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We give several results showing that different discrete structures typically gain certain

spanning substructures (in particular, Hamilton cycles) after a modest random perturbation.

First, we prove that adding linearly many random edges to a dense k-uniform hypergraph

ensures the (asymptotically almost sure) existence of a perfect matching or a loose Hamilton

cycle. The proof involves an interesting application of Szemerédi’s Regularity Lemma, which

might be independently useful. We next prove that digraphs with certain strong expansion

properties are pancyclic, and use this to show that adding a linear number of random

edges typically makes a dense digraph pancyclic. Finally, we prove that perturbing a certain

(minimum-degree-dependent) number of random edges in a tournament typically ensures

the existence of multiple edge-disjoint Hamilton cycles. All our results are tight.

2010 Mathematics subject classification: Primary 05C80

Secondary 05C35

1. Introduction and results

We say that a graph is Hamiltonian if it has a Hamilton cycle: a simple cycle containing

every vertex in the graph. Hamiltonicity is a central notion in graph theory and has

been extensively studied in a wide range of contexts. In particular, due to a seminal

paper by Karp [9], it has become a canonical NP-complete problem to determine whether

an arbitrary graph is Hamiltonian. There are nevertheless a variety of easily checkable

conditions that guarantee Hamiltonicity. The most famous of these is given by a classical
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theorem of Dirac [4], which states that any n-vertex graph (n � 3) with minimum degree

at least n/2 is Hamiltonian.

Dirac’s theorem demands a very strong density condition, but in a certain asymptotic

sense ‘almost all’ dense graphs are Hamiltonian. If we fix α > 0 and select a graph

uniformly at random among the (labelled) graphs with n vertices and α
(
n
2

)
edges, then

the degrees will probably each be about αn. Such a random graph is Hamiltonian with

probability 1 − o(1) (we say it is Hamiltonian asymptotically almost surely, or a.a.s.). This

follows from a stronger result independently due to Pósa [19] and Korshunov [12] that

gives a threshold for Hamiltonicity: a random n-vertex, m-edge graph is Hamiltonian a.a.s.

if m � n log n, and fails to be Hamiltonian a.a.s. if m � n log n. Here and from now on,

all asymptotics are as n → ∞, and we implicitly round large quantities to integers.

In [2], Bohman, Frieze and Martin studied the random graph model that starts with a

dense graph and adds m random edges (this model has since been studied in a number

of other contexts; see for example [1, 13]). They found that to ensure Hamiltonicity in

this model we only need m to be linear, saving a logarithmic factor over the standard

model where we start with nothing. To be precise, Theorem 1 of [2] says that for every

α > 0 there is c = c(α) such that if we start with a graph with minimum degree at least

αn and add cn random edges, then the resulting graph will a.a.s. be Hamiltonian. Note

that some dense graphs require a linear number of extra edges to become Hamiltonian

(consider the complete bipartite graph with partition sizes n/3 and 2n/3), so the order of

magnitude of this result is tight. We can interpret this theorem as quantifying the ‘fragility’

of the few dense graphs that are not Hamiltonian, by determining the amount of random

perturbation that is necessary to make a dense graph Hamiltonian. A comparison can

be drawn to the notion of smoothed analysis of algorithms introduced by Spielman and

Teng [22], which involves studying the performance of algorithms on randomly perturbed

inputs.

Our first contribution in this paper is to generalize the aforementioned theorem to

hypergraphs (and to give a corresponding result for perfect matchings, which is non-

trivial in the hypergraph setting). Unfortunately, there is no single most natural notion

of a cycle or of minimum degree in hypergraphs. A k-uniform loose cycle is a k-uniform

hypergraph with a cyclic ordering on its vertices such that every edge consists of k

consecutive vertices and every pair of consecutive edges intersects in exactly one vertex.

The degree of a set of vertices is the number of edges that include that set, and the

minimum (k − 1)-degree δk−1 is the minimum degree among sets of k − 1 vertices. Let

Hk(n, m) be the uniform distribution on m-edge k-uniform hypergraphs on the vertex set

[n].

Theorem 1.1. For each α > 0 there is ck = ck(α) such that:

(a) If H is a k-uniform hypergraph on [kn], δk−1(H) � αn, and RM ∈ Hk(kn, ckn), then H ∪ R

a.a.s. has a perfect matching.

(b) If H is a k-uniform hypergraph on [(k − 1)n], δk−1(H) � αn, and R ∈ H((k − 1)n, ckn),

then H ∪ R a.a.s. has a loose Hamilton cycle.
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All the motivation for graphs is still relevant in the hypergraph setting. Dirac’s theorem

approximately generalizes to hypergraphs (see [10]): for small ε and large n, if the minimum

(k − 1)-degree of an n-vertex k-uniform hypergraph is greater than (1/(2(k − 1)) + ε) n,

then that hypergraph contains a loose Hamilton cycle. Just as for graphs, the threshold

for both perfect matchings and loose Hamilton cycles in k-uniform hypergraphs is n log n

random edges (see [5] and [8, Corollary 2.6]), so ‘almost all’ dense hypergraphs have

Hamilton cycles and perfect matchings.

We will prove Theorem 1.1, and show that it is tight, in Section 2. The methods usually

employed to study Hamilton cycles and perfect matchings in random graphs are largely

ineffective in the hypergraph setting, so we need a very different proof. In particular, we

cannot easily manipulate paths for Pósa-type arguments, and we do not have an analogue

of Hall’s marriage theorem allowing us to deduce the existence of a perfect matching

from an expansion property. Our proof involves reducing the theorem to the existence

of a perfect matching in a certain randomly perturbed dense bipartite graph. The näıve

approach to proving the existence of a perfect matching in this graph would be to use

Hall’s theorem and the union bound. Unfortunately this fails, and in fact the ‘reason’ for

a perfect matching in this perturbed graph seems to be quite different depending on the

structure of the initial bipartite graph. The proof therefore makes use of the structural

description provided by Szemerédi’s Regularity Lemma in an interesting way.

Our second contribution in this paper is a theorem giving a general expansion condition

for pancyclicity. We say an n-vertex (di-)graph is pancyclic if it contains cycles of all lengths

ranging from 3 to n.

