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SUMMARY
In this paper, a novel spherical parallel manipulator and
its isotropic design is introduced. This manipulator has
good accuracy and relatively a larger workspace which is
free of singularities. Utilizing spherical configuration the
forward position problem is solved by equivalent angle–
axis representation and Bezout’s method which leads to a
polynomial of degree 8. Two examples are given, one for
isotropic and one for nonisotrpoic design. The first case
results in eight real solutions, therefore, the polynomial
being minimal. Using invariant form, we study acceleration
analysis, conditions for singularity and find infinite isotropic
structures. Accuracy and workspace analysis are also
performed and are shown to have good global conditioning
index and relatively large workspace. Using isotropic design
and singularity requirements, we show the workspace of
isotropic design is free of singularity.

KEYWORDS: Spherical parallel manipulator; Forward
position problem; Bezout’s elimination method; Isotropy
design; Singularity analysis.

1. Introduction
Orientating a rigid body without changing its position
is required in many technical applications. A spherical
manipulator is one in which the end-effector is moved on
the surface of a sphere. Therefore, a spherical manipulator
can be used as a device to orient the end-effector. Spherical
manipulators can be either serial1 or parallel.3–13 Serial
manipulators feature an open kinematics chain whose ending
link is the end-effector. Parallel manipulators are made of two
rigid bodies, one moveable (platform) and the other fixed
(base), connected to each other by a number of kinematic
chains (legs). The moving platform and the fixed base are
the end-effector and the base frame, respectively. In each
leg, the number of actuated kinematic pairs is less than
the total number of kinematic pairs. All legs contribute in
carrying the external loads applied to the moving platform.
Parallel architectures are usually more stiff and precise
than the serial ones, however their structures are more
complex.

Alici and Shirinzadeh7 proposed a spherical parallel
manipulator, 3-SPS, which is made of three identical moving
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legs and a fixed leg. Each of the three moving legs is
made of SPS (spherical–prismatic–spherical) joints. The
fixed leg joins the moving platform to the base with a
passive spherical joint at the moving platform. The prismatic
pairs are the actuated joints. Innocenti and Parenti-Castelli,8

Wohlhart,9 and Vertechy and Parenti-Castelli14 have studied
a spherical manipulator, 3-UPS, similar to that of Alici and
Shirinzadeh.7 The 3-UPS is also made of three identical
moving legs and a fixed leg. Each of the three moving
legs is made of UPS (universal–prismatic–spherical) joints.
The fixed leg joins the moving platform to the base with
a passive spherical joint at the moving platform. The
prismatic pairs are the actuated joints. Both manipulators
suffer workspace reductions due to the presence of the fixed
leg.

Gosselin and others2–6 have studied a family of
overconstrained spherical manipulators with the moving
platform and the fixed base connected to one another
by either two6 or three2–6 legs of type RRR
(revolute–revolute–revolute) joints. All legs are located on
the surface of an imaginary sphere. Therefore, rotation axes
of all revolute pairs converge at a single point which is
the center of the sphere. Only one revolute pair per leg
is actuated. These manipulators obtain the 3-dof (degrees
of freedom) needed for orientating the platform by using
repetitive constraints, and the absence of geometric errors is
essential to make them work properly.

Karouia and Herve10 and Di Gregorio11,12 have studied
different types of nonoverconstrained spherical manipulators
with three equal legs. This class of spherical manipulators
are to be preferred because they do not suffer the
overconstrained mechanism troubles and they do not present
a passive spherical pair directly joining the platform and
the base. These advantages are usually paid for with a more
complex structure and the presence of singular configurations
(translation singularities) in which the spherical constraint
between platform and base fails.

Di Gregorio13 proposed a new spherical parallel
manipulator made of RRS joints. The parallel manipulator is
named 3-RRS wrist. The 3-RRS wrist is not overconstrained
and exhibits a simple architecture employing three identical
legs. Each leg consists of a passive revolute pair, a passive
spherical pair, and an actuated revolute pair which is fixed to
the base.

Karouia and Hervé15 proposed an asymmetrical
nonoverconstrained 3-dof spherical parallel manipulator.
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Each leg is structurally different from other legs. Cervantes-
Sanchez et al.16 proposed a symmetrical 2-dof spherical
parallel manipulator. It is composed of two legs and five
revolute joints.

Mohammadi Daniali et al.17 proposed a double-triangle
(DT) spherical parallel manipulator. It consists of two
spherical triangles, one fixed and the other moveable. The
mechanism consists of three legs. Each leg is made of
three joints, PRP (prismatic–revolute–prismatic). Both fixed
base and the moving platform are located on the surface of
an imaginary sphere. Therefore, axes of all revolute pairs
converge at a single point which is the center of the sphere.
Only one prismatic joint per leg is actuated.

In this paper, we introduce a novel spherical parallel
manipulator that offers some advantages over existing
spherical manipulators:

1. Its structural isotropic design exists.
2. It has infinite isotropic structures.
3. Its isotropic design (structure) is free of singularity over

the entire workspace.
4. Its isotropic design has a large workspace. The end-

effector can travel over the entire fixed base surface.
5. It has good accuracy.

After introducing the novel spherical parallel manipulator,
we will solve its forward position problem. Utilizing the
spherical configuration of the manipulator and equivalent
angle–axis representation two coupled trigonometric
equations are obtained. The two coupled equations are
solved using Bezout’s elimination method which leads to
a polynomial of degree 8. Two examples are given, one for
the isotropic design and the other for nonisotropic design.
The first example utilizes the isotropic design which leads
to eight real solutions, the polynomial thus being minimal.
The second example is given for the nonisotropic design
which leads to four real solutions. Using velocity analysis,
we obtain two Jacobian matrices for the manipulator. The
two Jacobian matrices are utilized to define three types
of singularity conditions and identify the isotropic design.
Additionally, it is shown that through changes of only one
variable infinite isotropic structures for the novel spherical
manipulator may be found. The designer can therefore use
this one variable to custom select different size workspace
for the task at hand. Finally, we will show all points in the
workspace of the isotropic design are free of singularities.

