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Abstract We prove that the canonical ring of a canonical variety in the sense of de Fernex and Hacon
is finitely generated. We prove that canonical varieties are Kawamata log terminal (klt) if and only if
RX(−KX) is finitely generated. We introduce a notion of nefness for non-Q-Gorenstein varieties and
study some of its properties. We then focus on these properties for non-Q-Gorenstein toric varieties.
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1. Introduction

In this paper we continue the investigation of singularities of non-Q-Gorenstein varieties
that was initiated in [6] and [12]. In particular, we focus on the study of canonical
singularities and non-Q-Gorenstein toric varieties.

In the context of the minimal model programme, there are some natural classes of
singularities to be considered, such as canonical and log terminal (see [2]). Also, while
running the programme, we naturally encounter non-Q-Gorenstein varieties, for which
the canonical divisor is not Q-Cartier, as the target of small contractions when performing
a flip. In 2009, de Fernex and Hacon [6] extended the notion of canonical and log terminal
singularities to the case of non-Q-Gorenstein varieties. It is natural to wonder which of
the properties connected to these types of singularity are preserved when extending to
this more general context.

In § 2 we will briefly recall the fundamental definitions and properties introduced in [6].
In § 3 we show that if X is canonical in the sense of [6], then the relative canonical

ring RX(KX) is a finitely generated OX -algebra (Theorem 3.4). Thus, if X is canonical,
there exists a small proper birational morphism π : X ′ → X such that KX′ is Q-Cartier
and π-ample. As a corollary we obtain that the canonical ring of any normal variety with
canonical singularities (in the sense of [6]) is finitely generated.

We next turn our attention to log terminal singularities. Recall that in [12] we gave an
example of canonical singularities that are not log terminal. In this paper we show that,
if X is canonical, then finite generation of the relative anti-canonical ring RX(−KX) is
equivalent to X being log terminal (Proposition 3.7).
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In § 4 we introduce a notion of nefness for Weil divisors (on non-Q-factorial varieties).
We call such divisors quasi-nef (q-nef) and we study their basic properties. We prove
that if X is a normal variety with canonical singularities such that KX is q-nef, then
X ′ = ProjX(RX(KX)) is a minimal model.

In §§ 5 and 6 we focus our attention on toric varieties. We give a complete description
of quasi-nef divisors on toric varieties and we note that they correspond to divisors whose
divisorial sheaf is globally generated.

And finally, in § 7, we give a new natural definition of minimal log discrepancies in the
new setting and prove that even in the toric case they do not satisfy the ACC (ascending
chain condition) conjecture.

2. Background

We work over the complex numbers.
Recall the following definition of de Fernex and Hacon [6].

Definition 2.1. Let f : Y → X a proper projective birational morphism of normal
varieties. Given any Weil divisor D on X, we define the pullback of D on Y as

f∗(D) =
∑

P prime on Y

lim
k→∞

vP (OY · OX(−kD))
k

P.

Note that if D is Q-Cartier, then f∗(D) coincides with the usual notion of pullback.
Using this definition, de Fernex and Hacon define canonical and log terminal singular-

ities for non-Q-Gorenstein varieties. As usual, this is done in terms of the relative canon-
ical divisor KY/X , for f : Y → X a proper morphism. Note, however, that there are two
different choices for the relative canonical divisor (which coincide in the Q-Gorenstein
setting):

K−
Y/X := KY − f∗(KX) and K+

Y/X := KY + f∗(−KX).

We will not use K−
Y/X in this paper but recall that it is the natural choice that is used

to define log terminal singularities and multiplier ideal sheaves.

Definition 2.2. X is said to be canonical if

ordF (K+
Y/X) � 0

for every exceptional prime divisor F over X.

Definition 2.3. X is said to be log terminal if and only if there is an effective Q-divisor
Δ such that

• Δ is a boundary (KX + Δ is Q-Cartier) and

• (X, Δ) is Kawamata log terminal (klt).

Let us also recall some standard definitions from the minimal model programme (see
[2,10]).
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Definition 2.4. Let X be a normal projective variety and let D be a Q-divisor on X.
We define

RX(D) :=
⊕

m�1

H0(OX(�mD�))

and

RX(D) :=
⊕

m�1

OX(�mD�),

where the first will always be considered as a C-algebra and the second as an OX -algebra.

One important property that we will often need in the background is the following
result [10, Lemma 6.2].