Theorem 1.2. Let D be a directed graph on n vertices with all in- and outdegrees at least

8k, and suppose for every pair of disjoint sets A,B ⊆ V (D) with |A| = |B| � k, there is an

arc from A to B. Then D is pancyclic.

We hope this theorem could be of independent interest, but our particular motivation

is that it implies a number of results about randomly perturbed graphs and digraphs. In

particular it provides very simple proofs of the theorems in [2] concerning Hamiltonicity

in randomly perturbed graphs and digraphs, and allows us to extend these theorems to

pancyclicity. Most generally, Theorem 1.2 implies the following theorem. Let D(n, m) be

the uniform distribution on m-arc digraphs on the vertex set [n] (in this paper we allow

2-cycles in digraphs, so there are 2
(
n
2

)
possible arcs).

Theorem 1.3. For each α > 0, there is c = c(α) such that if D is a digraph on [n] with all

in- and outdegrees at least αn, and R ∈ D(n, cn), then D ∪ R is a.a.s. pancyclic.

We will prove Theorems 1.2 and 1.3 in Section 3.

Our final theorem concerns randomly perturbed tournaments. The model that starts

with a fixed (di-/hyper-)graph and adds random edges is not suitable for studying random

perturbation in tournaments, because we want our perturbed tournament to remain a

tournament. There are several other models of random perturbation we could consider

that do allow us to make sense of randomly perturbed tournaments, or are more natural
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in certain contexts. However, the types of results in this paper are not sensitive to the

model used. We will briefly describe a few different models here.

First, note that for most practical purposes, models that involve the selection of m

random edges are equivalent to models that involve the selection of each edge with

probability p independently, where m = pN and N is the total number of possible edges.

One perspective or the other can be more intuitive or result in cleaner proofs; we will use

both interchangeably as is convenient, without further discussion. In all the situations in

this paper, equivalence can be proved with standard conditioning and coupling arguments

(see for example [7, Section 1.4]).

As suggested by Spielman and Teng in [21, Definition 1], one possible alternative model

is to change random edges, instead of adding them. So, for our results so far, instead of

taking the union of a fixed dense object with a random sparse object, we would take the

symmetric difference. Our results still hold in this alternative model, basically because we

can break up such a random perturbation into a phase that deletes edges (this does not

destroy denseness), and a phase that adds edges. One undesirable quirk of this model is

that it is not ‘monotonic’: if we change too many edges then we ‘lose our randomness’

and end up at the complement of our original object.

A second alternative model is to start with our fixed object and ‘make it more random’

by interpolating slightly towards the corresponding uniform distribution. For example,

in the graph case we could randomly designate a small number of pairs of vertices for

‘resampling’ and then decide whether the corresponding edges should be present uniformly

and independently at random. This is mostly equivalent to the symmetric difference model,

and is the model in which we prefer to state our theorem about randomly perturbed

tournaments.

Although it is easy to construct tournaments with no Hamilton cycle, here we prove

that every tournament becomes Hamiltonian after a small random perturbation. We also

show that randomly perturbed tournaments are not just Hamiltonian, but have multiple

edge-disjoint Hamilton cycles. Moreover, we can give stronger results for tournaments

with large minimum in- and outdegrees. Recall that ω(f) represents a function that grows

faster than f (to be precise, g = ω(f) means g/f → ∞).

Theorem 1.4. Consider a tournament T with n vertices and all in- and outdegrees at least

d. Independently choose m = ω(n/(d + 1)) random edges of T and orient them uniformly at

random. For any constant q, the resulting perturbed tournament P a.a.s. has q arc-disjoint

Hamilton cycles.

Note that we allow for the case where the minimum degree d is zero, and where d is an

arbitrary function of n. We will prove Theorem 1.4, and show that it is tight, in Section 4.

2. Perfect matchings and Hamilton cycles in hypergraphs

We first make some observations about our minimum degree requirement. The minimum

q-degree δq(H) of a hypergraph H is the minimum degree among all sets of q vertices.

Note that this generalizes the two notions of denseness for graphs: in some contexts, we
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say graphs are dense if they have many edges, whereas in this paper we need a stronger

notion of graph denseness based on minimum degree. For a k-uniform hypergraph H , a

double-counting argument shows that if q � p then

δq(H) � δp(H)

(
n − q

p − q

)/(
k − q

p − q

)
.

So, imposing that a k-uniform hypergraph has large (k − 1)-degree ensures that it has

large q-degrees for all q. In particular, our requirement δk−1(H) = Ω(n) actually implies

δq(H) = Ω(nk−q) for all q.

Next, note that Theorem 1.1 is tight for essentially the same reason as its corresponding

theorem for graphs. Consider the dense ‘complete bipartite hypergraph’ which has two

parts of sizes n and 2kn, and has all possible k-edges that contain at least one vertex from

each part. Only 2n of these edges can contribute to a loose Hamilton cycle, so a linear

number must be added to complete the necessary (2k + 1)n/(k − 1) edges. Similarly, this

graph contains only n out of the (2k + 1)n/k required edges in a perfect matching.

Now we proceed to the proof of Theorem 1.1, which will follow from a sequence of

lemmas. We will assume k � 3, since the case k = 2 is proved in [2]. The first step is to

show that R almost gives the structure of interest on its own. Let a partial-cycle be a

hypergraph which can be extended to a loose Hamilton cycle by adding edges. Recall

that Hk(n, m) is the uniform distribution on m-edge k-uniform hypergraphs on the vertex

set [n].

Lemma 2.1. For any ε > 0, there exists ck = ck(ε) such that:

(a) RM ∈ Hk(kn, ckn) a.a.s. has a matching of (1 − ε)n edges,

(b) RH ∈ Hk((k − 1)n, ckn) a.a.s. has a partial-cycle with (1 − ε)n edges.

Proof. First we define a loose path by analogy with loose cycles: a k-uniform loose path

is a hypergraph with a vertex ordering such that every edge consists of k consecutive

vertices and every pair of consecutive edges intersects in exactly one vertex. We say that

the edges at the start and at the end of the ordering are extremal edges. A matching is a

collection of loose paths of length 1, and a partial-cycle is any collection of loose paths

with enough vertices left over to link them together into a cycle.