2. Spherical Star-Triangle (ST) Parallel Manipulator
Spherical DT parallel manipulator was introduced by
Mohammadi Daniali et al.17 In this paper, we change the
moving spherical triangle of the DT to a star, and introduce
spherical ST parallel manipulator. This manipulator consists
of a fixed spherical triangular base, P, and a moving platform
which is shaped like a spherical star, S. The fixed base and
the moving platform are connected via three legs. Each of the
three moving legs is made of PRP joints. The general model
of this manipulator is depicted in Fig. 1. The first prismatic
joint which is also the actuated joint moves along a circular
arc located on the surface of the sphere. This joint can also
be viewed as a revolute joint with its axis passing through the

Fig. 1. General model of SST.

Fig. 2. Spherical star triangle (SST) manipulator.

origin of the sphere. Therefore, each of the three moving legs
can be thought of being RRP (revolute–revolute–prismatic)
joints. In practice, it is difficult to manufacture an actuated
prismatic joint which moves on a circular arc. Therefore, to
physically construct this manipulator we will build its legs
with RRP joints. The physical model of this manipulator is
depicted in Fig. 2.

To develop the mathematical model of the manipulator,
first sphere with the center at O and a fixed spherical triangle,
P1P2P3, on its surface is considered. The Pi corner can
be defined by a unit vector, vi , which starts at Pi and its
direction is along OPi . Actuators stroke which can travel
along the arc Pi+1Pi+2 is defined by ρi . Next, the moveable
spherical star, S, is considered. The star is made of three arcs
which are located on a surface of a second sphere. The first
and the second sphere have the same center but the radius

https://doi.org/10.1017/S0263574708005031 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005031


A novel spherical parallel manipulator 665

of the second sphere is slightly larger due to intermediate
revolute joint. This difference should be minimized in order
to increase the structural stiffness of the manipulator. The
three arcs intersect at one point, E, which defines position
of the end-effector. This position is mathematically defined
by a unit vector, s, which starts at the intersections of the
three arcs and its direction is along OE. The angle between
these arcs, α1, α2, and α3, are manually selected by the robot
designer to obtain the desired performance. The arcs of the
base triangle, Pi+1Pi+2, cross over the corresponding arcs of
the moveable star platform ERi , at the point Ri . To further
define point Ri , unit vector, ri , which starts at Ri and its
direction is along ORi is defined. Furthermore, Ri is the joint
with 2-dof. This joint allows rotation about ri-axis as well as
rotation about the axis that passes through center of sphere,
O, and is perpendicular to OERi plane.

3. Forward Position Problem
In this section, we analyze the forward position problem
of spherical ST manipulator. For this purpose, we obtain
two trigonometric equations by using the equivalent angle–
axis representation and configuration of the manipulator.
We previously defined unit vectors that help describe the
configuration of robot. Two additional unit vectors, wi and
ti need to be defined in order to describe the position
of the passive and actuated prismatic joints. All these
unit vectors pass through origin of the sphere. Equivalent
angle–axis representation may also be used to define the
rotation between these unit vectors. Equivalent angle–axis
representation is defined by

Q(e, φ) = (cos φ)I3×3 + (1 − cos φ)eeT + (sin φ)S(e)

(1(a))

and

S(e) =
⎡
⎣ 0 −ez ey

ez 0 −ex

−ey ex 0

⎤
⎦ (1(b))

where φ is the angle of rotation, the unit vector e is the axis
of rotation, ex , ey , and ez are its Cartesian components, and
S(e) is a skew-symmetric matrix. As stated earlier the motion
of the prismatic actuator can also be viewed as revolution
(revolute joint) with an axis that passes through the origin of
the sphere. This axis is defined by a unit vector, wi . This unit
vector is perpendicular to the plane OPi+1Pi+2 and passes
through origin. Therefore,

wi = vi+1 × vi+2

‖vi+1 × vi+2‖ . (2)

The motion of the passive prismatic joint can also be viewed
as a revolute joint with an axis that passes through the origin
of the sphere. This axis is defined by a unit vector, ti . This
unit vector is perpendicular to the plane OERi and passes

through origin. Therefore,

ti = s × ri

‖s × ri‖ . (3)

In forward position problem, values of the actuators stroke
ρi and radius of sphere r are known; therefore, the angle γ i

which is also motor revolution can be defined by

γi = ρi/r, i = 1, 2, 3. (4)

If we rotate the unit vector vi+1 about the unit vector wi

in positive direction by angle γi , the unit vector ri can be
obtained by

ri = Q(wi , γi)vi+1 = (cos γi)vi+1 + (1 − cos γi)wiwT
i vi+1

+ (sin γi)S(wi)vi+1.