Lemma 2.5. Let X be a normal algebraic variety and let B be a Weil divisor on it.
The following are equivalent:

(1) RX(B) is a finitely generated OX -algebra;

(2) there exists a small projective birational morphism f : Y → X such that Y is
normal, and B̄ := f−1

∗ B is Q-Cartier and f -ample.

Moreover, f : Y → X is the unique morphism with the following properties: Y ∼=
ProjX(RX(B)) and, for all m � 0, f∗OY (mB̄) = OX(mB).

3. Canonical singularities

In this section we will show that if X has canonical singularities, then its canonical ring
is finitely generated.

De Fernex and Hacon gave the following characterization of canonical singularities.

Proposition 3.1 (de Fernex and Hacon [6, Proposition 8.2]). Let X be a normal
variety. Then X is canonical if and only if for all sufficiently divisible m � 1, and for
every resolution f : Y → X, there is an inclusion

OX(mKX) · OY ⊆ OY (mKY )

as sub-OY -modules of KY .

Lemma 3.2 (Urbinati [12, Lemma 2.14]). Let f : Y → X be a proper birational
morphism such that Y is Q-Gorenstein with canonical singularities. If OY ·OX(mKX) ⊆
OY (mKY ) for any sufficiently divisible m � 1, then X is canonical.

The following immediate corollary of Lemma 3.2 is very useful.

Corollary 3.3. Let f : Y → X be a proper birational morphism such that Y is
Q-Gorenstein and canonical. If ordF (K+

Y/X) � 0 for all divisors F on Y , then X is
canonical.
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Proof. Set f �(D) := div(OX(−D) · OY ).
For all sufficiently divisible m � 1, ordF (K+

m,Y/X) � 0 (i.e. mKY � −f �(−mKX)), so
that

OY · OX(mKX) ↪→ (OY · OX(mKX))∨∨ = OY (−f �(−mKX)) ↪→ OY (mKY ).

�

The first result that we will prove is that if X is canonical, then RX(KX) is finitely
generated over X. Note that this result is trivial for Q-Gorenstein varieties.

Theorem 3.4. If X is canonical, then RX(KX) is finitely generated over X.

Proof. We may assume that X is affine. Let X̃ → X be a resolution. By [2], RX(KX̃)
is finitely generated. Let Xc = ProjX(RX(KX̃)) and let f : Xc → X be the induced
morphism, where Xc is canonical. Since X is canonical, for any m > 0 there is an
inclusion OXc · OX(mKX) → OXc(mKXc). Pushing this forward we obtain inclusions

f∗(OXc · OX(mKX)) ⊂ f∗OXc(mKXc) ⊂ OX(mKX).

Since the left- and right-hand sides have isomorphic global sections,

H0(f∗OXc(mKXc)) ∼= H0(OX(mKX)).

Since X is affine, OX(mKX) is globally generated and hence f∗OXc(mKXc) =
OX(mKX). But then

RX(KX) ∼= RX(KXc) :=
⊕

f∗OXc(mKXc)

is finitely generated. �

Remark 3.5. Note that we have seen that

RX(KX) ∼= RX(KXc) ∼= RX(KX̃),

hence
Xc = ProjX(RX(KX)),

and so Xc → X is a small morphism.

Corollary 3.6. If X is canonical, then the canonical ring RX(KX) is finitely
generated.

Proof. Since f : Xc → X is small, it follows that RX(KX) ∼= RX(KXc). Since Xc is
canonical and Q-Gorenstein, it follows that RX(KXc) is finitely generated (see [2]). �

The next proposition strictly relates log terminal singularities to the finite generation
of the canonical ring even in the non-Q-Gorenstein case.
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Proposition 3.7. Let X be a normal variety with at most canonical singularities.
RX(−KX) is a finitely generated OX -algebra if and only if X is log terminal.

Proof. If X is log terminal, then RX(−KX) is a finitely generated OX -algebra by [9,
Theorem 92].

We now want to show that, if RX(−KX) is finitely generated and X has at most
canonical singularities, then it is also log terminal.

We will start constructing a Q-Gorenstein model of X. Since RX(−KX) is finitely
generated, by [10, Proposition 6.2], there exists a small map π : X− → X, such that
−KX− = π−1

∗ (−KX) is Q-Cartier and π-ample. We will first show that X having at most
canonical singularities implies for the model X− to have at most canonical singularities
in the usual sense.

