large compact open subgroup N0 of N , we have∫

MX

∫ st

N
f(nt)χ(nt) dn dt =

∫
N0

∫
MX

f(nt)χ(nt) dn dt

and, thus, we may define ∫ st

N

∫
MX

f(nt)χ(nt) dn dt.

Further, we note a simple fact that we have∫
G
g(h) dh =

∫
N\G

∫ st

N
g(nh) dn dh

when both sides are defined. Thus, (7.1.6) is equal to∫
N\G1

∫
N\G1

∫
MX

∫ st

N
〈π(g)f, f ′〉

× (ωψ(hg, t)φ)(A0 +B0)(ωψ(h, 1)φ′)(A0 +B0)Λ(t) db dh dx dg dt.
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Then the same computation as that to get (3.1.17) from (3.1.16) may be applied to the above
integral, and, thus, we see that our integral is equal to∫

N\G1

∫
N\G1

αΛ,ψS
(πv(h)f, πv(h′)f ′)(ωψ(h, 1)φ)(x0)(ωψ(h′, 1)φ′)(x0) dh dh′.

Hence, the identity (7.1.2) holds when Bξ,Λ,ψ 	≡ 0.

7.2 Proof of Theorem 1.2 when Bξ,Λ,ψ ≡ 0
First we note the following proposition concerning the non-vanishing of the L-values.

Proposition 7.3. Let π be an irreducible cuspidal tempered automorphic representation of
GD(A) with trivial central character. If GD � G and π is a theta lift from GSO3,1, then
L(s, π, std ⊗ χE) has a simple pole at s = 1. Otherwise L(s, π, std ⊗ χE) is holomorphic and
non-zero at s = 1.

Proof. Suppose that GD � G, i.e. D is split. Then there exists an irreducible cuspidal globally
generic automorphic representation π0 of G(A) such that π and π0 are nearly equivalent. Then
our claim follows from [Yam14, Lemma 10.2] and [Sha81, Theorem 5.1].

Suppose that D is not split. Let us take a quadratic extension E0 of F such that π has
(E0,Λ0)-Bessel period for some character Λ0 of A×

E0
/E×

0 . Then by Theorem 1.1(i), we see that
there exists an irreducible cuspidal tempered automorphic representation π0 of G(A) such that
for a sufficiently large finite set S of places of F containing all archimedean places, πv, π0,v are
unramified and BCE0/F (πv) � BCE0/F (π0,v) for v 	∈ S. This implies that

LS(s, π0, std ⊗ χE0χE)LS(s, π0, std ⊗ χE) = LS(s, π, std ⊗ χE0χE)LS(s, π, std ⊗ χE).

From the case when GD � G, the left-hand side of this identity is not zero at s = 1, and, thus,
so is the right-hand side, which possibly has a pole at s = 1.

Suppose that LS(s, π, std ⊗ χE0/FχE) has a pole at s = 1. We may take a quadratic extension
E1 ⊂ D of F such that χE1 = χE0χE . Then by Yamana [Yam14, Lemma 10.2], π is a theta lift
from GSU1,D, which is a similitude quaternion unitary group of degree one defined by an element
in E1 as in (2.1.12). In this case, π is not tempered and, thus, it contradicts our assumption on
π. Thus, LS(s, π, std ⊗ χE0/FχE) is holomorphic at s = 1. Further, by an argument similar to
that for LS(s, π, std ⊗ χE0/FχE), we see that LS(s, π, std ⊗ χE) is holomorphic. Therefore, it is
holomorphic and non-zero at s = 1. �

Suppose that Bξ,Λ,ψ ≡ 0 on Vπ. We shall show that the right-hand side of (1.6.2) is zero.
If L(1

2 , π ×AI(Λ)) = 0, then there is nothing to prove. Hence, we may suppose that L(1
2 , π ×

AI(Λ)) 	= 0. Then we shall show that for some place v of F , we have αΛv ,ψξ,v
≡ 0 on πv.

Assume the contrary, i.e. αΛv ,ψξ,v
	≡ 0 on πv for any v. Let us denote by πB,loc

+ the unique
irreducible constituent of π|GD(A)+ such that αΛv ,ψξ,v

	≡ 0 on πB,loc
+,v for any v. From our assump-

tion αΛv ,ψξ,v
	≡ 0 on πv and Corollary 7.2, we see that αΛ−1

v ,ψX,v
	≡ 0 on the theta lift θψv ,D(πv)

of πv to GSU3,D(Fv) and Zv(φv, fv, π) 	= 0 for some fv ∈ πv and φv ∈ S(ZD,+(Fv)). Since π′ is
nearly equivalent to π, we have L(1, π, std ⊗ χE) 	= 0. Therefore, the theta lift θψ,D(πB,loc

+ ) of
πB,loc

+ to GSU3,D(A) is non-zero by Yamana [Yam14, Theorem 10.3], which states that the non-
vanishing of local theta lifts at all places together with the non-vanishing of the L-value implies
the non-vanishing of the global theta lift. We note that actually in [Yam14, Theorem 10.3], there
is an assumption that D is not split at real places, which was necessary to ensure that the non-
vanishing of the local theta lift implies Zv(φv, fv, π) 	= 0 for some fv ∈ πv and φv ∈ S(ZD,+(Fv)).
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Since the non-vanishing of Zv(φv, fv, π) for some fv and φv is shown in our case by the argument
above, we may apply [Yam14, Theorem 10.3] regardless of the assumption.

Recall that from the proof of Theorem 1.1(i), θψ,D(πB,loc
+ ) is tempered. Let us regard

θψ,D(πB,loc
+ ) as automorphic representations of GU4,ε. By the uniqueness of the Bessel model

for GU4,ε proved in [FM22, Proposition A.1], there uniquely exists an irreducible constituent τ
of θψ,D(πB,loc

+ )|U(4) such that τ has the local (X,Λ−1
v , ψv)-Bessel model at any place v.

On the other hand, we note L(1/2, τ × Λ−1) 	= 0 since L(1
2 , π ×AI(Λ)) 	= 0. Then by [FM22,

Theorem 1.2], there exists an irreducible cuspidal automorphic representation τ ′ of U(V0) with
four-dimensional hermitian space V0 over E such that τ ′ has (X,Λv, ψv)-Bessel period. Then
we know that τ and τ ′ have the same L-parameter, in particular, τv � τ ′v when v is split. At a
non-split place v, by the uniqueness of an element of the tempered L-packet which has the same
Bessel period due to Beuzart-Plessis [Beu16, Beu20], we see that U(V0) � U(JD) and τ � τ ′.
Moreover, by Mok [Mok15], we have τ = τ ′. Therefore, τ = τ ′ has (X,Λ−1, ψ)-Bessel period,
and this implies that θψ,D(πB,loc

+ ) also has (X,Λ−1, ψ)-Bessel period. Then Propositions 3.1
and 3.2 show that π has (E,Λ)-Bessel period, and this is a contradiction. Thus, (1.6.2) holds
when Bξ,Λ,ψ ≡ 0 on Vπ.

8. Generalized Böcherer conjecture

In this section we prove the generalized Böcherer conjecture. In fact, we shall prove Theorem 8.1
below, which is more general than Theorem 1.4 stated in the introduction.

8.1 Temperedness condition
In order to apply Theorem 1.2 to holomorphic Siegel cusp forms of degree two, we need to verify
the temperedness for corresponding automorphic representations.

Proposition 8.1. Suppose that F is totally real. Let τ be an irreducible cuspidal automorphic
representation of GD(A) with a trivial central character such that τv is a discrete series represen-
tation for every real place v of F . Suppose moreover that τ is not CAP (cuspidal representation
associated to parabolic subgroup). Then τ is tempered.

Remark 8.1. When D is split, i.e. GD � G, Weissauer [Wei09] proved that τv is tempered at a
place v when τv is unramified. Moreover, when τv is a holomorphic discrete series representation at
each archimedean place v, Jorza [Jor13] showed the temperedness at finite places not dividing 2.

Proof. First suppose that GD � G. Let Π denote the functorial lift of τ to GL4(A) established
by Arthur [Art13] (see also Cai, Friedberg and Kaplan [CFK18]).

When Π is not cuspidal, since τ is not CAP, Π is of the form Π = Π1 � Π2 with irreducible
cuspidal automorphic representations Πi of GL2(A). Since τv is a discrete series representation
for any real place v, Πi,v is also a discrete series representation. Then Πi is tempered by [Bla06]
and, thus, the Langlands parameter of Πv is tempered at all places v of F . Hence, τ is tempered.

Suppose that Π is cuspidal. Then by Raghuram and Sarnobat [RS18, Theorem 5.6], Πv is tem-
pered and cohomological at any real place v. Let us take an imaginary quadratic extension E of
F such that the base change lift BC(Π) of Π to GL4(AE) is cuspidal. Note that BC(Π) is cohomo-
logical and that BC(Π)∨ � BC(Π∨) � BC(Π) � BC(Π)σ. Then Caraiani [Car12, Theorem 1.2]
shows that BC(Π) is tempered at all finite places. This implies that Πv is also tempered for any
finite place v. Thus, τ is tempered.

