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The slat represents an important airframe noise source as it extends over almost the entire
aircraft wingspan. Most studies of slat noise consider idealized geometries. However, for
practical applications, several elements are installed on its cove, such as bulb seals to
avoid direct contact with the main wing surface. Previous investigations of an unswept
and untapered MD30P30N airfoil reported that the flow dynamics and the corresponding
acoustic noise are very sensitive to the presence and location of the bulb seal. For certain
locations a second recirculation bubble is created inside the slat cove and the acoustic
narrowband peaks are intensified. The present paper shows that the two-bubble topology
promotes the recirculation of turbulence within the slat cove. Spectral proper orthogonal
decomposition analysis based on the radiated pressure intensity is used to identify the flow
structures responsible for sound generation. Even though the recirculating turbulence is
mostly incoherent, it interacts with the coherent Kelvin–Helmholtz vortices in the initial
part of the mixing layer. Then, vortex merging and straining lead to the formation of
complex vortex clusters. Our results show that the origin and evolution of these clusters
are consistent with Rossiter’s mechanism responsible for the narrowband peaks. The
enhanced recirculation accelerates the cluster evolution leading to wider clusters and
lower-frequency Rossiter modes.
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1. Introduction

After the introduction of turbofan engines with high bypass ratio in the 1970s, the noise
contribution from propulsion systems was reduced and the airframe components became
important noise sources, especially during landing, when engines operate at low power
(Dobrzynski 2010; Leylekian, Lebrun & Lempereur 2014). Deployed slats represent a
significant airframe noise source, as they are distributed along almost the entire wingspan
(Guo, Yamamoto & Stoker 2003).

Figure 1(a) displays a scheme of the slat cove flow. The boundary layer separates at
the cusp and an unstable mixing layer develops, generating Kelvin–Helmholtz (K–H)
vortices which evolve into turbulence as they convect towards the reattachment point on
the cove wall. From there, part of the turbulence is convected through the slat gap and
part recirculates inside the cove bubble. The flow in the slat cove is complex, but the noise
spectrum of an unswept, untapered slat is well established. A scheme of the slat noise
spectrum is presented in figure 1(b). It is basically composed of three main components
labelled in the figure: A, a broadband component observed from low to mid frequencies,
at Strouhal numbers (based on slat chord and free-stream speed) between 0.1 and 15; B, a
number of narrowband peaks on top of the broadband noise, at Strouhal numbers between
1 and 8; and C, a high-frequency hump, observed at Strouhal number of approximately
20 (Imamura et al. 2009). In a recent study, Pascioni & Cattafesta (2018a) identified yet
another component, a very-low-frequency oscillation which is referred to as breathing.

The phenomenon related to the high-frequency hump is well established. Such spectral
component is associated with vortex shedding at the slat trailing edge and is regarded as an
artefact of the blunt trailing edges of relatively small-sized wind tunnel models (Khorrami,
Berkman & Choudhari 2000). Some authors suggest that the broadband component could
be a consequence of the turbulence from the mixing layer, which is ejected through the gap
between the slat and main element (Dobrzynski & Pott-Pollenske 2001), but this issue is
not yet settled. This noise component scales with Mach number raised to the power of 4.5
for Strouhal numbers between 2 and 10 (Pott-Pollenske, Alvarez-Gonzalez & Dobrzynski
2003).

It is generally accepted that the narrowband peaks are associated with a mechanism
similar to that of the Rossiter modes observed in open cavities (Rossiter 1966), as proposed
by Roger & Perennes (2000). In the slat, this mechanism involves the formation of K–H
vortices in the mixing layer originating in the slat cusp. These vortices are convected
and interact with the slat trailing edge emitting sound. The sound waves reach the slat
cusp and trigger new vortices, closing a feedback loop that selects some frequencies.
A modification of Rossiter’s model for the slat geometry was proposed by Kolb et al.
(2007) to predict the frequencies of these peaks. However, as they used the free-stream
velocity as reference, their model was not successful in capturing the angle-of-attack
effect. Terracol, Manoha & Lemoine (2016), on the other hand, proposed a model based on
the convective velocity of the mixing-layer spanwise vortices. Pagani, Souza & Medeiros
(2017) and Amaral et al. (2018) studied the effect of gap, overlap and slat deflection on
the noise. They found that the narrowband peaks are relevant in the angle-of-attack range
roughly between 0◦ and 12◦. They also observed that low noise correlated very well with
a strong main-element suction peak. Souza et al. (2019) conducted lattice Boltzmann
numerical simulations for different configurations of slat gap and overlap relative to the
wing main element. Results were analysed via proper orthogonal decomposition (POD)
in the frequency domain (today commonly referred to as spectral POD or SPOD; e.g.
Towne, Schmidt & Colonius 2018) based on the radiated pressure intensity. Their results
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Figure 1. Scheme of slat flow. (a) Evolution of K–H vortices along the mixing layer and (b) scheme of the
slat noise spectrum (PSD, power spectral density).

provided details about the dynamics associated with the feedback loop. The evolution of
the SPOD modes at the frequency of the narrowband peaks demonstrated a 90◦ phase
shift between the mixing-layer structures and the acoustic wave emitted from the slat
trailing edge. Moreover, they showed that only the spanwise-oriented component of the
K–H vortices contributes significantly to the sound emission and, as the flow acceleration
in the slat gap towards the main-element suction peak promotes three-dimensionalization
of these vortices, an intense main-element suction peak causes noise reduction. These
findings explained previous observations by Pagani et al. (2017) and Amaral et al. (2018)
which indicate a strong correlation between the main-element suction peak and the noise
emission. Finally, Souza et al. (2019) concluded that, since the aerodynamic design of
the slat aims at reducing the main-element suction peak, there is a conflict between good
aerodynamics and low noise emission.