Since vi+1 is perpendicular to wi , ri can be simplified as

ri = (cos γi)vi+1 + (sin γi)S(wi)vi+1

= [ai bi ci]T for i = 1, 2, 3 (5)

where wix , wiy , and wiz are the Cartesian components of
the unit vector wi and S(w1) is a skew-symmetric matrix.
Also, ai , bi , and ci are the components of the unit vector ri

in Cartesian coordinate. For simplicity, and without loss of
generality, we assume that the unit vectors v2 and v3 are in
the X–Y plane. Therefore,

w1 = [0 0 1]T, r1 = [a1 b1 0]T. (6)

The unit vector t1 can now be obtained by rotating the unit
vector w1 about the unit vector r1 by negative θ1 angle. Note
that θ1 is also the revolution of passive revolute joint. Since
w1 is perpendicular to r1, t1 can be simplified as

t1 = Q(r1, −θ1)w1 = (cos θ1)w1 − (sin θ1)S(r1)w1 (7)

where S(r1) is a skew-symmetric matrix. Now we can obtain
the unit vector s by rotating the unit vector r1 about the
unit vector t1 by negative β1 angle. Note that β1 is the
equivalent revolution of the passive prismatic joint. Since
t1 is perpendicular to r1, s can be simplified as

s = Q(t1, −β1)r1 = (cos β1)r1 − (sin β1)S(t1)r1 (8)

where S(t1) is a skew-symmetric matrix. The steps taken
thus far have defined, w1, information about the fixed base,
γ 1 angle, the revolution of actuated joint, θ1 angle, the
revolution of the revolute passive joint, and β1 angle, the
equivalent revolution of the passive prismatic joint. This
information will help to define, s, which is end-effector
orientation. The unit vector s is a function of θ1 and β1

angles. Therefore, for solving forward position problem of
the spherical ST manipulator, we must obtain θ1 and β1

angles. These two angles are obtained by simultaneously
solving two trigonometric equations. The next step of the

https://doi.org/10.1017/S0263574708005031 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005031


666 A novel spherical parallel manipulator

Fig. 3. Geometric model of SST.

solution will utilize the structure of the moveable star in
order to find the two trigonometric equations. According to
Eq. (3) and Fig. 3, the unit vector, ti , is perpendicular to the
plane that contains the corresponding arc of the moveable
star. We previously obtained t1 as a function of θ1 and s as a
function of θ1 and β1. The unit vectors t2 and t3 can now be
obtained by rotating t1 about s by α3 and −α2, respectively.
Note that t2 and t3 are functions of the unknowns θ1

and β1

t2 = Q(s, α3)t1 = (cos α3)t1 + (1 − cos α3)ssTt1

+ (sin α3)S(s)t1 (9)

t3 = Q(s, −α2)t1 = (cos α2)t1 + (1 − cos α2)ssTt1

− (sin α2)S(s)t1 (10)

where S(s) is a skew-symmetric matrix, the unit vector
s is axis of rotation and sx , sy , and sz are its Cartesian
components. The unit vector t1 is perpendicular to the unit
vector s. Therefore, Eqs. (9) and (10) can be simplified
as

t2 = (cos α3)t1 + (sin α3)S(s)t1, (11)

t3 = (cos α2)t1 − (sin α2)S(s)t1. (12)

The two trigonometric equations are formulated by noting
that t2 is perpendicular to r2, and t3 is perpendicular to r3.
Therefore, upon multiplication of both sides of Eqs. (11) and
(12) by rT

2 and rT
3 , respectively, we get

rT
2 t2 = (cos α3)rT

2 t1 + (sin α3)rT
2 S(s)t1 = 0, (13)

rT
3 t3 = (cos α2)rT

3 t1 − (sin α2)rT
3 S(s)t1 = 0. (14)

Next, we substitute the kinematic parameters of the spherical
ST parallel manipulator into Eqs. (13) and (14) and rewrite
them as

d1 sin β1 + d2 cos β1 + d3 = 0 (15)

d4 sin β1 + d5 cos β1 + d6 = 0 (16)

where

d1 = −(a1a2 + b1b2) sin α3 (17(a))

d2 = − sin α3[−c2 sin θ1 + (a1b2 − b1a2) cos θ1] (17(b))

d3 = cos α3[(a1b2 − b1a2) sin θ1 + c2 cos θ1] (17(c))

d4 = (a1a3 + b1b3) sin α1 (17(d))

d5 = sin α1[−c3 sin θ1 + (a1b3 − b1a3) cos θ1] (17(e))

d6 = cos α1[(a1b3 − b1a3) sin θ1 + c3 cos θ1] (17(f))

4. Bezout’s Elimination Method
Bezout’s elimination method is traditionally used for
reducing a set of polynomials of multiple variables into
a polynomial of only one variable. To apply Bezout’s
elimination method to solve the nonlinear Eqs. (15) and (16),
the trigonometric equations must be transformed into a set of
polynomials. This transformation can be achieved by using
the following trigonometric identities:

sin β1 = 2x1

1 + x2
1

, cos β1 = 1 − x2
1

1 + x2
1

and

sin θ1 = 2x2

1 + x2
2

, cos θ1 = 1 − x2
2

1 + x2
2

(18)

where x1 = tan(β1/2) and x2 = tan(θ1/2). Next, Eq. (18)
is placed into Eqs. (15) and (16). This step is performed
using MAPLE software. Results are manually organized
into Eqs. (19) and (20) which can then be used by Bezout’s
elimination method.

(
F1x

2
2 + F2x2 − F1

)
x2

1 + (
F4x

2
2 + F4

)
x1

+ (
F5x

2
2 + F3x2 − F5

) = 0 (19)(
F6x

2
2 + F7x2 − F6

)
x2

1 + (
F9x

2
2 + F9

)
x1

+ (
F10x

2
2 + F8x2 − F10

) = 0 (20)

where

F1 = J2 − J4, F2 = 2(J3 − J1), F3 = 2(J1 + J3),

F4 = 2d1, F5 = −(J2 + J4),
(21)

F6 = J6 − J8, F7 = 2(J7 − J5),

F8 = 2(J5 + J7), F9 = 2d4, F10 = −(J6 + J8)

and

J1 = c2 sin α3 (22(a))

J2 = (b1a2 − a1b2) sin α3 (22(b))

J3 = (a1b2 − b1a2) cos α3 (22(c))

J4 = c2 cos α3 (22(d))

J5 = −c3 sin α1 (22(e))
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J6 = −(b1a3 − a1b3) sin α1 (22(f))

J7 = (a1b3 − b1a3) cos α1 (22(g))