We will first prove the following.

Claim. For any � � 1 and γ > 0, there exists h = h(�, γ) such that the following holds. In

a random hypergraph R ∈ Hk(kn, hn), a.a.s. every set of γn vertices contains a loose path

of length �.

Parts (a) and (b) of the lemma will follow from this claim.

In accordance with the discussion in the Introduction, it is equivalent to considering

the model for R where each edge is independently present with probability

p = hn
/(

kn

k

)
= O(n1−k).
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The probability that a particular pair of edges is present in R is p2. There are O(n2)

pairs of vertices, and for each there are

O

((
n − 2

k − 2

)2)
= O(n2(k−2))

pairs of edges containing both those vertices. So, the expected number of pairs of

vertices which are contained in more than one edge (have degree more than one) is

O(n2n2(k−2)p2) = O(1). By Markov’s inequality, there are a.a.s. fewer than γn/2 such pairs

of vertices. So if we delete a set D containing one member of each of those pairs, then

every pair of vertices in the remaining hypergraph has degree at most one.

Let d = k�. For large h, using the Chernoff bound together with the union bound, it is

easy to show that a.a.s. every set of γn/2 vertices spans at least dγn/2 edges, which is to

say that the average 1-degree in the induced subhypergraph is at least kd. We assume this

holds for the remainder of the proof.

Every set S of γn vertices includes a set of γn/2 vertices disjoint from D, which has

average 1-degree at least kd. Deleting a vertex of degree less than d increases the average

degree of the induced subhypergraph, so S\D includes a set of vertices spanning a

subhypergraph Q of R with minimum degree at least d. Let P be a longest loose path in

Q and let v be a vertex with degree one in P , in one of the extremal edges of P . Since

P cannot be extended to a longer path, each of the (at least d) edges containing v also

contains another vertex u of P . But because Q contains no vertices from D, there is at

most one edge containing both v and u, so P must have at least d vertices and therefore

has length at least �. This proves our claim.

We now prove (a). Consider a matching of maximum size in RM. There can be no edge

consisting of unmatched vertices because this would allow us to extend the matching,

contradicting maximality. Applying our claim with γ = kε and � = 1, we can see that if

ck is large enough then a.a.s. every set of kεn vertices spans at least one edge in R. This

proves there are fewer than kεn vertices unmatched after our maximum matching, hence

our matching has at least (1 − ε)n edges.

Finally we prove (b), using roughly the same idea. It takes (k − 2)q additional vertices

to link q loose paths together into a loose cycle, and a union of q disjoint loose paths of

length � � 1 has (�(k − 1) + 1)q vertices. So, such a union of paths is a partial-cycle in

RH precisely when

(k − 2)q + (�(k − 1) + 1)q � (k − 1)n,

which simplifies to the condition q(� + 1) � n.

We will apply our claim with � = 1/ε and γ = (k − 2)/(� + 1). Consider a maximum-

size collection of disjoint length-� loose paths in RH. Our claim proves that if ck is large

enough then there are fewer than (k − 2)n/(� + 1) vertices left over after our maximal

collection of loose paths. This means our maximal collection has at least

(k − 1)n − (k − 2)n/(� + 1)

�(k − 1) + 1
= n/(� + 1) =: q
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loose paths. Since q(� + 1) � n, a subcollection of q of these loose paths gives a partial-

cycle, which has �q = (1 − 1/(� + 1))n > (1 − ε)n edges.

The second step in proving Theorem 1.1 is to show that a dense hypergraph plus a

large partial structure a.a.s. gives the structure we are looking for. For both theorems, we

will be able to reduce this step to the following lemma.

Lemma 2.2. There exists ξ = ξ(α) > 0 such that the following holds. Let G be a bipartite

graph with parts A,B of equal size n, and suppose δ(G) � αn. Let M̄ be a uniformly random

perfect matching between A and B (not necessarily contained in G) and let M be any sub-

matching of M̄ with (1 − ξ)n edges. Then a.a.s. G ∪ M has a perfect matching.

Note that while we require M̄ to be uniformly random, we make no assumptions about

the distribution of M other than that is contained within M̄.

The immediate näıve approach to prove this lemma would be to show that each set

of vertices expands, and then to apply the union bound and Hall’s marriage theorem.

However, the probability of failure to expand is not small enough for this to work. We

can gain some insight into the problem by considering two ‘extremal’ cases for G. First,

consider the case where the edges of G are not evenly distributed, and are ‘concentrated’ in

certain spots. For example, identify sets A′ ⊂ A and B′ ⊂ B with |A′|, |B′| = αn, and let G

contain only those edges incident to a vertex in A′ or B′. The addition of the near-perfect

matching M gives a near-perfect matching between A\A′ and B\B′, and we can match

the unmatched vertices from A (respectively B) with any element of B′ (respectively A′).

That is, if our graph is not well-distributed, then the more concentrated parts help us to

augment M into a perfect matching in G ∪ M. On the other extreme, if G is a random-like,

well-distributed dense graph, then we cannot augment M in the same way. But this is not

necessary, because a random dense graph G contains a perfect matching on its own! In

order to use these ideas to prove the lemma for an arbitrary graph G, we use the structural

description of G provided by Szemerédi’s Regularity Lemma.

For a disjoint pair of vertex sets (X,Y ) in a graph, let its density d(X,Y ) be the number

of edges between X and Y , divided by |X||Y |. A pair of vertex sets (V 1, V 2) is said to be ε-

regular if for any U1, U2 with U� ⊆ V� and |U�| � ε|V�|, we have |d(U1, U2) − d(V 1, V 2)| �
ε.