Now let us consider the case when D is not split. Since τ is not CAP, by Proposition 4.1, there
exists an irreducible cuspidal automorphic representation τ ′ of G(A) and a quadratic extension
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E0 of F such that τ ′ is G+,E0-locally equivalent to τ . Moreover τ is tempered if and only if τ ′ is
tempered. By [LPTZ03, Mœg89, Pau98, Pau00], τ ′v is a discrete series representation at any real
place v. Then the temperedness of τ ′ follows from the split case. Hence, τ is also tempered. �

As an application of Proposition 8.1, the following corollary holds.

Corollary 8.1. Suppose that F is totally real. Let τ be an irreducible cuspidal globally generic
automorphic representation of G(A) such that τv is a discrete series representation at any real
place v. Then τ is tempered and, hence, the explicit formula (6.2.3) for the Whittaker periods
holds for any non-zero decomposable vector in Vτ .

Proof. Recall that the functorial lift Π of τ to GL4(A) is cuspidal or an isobaric sum of irre-
ducible cuspidal automorphic representations of GL2 by [CKPS04]. In particular, τ is not
CAP by Arthur [Art13]. Then by Proposition 8.1, τ is tempered and our claim follows from
Theorem 6.3. �

8.2 Vector-valued Siegel cusp forms and Bessel periods
Let H2 be the Siegel upper half-space of degree two, i.e. the set of two-by-two symmetric com-
plex matrices whose imaginary parts are positive definite. Then the group G(R)+ = {g ∈ G(R) :
ν(g) > 0} acts on H2 by

g〈Z〉 = (AZ +B)(CZ +D)−1 for g =
(
A B
C D

)
∈ G(R)+ and Z ∈ H2

and the factor of automorphy J(g, Z) is defined by

J(g, Z) = CZ +D.

For an integer N ≥ 1, let

Γ0(N) =
{
γ ∈ G1(Z) : γ =

(
A B
C D

)
, C ≡ 0 (mod NZ)

}
.

8.2.1 Vector-valued Siegel cusp forms. Let (�, V�) be an algebraic representation of GL2(C).
Then a holomorphic mapping Φ : H2 → V� is a Siegel cusp form of weight � with respect to Γ0(N)
when Φ vanishes at the cusps and satisfies

Φ(γ〈Z〉) = �(J(γ, Z))Φ(Z) for γ ∈ Γ0(N) and Z ∈ H2. (8.2.1)

We denote by S�(Γ0(N)) the complex vector space of Siegel cusp forms of weight � with respect
to Γ0(N). Then Φ ∈ S�(Γ0(N)) has a Fourier expansion

Φ(Z) =
∑
T>0

a(T,Φ) exp[2π
√−1 tr(TZ)] where Z ∈ H2 and a(T,Φ) ∈ V�.

Here T runs over positive-definite two-by-two symmetric matrices which are semi-integral, i.e. T
is of the form T =

( a b/2
b/2 c

)
, a, b, c ∈ Z. We note that (8.2.1) implies

a(ε T tε,Φ) = �(ε)a(T,Φ) for ε ∈ GL2(Z). (8.2.2)

From now until the end of this paper, we assume � to be irreducible. It is well known that
the irreducible algebraic representations of GL2(C) are parametrized by

L = {(n1, n2) ∈ Z2 : n1 ≥ n2}. (8.2.3)

Namely the parametrization is given by assigning

�κ := Symn1−n2 ⊗ detn2 to κ = (n1, n2) ∈ L.
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Suppose that � = �κ with κ = (n+ k, k) ∈ L. Then we realize � concretely by taking its space
of representation V� to be C[X,Y ]n, the space of degree n homogeneous polynomials of X and
Y , where the action of GL2(C) is given by

�(g)P (X,Y ) = (det g)k · P ((X,Y )g) for g ∈ GL2(C) and P ∈ C[X,Y ]n.

Let us define a bilinear form

C[X,Y ]n × C[X,Y ]n � (P,Q) �→ (P,Q)n ∈ C

by

(XiY n−i, XjY n−j)n =

⎧⎪⎨⎪⎩(−1)i
(
n

i

)
if i+ j = n;

0 otherwise.

(8.2.4)

Then we have
(�(g)P, �(g)Q)n = (det g)n+2k(P,Q)n for g ∈ GL2(C). (8.2.5)

We define a positive-definite hermitian inner product 〈 , 〉� on V� by

〈P,Q〉� := (P, �(w0)Q)n where w0 =
(

0 1
−1 0

)
. (8.2.6)

Here Q denotes the polynomial obtained from Q by taking the complex conjugates of its
coefficients. Then (8.2.5) implies that we have

〈�(g)v, w〉� = 〈v, �(tḡ)w〉� for g ∈ GL2(C) and v, w ∈ V�. (8.2.7)

In particular, the hermitian inner product 〈 , 〉� is U2(R)-invariant. Then for Φ,Φ′ ∈ S�(Γ0(N)),
we define the Petersson inner product 〈Φ,Φ′〉� by

〈Φ,Φ′〉� =
1

[Sp2(Z) : Γ0(N)]

∫
Γ0(N)\H2

〈Φ(Z),Φ′(Z)〉�(detY )k−3 dX dY, (8.2.8)

where X = Re(Z) and Y = Im(Z). The space S�(Γ0(N)) has a natural orthogonal decomposition
with respect to the Petersson inner product

S�(Γ0(N)) = S�(Γ0(N))old ⊕ S�(Γ0(N))new

into the oldspace and the newspace in the sense of Schmidt [Sch05, 3.3]. We note that when n
is odd, we have S�(Γ0(N)) = {0} for � with κ = (n+ k, k) by (8.2.1) since −14 ∈ Γ0(N).

8.2.2 Adelization. Given Φ ∈ S�(Γ0(N)), its adelization ϕΦ : G(A) → V� is defined as follows
(cf. [Sah15, 3.1] and [Sch05, 3.2]). For each prime number p, let us define a compact open subgroup
P1,p(N) of G(Qp) by

P1,p(N) :=
{
g ∈ G(Zp) : g =

(
A B
C D

)
, C ≡ 0 (mod N Zp)

}
.

Then we define a mapping ϕΦ : G(A) → V� by

ϕΦ(g) = ν(g∞)k+r�(J(g∞,
√−1 12))−1Φ(g∞〈√−1 12〉) (8.2.9)

when
g = γg∞k0 with γ ∈ G(Q), g∞ ∈ G(R)+ and k0 ∈

∏
p<∞

P1,p(N).

Let L be any non-zero linear form on V�. Then L(ϕΦ) : G(A) → C defined by L(ϕΦ)(g) =
L(ϕΦ(g)) is a scalar-valued automorphic form on G(A). Let V (Φ) denote the space generated by
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right G(A)-translates of L(ϕΦ). Then V (Φ) does not depend on the choice of L and we denote
by π(Φ) the right regular representation of G(A) on V (Φ). Note that the central character of
π(Φ) is trivial.

We recall that for scalar-valued automorphic forms φ, φ′ on G(A) with a trivial central
character, their Petersson inner product 〈φ, φ′〉 is defined by

〈φ, φ′〉 =
∫
ZG(A)G(Q)\G(A)

φ(g)φ′(g) dg,

where ZG denotes the center of G and dg is the Tamagawa measure.

Lemma 8.1. Let L be a non-zero linear form on V�. Take v′ ∈ V� such that L(v) = 〈v, v′〉� for
any v ∈ V�.

Then we have

〈L(ϕΦ), L(ϕΦ)〉 = C(v′) · 〈Φ,Φ〉� for any Φ ∈ S�(Γ0(N)),

where

C(v′) =
Vol(ZG(A)G(Q)\G(A))

Vol(Sp2(Z)\H2)
· 〈v

′, v′〉�
dimV�

. (8.2.10)

Proof. Let K∞ = U2(R). We identify K∞ as a subgroup of Sp2(R) via

K∞ � A+
√−1B �→

(
A −B
B A

)
∈ Sp2(R).

Let dk be the Haar measure on K∞ such that Vol(K∞, dk) = 1. Then by the Schur orthogonality
relations, we have ∫

K∞
L(�(k)−1v) · L(�(k)−1w) dk =

〈v, w〉� · 〈v′, v′〉�
dimV�

.

On the other hand, it is easily seen that for Φ ∈ S�(Γ0(N)), we have

〈Φ,Φ〉�
Vol(Sp2(Z)\H2)

=
〈ϕΦ, ϕΦ〉�

Vol(ZG(A)G(Q)\G(A))
,

where

〈ϕΦ, ϕΦ〉� :=
∫
ZG(A)G(Q)\G(A)

〈ϕΦ(g), ϕΦ(g)〉� dg.