J8 = c3 cos α1. (22(h))

Using Bezout’s elimination method we can eliminate the
variable x1 from Eqs. (19) and (20). The resulting equation
is given as follows:

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣
F1x

2
2 + F2x2 − F1 F5x

2
2 + F3x2 − F5

F6x
2
2 + F7x2 − F6 F10x

2
2 + F8x2 − F10

∣∣∣∣∣
∣∣∣∣∣
F4x

2
2 + F4 F5x

2
2 + F3x2 − F5

F9x
2
2 + F9 F10x

2
2 + F8x2 − F10

∣∣∣∣∣∣∣∣∣∣
F1x

2
2 + F2x2 − F1 F4x

2
2 + F4

F6x
2
2 + F7x2 − F6 F9x

2
2 + F9

∣∣∣∣∣
∣∣∣∣∣
F1x

2
2 + F2x2 − F1 F5x

2
2 + F3x2 − F5

F6x
2
2 + F7x2 − F6 F10x

2
2 + F8x2 − F10

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
= 0 (23)

Therefore, we have the following eighth-order single variable
polynomial:

N8x
8
2 + N7x

7
2 + N6x

6
2 + N5x

5
2 + N4x

4
2

+ N3x
3
2 + N2x

2
2 + N1x2 + N0 = 0. (24)

The values for N0 through N8 are defined in the Appendix.

5. Case Study
In this section, we present two examples for forward position
problem of ST spherical parallel manipulator. The first
example uses an isotropic structure while the second provides
an example for a nonisotropic case. In the forward position
problem ρi , vi , and αi are supplied. These variables represent
stroke of actuators, information on fixed base geometry, and
information on moveable star geometry. The orientation of
the moving spherical star, s, is determined by solving for θ1

and β1.

5.1. Example 1: isotropic case
(i) Architecture parameters—fixed base: Assume that the

planes OP2P3, OP1P2, and OP1P3 of the manipulator
locate in X–Y, X–Z, and Y–Z, respectively. Therefore,

v1 = [0 0 1 ]T, v2 = [1 0 0 ]T, v3 = [0 1 0 ]T

(ii) Architecture parameters—moveable star platform:
Assume that the angle between the planes OSRi and
OSRi+1 is 120◦. Therefore,

α1 = α2 = α3 = 120◦

(iii) Position of the actuators: Assume that the radius of
sphere is unity and stroke of actuators is ρi = π/4. From
Eqs. (4) and (5), we can obtain angle of rotation and unit
position vector of the prismatic actuators

γi = 45◦ for i = 1, 2, 3

r1 =
[ √

2
2

√
2

2 0
]T

, r2 =
[

0
√

2
2

√
2

2

]T
,

r3 =
[ √

2
2 0

√
2

2

]T
.

(iv) Computation of the orientation of the moving spherical
star: We substitute variables from previous steps into
Eqs. (21), (22), and (A.1) through (A.9). Therefore, we
can write Eq. (24) as

−3x8
2 + 108x6

2 − 210x4
2 + 108x2

2 − 3 = 0.

x2 can now be solved by placing this equation into MAPLE
software. θ1 can then be calculated using Eq. (18). The value
for θ1 is next placed into Eqs. (15) and (16) which results in
finding β1. Results are listed in Table I. This completes the
forward position problem. The 8-degree polynomial results
in eight real solutions. Therefore, the polynomial in Eq. (24)
is optimum which indicates the solution method is also opti-
mum. All eight solutions are shown graphically in Figs. 4–11.

Table I. Solutions for isotropic example.

Solution x2 θ1 β1

1 1 90◦ 35.26438968◦
2 −1 −90◦ 144.7356103◦

3 3 − 2
√

2 19.47122063◦ 215.2643897◦

4 3 + 2
√

2 (180 − 19.47122063)◦ 215.2643897◦

5 −3 − 2
√

2 (180 + 19.47122063)◦ 144.7356103◦

6 −3 + 2
√

2 −19.47122063◦ 144.7356103◦
7 1 90◦ 215.2643897◦
8 −1 −90◦ 324.7356103◦

Fig. 4. Solution 1 of isotropic SST.
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Fig. 5. Solution 2 of isotropic SST.

Fig. 6. Solution 3 of isotropic SST.

5.2. Example 2: nonisotropic case
(i) Architecture parameters—fixed base

v1 = [0 0 1 ]T, v2 = [ 0 1 0 ]T,

v3 = [
√

2/4
√

2/4
√

3/2 ]T

(ii) Architecture parameters—moveable star platform

α1 = α2 = α3 = 120◦

(iii) Position of the actuators. Assume that the radius of
sphere is unity and stroke of actuators are ρ1 = π/4

Fig. 7. Solution 4 of isotropic SST.

Fig. 8. Solution 5 of isotropic SST.

and ρ2 = ρ2 = π/6. From Eqs. (4) and (5) we can obtain
angle of rotation and unit position vector of the prismatic
actuators

γ1 = 45◦ and γ2 = γ2 = 30◦

r1 =
[ √

2

2

√
2

2
0

]T

, r2 =
[ √

7

14

√
3

2

√
42

14

]T

,

r3 =
[ √

6 + √
14

8

7
√

6 − √
14

56

21 − √
21

28

]T

.

(iv) Computation of the orientation of the moving spherical
star. Substituting variables from previous steps into
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Fig. 9. Solution 6 of isotropic SST.

Fig. 10. Solution 7 of isotropic SST.

Eqs. (21), (22), and (A.1) through (A.9) will allow us to
write Eq. (24) as

(486
√

21 + 450)x8
2 − (4176

√
7 − 3696

√
3)x7

2

− (12, 120 + 456
√

21)x6
2 + (18, 864

√
7 − 23,

× 184
√

3)x5
2 + (40, 140 − 3420

√
21)x4

2

− (18, 864
√

7 − 23, 184
√

3)x3
2

− (12, 120 + 456
√

21)x2
2 + (4176

√
7

+ 3696
√

3)x2 + (486
√

21 + 450) = 0

Fig. 11. Solution 8 of isotropic SST.