We will use a bipartite version of the Regularity Lemma (which can be deduced from

say [23, Theorem 2.3] in a similar way to [11, Theorem 1.10]). Let α′ = α/2 and let ε > 0

be a small constant depending on α that will be determined later (assume for now that

ε < α/8). There is a large constant K depending only on α such that there exist partitions

A = V 1
0 ∪ · · · ∪ V 1

r and B = V 2
0 ∪ · · · ∪ V 2

r with r � K , in such a way that the following

conditions are satisfied. The ‘exceptional’ clusters V 1
0 and V 2

0 both have fewer than εn

vertices, and the non-exceptional clusters in A and B have equal size: |V�
i | = sn. (Note

that this implies 1 − ε � rs � 1.) There is a subgraph G′ ⊆ G with minimum degree at

least (α′ + ε)n such that each pair of distinct clusters V 1
i , V

2
j (i, j � 1) is ε-regular in G′

with density zero or at least 2ε.
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Define the cluster graph Γ as the bipartite graph whose vertices are the non-exceptional

clusters V�
i , and whose edges are the pairs of clusters between which there is non-zero

density in G′. The fact that G′ is dense implies that Γ is dense as well, as follows. In G′

each V�
i has at least (α′ + ε)n|V�

i | edges to other clusters. There are at most (εn)(sn) edges

to the exceptional cluster V0 and at most (sn)2 edges to each other cluster. So,

dΓ(V�
i ) � ((α′ + ε)n − εn)sn/(sn)2 � α′r

and Γ has minimum degree at least α′r.

Proof of Lemma 2.2. We use Hall’s marriage theorem: we need to show that a.a.s.

|NG∪M(W )| � |W | for all W ⊆ A.

If |W | � αn, then |NG∪M(W )| � |NG(W )| � αn � |W | by the degree condition on G.

Similarly, if |W | � (1 − α)n then every b ∈ B has an edge to W in G, so |NG∪M(W )| =

|B| � |W |. The difficult case is where αn � |W | � (1 − α)n.

Apply the bipartite version of the Regularity Lemma above (with ε sufficiently small

compared to α), to obtain a subgraph G′ and a dense cluster graph Γ. Consider any

W ⊂ A with αn � |W | � (1 − α)n. For each i let πi = |V 1
i ∩ W |/(sn), and let X be the set

of clusters V 1
i with πi � ε. Let AX denote the set of all vertices in those clusters. Note

that |W\AX | � rεsn � εn. Also, if ε is small compared to α, then X must be non-empty.

Now, if V 2
j ∈ NΓ(X) then by ε-regularity there are edges in G′ from W to at least (1 − ε)sn

vertices of V 2
j . Let Y = NΓ(X) and let BY be the set of vertices in the clusters in Y ; it

follows that |BY \NG′ (W )| � ε|Y |sn � εn.

If |Y | = r (as would occur if G were well-distributed) then

|NG∪M(W )| � |NG′(W )| � |BY | − εn � n − 2εn � |W |

for 2ε � α, and we are done.

Otherwise, there exists V 2
j outside Y = NΓ(D). This V 2

j must have α′r neighbours outside

X in Γ, so |X| � (1 − α′)r. Now, Y � α′r so BY is a fixed set of at least α′rsn � (1 − ε)α′n

vertices in B. Also, NM̄(AX) is a uniformly random set of

|AX | � (1 − α′)rsn � (1 − α′)n

vertices in B, which means B\NM̄(AX) is a uniformly random set of at least α′n vertices.

So, |BY \NM̄(AX)| is hypergeometrically distributed with mean at least (1 − ε)(α′)2n. By a

concentration inequality (see for example [7, Theorem 2.10]), a.a.s.

|BY \NM̄(AX)| � (α′)2n − 2εn.

There are fewer than 2r = O(1) possibilities for X, so by the union bound this inequality

holds a.a.s. for the X arising from any choice of W . Now, note that

|NM̄(W )\NM̄(AX)| = |W\AX |

and recall that |W\AX |, |BY \NG′ (W )| � εn, so

|NG′ (W )\NM̄(W )| � |BY \NM̄(AX)| − 2εn � (α′)2n − 4εn.
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Also,

|NM(W )| � |NM̄(W )| − ξn = |W | − ξn.

We conclude that

|NG∪M(W )| � |NM(W )| + |NG′ (W )\NM̄(W )| � |W | − ξn + (α′)2n − 4εn.

For small ε and ξ (say 4ε � ξ = (α′)2/2 = α2/8), this gives |NG∪M(W )| � |W |.

Remark. Note that ξ does not depend on any of the constants arising in the Regularity

Lemma. These constants only influence the value of n needed to make the probability

implicit in ‘a.a.s.’ close to 1.

Now we describe the reduction of Theorem 1.1 to Lemma 2.2. Consider a k-uniform

hypergraph L. Suppose A is a set of n vertices and B is a (k − 1)-uniform hypergraph

on the remaining vertices. Then we define a bipartite graph GA,B(L) as follows. The

vertices of GA,B(L) are the vertices in A, as well as the edges in B (we abuse notation

and identify the hypergraph B with its edge set). We put an edge between a ∈ A and

{b1, . . . , bk−1} ∈ B if {a, b1, . . . , bk−1} is an edge in L. Basically, the idea is that if L has

a large matching or partial-cycle, then there exist A and B such that GA,B(L) has a

large matching. Conversely, if GA,B(L) has a large matching for any A and B, then the

edges of that matching correspond to a large matching or partial-cycle in L. Lemma 2.1

will provide a large matching or partial-cycle in the random hypergraph R, so there

are A and B such that GA,B(R) has a large matching (this matching is itself random).

By Lemma 2.2, the addition of this matching to GA,B(H) will give a perfect matching in

GA,B(H) ∪ GA,B(R) = GA,B(H ∪ R), corresponding to a perfect matching or loose Hamilton

cycle in H ∪ R.

We make this precise as follows. For any ε > 0 depending on α, if ck(α) is large enough,

Lemma 2.1 ensures the a.a.s. existence of a (1 − ε)n-edge matching or partial-cycle Q in

R. Extend this to a perfect matching or loose Hamilton cycle Q̄ on V (R) in an arbitrary

way. Note that the distribution of R is invariant under relabelling of its vertices so we can

relabel its vertices uniformly at random to assume that Q̄ is a uniformly random perfect

matching or loose Hamilton cycle.

We describe an alternative way to realize a uniformly random perfect matching or

loose Hamilton cycle. In the perfect matching case, choose a uniformly random ordering

of V (R):

a1, . . . , an, b1
1, . . . , b

1
k−1, b

2
1, . . . , b

n
k−1.