Hence,

〈Φ,Φ〉� = C(v′)−1

∫
ZG(A)G(Q)\G(A)

∫
K∞

|L(�(k)−1ϕΦ(g))|2 dk dg

= C(v′)−1

∫
K∞

∫
ZG(A)G(Q)\G(A)

|L(ϕΦ(gk))|2 dg dk

= C(v′)−1 · 〈L(ϕΦ), L(ϕΦ)〉�. �
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8.2.3 Bessel periods of vector-valued Siegel cusp forms. Let E be an imaginary quadratic
field of Q and −DE its discriminant. We put

SE :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1 0
0 DE/4

)
when DE ≡ 0 (mod 4);(

1 1/2
1/2 (1 +DE)/4

)
when DE ≡ −1 (mod 4).

(8.2.11)

Given S = SE as above, we define TS , N and ψS as in § 2.3.1. Then TS(Q) � E×.
Let Λ be a character of TS(A) which is trivial on A×TS(Q). Let ψ be the unique character

of A/Q such that ψ∞(x) = e−2π
√−1x and the conductor of ψ� is Z� for any prime number �.

Then for a scalar-valued automorphic form φ on G(A) with a trivial central character, we
define its (S,Λ, ψ)-Bessel period BS,Λ,ψ(φ) by (2.3.1) with the Haar measures du on N(A) and
dt = dt∞ dtf on TS(A) = TS(R) × TS(Af ) are taken so that Vol(N(Q)\N(A), du) = 1 and

Vol(R×\TS(R), dt∞) = Vol(TS(Zp), dtf ) = 1.

Then we note that

Vol(A×TS(Q)\TS(A), dt) =
2hE
w(E)

= D
1/2
E · L(1, χE).

For a V�-valued automorphic form ϕ with a trivial central character, it is clear that for a linear
form L : V� → C we have

BS,Λ,ψ(L(ϕ)) = L

[ ∫
A×TS(Q)\TS(A)

∫
N(Q)\N(A)

Λ(t)−1ψS(u)−1ϕ(tu) dt du
]
. (8.2.12)

Recall that we may identify the ideal class group ClE of E with the quotient group

TS(A)/TS(Q)TS(R)TS(Ẑ).

Let {tc : c ∈ ClE} be a set of representatives of ClE such that tc ∈
∏
p<∞ T (Qp). We let

tc = γcmc κc with γc ∈ GL2(Q), mc ∈ {g ∈ GL2(R) : det g > 0}, κc ∈
∏
p<∞ GL2(Zp). Let Sc =

(det γc)−1 · tγcSγc. Then the set {Sc : c ∈ ClE} is a set of representatives for the SL2(Z)-
equivalence classes of primitive semi-integral positive-definite two-by-two symmetric matrices
of discriminant DE .

Thus, when ϕ = ϕΦ for Φ ∈ S�(Γ0(N)) and Λ is a character of ClE , we may write (8.2.12)
as

BS,Λ,ψ(L(ϕΦ)) = 2 · e−2πtr(S) · L(BΛ(Φ;E)), (8.2.13)

where

BΛ(Φ;E) := w(E)−1 · π�
( ∑
c∈ClE

Λ(c)−1 · a(Sc,Φ)
)

(8.2.14)

is the vector-valued (S,Λ, ψ)-Bessel period where

π� =
∫
T 1

S(R)
�(t) dt with T 1

S = SL2 ∩ TS , Vol(T 1
S(R), dt) = 1 (8.2.15)

(e.g. Dickson et al. [DPSS20, Proposition 3.5] and Sugano [Sug85, (1-26)]).

Remark 8.2 (An erratum to [FM17]). The definition of B(Φ;E) in the vector-valued case in
[FM17, Theorem 5] should be replaced by (8.2.14). The statement and the proof of [FM17,
Theorem 5] remain valid.
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Suppose that � = �κ where κ = (2r + k, k) ∈ L. We define QS,� ∈ C[X,Y ]2r by

QS,�(X,Y ) :=
(

(X,Y )S
(
X
Y

))r
· (detS)−((2r+k)/2) where S = SE in (8.2.11). (8.2.16)

Then for Φ ∈ S�(Γ0(N)), the scalar-valued (S,Λ, ψ)-Bessel period BΛ(Φ;E) of Φ is defined by

BΛ(Φ;E) := (BΛ(Φ;E), QS,�)2r. (8.2.17)

8.3 Explicit L-value formula in the vector-valued case
Let us state our explicit formula for holomorphic Siegel modular forms. In what follows, whenever
we refer to a type of an admissible representation of G over a non-archimedean local field, we
use the standard classification due to Roberts and Schmidt [RS18].

Let N be a squarefree integer. We say that a non-zero Φ ∈ S�(Γ0(N)) is a newform if:

(1) Φ ∈ S�(Γ0(N))new;
(2) Φ is an eigenform for the local Hecke algebras for all primes p not dividing N and an

eigenfunction of the local U(p) operator (see Saha and Schmidt [SS13, 2.3]) for all primes
dividing N ;

(3) the representation π(Φ) of G(A) is irreducible.

Then the following theorem is derived from Theorem 1.2 exactly as in Dickson, Pitale, Saha
and Schmidt [DPSS20, Theorem 1.13] except that we need to compute local Bessel periods
at the real place adapting to the vector valued case. We perform the computation of them in
Appendix B.

Theorem 8.1. Let N ≥ 1 be an odd squarefree integer. Let � = �κ where κ = (2r + k, k) with
k ≥ 2. Let Φ be a non-CAP newform in S�(Γ0(N)). Suppose that (DE/p) = −1 for all primes p
dividing N . When k = 2, suppose moreover that π(Φ) is tempered.

Then we have

|BΛ(Φ;E)|2
〈Φ,Φ〉� =

24k+6r−c

DE
· L(1/2, π(Φ) ×AI(Λ))

L(1, π(Φ),Ad)
·
∏
p |N

Jp, (8.3.1)

where c = 5 if Φ is a Yoshida lift in the sense of Saha [Sah15, § 4] and c = 4 otherwise. The
quantities Jp for p dividing N are given by

Jp = (1 + p−2)(1 + p−1) ×

⎧⎪⎨⎪⎩
1 if π(Φ)p is of type IIIa;
2 if π(Φ)p is of type VIb;
0 otherwise.

Remark 8.3. When k ≥ 3, π(Φ) is tempered by Proposition 8.1.

Remark 8.4. Since B(Φ;E) = 2kD−(k/2)
E ·B(Φ;E) when r = 0, (1.8.2) follows from (8.3.1) by

putting N = 1 and r = 0.

Remark 8.5. In the statement of the theorem, we used the notion of Yoshida lifts in the sense of
Saha [Sah15]. Though it is necessary to extend the arguments concerning Yoshida lifts in [Sah15,
§ 4] in the scalar-valued case to the vector-valued case to be rigorous, we omit it here since it is
straightforward. We also mention that the arguments in [Sah15, 4.4] now work unconditionally
since the classification theory in Arthur [Art13] is complete for G = PGSp2 � SO(3, 2).

Remark 8.6. Recall that the L-functions in (8.3.1) are complete L-functions. We may rewrite
the explicit formula in terms of the finite parts of the L-functions by observing that the relevant
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archimedean L-factors are given by

L(1/2, π(Φ)∞ ×AI(Λ)∞) = 24(2π)−2(k+r)Γ(k + r − 1)2Γ(r + 1)2

and

L(1, π(Φ)∞,Ad) = 26(2π)−(4k+6r+1)Γ(k + 2r)Γ(k − 1)Γ(2r + 2)Γ(2k + 2r − 2),

respectively.

Remark 8.7. Let us consider the case when D is a quaternion algebra over Q which is split
at the real place, i.e. D(R) � Mat2×2(R). Assuming that the endoscopic classification holds for
GD = GD/ZD, we may apply Theorem 1.2 to holomorphic modular forms on GD(A). In this
case, Hsieh and Yamana [HY24] compute local Bessel periods and show an explicit formula
for Bessel periods such as (8.3.1) for scalar-valued holomorphic modular forms, including the
case when GD = G and N is an even squarefree integer. Meanwhile, we shall maintain N to be
odd in Theorem 8.1, since our computation of the local Bessel period at the real place in the
vector-valued case in Appendix B is performed under the assumption that N is odd.

As we noted in Remark 1.5, after the submission of this paper, Ishimoto [Ish24] showed the
endoscopic classification of SO(4, 1) for generic Arthur parameters. Therefore, we may apply our
theorem to the case of GD � SO(4, 1).

Remark 8.8. A global explicit formula such as (8.3.1) is obtained in a certain non-squarefree
level case by Pitale, Saha and Schmidt [PSS23, Theorem 4.8].
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Appendix A. Explicit formula for the Whittaker periods on G = GSp2

Here we shall prove Theorem 6.3.
Let (π, Vπ) be an irreducible cuspidal globally generic automorphic representation of G(A).

Then Soudry [Sou87] has shown that the theta lift of π to GSO3,3 is non-zero and globally
generic. We may divide into two cases according to whether the theta lift of π to GSO3,3 is
cuspidal or not.