Table II. Real solutions for nonisotropic example.

Solution x2 θ1 β1

1 1.139057012 97.43896455◦ 19.67101001◦
2 2.834997880 141.14104776◦ (180 + 39.64623229)◦
3 −0.3527339498 −38.85895224◦ (180 − 39.64623229)◦
4 −0.8779191815 −82.56103545◦ (360 − 19.67101001)◦

Fig. 12. Solution 1 of nonisotropic SST.

For this equation eight solutions are found, however, only
four are real. Results are listed in Table II. All four solutions
are also shown graphically in Figs. 12–15.
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Fig. 13. Solution 2 of nonisotropic SST.

Fig. 14. Solution 3 of nonisotropic SST.

6. Jacobian Matrices
The differential kinematic relations pertaining to parallel
manipulators take the form

Jγ̇ + Kω = 0 (25)

where J and K are the two Jacobian matrices for the
manipulator at hand. Moreover, γ̇ is the vector of joint rates
and ω is the twist array. The angular velocity ω of the end-
effector can now be written as

wi γ̇i − ri θ̇i − ti β̇i = ω, i = 1, 2, 3 (26)

where θi is the angle between planes OR iS and OPi+1Pi+2,
while βi is the angle between s and ri . Note that βi is
equivalent revolution of the passive prismatic joint and θi

Fig. 15. Solution 4 of nonisotropic SST.

is revolution of the passive revolute joint. Furthermore, we
have

γ̇i = ρ̇i/r, i = 1, 2, 3. (27)

The inner product of both sides of Eq. (26) with ri × ti leads
to an equation free of passive joints rates, which simplifies
to

(ri × ti) · wi γ̇i − (ri × ti) · ω = 0, i = 1, 2, 3. (28)

Equations (26)–(28), for i = 1, 2, 3, are now combined and
expressed in vector form as Eq. (25). Therefore, we can define
J and K as

J =
⎡
⎣ c1 0 0

0 c2 0
0 0 c3

⎤
⎦ (29)

and

K =
⎡
⎣−(r1 × t1)T

−(r2 × t2)T

−(r3 × t3)T

⎤
⎦ (30)

in which

ci = (ri × ti)Twi . (31)

7. Acceleration Analysis
In this section, we relate the angular acceleration of the
moving spherical star to the accelerations of actuators. By
taking derivative of Eq. (26) the angular acceleration of the
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moving spherical star can be written as

wi γ̈i + ẇi γ̇i − ri θ̈i − ṙi θ̇i − ti β̈i − ṫi β̇i = ω̇, i = 1, 2, 3.

(32)

From Figs. 2 and 3, the derivatives of the three unit vectors
may be written as

ẇi = 0 (33)

ṙi = γ̇iwi × ri (34)

ṫi = (γ̇iwi − θ̇iri) × ti (35)

By putting Eqs. (33)–(35) into Eq. (32) and using Eq. (26),
the angular acceleration of the moving spherical star for the
ith leg can be written as

wi γ̈i − ri θ̈i − γ̇i θ̇i(wi × ri) − ti β̈i − β̇i(ω × ti) = ω̇ (36)

where γ̈i is the angular acceleration of the actuators, θ̈i is
the angular acceleration of the passive revolute joint, β̈i is
the equivalent angular acceleration for the passive prismatic
joint, and ω̇ is the angular acceleration of the moving
spherical star.

Upon multiplication of the two sides of Eq. (36) by (ri ×
ti)T and eliminating angular acceleration of the passive joints
θ̈i and β̈i , Eq. (36) can be rewritten as

ci γ̈i − (ri × ti) · ω̇ + γ̇i θ̇i(ri × ti) · (wi × ri)

− γ̇i β̇i(ri × ti) · (wi × ti) + θ̇i β̇i = 0. (37)

Using Eq. (26), we can obtain the angular velocity of the
passive joints θ̇i and β̇i . For this purpose, we multiply
the two sides of Eq. (26) by (ri)T and (ti)T, separately. Since
the unit vector ri is perpendicular to the unit vectors wi and
ti both, we can obtain θ̇i and β̇i as follows:

θ̇i = −(ri)
T ω (38)

β̇i = γ̇i(ti)T wi − (ti)T ω. (39)

Substituting these values into Eq. (37) and simplifying will
lead to

ci γ̈i − (ri × ti) · ω̇ − 2γ̇i(ri · ω)(ti · wi)

+ (ri · ω)(ti · ω) = 0. (40)

For i = 1, 2, 3, thisequation can be written in the matrix form
as

Jγ̈ + Kω̇ + Mγ̇ + N = 0 (41)

in which matrices J and K were defined earlier and matrices
M and N are defined as

M =
⎡
⎣d1 0 0

0 d2 0
0 0 d3

⎤
⎦ (42)

N =
⎡
⎣ e1 0 0

0 e2 0
0 0 e3

⎤
⎦ (43)

where

di = (ri · ω)(ti · wi), ei = (ri · ω)(ti · ω) for i = 1, 2, 3

(44)

Equation (41) shows the relationship between angular
velocity and angular acceleration of the moving spherical
star and angular velocity and angular acceleration of the
three actuators.