Let bi = {bi1, . . . , bik−1}, and let our perfect matching have edges of the form {ai} ∪ bi. This

gives a uniformly random perfect matching, so we can couple our random ordering with

R in such a way that the perfect matching defined by the ordering coincides with Q̄. Then,

let A consist of the vertices ai and let B be the hypergraph with edges bi. Note that A

is a uniformly random n-vertex set with a uniformly random ordering a1, . . . , an, and B

is a uniformly random (k − 1)-uniform perfect matching on the remaining vertices. Also,
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if we condition on A and B then GA,B(Q̄) is a uniformly random perfect matching, and

GA,B(Q) is a sub-matching with (1 − ε)n of its edges.

The Hamilton cycle case is similar. Again we want to define a uniformly random loose

Hamilton cycle via a random ordering of V (R). So, choose a uniformly random ordering:

a1, . . . , an, b0, . . . , b(k−2)n−1.

For each i let bi be the (k − 1)-vertex set

{b(k−2)i, b(k−2)i+1, . . . , b(k−2)(i+1)}

(where the subscripts are interpreted modulo (k − 2)n). Note that in this case consecutive

bi intersect each other in one vertex. We define our loose Hamilton cycle to have edges of

the form {ai} ∪ bi. This loose Hamilton cycle is uniformly random, so we can couple our

random ordering with R in such a way that our loose Hamilton cycle coincides with Q̄. Let

A contain the vertices ai and let B contain the edges bi. Exactly the same considerations

hold: A is a uniformly random n-vertex set with a uniformly random ordering a1, . . . , an,

B is a uniformly random (k − 1)-uniform loose Hamilton cycle on the remaining vertices,

and GA,B(Q) is a (1 − ε)n-edge sub-matching of the uniformly random perfect matching

GA,B(Q̄).

We give one final lemma, establishing that GA,B(H) is a.a.s. dense if H is.

Lemma 2.3. There exists βk = βk(α) > 0 such that the following holds.

(a) Let H satisfy the conditions of Theorem 1.1(a), let A be a uniformly random set of

n vertices, and let B be a uniformly random perfect matching on V (H)\A. Then a.a.s.

GA,B(H) has minimum degree at least βkn.

(b) Let H satisfy the conditions of Theorem 1.1(b), let A be a uniformly random set of n

vertices, and let B be a uniformly random loose Hamilton cycle on V (H)\A. Then a.a.s.

GA,B(H) has minimum degree at least βkn.

Proof of Lemma 2.3(a). As in the preceding discussion, it is convenient to realize the

uniform distribution of A and B via a random ordering of V (H). Let

a1, . . . , an, b1
1, . . . , b

1
k−1, b

2
1, . . . , b

n
k−1.

be a uniformly random ordering of V (H), with A, bi and B defined as before.

First, condition on some (k − 1)-tuple b ∈ B, and imagine that the ai are chosen one-

by-one. Given b and a1, . . . , ai, this means that ai+1 has a uniformly random distribution

from the remaining vertices. There are at least δk−1(H) choices of a that will make b ∪ {a}
an edge of E(H), so for i � αn/2,

P(b ∪ {ai+1} ∈ E(H) | a1, . . . , ai) � (δk−1(H) − i)/(kn) � α/(2k).

The degree of b in GA,B(H) is the number of edges b ∪ {ai} in E(H), which we have

just shown stochastically dominates a Bin(αn/2, α/(2k)) distribution. By the Chernoff

bound, we have dGA,B (H)(b) � α2n/(8k) with probability 1 − e−Ω(n). With the union bound,

dGA,B (H)(b) � α2n/(8k) a.a.s. for all b.
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Now, instead condition on some a ∈ A and imagine that the (k − 1)-tuples bi are chosen

one-by-one from the remaining vertices (before choosing the rest of vertices of A). Note

that there are at least δ1(H) choices of a (k − 1)-tuple b such that {a} ∪ b ∈ E(H), and

note that each bij shares at most
(

kn
k−2

)
edges with a. Recall that δ1(H) = Ω(nk−1), so if

i � 2
√
βkn for sufficiently small βk and large n, then

P({a} ∪ bi+1 ∈ E(H) | b1, . . . , bi) �
(
δ1(H) − (k − 1)i

(
kn

k − 2

))/(
kn

k − 1

)
�

√
βk.

By the same argument as in the previous paragraph, using the Chernoff bound and the

union bound, a.a.s. each dGA,B (H)(a) � βkn.

Proof of Lemma 2.3(b). We give essentially the same proof as for Lemma 2.3(a). As in

the discussion preceding the lemma, choose a uniformly random ordering

a1, . . . , an, b0, . . . , b(k−2)n−1,

and let A, bi and B be defined as before.

Using the same proof as for Lemma 2.3(a), there exist small βk such that a.a.s.

dGA,B (H)(b) � βkn for all b ∈ B. Next, condition on some a ∈ A, and imagine the bi

are chosen one-by-one (before choosing the rest of vertices of A). Note that the only

intersection of bi with any of b0, . . . , bi−1 is the vertex b(k−2)i, and the other vertices of

bi are chosen uniformly at random from what remains. Also note that each bj shares at

most
(

(k−1)n
k−3

)
edges with both a and b(k−2)i. So, for small βk , large n and 1 � i � 2

√
βkn,

P({a} ∪ bi ∈ E(H) | b0, . . . , bi−1)

�
(
δ2(H) − (k − 2)i

(
(k − 1)n

k − 3

))/(
(k − 1)n

k − 2

)
�

√
βk.

By the same argument as before, a.a.s. each dGA,B (H)(a) � βkn.

We have established that if ck(α) is large enough then GA,B(H) is a.a.s. a bipartite graph

with minimum degree βk(α)n, and GA,B(R) contains a (1 − ξ(βk(α)))n-edge sub-matching

GA,B(Q) of the uniformly random perfect matching GA,B(Q̄). Lemma 2.2 then ensures the

existence of a perfect matching in GA,B(H ∪ R). This corresponds to a perfect matching

or loose Hamilton cycle in H ∪ R.