For any m that is sufficiently divisible, consider the natural map OX− ·OX(−mKX) →
OX−(−mKX−). Since −KX− is π-ample, we can choose A ⊆ X to be an ample divisor so
that OX(−mKX + A) and OX(−mKX− + π∗A) are both globally generated. The small
map induces an isomorphism at the level of global sections,

H0(X−,OX− · OX(−mKX + A)) → H0(X−,OX−(−mKX− + π∗A)),

and since the two sheaves are globally generated, this induces an isomorphism of sheaves

OX− · OX(−mKX) ∼−→ OX−(−mKX−).

Thus, considering f : Y → X and g : Y → X−, a common log resolution of both X

and X−, we have

KY +
1
m

g∗(−mKX−) = KY +
1
m

g∗(π�(−mKX)) = KY +
1
m

f �(−mKX) � 0;

the last inequality holds because X has at most canonical singularities. Thus X− has at
most canonical singularities. Furthermore, since KX− is Q-Cartier and canonical, X− is
log terminal.

Choosing a general ample Q-divisor H− ∼Q,X −KX− , let m � 0 and let G− ∈ |mH−|
be a general irreducible component. Picking Δ− := G−/m, then KX− + Δ− ∼Q,X 0 is
still log terminal and, because the sum is π-trivial, Δ− will induce a boundary on X so
that (X, Δ = π∗Δ

−) is a log terminal pair on X. �

4. Quasi-nef divisors

Given a divisor D on a variety X, it is useful to know if the divisor is nef. In particular,
varieties such that the canonical divisor KX is nef are minimal models.

Unfortunately, for arbitrary normal varieties there is no good notion of nefness (this is a
numerical property that is well defined if the variety is Q-factorial). A possible definition
is given in [3] using the notion of b-divisors. A comparison between the approach given in
this paper and the one in [3] is given in detail in [4]. In particular, whenever looking for
a minimal model it is always necessary to either pass to a resolution of the singularities
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or to perturb the canonical divisor adding a boundary (an auxiliary divisor Δ such that
KX + Δ is Q-Cartier). However, both operations are not canonical and in either case
different choices lead us to different minimal models. What we would like to do in this
section is define a notion of a minimal model for an arbitrary normal variety.

We will start defining a notion of nefness for a divisor that is not Q-Cartier.

Definition 4.1. Let X be a projective normal variety. A divisor D ⊆ X is quasi-
nef (q-nef ) if for every ample Q-divisor A ⊆ X, OX(m(D + A)) is generated by global
sections for every m > 0 that is sufficiently divisible.

Remark 4.2. Let X be a normal Q-factorial variety. A divisor D ⊆ X is nef if and
only if it is q-nef.

Proposition 4.3. Let D be a divisor on a normal variety X. If g : Y → X is a small
projective birational map such that D̄ := g−1

∗ D is Q-Cartier and g-ample, then D is
q-nef if and only if D̄ is nef.

Proof. The existence of the map g is equivalent to the finite generation of RX(D) as
an OX -algebra [10, Lemma 6.2].

Let us first assume that D is q-nef. For every ample divisor A ⊆ X, by definition there
exists a positive integer m such that OX(m(D + A)) is generated by global sections and
OY (mD̄) is relatively globally generated. In particular, since g is small,

ϕ : OY · OX(m(D + A)) → OY (m(D̄ + g∗A))

induces an isomorphism at the level of global sections. Now, D̄ is g-ample, and there exists
k � 0 such that OY (m(D̄+g∗A))⊗OY (kg∗A) is also generated by global sections, hence
ϕ must be surjective and hence an isomorphism. Since OY · OX(m(D + A)) is generated
by global sections, so is OY (m(D̄ + g∗A)). This implies that D̄ + g∗A is nef, and since
nefness is a closed property, D̄ is nef.

Let us now suppose that D̄ is a nef divisor on Y . As in Proposition 3.7, since g is
a small map we have an isomorphism of sheaves g∗OY (mD̄) ∼= OX(mD). Furthermore,
since D̄ is g-ample, for any ample divisor A on X, εD̄ + g∗A is ample for all 0 < ε � 1.
If we assume that D̄ is nef, then

D̄ + g∗A = (1 − ε)D̄ + (εD̄ + g∗A)

is ample, and OY (m(D̄ + g∗A)) is thus globally generated for m sufficiently divisible.
But then so is its direct image under g, which is isomorphic to OX(m(D + A)) by the
projection formula since mA is Cartier. �

Let us recall the following conjecture from [12].