Suppose that the theta lift of π to GSO3,3 is cuspidal. Since PGSO3,3 � PGL4 and the explicit
formula for the Whittaker periods on GLn is known by Lapid and Mao [LM15], the arguments
in § 6.2 and 6.2.3, which are used to obtain (6.1.6) in Theorem 6.1 from (6.2.3), work mutatis
mutandis to obtain (6.2.3) from the Lapid–Mao formula in the case of GL4.

Suppose that the theta lift of π to GSO3,3 is not cuspidal. Then the theta lift of π to GSO2,2

is non-zero and cuspidal.
Thus, here we give a proof of Theorem 6.3 only in the case when π is a theta lift from GSO2,2.

Recall that PGSO2,2 � PGL2 × PGL2. Our argument is similar to that for [Liu16, Theorem 4.3].
Indeed, we shall prove (6.2.3) by pushing forward the Lapid–Mao formula for GSO2,2 to G.

A.1 Global pull-back computation
Let (X, 〈 , 〉) be the four-dimensional symplectic space as in § 3.1.2 and let {x1, x2, x−1, x−2} be
the standard basis of X given by (3.1.5).

Let Y = F 4 be an orthogonal space with a non-degenerate symmetric bilinear form defined
by

(v1, v2) = tv1J4v2 for v1, v2 ∈ Y

where J4 is given by (2.1.6). We take a standard basis {y−2, y−1, y1, y2} of Y = F 4 given by

y−2 = t(1, 0, 0, 0), y−1 = t(0, 1, 0, 0), y1 = t(0, 0, 1, 0), y2 = t(0, 0, 0, 1).

We note that (yi, y−j) = δij for 1 ≤ i, j ≤ 2.
Put Z = X ⊗ Y . Then Z is naturally a symplectic space over F . We take a polarization

Z = Z+ ⊕ Z− where
Z± = X± ⊗ Y

and X± = F · x±1 + F · x±2. Here all the double signs correspond. When z+ = x1 ⊗ a1 + x2 ⊗
a2 ∈ Z+(A) where a1, a2 ∈ Y , we let z+ = (a1, a2) and φ(z+) = φ(a1, a2) for φ ∈ S(Z+(A)).

Let N2,2 denote the group of upper triangular unipotent matrices of GO2,2, i.e.

N2,2(F ) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1 x y −xy
0 1 0 −y
0 0 1 −x
0 0 0 1

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ x, y ∈ F

⎫⎪⎪⎬⎪⎪⎭ .

We define a non-degenerate character ψ2,2 of N2,2(A) by

ψ2,2

⎛⎜⎜⎝
1 x y −xy
0 1 0 −y
0 0 1 −x
0 0 0 1

⎞⎟⎟⎠ = ψ(x+ y).

Then for a cusp form f on GSO2,2(A), we define its Whittaker period W2,2(f) by

W2,2(f) =
∫
N2,2(F )\N2,2(A)

f(n)ψ2,2(n)−1 dn.
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The following identity is stated in [GRS97, p. 113] but without a proof. Though it is shown by an
argument similar to that for [GRS97, Proposition 2.6], here we give a proof for the convenience
of the reader.

Proposition A.1. Let ϕ be a cusp form on GO2,2(A). For φ ∈ S(Z(A)+), let Θψ(ϕ, φ) (respec-
tively, θψ(ϕ, φ)) be the theta lift of σ (respectively, the restriction of ϕ to GSO2,2(A)) to
G(A).

Then we have

WψUG
(Θψ(ϕ, φ)) =

∫
N0(A)\O2,2(A)

φ(g−1(y−2, y−1 + y1))Wψ2,2(σ(g)ϕ) dg, (A.1.1)

where N0 denotes the unipotent subgroup

N0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1 x −x x2

0 1 0 −x
0 0 1 x
0 0 0 1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ,

which is the stabilizer of y−2 and y−1 + y1.
Similarly, we have

WψUG
(θψ(ϕ, φ)) =

∫
N0(A)\SO2,2(A)

φ(g−1(y−2, y−1 + y1))Wψ2,2(σ(g)ϕ) dg. (A.1.2)

Proof. Since the proofs are similar, we prove only (A.1.1). From the definition of the theta lift,
we may write ∫

N(F )\N(A)
Θψ(ϕ, φ)(ug)ψUG

(u)−1 du

=
∫

O2,2(F )\O2,2(A)

∑
(a1,a2)∈X

ωψ(g, h)φ(a1, a2)ϕ(h) dh,

where

X =
{

(a1, a2) ∈ Y (F )2 :
(

(a1, a1) (a1, a2)
(a2, a1) (a2, a2)

)
=
(

0 0
0 1

)}
.

Then as in [Fur95, Lemma 1], only (a1, a2) ∈ X such that a1 and a2 are linearly independent
contributes in the above sum. Thus, by Witt’s theorem, we may rewrite the above integral as∫

O2,2(F )\O2,2(A)

∑
γ∈N0(F )\O2,2(F )

ωψ(g, h)φ(γ−1y−2, γ
−1(y−1 + y1))ϕ(h) dh

=
∫

O2,2(F )\O2,2(A)

∑
γ∈N0(F )\O2,2(F )

ωψ(g, γh)φ(y−2, y−1 + y1)ϕ(h) dh

=
∫
N0(F )\O2,2(A)

ωψ(g, h)φ(y−2, y−1 + y1)ϕ(h) dh

=
∫
N0(A)\O2,2(A)

∫
N0(F )\N0(A)

ωψ(g, h)φ(y−2, y−1 + y1)ϕ(nh) dn dh.
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Thus, by (6.2.1) we have

WψUG
(Θψ(ϕ, φ)) =

∫
N0(A)\O2,2(A)

∫
N2(F )\N2(A)

∫
N0(F )\N0(A)

× ωψ(m(u)g, h)φ(y−2, y−1 + y1)ϕ(nh)ψUG
(m(u))−1 dh du. (A.1.3)

Here we have

ωψ(m(u)g, h)φ(y−2, y−1 + y1) = ωψ(g,m0(u)h)φ(y−2, y−1 + y1),

where

m0(u) =

⎛⎜⎜⎝
1 a/2 a/2 a2/4
0 1 0 −a/2
0 0 1 −a/2
0 0 0 1

⎞⎟⎟⎠ for u =
(

1 a
0 1

)
,

since ψUG
(m(u))−1 = ψ(−a). By noting the decomposition

⎛⎜⎜⎝
1 x y −xy
0 1 0 −y
0 0 1 −x
0 0 0 1

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1

x+ y

2
x+ y

2
(x+ y)2

4
0 1 0 −x+ y

2
0 0 1 −x+ y

2
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
1

x− y

2
−x− y

2
(x− y)2

4
0 1 0 −x− y

2
0 0 1 −x− y

2
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

the required identity (A.1.1) follows from (A.1.3). �
Recall the exact sequence

1 → GSO2,2 → GO2,2 → μ2 → 1.

Hence, we have

Θψ(ϕ, φ)(g) =
∫
μ2(F )\μ2(A)

θψ(ϕε : φε)(g) dε,

where ϕε = σ(ε)ϕ and φε = ωψ(ε)φ. Thus, we have

|WψUG
(Θψ(ϕ, φ))|2 =

∫
μ2(F )\μ2(A)

WψUG
(θψ(ϕε, φε)) dε,

where

WψUG
(θψ(ϕε, φε)) =

∫
μ2(F )\μ2(A)

WψUG
(θψ(ϕε, φε))WψUG

(θψ(ϕ, φ)) dε.

A.2 Lapid–Mao formula
Let us recall the Lapid–Mao formula in the GL2 case. Let (τ, Vτ ) denote an irreducible cuspidal
unitary automorphic representation of GL2(A). Then for f ∈ Vτ , its Whittaker period is defined
by

W2(f) =
∫
F\A

f

(
1 x
0 1

)
ψ(−x) dx

with the Tamagawa measure dx =
∏
dxv. Let v be a place of F . For fv ∈ τv and f̃v ∈ τv,

by [Liu16] (see also [LM15, § 2]), we may define

W2(fv, f̃v) =
∫ st

F
Bτv(τv(xv)fv, f̃v)ψv(−xv) dxv.
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Put

W�
2(fv, f̃v) =

L(1, τv,Ad)
ζFv(2)

W2(fv, f̃v),

which is equal to 1 at almost all places v by [LM15, Proposition 2.14]. Let us define

〈f, f〉 =
∫

A×GL2(F )\GL2(A)
|f(g)|2 dg,

where dg is the Tamagawa measure. We note that Vol(A×GL2(F )\GL2(A), dg) = 2. Further, let
us take a local GL2(Fv)-invariant pairing 〈 , 〉v on τv × τv such that 〈f, f〉 =

∏〈fv, fv〉v. Then by
[LM15, Theorem 4.1], we have

|W2(f)|2 =
1
2
· ζF (2)
L(1, τ,Ad)

∏
W�

2(fv, fv) (A.2.1)

for a factorizable vector f = ⊗fv ∈ Vτ .