3. Pancyclicity in dense digraphs

In this section we prove Theorems 1.2 and 1.3. One motivation for considering pancyclicity

instead of just Hamiltonicity is an observation by Bondy (see [3]), that almost all known

non-trivial conditions that ensure Hamiltonicity also ensure pancyclicity. He even made

an informal ‘metaconjecture’ that this was always the case; our Theorem 1.3 verifies his

metaconjecture in the setting of randomly perturbed dense graphs and digraphs.

Theorem 1.3 obviously implies [2, Theorems 1 and 3]. We do not fight very hard to

optimize constants, but we note that if we make more careful calculations with our proof

approach, then the resulting values of c(α) seem to be better than those found in [2], for

most values of α.
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w1

w+
1 u−

2

u2
u w

Figure 1. The case where the vertices of W1 precede the vertices of U2. The horizontal line through the centre

is P ; the broken lines indicate subpaths.

We now turn to the proof of Theorem 1.2, which will follow from the corresponding

result for Hamiltonicity.

Lemma 3.1. Let D be a directed graph with all in- and outdegrees at least 4k, and suppose

for every pair of disjoint sets A,B ⊆ V (D) with |A| = |B| � k, there is an arc from A to B.

Then D is Hamiltonian.

The idea of the proof is to start with a longest path P and to manipulate it into a

cycle C on the same vertex set. We will show that D is strongly connected, so if C were

not Hamiltonian, there would be an arc from V (C) to its complement, which could be

combined with C to give a longer path than P , contradicting maximality. This type of

argument goes back to the proof of Dirac’s theorem [4, Theorem 3]. It also bears some

resemblance to the ‘rotation-extension’ idea introduced by Pósa in [19], and a variation

for directed graphs by Frieze and Krivelevich [6, Section 4.3].

Proof of Lemma 3.1. First we acknowledge some immediate consequences of the

condition on D. Note that if A and B are disjoint sets with size at least k, then in fact

there are at least |A| − k vertices of A with an arc into B. To see this, note that for any

smaller number of such vertices in A, we can delete those vertices and at least k will

remain, one of which has an arc to B. Also, D is strongly connected. To see this, note

that for any v, w, both of N+(v) and N−(w) have size at least 4k > k. If they intersect

then there is a length-2 path from v to w; otherwise there must be an arc from N+(v) to

N−(w) giving a length-3 path.

Let P = u, . . . , w be a maximum-length directed path in D. We will use the notation v+

(respectively v−) for the successor (respectively predecessor) of a vertex v on P , and also

write U+, U− for the set of successors or predecessors of a set of vertices U.

By maximality, N+(w) ⊂ P and N−(u) ⊂ P . Let U1 be the first 3k elements of N−(u)

on P , and let U2 be the last k (note U1 ∩ U2 = ∅). Similarly let W1 be the first k and W2

the last 3k elements of N+(w). We will now show that there is a cycle on the vertex set

V (P ).

First, consider the case where each vertex of W1 precedes each vertex of U2. If wu is in D

then we can immediately close P into a cycle. Otherwise, |W−
1 | = |W1| = |U+

2 | = |U2| = k,

so there is an arc w1u2 from W−
1 to U+

2 . This is enough to piece together a cycle on V (P ):

start at u2 and move along P to w, from where there is a shortcut back to w+
1 . Now move

along P from w+
1 to u−

2 , from where we can jump back to u, then move along P to w1,

then jump to u2. See Figure 1 for an illustration.
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u u−
11

u11 u−
12

u12 w21

w+
21 w22

w+
22

w

Figure 2. The case where the vertices of U1 precede the vertices of W2.

Otherwise, each vertex of U1 precedes each vertex of W2. Let U12 contain the k elements

of U1 furthest down the path. Note that there are at least 2k vertices of P (e.g., vertices of

U1\U12) preceding all vertices in U12. Let U11 be the set of vertices among those first 2k

vertices of P which have an arc to U+
12. By the discussion at the beginning of the proof,

|U11| � k. Similarly, let W21 contain the k elements of W2 first appearing on the path, and

let W22 be the set of at least k vertices among the last 2k on P which have an arc from

W−
21. By the condition on D, there is an arc w22u11 from W−

22 to U+
11. By definition, there

exist u12 ∈ U+
12 and w21 ∈ W−

21 such that the arcs u−
11u12 and w21w

+
22 are in D. We can piece

everything together to get a cycle on the vertices of P : start at u11, move along P until

u−
12, then jump back to u. Move along P until u−

11, then take the shortcut to u12. Continue

along P to w21, jump to w+
22, continue to w, jump back to w+

21, and continue to w22. From

here there is a shortcut back to u11. See Figure 2.

As outlined, the fact that D is strongly connected, combined with the fact that the

vertex set of P induces a cycle C , implies that C is a Hamilton cycle.

We note that with some effort, the ideas in the proof of Lemma 3.1 can be used directly

to prove Theorem 1.2 with a weaker degree condition. We do not know whether the

condition can be weakened all the way to 4k, as Bondy’s metaconjecture would suggest.

Also, the constants in Theorem 1.2 and Lemma 3.1 can both be halved for the undirected

case, just by simplifying the main argument in the proof of Lemma 3.1.

Proof of Theorem 1.2. Fix a vertex v. Let U+ and U− be arbitrary disjoint k-subsets of

N+(v) and N−(v) respectively. There is an arc from U+ to U− which immediately gives a

3-cycle.

Next, let W+ be the set of (fewer than k) vertices with no arc from U+, and similarly

let W− be the set of vertices with no arc into U−. Now consider the induced digraph

D′ obtained from D by deleting v and the vertices in U+, U−,W+,W−. Since we have

removed fewer than 4k vertices, D′ satisfies the conditions of Lemma 3.1 so has a Hamilton

cycle. In particular, for every � satisfying 4 � � � n − 4k, there is a path P� = u�, . . . , w�

in D′ of length � − 4. By construction, there is an arc from U+ to u� and from w� to U−,

which we can combine with arcs to and from v to get a cycle of length �.