Conjecture 4.4. Let X be a projective normal variety. Then, for any divisor D ∈
WDivQ(X), there exists a very ample divisor A such that OX(mD)⊗OX(A)⊗m is globally
generated for every m � 1.
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Definition 4.5. Let X be a normal projective variety, let D be any divisor on X, and
let A be an ample divisor. If there exists a t ∈ R such that D + tA is quasi-nef, we define
the quasi-nef threshold with respect to A (qntA) as:

qntA(D) = inf{t ∈ R | OX(m(D + tA)) is globally generated
for all m sufficiently divisible}.

Remark 4.6. Let X be a normal projective variety with at most log terminal sin-
gularities. For any divisor D on X and any ample divisor A, qntA(D) exists and it is
a rational number. This is a direct consequence of the fact that for any variety with at
most klt singularities, every divisorial ring is finitely generated [9, Theorem 92].

5. Non-Q-Gorenstein toric varieties

The aim of this section is to give an explicit description for toric varieties of the non-Q-
Gorenstein case. This is the more explicit example where it is possible to compute and
understand the given definitions.

5.1. Quasi-nef divisors on toric varieties

For the notation and basic properties of toric varieties we refer the reader to [5].
See [3, § 2.4] for a b-divisorial interpretation of the same problem.

Consider a normal projective toric variety X = XΣ corresponding to a complete fan
Σ in NR (with no torus factor), with dimNR = n. Recall that every TN -invariant Weil
divisor is represented by a sum

D =
∑

ρ∈Σ(1)

dρDρ,

where ρ is a one-dimensional sub-cone (a ray) and Dρ is the associated TN -invariant
prime divisor. D is Cartier if for every maximal dimension sub-cone σ ∈ Σ(n), D|Uσ is
locally a divisor of a character div(χmσ ), with mσ ∈ N∨ = M . If D is Cartier, we will
say that {mσ | σ ∈ Σ(n)} is the Cartier data of D.

To every divisor we can associate a polyhedron:

PD = {m ∈ MR | 〈m, uρ〉 � −dρ for every ρ ∈ Σ(1)}.

Even if the divisor is not Cartier, the polyhedron is still convex and rational but not
necessarily integral.

For every divisor D and every cone σ ∈ Σ(n), we can describe the local sections as

OX(D)(Uσ) = C[W ],

where W = {χm | 〈m, uρ〉 + dρ � 0 for all ρ ∈ σ(1)}.
Let us recall the following proposition from [11].
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Proposition 5.1. For a torus-invariant Weil divisor D =
∑

dρDρ, the following state-
ments hold.

(1) Γ (X, D) =
⊕

m∈PD∩M C · χm.

(2) Given that OX(D)(Uσ) = C[σ∨ ∩ M ]〈χmσ,1 , . . . , χmσ,rσ 〉 is a finitely generated
C[σ∨ ∩ M ] module for every σ ∈ Σ(n) and a minimal set of generators is assumed
to be chosen, OX(D) is generated by its global sections if and only if mσ,j ∈ PD

for all σ and j.

We will also need the following result [7].

Theorem 5.2. Let X be a complete toric variety and let D be a Cartier divisor on
X. Then the ring

RD :=
⊕

n�0

H0(X, OX(nD))

is a finitely generated C-algebra.

Corollary 5.3. Since every toric variety admits a Q-factorialization, a small morphism
from a Q-factorial variety [8, Corollary 3.6], the above result holds for Weil divisors as
well.

We then easily get the following result.

Proposition 5.4. Conjecture 4.4 holds for X = XΣ , a complete toric variety.

We can now focus our attention on q-nef divisors.

Remark 5.5. A small birational map of toric varieties f : Y → X is given by adding
faces of dimension greater than or equal to 2 to the fan. This operation increases the
number of sub-cones. In particular, a sub-cone in the fan corresponding to Y may be
strictly contained in one of the original sub-cones.

Proposition 5.6. Let us consider a Weil divisor D ⊆ X on a normal toric variety. If
f : Y → X is a small birational map, then PD = Pf−1

∗ D.

Proof. This is clear, since the definition of the polyhedron only depends on the rays
generating the fan and not on the structure of the sub-cones. �

We assume that the polyhedron PD is of maximal dimension and that zero is inside
the polyhedron.

To have a better description of the relation between a small morphism and the local
sections of a Weil divisor, we will introduce a new polyhedron associated to the divisor,
the dual of PD.