A.3 Local pull-back computation
We fix a place v of F which will be suppressed from the notation in this appendix. Further, we
simply write X(F ) by X for any object X defined over F . Let σ be an irreducible tempered
representation of GO2,2 such that its big theta lift Θ(σ) to H is non-zero. Because of the Howe
duality proved by Howe [How89], Waldspurger [Wal90] and Gan and Takeda [GT16], combined
with Roberts [Rob96], Θ(σ) has a unique irreducible quotient, which we denote by π. Put R =
{(g, h) ∈ G× GO2,2 : λ(g) = ν(h)}. Then we have a unique R-equivariant map

θ : ωψ ⊗ σ → π.

Let Bω : ωψ ⊗ ωψ → C be the canonical bilinear pairing defined by

Bω(φ, φ̃) =
∫
V 2

φ(x)φ̃(x) dx.

By [GI11, Lemma 5.6], the pairing Z : (σ ⊗ σ) ⊗ (ωψ ⊗ ωψ) → C, defined as

Z(ϕ, ϕ̃, φ, φ̃) =
ζF (2)ζF (4)
L(1, σ, std)

∫
O2,2

Bω(ωψ(h)φ, φ̃)〈σ(h)ϕ, ϕ̃〉 dh,

which converges absolutely by [Liu16, Lemma 3.19], gives a pairing Bπ : π ⊗ π → C by

Bπ(θ(ϕ, φ), θ(ϕ̃, φ̃)) = Z(ϕ, ϕ̃, φ, φ̃).

Proposition A.2. We let y0 = (y−2, y−1 + y1). For any u ∈ N2,(
ζF (2)ζF (4)
L(1, σ, std)

)−1 ∫ st

NH

Bπ(π(nm(u))θ(ϕ, φ), θ(ϕ̃, φ̃))ψUH
(n)−1 dn

=
∫

O2,2

∫
N0\SO2,2

(ωψ(g,m(u))φ)(y0)φ̃(h−1 · y0)〈σ(g)ϕ, σ(h)ϕ̃〉 dg dh.

Let us define

WψUH
(f1, f2)) =

∫ st

UH

Bπ(π(u)f1, f2)ψ−1
UH

(u) du.
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Take the measure dh0 = 2dh|SO2,2 . Then(
ζF (2)ζF (4)
L(1, σ, std)

)−1

WψUH
(θ(ϕ, φ), θ(ϕ̃, φ̃))

=
∫ st

N2

∫
O2,2

∫
N0\SO2,2

(ωψ(g,m(u))φ)(y0)φ̃(h−1 · y0)〈σ(g)ϕ, σ(h)ϕ̃〉 dg dh du.

By an argument similar to that for [FM21, § 3.4.2] and [FM22, § 5.4], we see that this is equal to∫
N0\O2,2

∫
N0\SO2,2

∫ st

N2,2

(ωψ(g,m(u))φ)(y0)φ̃(h−1 · y0)〈σ(g)ϕ, σ(h)ϕ̃〉 dg dh du.

Further, it is equal to

∑
ε=±1

∫
N0\SO2,2

∫
N0\SO2,2

∫ st

N2,2

(ωψ(g,m(u))φε)(y0)φ̃(h−1 · y0)〈σ(g)ϕε, σ(h)ϕ̃〉 dg dh du

=
∑
ε=±1

∫
N0\SO2,2

∫
N0\SO2,2

φε(g−1 · y0)φ̃(h−1 · y0)W2,2(σ(g)ϕε, σ(h)ϕ̃) dg dh, (A.3.1)

where we define

W2,2(ϕ1, ϕ2) :=
∫ st

N2,2

〈σ(u)ϕ1, ϕ2〉ψ−1
2,2(u) du for ϕi ∈ Vσ.

Let us introduce a measure d′h = ζF (2)2dh. Then we get

W�
ψUH

(θ(ϕ, φ), θ(ϕ̃, φ̃)) =
∑
ε=±1

∫
N0\SO2,2

∫
N0\SO2,2

φε(g−1 · y0)φ̃(h−1 · y0)

×W�
2,2(σ(g)ϕε, σ(h)ϕ̃) dg d′h.

Here

W�
2,2(σ(g)ϕε, σ(h)ϕ̃) =

L(1, σ1,Ad)L(1, σ2,Ad)
ζF (2)2

W2,2(σ(g)ϕε, σ(h)ϕ̃).

A.4 Proof of Theorem 6.3
Let (σ, Vσ) be an irreducible cuspidal automorphic representation of the group GO2,2(A).
Suppose that σ is induced by the representation σ1 � σ2 of GL2(A) × GL2(A). For f = f1 ⊗ f2 ∈
Vσ1 ⊗ Vσ2 , we have

WUH
(f) =

∫
F\A

f1

((
1 x

1

)
h1

)
ψ(−x) dx

∫
F\A

f2

((
1 x

1

)
h2

)
ψ(−x) dx

for h = (h1, h2) ∈ SO2,2(A). Moreover, for any place v of F , we have

W�
2,2(ϕv, ϕ̃v) = W�

2(ϕ1,v, ϕ̃1,v)W�
2(ϕ2,v, ϕ̃2,v)
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with ϕv = (ϕ1,v, ϕ2,v) and ϕ̃v = (ϕ̃1,v, ϕ̃2,v). Then by (A.1.2) and the Lapid–Mao formula (A.2.1),
we obtain

WψUH
(θψ(ϕε, φε)) =

1
4

ζF (2)2

L(1, σ1,Ad)L(1, σ2,Ad)

×
∫
μ2(F )\μ2(A)

∏
v

∫ ∫
(N0(Fv)\SO2,2)2

( ∏
α=1,2

W�
2((σ(gv)ϕεv)α, (σ(hv)ϕv)α)

)
× φεv(g

−1
v · y0)φv(h

−1
v · y0) dg dh

=
1
4

ζF (2)2

L(1, σ1,Ad)L(1, σ2,Ad)

∫
μ2(F )\μ2(A)

∏
v

∫ ∫
(N0(Fv)\SO2,2)2

×W�
2,2(σ(gv)ϕv, σv(hv)ϕv)φ

ε
v(g

−1
v · y0)φv(h

−1
v · y0) dg dh.

By (A.3.1), this is equal to

1
4

ζF (2)ζF (4)
L(1, σ1,Ad)L(1, σ2,Ad)

∏
W�
ψUH

(θ(ϕv, φv), θ(ϕv, φv)),

and, thus, this completes our proof of Theorem 6.3.

Appendix B. Explicit computation of local Bessel periods at the real place

The goal of this appendix is to compute explicitly the local Bessel periods at the real place and
to complete our proof of Theorem 8.1. In this appendix, we use the same notation as in § 8.

For a newform Φ ∈ S�(Γ0(N)) in Theorem 8.1, we define a scalar-valued automorphic form
φΦ,S on G(A) by

φΦ,S(g) = (ϕΦ(g), QS,�)2r for g ∈ G(A), (B.0.1)

where ϕΦ is the adelization of Φ given by (8.2.9) and QS,� by (8.2.16). We note that by the
argument in [DPSS20, 3.2], φΦ,S is a factorizable vector φΦ,S = ⊗v φΦ,S,v. For a place v of Q, we
define Jv by

Jv =
α�v(φΦ,S,v, φΦ,S,v)
〈φΦ,S,v, φΦ,S,v〉v . (B.0.2)

It is clear that Jv remains invariant under replacing φΦ,S,v by its non-zero scalar multiple. Further,
we put

C = Cξ · ζQ(2)ζQ(4)
L(1, χE)

(B.0.3)

with the Haar measure constant Cξ defined by (1.6.1). Then the following identity holds.

Theorem B.1. We have

C(QS,�)CJ∞ =
24k+6r−1e−4π tr(S)

DE
. (B.0.4)

Recall that C(QS,�) is defined by (8.2.10) for v′ = QS,�.

Remark B.1. In the scalar-valued case, i.e. r = 0, the explicit computation of J∞ is done in
Dickson et al. [DPSS20, 3.5] using the explicit formula for matrix coefficients when k ≥ 3.
Meanwhile Hsieh and Yamana [HY24, Proposition 5.7] compute J∞ in a different way when
k ≥ 2, based on Shimura’s work on confluent hypergeometric functions.
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We note that the left-hand side of (B.0.4) depends only on the archimedean representation
π(Φ)∞ and the vector φΦ,S,∞. Thus, our strategy is to first obtain an explicit formula (B.1.12)
for the Bessel periods of vector-valued Yoshida lifts by combining the results in Hsieh and
Namikawa [HN17, HN18], Chida and Hsieh [CH18], Martin and Whitehouse [MW09], and, then
to evaluate C(QS,�)CJ∞ by singling out the real place contribution, comparing (B.1.12) with
(1.6.2).