Finally, for every � > n − 4k, arbitrarily delete vertices from D to obtain an induced

digraph D′′ with � vertices which satisfies the conditions of Lemma 3.1. Since D′′ has a

Hamilton cycle, D has a cycle of length �.
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Proof of Theorem 1.3. In view of the discussion in the Introduction, we assume each

possible arc is present in R with probability p = cn/
(
2
(
n
2

))
� c/n independently. (Recall

that digraphs are allowed to have 2-cycles.)

If A,B ⊆ V (D) are disjoint sets with |A| = |B| = αn/8, the probability that there are no

arcs from A to B in D ∪ R is at most

(1 − p)(αn/8)2 � e−pα2n2/64 � e−cα2n/64.

The number of choices of such pairs of disjoint sets A,B is at most 22n. By the union

bound, the probability that D ∪ R does not satisfy the condition of Lemma 3.1 is at most

22ne−cα2n/64, which converges to zero for sufficiently large c. Therefore the digraph D ∪ R

is a.a.s. pancyclic by Lemma 3.1.

4. Hamilton cycles in tournaments

There are several seemingly different conditions that are equivalent to Hamiltonicity for

tournaments (see [16, Chapters 2-3]). A tournament is Hamiltonian if and only if it is

irreducible (cannot be divided into two parts with all arcs between the two parts in the

same direction), if and only if it is strongly connected (has a directed path from every

vertex to every other), if and only if it is pancyclic (contains cycles of all lengths). All

tournaments have a Hamilton path, and it was first proved by Moon and Moser [17] that

a uniformly random tournament is a.a.s. irreducible, hence Hamiltonian.

More recently, Kühn, Lapinskas, Osthus and Patel [14] proved in that if a tournament

is t-strongly connected (it remains strongly connected after the deletion of t − 1 vertices),

then it has Ω(
√
t/ log t) arc-disjoint Hamilton cycles. (This was improved to Ω(

√
t) by

Pokrovskiy [18].) Therefore, to show a tournament has q arc-disjoint Hamilton cycles for

any q = O(1), it suffices to show that the tournament is t-strongly connected for any fixed

t. In particular, it is not difficult to show that a random tournament is a.a.s. t-strongly

connected for fixed t, which motivates Theorem 1.4.

Before we proceed to the proof, we first explain why Theorem 1.4 is sharp. The

‘obvious’ worst case for T is a transitive tournament (corresponding to a linear order

on the vertices). In this case, a superlinear number of random edges must be flipped in

order to a.a.s. flip one of the arcs pointing away from the least element of the linear

order. Actually, �Luczak, Ruciński and Gruszka [15] have already studied the model where

random edges are flipped in a transitive tournament, by analogy with the evolution of the

random graph.

More generally, consider a ‘transitive cluster-tournament’ T on n = r(2d + 1) vertices

defined as follows. Let R be a regular tournament on 2d + 1 vertices (this means every

vertex has indegree and outdegree d). To construct T , start with r disjoint copies R1, . . . , Rr

of R, then put an arc from v to w for every v ∈ Ri, w ∈ Rj with i < j. In order for the

perturbed tournament P to be Hamiltonian, there must be an arc entering R1, so one

of the O(n(d + 1)) arcs exiting R1 must be changed. This will not happen a.a.s. unless

m = ω(n/(d + 1)).

We now prove Theorem 1.4. In accordance with the discussion in the Introduction, we

will work with the model where each edge is flipped with probability p independently,
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where 2p
(
n
2

)
= m. (Designating an edge for resampling with probability 2p is the same as

flipping it with probability p.) Note that p � 1/2 and in particular p � 1 − p.

Fix t, and let T be a tournament with n vertices and all in- and outdegrees at least

d. As described above, flip each edge with probability p = ω(1/(n(d + 1))), to obtain a

perturbed tournament P . We will prove that P is a.a.s. t-strongly connected.

The idea of the proof is to choose a set S of t vertices with a large indegree and

outdegree, then to show that with high probability almost every vertex has many paths

to and from each vertex in S . The probability that a vertex v has paths to and from from

S is smallest if v has small indegree, so we need to show that not many vertices can have

small indegree.

Lemma 4.1. In any tournament, there are fewer than k vertices with indegree (respectively

outdegree) less than (k − 1)/2.

Proof. The sum of indegrees (respectively outdegrees) of a tournament on k vertices is(
k
2

)
, because each arc contributes 1 to this sum. Therefore in every set of k vertices of

a tournament, there is a vertex of outdegree (indegree) at least (k − 1)/2 in the induced

sub-tournament.

A consequence of Lemma 4.1 is that the set of all vertices with indegree (respectively

outdegree) less than n/6 in T , has size smaller than n/3. So, there are at least n/3 vertices

whose indegree and outdegree in T are both at least n/6. We can therefore choose a set

S of t such vertices.

Now, we prove that the random perturbation typically does not reduce the in- and

outdegrees very much.

Lemma 4.2. If a vertex v has outdegree (respectively indegree) k in T , then it has outdegree

(respectively indegree) at least k/3 in the randomly perturbed tournament P , with probability

1 − o(e−k) − o(1/n) (uniformly over k).

Proof. We only prove the statement where v has outdegree k; the indegree case is

identical.

There are k arcs pointing away from v in T . If p < 1/
√
n then the probability that more

than 2k/3 of those arcs are changed by the perturbation is at most 2kp2k/3 = e−kΩ(log n) =

o(e−k). If k � √
n/2, then by the Chernoff bound and the fact that p � 1/2, the probability

that more than 2k/3 arcs are changed is e−Ω(
√
n) = o(1/n). In both of these cases, k/3 of

the original out-neighbours survive the perturbation with the required probability.

The remaining case is where p � 1/
√
n and k <

√
n/2. In this case there is a set of n/2

arcs pointing towards v in T . The Chernoff bound says that the probability that less than

k/3 of these arcs are changed is e−Ω(
√
n) = o(1/n). That is, with the required probability,

k/3 new out-neighbours are added by the perturbation.

Lemma 4.3. Suppose w has outdegree (respectively indegree) at least n/6 in T , and v is

a vertex different from w with indegree (respectively outdegree) at least k in T . Then with
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probability 1 − o(e−k/(d+1)) − o(1/n) (uniformly over k), there are t′ = 3t internally vertex-

disjoint paths of length at most 3 from w to v (respectively from v to w) in the randomly

perturbed tournament P .