Definition 5.7. Let D =
∑

dρDρ ⊆ X = XΣ be a Weil divisor on a normal toric
variety. We define QD ⊆ NR to be the convex hull generated by (1/dρ)uρ, where ρ ∈ Σ(1).
In particular,

QD = P ∗
D = {u ∈ NR | 〈m, u〉 � −1 for all m ∈ PD}.
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Recall that a divisor D is Cartier if and only if for each σ ∈ Σ, there is mσ ∈ M with
〈mσ, uρ〉 = −dρ for all ρ ∈ σ(1), with D|Uσ = div(χ−mσ ) [5, Theorem 4.2.8].

We will define Σ′ to be the fan generated by Σ and the faces of QD. In particular,
any face of QD is contained in a hyperplane corresponding to mσ for some σ ∈ Σ(n).
Note that the vertices of QD are all contained in the one-dimensional faces of Σ, hence
Y := XΣ′ → X is a small birational map.

For every cone σ ∈ Σ(n), if OX(D)(Uσ) is locally generated by a single equation (is
locally Cartier), nothing changes. Otherwise we substitute the cone σ with the set of
sub-cones generated by the faces of QD contained in σ.

Lemma 5.8. With the notation above, suppose that σ̄ ⊆ Σ′(n) corresponds to a face
of QD. Let m̄ ∈ MR be the element corresponding to the hyperplane containing the face,
hence OX(D)(Uσ̄) = C[σ̄∨ ∩ M ]〈χm̄〉. If OX(D) is globally generated, then m̄ ∈ PD.

Proof. Since χm̄ is a generator of OX(D)(Uσ̄), we have that 〈m̄, uρ〉 = −dρ for every
ρ ∈ σ̄(1). Also, since QD is convex and 〈m̄, 0〉 = 0 > −1, we have that 〈m̄, uρ〉 � −dρ for
every ρ ∈ Σ(1), hence m̄ ∈ PD. �

Proposition 5.9. Let X be a normal toric variety and let D be a Weil divisor whose
corresponding reflexive sheaf is generated by global sections. Then there exists a small
map f : Y → X of toric varieties such that D̄ := f−1

∗ D is Q-Cartier and f -ample, and
the vertices of PD are given by the Cartier data {mσ | σ ∈ Σ′(n)} of D̄, where Σ′ is the
fan associated to Y .

Proof. We will consider the toric variety associated with the fan Σ′ generated by Σ

and the convex polytope QD. It follows from the construction that the divisor D̄ is Q-
Cartier. By Lemma 5.8, since QD is convex, we have that the reflexive sheaf corresponding
to D̄ is still generated by global sections.

Furthermore, every curve C extracted via the map f will correspond to a face τ ⊆ Σ′.
Since D̄ is globally generated, we already know that (D̄.C) � 0. In particular τ is given as
the intersection of two maximal cones τ = σ ∩σ′, and for each of the cones we have local
generators of D̄, m and m′. The intersection is computed as (D̄.C) = 〈m, u〉 − 〈m′, u〉,
where u is a ray in σ\σ′, where this is zero if and only if m = m′, and this would not be
one of the curves to be extracted by the map f by definition. �

Because of Proposition 5.9 we get the following.

Theorem 5.10. Let D be a Weil divisor on a normal toric variety X. Then D is q-nef
if and only if OX(mD) is globally generated for m � 0.

Example 5.11. Let X be a normal projective toric variety and let A =
∑

aρDρ ⊆ X

be an ample divisor. Then qntA(D) can be explicitly computed. In particular, let D =∑
dρDρ be any Weil divisor. If no multiple of D is globally generated, this implies that

for every b ∈ N, there exists σb ∈ Σ(n) such that uρb
/∈ σb and 〈mbD

σb
, uρb

〉 < −bdρb
,

where mbD
σb

is one of the generators of OX(bD)(Uσb
), i.e. there exists a positive rational

number δρb
such that 〈mbD

σb
, uρb

〉 = −bdρb
− δρb

. Since A is ample, the support function
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of A is strictly convex, and in particular 〈mA
σa

, uρb
〉 > −aρb

, i.e. there exists a positive
rational number ερb

such that 〈mA
σb

, uρb
〉 = −aρb

+ ερb
.

For every ρb /∈ σb and every σb we can find a rational number tb,σb,ρb
such that

〈mD
σb

+ tb,σb,ρb
mA

σb
, uρb

〉 = −bdρb
− δρb

− tb,σb,ρb
aρb

+ tb,σb,ρb
ερb

= −bdρb
− tb,σb,ρb

aρb
.

Then
qntA(D) = inf

b
max

σb,ρb /∈σb

−tb,σb,ρb
.

5.2. Minimal log discrepancies for terminal toric threefolds

In this final subsection we return to properties of log discrepancies in the setting of [6]
in the context of toric varieties.