B.1 Explicit formula for Bessel periods of Yoshida lifts
For a prime number p, let

Γ(1)
0 (p) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod p)

}
and Sk(Γ

(1)
0 (p)) the space of cusp forms of weight k with respect to Γ(1)

0 (p).
In order to insure what follows to be non-vacuous, first we shall prove the following technical

lemma.

Lemma B.1. Let k1 and k2 be integers with k1 ≥ k2 ≥ 0. Then there is a constant N =
N(k1, k2, E) ∈ R such that for any prime p > N , there exist distinct normalized newforms

fi ∈ S2ki+2(Γ
(1)
0 (p)) for i = 1, 2 satisfying the condition:

the Atkin–Lehner eigenvalues of fi at p for i = 1, 2 coincide. (B.1.1)

Proof. We divide into the following two cases:

k1 ≡ k2 (mod 2); (B.1.2a)

k1 + 1 ≡ k2 ≡ 0 (mod 2). (B.1.2b)

Suppose that (B.1.2a) holds. Then by Iwaniec, Luo and Sarnak [ILS00, Corollary 2.14], there
is a constant N(k1, k2) such that, for any prime p > N(k1, k2), there exist distinct normalized
newforms fi ∈ S2ki+2(Γ

(1)
0 (p)) for i = 1, 2 such that

ε(1/2, π1) = ε(1/2, π2),

where πi denotes the automorphic representation of GL2(A) corresponding to fi for i = 1, 2.
Since πi is unramified at all prime numbers different from p, we have

(−1)k1+1 · εp(1/2, π1) = (−1)k2+1 · εp(1/2, π2).

Hence, εp(1/2, π1) = εp(1/2, π2) by (B.1.2a). Then by the relationship between the local ε-factor
at p and the Atkin–Lehner eigenvalue at p (e.g. [HN18, 4.4]), we see that (B.1.1) holds.

Suppose that (B.1.2b) holds. Then by Michel and Ramakrishnan [MR12, Theorem 3] or
Ramakrishnan and Rogawski [RR05, Corollary B], there exists a constant N1 = N1(k1, E) such
that for any prime p > N1, there exists a normalized newform f1 ∈ S2k1+2(Γ

(1)
0 (p)) such that

L(1/2, π1)L(1/2, π1 × χE) 	= 0.

In particular, ε(1/2, π1) = 1 and, thus, as in the previous case, we have

(−1)k1+1 · εp(1/2, π1) = 1.

Moreover, by [ILS00, Corollary 2.14], there exists a constant N2 = N2(k2) such that for any
prime p > N2, there exists a normalized newform f2 ∈ S2k2+2(Γ

(1)
0 (p)) such that

ε(1/2, π2) = −1.
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Then by taking the constant N to be max(N1, N2), the condition (B.1.1) holds by the same
argument as above. �

B.1.1 Vector-valued Yoshida lift. As for the Yoshida lifting, we refer the reader to our main
references by Hsieh and Namikawa [HN17, HN18] for the details.

Let k1 and k2 be integers with k1 ≥ k2 ≥ 0. Then by Lemma B.1, we may take a prime
number p satisfying the condition:

p is odd, and inert and unramified in E (B.1.3)

and may take distinct normalized newforms fi ∈ S2ki+2(Γ
(1)
0 (p)) (i = 1, 2) satisfying the condition

(B.1.1).
For a non-negative integer r, we denote by (τr,Wr) the representation (�, V�) of GL2(C)

where � = �(r,−r), i.e. τr = Sym2r ⊗ det−r. We note that the action of the center of GL2(C) on
Wr by τr is trivial and the pairing ( , )2r is GL2(C)-invariant by (8.2.5). Let p be a prime number
andD = Dp,∞ the unique division quaternion algebra over Q which ramifies precisely at p and ∞.
Let OD be the maximal order of D specified as in [HN17, 3.2] and we put ÔD = OD ⊗Z Ẑ.

Definition B.1. We have Ar(D×(A), ÔD), the space of automorphic forms of weight r and
level ÔD on D×(A) is a space of functions g : D×(A) → Wr satisfying

g(zγhu) = τr(h∞)−1g(hf )

for z ∈ A×, γ ∈ D×(Q), u ∈ Ô×
D and h = (h∞, hf ) ∈ D×(R) ×D×(Af ).

For i = 1, 2, let πi be the irreducible cuspidal automorphic representation of GL2(A)
corresponding to fi. Let πDi be the Jacquet–Langlands transfer of πi to D×(A).
We denote by Aki(D

×(A), ÔD)[πDi ] the πDi -isotypic subspace of Aki(D
×(A), ÔD). Then

Aki(D
×(A), ÔD)[πDi ] has a subspace of newforms, which is one dimensional. Let us take new-

forms fi ∈ Aki(D
×(A), ÔD)[πDi ] for i = 1, 2 and fix. Then to the pair f = (f1, f2), Hsieh and

Namikawa [HN17, 3.7] associate the Yoshida lift θf , a V�-valued cuspidal automorphic form on
G(A) where � = �κ with

κ = (k1 + k2 + 2, k1 − k2 + 2) ∈ L.

The classical Yoshida lift θ∗f ∈ S�(Γ0(p)) is also attached to f in [HN17, 3.7] so that θf is obtained
from θ∗f by the adelization procedure in (8.2.9).

B.1.2 Bessel periods of Yoshida lifts. Let φf ,S denote a scalar-valued automorphic form
attached to θ∗f as in (B.0.1). Hsieh and Namikawa evaluated the Bessel periods of φf ,S in [HN17].

First we remark that by [HN17, Theorem 5.3], for any sufficiently large prime number q
which is different from p, we may take a character Λ0 of A×

E satisfying:

L(1/2, π1 ⊗AI(Λ0))L(1/2, π2 ⊗AI(Λ−1
0 )) 	= 0; (B.1.4a)

the conductor of Λ0 is qmOE where m > 0; (B.1.4b)

Λ0 |A× is trivial; (B.1.4c)

Λ0,∞ is trivial. (B.1.4d)

Then [HN17, Proposition 4.7] yields the following formula.
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Lemma B.2. We have

BS,Λ0,ψ(φf ,S) = q2m · (−2
√−1)k1+k2 · e−2πTr(S) ·

2∏
i=1

P (fi,Λαi
0 , 12), (B.1.5)

where αi = (−1)i+1 and

P (fi,Λαi
0 , 12) =

∫
E×A×\A

×
E

((XY )ki , fi(t))2ki · Λαi
0 (t) dt.

From (B.1.5), we have

|BS,Λ0,ψ(φf ,S)|2 = q4m · 22(k1+k2) · e−4π tr(S) ·
2∏
i=1

|P (fi,Λαi
0 , 12)|2. (B.1.6)

Since p is odd and inert in E, we may evaluate the right-hand side of (B.1.6) by Martin and
Whitehouse [MW09]. Namely the following formula holds by [MW09, Theorem 4.1].

Lemma B.3. We have

|P (fi,Λαi
0 , 12)|2

‖φfi‖2
=

1
4
· ξ(2)
ζQp(2)

· L(1/2, πi ⊗AI(Λαi
0 ))

L(1, πi,Ad)
· (1 + p−1)−1

× Γ(2ki + 2)

2qmπD1/2
E Γ(ki + 1)2

, (B.1.7)

where ξ(s) denotes the complete Riemann zeta function, φfi the scalar-valued automorphic form
on D×(A) defined by

φfi(h) = ((XY )ki , fi(h))2ki for h ∈ D×(A)

and

‖φfi‖2 =
∫

A×D×(Q)\D×(A)
|φfi(h)|2 dh.

Here dh is the Tamagawa measure on A×\D×(A) and, thus,

Vol(A×D×(Q, )\D×(A), dh) = 2.

Remark B.2. The factor 1
4 in (B.1.7) originates from the difference of measures between the one

used here and the one in [MW09].

In order to utilize the explicit inner product formula for vector-valued Yoshida lifts in Hsieh
and Namikawa [HN18], we need the following lemma.

Lemma B.4. Let us define an inner product 〈fi, fi〉 for i = 1, 2 by

〈fi, fi〉 =
∑
a

〈fi(a), fi(a)〉τki
· 1
# Γa

(B.1.8)

where 〈 , 〉τki
is defined by (8.2.6), a runs over double coset representatives of D×(Q)\D×(Af )/

Ô×
D and Γa = (aÔ×

Da
−1 ∩D×(Q))/{±1}.

Then for i = 1, 2, we have

‖φfi‖2 = 23 · 3 · p−1(1 − p−1)−1 · Γ(ki + 1)2

Γ(2ki + 1)
· 1
(2ki + 1)2

· 〈fi, fi〉. (B.1.9)
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Proof. Since ‖φfi‖2 = ‖πDi (h∞)φfi‖2 for h∞ ∈ D×(R), we have

‖φfi‖2 =
1

Vol(R×\D×(R), dh∞)

∫
R×\D×(R)

∫
A×D×(Q)\D×(A)

|φfi(hh∞)|2 dh dh∞.