8. Singularity Analysis
In parallel manipulators, singularities occur whenever J, K,
or both become singular. Thus, for these manipulators a
distinction can be made between three types of singularities
which have different kinematic interpretations, namely,

1. The first type of singularity occurs when J becomes
singular but K is nonsingular, i.e., when det(J) = 0 and
det(K) �= 0. This type of singularity consists of a set
of points where at least two branches of the inverse
kinematics meet. Since the nullity of J is not zero, we
can find a set of nonzero actuator velocity vectors, γ̇,
for which the Cartesian velocity vector ω is zero. Then,
nonzero Cartesian velocity vectors, Kω, those lying in
the null space of JT, cannot be produced. The manipulator
thus losing one or more degrees of freedom.

2. The second type of singularity, occurring only in closed
kinematic chains, arises when K becomes singular but
J is non singular, i.e., when det(J) �= 0 and det(K) = 0.
This type of singularity consists of a point or a set of
points whereby different branches of the direct kinematics
problem meet. Since the nullity of K is not zero, we
can find a set of nonzero Cartesian velocity vectors, ω,
for which the actuator velocity vector, γ̇, is zero. Then,
the mechanism gains one or more degrees of freedom or
equivalently, cannot resist forces or moments in one or
more directions, even if all the actuators are locked.

3. The third type of singularity occurs when both J and K
are simultaneously singular while none of the rows of K
vanishes. Under a singularity of this type, configurations
arise for which moving platform can undergo finite
motions even if the actuators are locked or equivalently, it
cannot resist forces or moments in one or more directions
over a finite portion of the workspace, even if all the
actuators are locked. As well, a finite motion of the
actuators produces no motion of moveable platform and
some of the Cartesian velocity vectors cannot be produced.
This type of singularity is shown in Fig. 19.

8.1. Singularity analysis of spherical ST manipulator
In this subsection, the three singularity types are investigated
for the manipulator of Fig. 1.

1. The first type of singularity occurs when the determinant
of J vanishes. From Eqs. (29) and (31), this condition
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Fig. 16. First type singularity of SST.

yields

(ri × ti) · wi = 0 for i = 1 or 2 or 3. (45)

This type of configuration is reached whenever wi is
perpendicular to ri × ti , but ri lies in the plane whose
normal is wi , as shown in Fig. 3. Therefore, this type of
singularity occurs whenever wi and ti coincide as shown
in Fig. 16. In other words, one of the arcs of the moveable
spherical star and one of the arcs of the fixed triangle lie
on a single plane that also passes through center of sphere.
In this case, the actuator along wi does not produce any
Cartesian velocity. Thus, the manipulator loses 1-dof.

2. The second type of singularity occurs when the
determinant of K vanishes, which occurs when the rows
or columns of K are linearly dependent. By inspection of
Eq. (30), we can say that this condition occurs when
(a) Two rows of K are linearly dependent. Therefore,

according to Eq. (30), this type of singularity occurs
when the two arcs of moveable spherical star turn into
one single arc. In other words, the two arcs lie on a
single plane that also passes through center of sphere.
Therefore, any moment which is perpendicular to this
plane and also passes through center of sphere cannot
be resisted even if all the actuators are locked. This is
shown in Fig. 17.

(b) One row of K is the linear combination of the other
two. In this case, the three planes containing ri × ti
vectors intersect at a common line. But, according to
the moveable star architecture of the manipulator, this
condition cannot occur.

3. The third type of singularity occurs when the determinants
of J and K both vanish, while none of the rows of K

Fig. 17. Second type singularity of SST.

Fig. 18. Third type singularity of SST.

vanishes. We have this type of singularity whenever the
previously defined two singularities occur simultaneously
and ki �= 0, where kT

i , for i = 1–3, is the ith row of K. The
manipulator is then configured as in Fig. 18. In this case,
one of the arcs of the moveable spherical star and one of
the arcs of the fixed triangle lie on a single plane that also
passes through the center of sphere. Therefore, the motion
of at least one actuator does not produce any Cartesian
velocity. Additionally, the two arcs of moveable spherical
star lie on a single plane that also passes through center of
sphere. Therefore, any moment which is perpendicular to
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this plane and also passes through center of sphere cannot
be resisted even if all the actuators are locked.

9. Isotropic Designs
Mechanism control accuracy depends upon the condition
number of the Jacobian matrices J and K. The condition
number is based on a concept common to all matrices,
whether square or not, i.e., their singular values. For an
m × n matrix A, with m < n, we can define its m singular
values as the non-negative square roots of the non-negative
eigenvalues of the m × n matrix AAT. Because AAT is
square, symmetric, and at least positive-semidefinite, its
eigenvalues are all real and non-negative. Also, if the matrix
under investigation is dimensionally homogeneous, then we
can meaningfully order the singular values of these matrices
from smallest to largest. Thus, if σmin and σmax denote the
smallest and the largest singular values of a matrix, its
condition number is then defined as

κ = σmax

σmin
(46)

and hence, the larger the variance of the singular values,
the larger the condition number is. The significance of the
condition number of a matrix pertains to the numerical
inversion of this matrix while solving a system of linear
equations associated with the matrix. Clearly, in the case
of nonsquare matrices, this inversion is understood as a
generalized inverse. Indeed, when inverting a matrix with
finite precision, a roundoff error is always present, and hence,
a roundoff error amplification affects the accuracy of the
computed results. Furthermore, this amplification is bounded
by the condition number of the matrix. It is apparent that a
singular matrix has a minimum singular value of zero, and
hence, its condition number becomes infinite. Conversely,
if the singular values of a matrix are identical, then the
condition number of the matrix attains a minimum value
of unity. Matrices with such a property are called isotropic.
The reason why isotropic matrices are desirable is that they
can be inverted at no cost because the inverse of an isotropic
matrix or the generalized inverse of a rectangular isotropic
matrix for that matter is proportional to its transpose, the
proportionality factor being the reciprocal of its multiple
singular value.