Depending on our choice of a relative canonical divisor, we have two possible definitions
for the minimal log discrepancies (MLDs).

Definition 5.12. Let X be a normal variety over the complex numbers. We associate
two numbers to the variety X:

MLD−(X) = inf
E

ordE(K−
Y/X)

and

MLD+(X) = inf
E

ordE(K+
Y/X),

where E ⊆ Y is any prime divisor and Y → X is any proper birational morphism of
normal varieties.

It is natural to wonder if these MLDs also satisfy the ACC conjecture. If X is assumed
to be Q-Gorenstein, then this is conjectured to hold by Shokurov. In view of [6, The-
orem 5.4], the MLD+s correspond to MLDs of appropriate pairs (X, Δ). However, the
coefficients of Δ do not necessarily belong to a DCC (descending chain condition) set (the
investigation for log-pairs given in the Q-Gorenstein context has this extra assumption
in [1]).

Proposition 5.13. The set of all MLD+s for terminal toric threefolds does not satisfy
the ACC conjecture.

Proof. We give an explicit example of a set of terminal toric threefolds whose associ-
ated MLD+s converge to a number from below. The problem is local, so we will consider
a set of affine toric threefolds given by the following data.

Let X be the affine toric variety associated with the cone σ = 〈u1, u2, u3, u4〉, u1 =
(2,−1, 0), u2 = (2, 0, 1), u3 = (1, 1, 1), u4 = (a, 1, 0) with a ∈ N. The associated toric
variety is non-Q-Gorenstein, i.e. the canonical divisor KX =

∑
−Di is not Q-Cartier.

Let Δ =
∑

diDi be a Q-divisor such that 0 � di � 1 and −KX +Δ is Q-Cartier. This
means that there exists m = (x, y, z) such that −KX + Δ =

∑
(m, ui)Di. Hence

Δ = (2x − y − 1)D1 + (2x + z − 1)D2 + (x + y + z − 1)D3 + (ax + y − 1)D4.
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The exceptional divisor E giving the smallest discrepancy is the one corresponding to
the element uE = u1 + u2 + u3 (it is the exceptional divisor generated by the ray of
smallest norm). In particular, we have

ordE(K+
Y/X) = inf

Δ boundary
5x − 2z.

Increasing the value of the parameter a we see that the minimal valuation is given by
(4a+5)/(a+2), which accumulates from below at the value 4. Note that the key is solving
a problem of minimality with constraints, corresponding to the fact that the coefficients
of Δ need to be in the interval [0, 1). �

5.3. Towards a revised toric minimal model programme

Let X = XΣ , as in the previous section. Using Theorem 5.4 we will try to define a
minimal model programme for any normal projective toric variety without attaching any
boundary to it.

Let us recall the following well-known fact [10, Theorem 3.25 (3)].

Proposition 5.14. Let (Y, Δ) be a klt pair, Δ effective, and let f : Y → X be a
projective morphism of normal projective varieties. Let F ⊂ NE(Y/X) be a (KY + Δ)-
negative extremal face. Then there is a unique morphism contF : Y/X → Z/X

Using this proposition and the minimal model programme with scaling we will prove
the following.

Proposition 5.15. For any normal projective toric variety X there exists a small
birational morphism f : Z → X such that KZ is nef over X.

Proof. Let H on X be an ample divisor such that KX + H is q-nef (we know that
this is possible because of Theorem 5.2). We know that f is a small birational morphism
and that KY + f∗H is nef over X [10, Proposition 6.2]; note that Y is Q-Gorenstein.
At this point we run a minimal model programme with scaling of H over X to obtain
another small morphism π : Z → X. �

Proposition 5.16. Let π : Z → X be a small morphism of toric varieties such that
KZ is nef over X. Then, for any KZ-negative curve C, there exists a boundary Δ on X

such that (KX + Δ).π∗C < 0, i.e. every contraction on Z arising from the cone theorem,
induces a contraction on X.

Proof. Let C ⊂ Z be such that KZ .C < 0. Let D be an ample effective Cartier
divisor on X; in particular, D.C > 0. Also, writing D =

∑
dρDρ, we can assume that

there exists an integer k > 0 such that D′ := D/k is a Q-Cartier divisor such that
|dρ| < 1 for every ρ ∈ Σ(1). Let us choose Δ = −KX − D′, which by assumption is an
effective divisor, and KX + Δ = −D′ is Q-Cartier and (KX + Δ).C < 0. �
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