By interchanging the order of integration, we have

‖φfi‖2 =
1

Vol(R×\D×(R), dh∞)

∫
A×D×(Q)\D×(A)

∫
R×\D×(R)

|φfi(hh∞)|2 dh∞ dh.

Here the Schur orthogonality implies

1
Vol(R×\D×(R), dh∞)

∫
R×\D×(R)

|((XY )ki , fi(hh∞))2ki |2 dh∞

= d−1
i · ((XY )ki , (XY )ki)2ki · (fi(h), fi(h))2ki ,

where di = dim Sym2ki = 2ki + 1 and ((XY )ki , (XY )ki)2ki = (−1)ki
(

2ki
ki

)−1. Hence,

‖φfi‖2 =
(

2ki
ki

)−1

(2ki + 1)−1

∫
A×D×(Q)\D×(A)

(fi(h), fi(h))2ki dh.

By [HN17, Lemma 6], we have∫
A×D×(Q)\D×(A)

(fi(h), fi(h))2ki dh =
(−1)ki

2ki + 1

∫
A×D×(Q)\D×(A)

〈fi(h), fi(h)〉τki
dh. (B.1.10)

Finally by Chida and Hsieh [CH18, (3.10)] with the following Remark B.3, we obtain (B.1.9). �

Remark B.3. In [CH18], the Eichler mass formula is used to express the right-hand side of
(B.1.10) in terms of the inner product defined by (B.1.8). There is a typo in the Eichler mass
formula in [CH18, p. 103]. The right-hand side of the formula quoted there should be multiplied
by 2.

Let us recall the inner product formula for θ∗f by Hsieh and Namikawa [HN18, Theorem A].

Proposition B.1. We have

〈θ∗f , θ∗f 〉�
〈f1, f1〉〈f2, f2〉 = L(1, π1 × π2) · 2−(2k1+6)

(2k1 + 1)(2k2 + 1)
· 1
p2(1 + p−1)(1 + p−2)

. (B.1.11)

Here 〈θ∗f , θ∗f 〉� is given by

〈θ∗f , θ∗f 〉� =
1

[Sp2(Z) : Γ0(p)]

∫
Γ0(p)\H2

〈θ∗f (Z), θ∗f (Z)〉�(detY )k1−k2−1 dX dY

with � = �κ where κ = (k1 + k2 + 2, k1 − k2 + 2).

Thus, by combining (B.1.6), (B.1.7), (B.1.9) and (B.1.11), we have

|BS,Λ0,ψ(φf ,S)|2
〈θ∗f , θ∗f 〉�

=
24k1+2k2+5e−4π tr(S)

DE
· 2(1 + p−1)(1 + p−2) · q2m

× L(1/2, π1 ⊗AI(Λ0))L(1/2, π2 ⊗AI(Λ−1
0 ))

L(1, π1,Ad)L(1, π2,Ad)L(1, π1 × π2)
. (B.1.12)

Here we note that the both sides of (B.1.12) are non-zero due to the conditions (B.1.1) and
(B.1.4).
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B.2 Proof of Theorem B.1
Since the Ichino–Ikeda-type formula has been proved for Yoshida lifts by Liu [Liu16,
Theorem 4.3], the computations in Dickson et al. [DPSS20] imply

|BS,Λ0,ψ(φf ,S)|2
〈φf ,S , φf ,S〉 =

CJ∞
22

· 2(1 + p−1)(1 + p−2) · Jq

× L(1/2, π1 ⊗AI(Λ0))L(1/2, π2 ⊗AI(Λ−1
0 ))

L(1, π1,Ad)L(1, π2,Ad)L(1, π1 × π2)
. (B.2.1)

Thus, in order to evaluate J∞, we need to determine Jq.
Here we use a scalar-valued Yoshida lift to evaluate Jq. First we recall that (B.0.4) holds in the

scalar-valued case, i.e. when k2 = 0, as we noted in Remark B.1. By Lemma B.1, when q is large
enough, there also exist distinct normalized newforms f ′1 ∈ S2k1+2(Γ

(1)
0 (p)) and f ′2 ∈ S2(Γ

(1)
0 (p))

satisfying the condition (B.1.1), and a character λ′0 of A×
E satisfying the conditions (B.1.4) for π′i

(i = 1, 2) where π′i is the automorphic representation of GL2(A). Define f ′ similarly for π′1 and
π′2. Since (B.0.4) is valid in the scalar-valued case, we have

|BS,Λ0,ψ(φf ′,S)|2
〈φf ′,S , φf ′,S〉 =

24k1+5e−4π tr(S)

DE
· C(QS,�(k1,k1)

)−1

· 2(1 + p−1)(1 + p−2) · Jq · L(1/2, π′1 ⊗AI(Λ′
0))L(1/2, π′2 ⊗AI(Λ′ −1

0 ))
L(1, π′1,Ad)L(1, π′2,Ad)L(1, π′1 × π′2)

.

We note that Jq here is the same as that in (B.2.1). Then by comparing the formula above with
(B.1.12) for f ′ and Λ′

0, we have Jq = q2m.
Finally, by comparing (B.1.12) with (B.2.1) substituting Jq = q2m, we have

C(QS,�)CJ∞ =
24k1+2k2+7e−4π tr(S)

DE
(B.2.2)

in the general case.
For Φ in Theorem 8.1, a scalar-valued automorphic form φΦ,S defined by

φΦ,S(g) = (ϕΦ(g), QS,�)2r for g ∈ G(A)

is factorizable, i.e. φΦ,S = ⊗vφΦ,S,v. Let us choose k1 and k2 so that

(2r + k, k) = (k1 + k2 + 2, k1 − k2 + 2), i.e. k1 = r + k − 2, k2 = r.

Then for φf ,S = ⊗vφf ,S,v in (B.2.1), the archimedean factor φf ,S,∞ is a non-zero scalar multiple
of φΦ,S,∞. Thus, (B.0.4) follows from (B.2.2).

B.3 Proof of Theorem 8.1
Let us complete our proof of Theorem 8.1.

By Theorem 1.2, we have

|BS,Λ,ψ(φΦ,S)|2
〈φΦ,S , φΦ,S〉 =

CJ∞
2c−3

· L(1/2, π(Φ) ×AI(Λ))
L(1, π(Φ),Ad)

·
∏
p|N

Jp, (B.3.1)

where c is as stated in Theorem 8.1. By (8.2.13) and (8.2.17), we have

BS,ψ,Λ(φΦ,S) = 2 · e−2π tr(S) · BΛ(Φ;E).
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Since 〈φΦ,S , φΦ,S〉 = C(QS,�) · 〈Φ,Φ〉� by Lemma 8.1, we have

|BΛ(Φ;E)|2
〈Φ,Φ〉� =

|BS,Λ,ψ(φΦ,S)|2
〈φΦ,S , φΦ,S〉 · 2−2e4π tr(S)C(QS,�). (B.3.2)

Thus, by combining (B.3.1), (B.3.2) and (B.0.4), the identity (8.3.1) holds.

Appendix C. Meromorphic continuation of L-functions for SO(5) × SO(2)

As we remarked in Remark 1.3, here we show the meromorphic continuation of LS(s, π ×AI(Λ))
in Theorem 1.1, when AI(Λ) is cuspidal and S is a sufficiently large finite set of places of F
containing all archimedean places. The following theorem clearly suffices.

Theorem C.1. Let π (respectively, τ) be an irreducible unitary cuspidal automorphic represen-
tation π of GD(A) (respectively, GL2(A)) with a trivial central character. Then LS(s, π × τ) has
a meromorphic continuation to C and it is holomorphic at s = 1

2 for a sufficiently large finite set
S of places of F containing all archimedean places.

When D is split, then GD � G and the theorem follows from Arthur [Art13]. Hence, from
now on we assume that D is non-split.

By [Li92], for some ξ and Λ, π has the (ξ,Λ, ψ)-Bessel period. Thus, we may use the integral
representation of the L-function for GD × GL2 introduced in [Mor14b]. Then the meromorphic
continuation of the Siegel Eisenstein series on GU3,3, which is used in the integral representation
is known by the main theorem of Tan [Tan99] (see also [PSS14, Proposition 3.6.2]). Hence, by the
standard argument, our theorem is reduced to the analysis of the local zeta integrals. Meanwhile
the non-archimedean local integrals are already studied in [Mor14b, Lemma 5.1]. Hence, it suffices
for us to investigate the archimedean ones. Since the case when Ev is a quadratic extension field
of Fv is similar to, and indeed simpler than, the split case, here we only consider the split case.

Let us briefly recall our local zeta integral (see [Mor14b, (28)]). Let v be an archimedean
place of F . Since we consider the split case, Dv is split and we may assume that GD(Fv) =
G(Fv) = GSp2(Fv) and ξ =

(
1 0
0 −1

)
. Then we have

Tξ(Fv) = {g ∈ GL2(F ) | tgξg = det(g)ξ} =
{(

x y
y x

)
∈ GL2(F )

}
.