Proof. We will only prove the statement where v has indegree at least k; the outdegree

case is identical. By independence, we can condition on the outcome of the perturbation

on individual arcs. Condition on the outcome for all arcs adjacent to w, and let N+
P (w)

be the set of vertices to which there is an arc from w in P . By Lemma 4.2, we can assume

|N+
P (w)| � n/18.

We first prove the lemma for the case where k � 6t′. There are at least n′ = n/18 − 1

arcs between N+
P (w) and v, each of which will be pointing towards v in P with probability

at least p independently. By the Chernoff bound, the probability less than t′ arcs will point

from N+
P (w) to v in P is e−Ω(np) = o(e−k/(d+1)). So, with the required probability there are

t′ suitable length-2 paths from w to v.

We can now assume k > 6t′. Condition on the result of the perturbation for the arcs

adjacent to v (in addition to the arcs we have conditioned on so far). Let N−
P (v) be the

set of vertices from which there is an edge into v in P ; by Lemma 4.2, we can assume

|N−
P (v)| � k/3.

Now, if |N+
P (w) ∩ N−

P (v)| � t′ then there are t′ disjoint length-2 paths from w to v and

we are done. So we can assume U+ = N+
P (w)\(N−

P (v) ∪ {v}) has at least n′ = n/18 − t′ − 1

vertices, and U− = N−
P (v)\{w} has at least k′ = k/3 − 1 vertices (note that k′ � 2t′ by

assumption).

Now, we would like to show that with the required probability there is a set of t′

independent arcs from U+ into U− in P , which will give t′ suitable length-3 paths. Partition

U+(respectively U−) into subsets U+
1 , . . . , U

+
t′ of size at least n′/(2t′) (respectively, subsets

U−
1 , . . . , U

−
t′ of size at least k′/(2t′)). Recall that 1 − p � p, so for each i, the probability

that there is no arc from U+
i into U−

i after the perturbation is at most

(1 − p)n
′k′/(2t′)2

= e−Ω(npk) = o(e−k/(d+1)).

We conclude that with the required probability, there is a set of t′ suitable independent

arcs, each between a pair U+
i , U

−
i .

Lemma 4.4. Fix some w ∈ S . In the randomly perturbed tournament P , there are a.a.s. t

internally vertex-disjoint paths from w to each other vertex (respectively, from each other

vertex to w).

Proof. We only prove there are paths from w to each other vertex; the reverse case is

identical. If there are 3t internally vertex-disjoint paths from w to v in P of length at

most 3, then we say v is safe. It follows from Lemma 4.3 that a vertex with indegree k is

safe with probability at least 1 − f(n)e−k/(d+1) + f(n)/n, for some f(n) = o(1).

By Lemma 4.1, there are at most 2d + 1 vertices with indegree d in T , and the vertex

with the 2kth smallest indegree has indegree at least k − 1. Let Q be the set of non-safe
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vertices, and note that

E[|Q|] � (2d + 1)f(n)e−d/(d+1) +

n∑
k=d+1

2f(n)e−k/(d+1) + nf(n)/n

= f(n)

(
O(d + 1) +

1

1 − e−1/(d+1)

)

= f(n)O(d + 1).

(We have used the geometric series formula and the inequality 1 − e−x � (x ∧ 1)/2 for

positive x.)

By Markov’s inequality, a.a.s.

|Q| �
√
f(n)O(d + 1) = o(d + 1).

If d � 12t then |Q| = 0 for large n and we are done. Otherwise, d > 12t, and we will show

that there are a.a.s. suitable paths of length at most 4 from w to each other vertex.

By Lemma 4.2 the perturbation a.a.s. reduces the degree of each vertex by a factor of

at most 3 (the probability of this not occurring is o(
∑∞

k=0 e
−k) + o(1) = o(1)), so every

vertex v ∈ Q a.a.s. has indegree at least d/3. We have |Q| < d/12 for large n, and we are

assuming d > 12t, so for every vertex v we can choose d/3 − d/12 − 1 = d/4 − 1 � 3t safe

in-neighbours v1, . . . , v3t different from w.

Now, fix some v and consider a maximum-size collection M of internally vertex-disjoint

paths of length at most 4 from w to v in P . For the purpose of contradiction assume

that |M| < t. There are fewer than 3t internal vertices in the paths in M, so there is some

vi not in any path of M. Then, there are 3t internally vertex-disjoint paths from w to

vi, so one of these does not contain any internal vertex of a path in M. It follows that

w, . . . , vi, v is a path from w to v which is internally vertex-disjoint from every path in M,

contradicting maximality.

It follows from Lemma 4.4 that in P , a.a.s. every vertex outside S has t internally

vertex-disjoint paths to and from every vertex in S . If P has this property and we delete

t − 1 vertices, then there is at least one vertex w of S remaining, and w has least one

path to and from every other vertex. That is, P is a.a.s. t-strongly connected. (In fact, we

have also proved that P a.a.s. has diameter at most 8, since there is a path of length at

most 4 between w and any other vertex.) Recall that a t-strongly connected tournament

has Ω(
√
t) arc-disjoint Hamilton cycles, so we can conclude that P a.a.s. has q arc-disjoint

Hamilton cycles for any q = O(1).

5. Concluding remarks

We have determined the amount of random perturbation typically required to make a

tournament, dense digraph or dense uniform hypergraph Hamiltonian. In the process,

we have proved a general lemma about pancyclicity in highly connected digraphs,

and demonstrated an interesting application of Szemerédi’s Regularity Lemma. In the

hypergraph setting, there are some important questions this paper leaves open.
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First, we have only studied loose Hamiltonicity. The other most popular notion of a

hypergraph cycle is a tight cycle, in which every consecutive pair of edges in the cycle

intersects in k − 1 vertices. More generally, an �-cycle has consecutive edges intersecting

in k − � vertices. Also, we have only studied hypergraphs with high (k − 1)-degree, which

is the strongest density assumption we could make. There are a large variety of Dirac-type

theorems for different types of minimum degree and different types of cycles (see [20] for

a survey), which would suggest that similar random perturbation results are possible in

these settings.
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