From the earlier discussion, and considering that the
Jacobian matrices are configuration-dependent, it is apparent
that the condition number of the Jacobian matrices of a
manipulator is configuration-dependent as well, and hence,
a manipulator can be designed with an architecture that
allows for postures entailing isotropic Jacobian matrices,
such a design being called isotropic. However, this property
disappears in all other postures. This is a fact of life and
nothing can be done about it but one can design for postures
that are isotropic and then plan tasks that lie well within
a region where the condition number is acceptable. For
manipulators with isotropic designs, such regions cover
a substantial percentage of the overall workspace. The
condition number degenerates only for postures very close to
singularities, which should be avoided in trajectory planning,
in any event.

9.1. Isotropic design of the spherical ST manipulator
In this subsection, we uncover isotropic designs for the
manipulator shown in Fig. 1. Here, we define a design as
isotropic if J and K are both proportional to an identity
matrix such that

JJT = σ 2I3×3, (47)

KKT = τ 2I3×3. (48)

Substitution of the expressions of J and K from Eqs. (29)
and (30) into Eqs. (47) and (48) leads to

⎡
⎢⎢⎣

c2
1 0 0

0 c2
2 0

0 0 c2
3

⎤
⎥⎥⎦ = σ 2I (49)

⎡
⎢⎢⎣

dT
1 d1 dT

1 d2 dT
1 d3

dT
1 d2 dT

2 d2 dT
2 d3

dT
1 d3 dT

2 d3 dT
3 d3

⎤
⎥⎥⎦ = τ 2I (50)

where

di = ri × ti .

Equations (49) and (50) give the conditions for isotropy,
namely,

c2
1 = c2

2 = c2
3 = σ 2 (51)

dT
i dj =

{
τ 2 if i = j

0 if i �= j
. (52)

Using Eqs. (51) and (52) we can obtain

� (s,w1) = � (s,w2) = � (s,w3)

� (s,r1) = � (s,r2) = � (s,r3). (53)

rT
1 r2 = rT

1 r3 = rT
2 r3

Considering the foregoing conditions and the geometry of the
problem we find that isotropic designs are only possible if

– The fixed spherical triangle is equilateral or P1P2 =
P1P3 = P2P3.

– The angles between sides of the moveable spherical star
is 120◦ or α1 = α2 = α3 = 120◦.

– The end-effector, point E, coincides with geometrical
center of the fixed base equilateral triangle.

The one-dimensional continuum of isotropic designs
comprises a single variable whose range is given as

60◦ < αf < 120◦.

In which αf is an angle that represents the arc of the
fixed spherical equilateral triangle. This one-dimensional
continuum allows for infinite isotropic structures and enables
one to incorporate isotropy as a criterion when designing
this type of manipulator. A typical isotropic design of the
manipulator is depicted in Fig. 19.
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Fig. 19. An isotropic design of SST.

10. Workspace and Accuracy
For workspace analysis, we will assume αf = 90◦ and
α1 = α2 = α3 = 120◦ which represents an isotropic design.
We will also assume the radius of the sphere as 1 m and
will obtain workspace of the manipulator. The workspace
depends on the angle θ1 (see Fig. 3). Therefore, workspace
of the manipulator versus angle θ1 is shown in Fig. 20. It is
apparent that maximum workspace occurs at θ1 = 90◦. In this
configuration, value of workspace is equal to 1.57 m2. This
value represents one-eighth area of a sphere with radius 1 m.
Our earlier selection of αf = 90◦ also results in an area for
the fixed base triangle equal to 1.57 m2. Because these two
areas are equal, we have shown that the moving spherical
star can travel the entire area of its fixed base. Therefore,

Fig. 20. Workspace of the isotropic design vs. angle θ1.

Table III. Comparison of GCI values for few parallel manipulators.

Spherical-star Spherical Spatial Planar Planar
triangle 3-RRR 3-RPS 3-RRR 3-RPR

0.67 0.52 0.58 0.79 0.49

in its isotropic design the end-effector, s, can be positioned
anywhere within the surface of the fixed spherical triangular
base. Therefore, this shows that the spherical ST manipulator
has a relatively large workspace.

Additionally, all points in the workspace are free of
singularities. To prove this point we note that singularity
requires

1. one of the αi = 180◦ and/or
2. one of the arcs of the moveable spherical star and one of

the arcs of the fixed triangle lie on a single plane that also
passes through center of sphere.

Isotropic design requires α1 = α2 = α3 = 120◦. Therefore,
the first condition for singularity is not possible. The second
singularity condition is also physically not possible due to
the structure of the isotropic design.

For accuracy analysis of the manipulator in its workspace,
we use the concept of global conditioning index (GCI)
introduced by Gosselin19 as

GCI =

∫
W

(1/κ) dW
∫

W

dW
. (54)

This index corresponds to the average value of 1
/
κ (see

Eq. (46)). The value of GCI for the isotropic design of the
manipulator is equal to 0.67. In Table III, the value of GCI
is compared with the optimum design of few 3-dof parallel
manipulators.18 Clearly the GCI of the proposed spherical
ST is in “good” range compared with other 3-dof parallel
manipulators.