In what follows, we omit the subscript v from any object in order to simplify the notation. Let
Λ be a unitary character of F×. Then we regard Λ as a character of Tξ(F ) by

Λ
(
x y
y x

)
= Λ

(
x+ y

x− y

)
for

(
x y
y x

)
∈ TS(F ).

For a non-trivial character ψ of F , let Bξ,Λ,ψ(π) denote the (ξ,Λ, ψ)-Bessel model of π, i.e. the
space of functions B : G(F ) → C such that

B(tug) = Λ(t)ψξ(u)B(g) for t ∈ Tξ(F ), u ∈ N(F ) and g ∈ G(F ),

which affords π by the right regular representation. Let W(τ) denote the Whittaker model of π,
i.e. the space of functions W : GL2(F ) → C such that

W

((
1 x
0 1

)
g

)
= ψ(−x)W (g) for x ∈ F and g ∈ GL2(F ),
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which affords τ by the right translation. Let G0(F ) = GL2(F ) ×G(F ) and we regard G as a
subgroup of GL6(F ) by the embedding

ι : G0 �
((

a b
c d

)
,

(
A B
C C

))
↪→

⎛⎜⎜⎝
a 0 b 0
0 A 0 B
c 0 d 0
0 C 0 D

⎞⎟⎟⎠ ∈ GL6(F ).

Let us define a subgroup H0 of G0 as

H0(F ) =
{
ν(h)

((
1 tr(ξX)
0 1

)
,

(
h 0
0 deth · th−1

)(
12 X
0 12

)) ∣∣∣∣ X = tX,h ∈ Tξ(F )
}
,

where

ν(h) = x− y for h =
(
x y
y x

)
∈ Tξ(F ).

Let P3 be the maximal parabolic subgroup of GL6 defined by

P3 =
{(

h1 X
0 h2

)
: h1, h2 ∈ GL3

}
.

Then we consider a principal series representation

I(Λ, s) =
{
fs : GL6(F ) → C

∣∣∣∣ fs(( h1 X
0 h2

)
h

)
= Λ

(
deth1

deth2

)∣∣∣∣deth1

deth2

∣∣∣∣3s+3/2

fs(h)
}
.

For fs ∈ I(Λ, s), B ∈ Bξ,Λ,ψ(π) and W ∈ W(τ), our local zeta integral Z(fs, B,W ) is given by

Z(fs, B,W ) =
∫
Z0(F )H0(F )\G0(F )

fs(θ0 ι(g1, g2))B(g2)W (g1) dg1 dg2,

where Z0 denotes the center of G0 and

θ0 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1
0 1 0 0 0 0
1 0 0 0 0 0
1 −1 1 0 0 0
0 0 0 0 1 −1
0 0 0 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

As explained above, Theorem C.1 follows by the standard argument if we prove the following
lemma.

Lemma C.1. Let s0 be an arbitrary point in C. Then we may choose fs, B and W so that
Z(fs, B,W ) has a meromorphic continuation to C and is holomorphic and non-zero at s = s0.

Proof. For ϕ ∈ C∞
c (GL6(F )), we may define Ps[ϕ] ∈ I(Λ, s) by

Ps[ϕ](h) =
∫

GL3(F )

∫
GL3(F )

∫
Mat3×3(F )

ϕ

((
h1 0
0 h2

)(
13 X

13

)
h

)

×
∣∣∣∣deth1

deth2

∣∣∣∣−3s+3/2

Λ
(

deth1

deth2

)−1

dh1 dh2 dX.

In what follows we construct ϕ of a special form, whose support is contained in the open double
coset P3(F )θ0G0(F ) in GL6(F ).
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Let B0 be the group of upper triangular matrices in GL2 and let P0 be the mirabolic subgroup
of GL2, i.e.

P0(F ) =
{(

a b
0 1

) ∣∣∣∣ a ∈ F×, b ∈ F

}
.

We define a subgroup M0 of G by

M0(F ) =
{(

h 0
0 λ · th−1

) ∣∣∣∣ λ ∈ F×, h ∈ B0(F )
}

and M = ι(P0,M0). Then by the Iwasawa decomposition for G0(F ) and the inclusion

H0(F ) ⊂ G0(F ) ∩ θ−1
0 P3(F )θ0, (C.0.1)

we have

P3(F )θ0G0(F ) = P3(F )θ0M(F )K0,

where K0 is a maximal compact subgroup of G0(F ). We take K0 = ι(K1,K2) where K1

(respectively, K2) is a maximal compact subgroup of GL2(F ) (respectively, G(F )). By direct
computations, we see that ⎧⎪⎨⎪⎩

θ0N(F ) θ−1
0 ∩ P3(F ) = {16};

θ0M(F ) θ−1
0 ∩ P3(F ) = θ0A(F ) θ−1

0 ;
θ0K0 θ

−1
0 ∩ P3(F ) = {16},

where

A(F ) =
{(

a · 13

13

)
: a ∈ F×

}
.

Let us define subgroups T0, N0 of G0 by

T0(F ) =

⎧⎪⎪⎨⎪⎪⎩ι
⎛⎜⎜⎝(a 1

)
,

⎛⎜⎜⎝
x

y
λx−1

λy−1

⎞⎟⎟⎠
⎞⎟⎟⎠ : x, y, λ ∈ F×

⎫⎪⎪⎬⎪⎪⎭ ;

N0(F ) =

⎧⎪⎪⎨⎪⎪⎩ι
⎛⎜⎜⎝(1 x

1

)
,

⎛⎜⎜⎝
1 y

1
1
−y 1

⎞⎟⎟⎠
⎞⎟⎟⎠ : x, y ∈ F

⎫⎪⎪⎬⎪⎪⎭ .

Then for ϕ1 ∈ C∞
c (N0(F )), ϕ2 ∈ C∞

c (T0(F )), ϕ3, ϕ4 ∈ C∞
c (GL3(F )), ϕ5 ∈ C∞

c (Mat3×3(F ))
and ϕ6 ∈ C∞

c (K0), we may construct ϕ′ ∈ C∞
c (GL6(F )), whose support is contained in

P3(F )θ0G0(F ), by

ϕ′
((

h1 0
0 h2

)(
13 X
0 13

)
θ0 n0 t0 k

)
= ϕ6(k)ϕ3(h1)ϕ4(h2)ϕ5(X)ϕ1(n0)

∫
A(F )

ϕ2(t0 a) d×a,

where n0 ∈ N0(F ), t0 ∈ T0(F ) and k ∈ K0.
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Then the local zeta integral Z(Ps[ϕ′], B,W ) is written as

Z(Ps[ϕ′], B,W )

=
∫
ϕ′
((

h1 0
0 h2

)(
13 X

13

)
ι(n0,1, n0,2)ι(t0,1, t0,2)ι(k1, k2)

)

×
∣∣∣∣deth1

deth2

∣∣∣∣−3s+3/2

Λ
(

deth1

deth2

)−1

W (n0,1t0,1k1)B(n0,2t0,2k2) dh1 dh2 dX dn0 dt0 dk

=
∫
ϕ6(ι(k1, k2))ϕ3(h1)ϕ4(h2)ϕ5(X)ϕ1(n0)ϕ2(t0a)

∣∣∣∣deth1

deth2

∣∣∣∣−3s+3/2

Λ
(

deth1

deth2

)−1

×W (n0,1t0,1k1)B(n0,2t0,2k2) d×a dh1 dh2 dX dn0 dt0 dk

=
∫
ϕ6(ι(k1, k2))ϕ3(h1)ϕ4(h2)ϕ5(X)ϕ1(n0)ϕ2(t0)

∣∣∣∣deth1

deth2

∣∣∣∣−3s+3/2

Λ
(

deth1

deth2

)−1

× Λ(λ)|λ|3s−9/2W

(
n0,1

(
λ 0
0 1

)
t0,1k1

)
B

(
n0,2

(
λ · 12 0

0 12

)
t0,2k2

)
× d×λ dh1 dh2 dX dn0 dt0 dk,

where we let n0 = ι(n0,1, n0,2) ∈ N0(F ), t0 = ι(t0,1, t0,2) ∈ T0(F ) and k = ι(k1, k2) ∈ K0. Since
we may vary ϕi (1 ≤ i ≤ 6), our assertion in Lemma C.1 follows from the same assertion for the
integral ∫

F×
Λ(λ)|λ|3s−9/2B

(
λ · 12 0

0 12

)
W

(
λ 0
0 1

)
d×λ. (C.0.2)

For any φ ∈ C∞
c (F×), there exists Wφ ∈W (τ) such that Wφ

(
a 0
0 1

)
= φ(a) by the the-

ory of Kirillov model for GL2(R) by Jacquet [Jac10, Proposition 5] and for GL2(C) by
Kemarsky [Kem15, Theorem 1]. Thus, our assertion clearly holds for the integral (C.0.2). �
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