11. Conclusions
A novel spherical parallel manipulator was introduced. Good
accuracy and relatively large workspace free of singularities
(in isotropic design) made the manipulator suitable for
practical applications. The forward position and acceleration
analysis, isotropy design, singularity analysis, workspace,
and accuracy analysis were outlined. The forward position
problem utilizes a solution method based on the equivalent
angle–axis representation. Bezout’s elimination method was
used to obtain a single variable 8-degree polynomial. Two
examples, one for isotropic and the other for nonisotropic
design, were supplied. For the isotropic example, the 8-
degree polynomial results in eight real solutions. Therefore,
the polynomial is optimum which indicates the solution
method is also optimum. All eight solutions are also shown
graphically. Next, using invariant form, we performed accel-
eration and singularity analysis. Using the same form, also
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we found conditions for singularity and obtained the isotropy
design of spherical ST manipulator. It was shown that the
spherical ST manipulator has infinite isotropic designs. This
allows one the freedom to incorporate design criteria besides
isotropy. Using isotropic design and singularity require-
ments, we showed the workspace of the isotropic spherical
ST is free of singularity. Finally, the GCI of the proposed
spherical ST was calculated and was shown to be in “good”
range compared with other 3-dof parallel manipulators.
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Appendix

N8 = F 2
10F

2
1 + F 2

5 F 2
6 + 6F10F4F9F1 + F10F

2
4 F6

+ 5F10F1F5F6 + F5F
2
9 F1 + 6F5F9F4F6 (A.1)

N7 = 6F10F4F9F2 + F10F
2
4 F7 + 6F8F4F9F1

+ 2F 2
10F1F2 + 2F10F

2
1 F8 + 5F10F1F5F7

+ 5F10F1F3F6 + 5F10F2F5F6 + 5F8F1F5F6

+ 2F 2
5 F6F7 + 2F5F

2
6 F3 + F8F

2
4 F6 + F5F

2
9 F2

+ 6F5F9F4F7 + F3F
2
9 F1 + 6F3F9F4F6 (A.2)

N6 = 3F 2
10F

2
1 + F 2

10F
2
2 + F 2

8 F 2
1 + 3F 2

5 F 2
6 + F 2

5 F 2
7 + F 2

3 F 2
6

+ 6F8F4F9F2 + F10F1F5F6 + 4F10F1F8F2

+ 5F10F1F3F7 + 5F10F2F5F7 + 5F10F2F3F6

+ 5F8F1F5F7 + 5F8F1F3F6 + 5F8F2F5F6

+ 4F5F6F3F7 + 6F3F9F
∗
4 F7

+ F8F
2
4 F7 + F3F

2
9 F2 (A.3)

N5 = 2F5F
2
7 F3 + 2F 2

3 F6F7 + 6F10F4F9F2 + F10F
2
4 F7

+ F 2
10F1F2 + F10F

2
1 F8 + 6F10F1F5F7 + 6F10F1F3F6

+ 6F10F2F5F6 + 2F10F
2
2 F8 + 5F10F2F3F7

+ 2F 2
8 F1F2 + 6F8F1F5F6 + 5F8F1F3F7

+ 5F8F2F5F7 + 5F8F2F3F6 + F 2
5 F6F7 + F5F

2
6 F3

+ 6F3F9F4F6 + 6F8F4F9F1 + F8F
2
4 F6 + F5F

2
9 F2

+ 6F5F9F4F7 + F3F
2
9 F1 (A.4)

N4 = 5F10F
2
4 F6 + 5F5F

2
9 F1 + 6F 2

10F
2
1 + 6F 2

5 F 2
6

+ 5F 2
5 F 2

7 + 5F 2
8 F 2

1 + 5F 2
3 F 2

6 + F 2
3 F 2

7 + F 2
8 F 2

2

+ 2F5F9F4F6 + 5F8F2F3F7 + 2F10F4F9F1

+ 2F10F1F5F6 + 5F 2
10F

2
2 + 5F8F4F9F2

+ 4F10F1F3F7 + 6F10F1F8F2 + 4F8F1F3F6

+ 4F8F2F5F6 + 4F10F2F5F7 + 4F10F2F3F6

+ 4F8F1F5F7 + 6F5F6F3F7 + 5F3F9F4F7

+ 2F8F
2
4 F7 + 2F3F

2
9 F2 (A.5)

N3 = F10F4F9F2 + 6F10F
2
4 F7 + 6F 2

10F1F2 + 6F10F
2
1 F8

+ F10F1F5F7 + F10F1F3F6 + 5F10F
2
2 F8

+ F10F2F5F6 + 2F10F2F3F7 + F8F1F5F6

+ 5F 2
8 F1F2 + 2F8F2F5F7 + 2F8F2F3F6

+ 2F8F1F3F7 + 6F 2
5 F6F7 + 6F5F

2
6 F3 + 5F5F

2
7 F3

https://doi.org/10.1017/S0263574708005031 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005031


676 A novel spherical parallel manipulator

+ F3F9F4F6 + F8F4F9F1 + 6F8F
2
4 F6 + 6F5F

2
9 F2

+ F5F9F4F7 + 6F3F
2
9 F1 + 5F 2

3 F6F7 (A.6)

N2 = 3F 2
10F

2
1 + F 2

10F
2
2 + F 2

8 F 2
1 + 3F 2

5 F 2
6 + F 2

5 F 2
7 + F 2

3 F 2
6

+ 6F8F4F9F2 + F10F1F5F6 + 4F10F1F8F2

+ 5F10F1F3F7 + 5F10F2F5F7 + 5F10F2F3F6

+ 5F8F1F5F7 + 5F8F1F3F6 + 5F8F2F5F6

+ 4F5F6F3F7 + 6F3F9F4F7 + F8F
2
4 F7 + F3F

2
9 F2

(A.7)

N1 = F10F4F9F2 + 6F10F
2
4 F7 + 5F 2

10F1F2 + 2F10F2F5F6

+ 5F ∗
10F

2
1 F8 + 2F10F1F5F7 + 2F10F1F3F6

+ 2F8F1F5F6 + 5F 2
5 F6F7 + 5F5F

2
6 F3 + 6F3F

2
9 F1

+ F3F9F4F6 + F8F4F9F1 + 6F8F
2
4 F6 + 6F5F

2
9 F2

+ F5F9F4F7 (A.8)

N0 = F 2
10F

2
1 + F 2

5 F 2
6 + F10F

2
4 F6 + F5F

2
9 F1 − F10F4F9F1

− 2F10F1F5F6 − F5F9F4F6 (A.9)
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