Most of the studies of slat noise consider idealized geometries with no elements on the
slat cove surface. However, in real aircraft, several devices are attached on the slat cove
surface, such as deflection mechanisms, anti-icing elements and bulb seals. The latter
are employed to prevent flow through the gap between the slat and wing main element
in the stowed configuration. In two-dimensional numerical simulations (Khorrami &
Lockard 2010), the bulb seal showed no significant effect on the generated noise, whereas
three-dimensional simulations (Bandle et al. 2012) indicated a definite noise increment.

A POD analysis of the data produced by Bandle et al. (2012) was conducted by
Souza et al. (2015). A clean slat configuration and another one with a bulb seal were
compared. Results suggested that, at the tested location, the seal reduces the interaction
between the three-dimensional recirculating structures and the early stages of the mixing
layer, which enhances the coherence of K–H structures. These observations may explain
the differences between the results of two- and three-dimensional simulations from
Khorrami & Lockard (2010) and Bandle et al. (2012), respectively. For clean slats it was
also found that two-dimensional simulations could not reproduce the noise emission from
the slat (Choudhari & Khorrami 2007; Imamura et al. 2008). It is important to note that,
despite three-dimensional simulations being necessary to fully reproduce the slat flow
dynamics, the emitted noise is correlated to spanwise-aligned (two-dimensional) structures
immersed in the flow, as shown by Souza et al. (2019).
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Figure 2. Scheme of cove flow observed for a bulb-sealed slat showing two recirculating regions.

Companion experimental and numerical efforts were carried out by Amaral et al. (2019)
to investigate the effect of the bulb seal on slat noise. Several positions in the slat cove
and several seal cross-sections were tested. Their experimental results showed that the
seal had a small effect on the emitted noise if placed either close to the cusp or close to
the reattachment point, whereas for intermediate positions the low-frequency narrowband
peaks were significantly increased. Moreover, their numerical results revealed that the
noise increase was associated with a substantial change of the cove mean-flow topology,
noted by the appearance of a secondary, counter-rotating recirculating bubble, as illustrated
in figure 2. The streamline separating the two bubbles is hereinafter called the return path.

The aim of the present paper is to investigate the impact of the counter-rotating bubble
on the dynamics of the flow field of the slat cove with focus on the structures related to the
narrowband peaks of the slat noise spectrum. The same techniques used by Souza et al.
(2019) are employed here, namely lattice Boltzmann simulations and SPOD. We show that
the higher recirculation of turbulence in the two-bubble scenario accelerates the evolution
of the coherent structures and enhances the lower-order Rossiter modes. The remainder
of this paper is organized as follows. In § 2, we provide an overview of the methodology
employed to conduct the proposed studies, namely the numerical simulations and SPOD
technique. Section 3 addresses the mean flow while § 4 presents the spectral and SPOD
analyses. In § 5 we discuss the dominant structures in the flow. Finally, § 6 summarizes the
conclusions.

2. Methods

2.1. Numerical simulations
Numerical simulations are conducted using the commercial code PowerFLOW 5.0a which
was successfully employed in previous studies of slat noise by our group (Souza et al. 2015;
Pagani, Souza & Medeiros 2016; Amaral et al. 2019; Souza et al. 2019). PowerFLOW
is based on the lattice Boltzmann method in which macroscopic gas properties such as
pressure, velocity and temperature are expressed as functions of the statistical behaviour
of the molecules contained in a control volume for a given distribution function fi(x, ξ i, t).
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Figure 3. The MD30P30N high-lift airfoil and slat geometry details.

This function represents the probability of finding a gas molecule at position x with a given
velocity ξ i at time t. The interaction between the particles is represented by the collision
term, which in PowerFLOW is modelled by the approximation described by Bhatnagar,
Gross & Krook (1954). The discretized Boltzmann equation is written as

fi(x + ξ iΔt, ξ i, t + Δt) − fi(x, ξ i, t) = − 1
τ

[
fi(x, ξ i, t) − f eq

i (x, ξ i, t)
]
, (2.1)

where f eq
i represents the steady-state Maxwell–Boltzmann distribution function and τ

the relaxation time non-dimensionalized by the simulation time step (Δt). PowerFLOW
simplifies the relaxation time term as a variable dependent only on the macroscopic
properties such as viscosity and temperature (He & Luo 1997). The index i represents
the symmetric velocity vectors of the velocity space discretization inside the user-defined
lattice, so f eq

i becomes a function of each vector, with its respective weighting, and
its projection on the macroscopic velocity of the lattice. PowerFLOW uses the D3Q19
discretization form, i.e. cubic lattices composed of 19 velocity vectors.

The macroscopic variables are recovered from the moments of the distribution function
and the pressure by the Chapmann–Enskog expansion (Chen & Doolen 1998). Equation
(2.1) is explicit in time which allows an efficient parallelization. The small-scale structures
are modelled by the renormalization group form of the k–ε turbulence model (RNG k–ε)
(Yakhot & Orszag 1986). In this turbulence model, the swirl parameter is related to both
the local deformation and the vorticity. Hence, the turbulent dissipation is increased in
regions of high vorticity. This approach allows the lattice Boltzmann method to resolve
large structures.

The three-dimensional simulations consider the standard geometry of the MD30P30N
high-lift airfoil (Valarezo et al. 1991; Chin et al. 1993) at a fixed angle of attack of α = 3◦.
This airfoil is extensively used in slat noise studies (Khorrami, Singer & Berkman 2002;
Jenkins, Khorrami & Choudhari 2004; Lockard & Choudhari 2009; Murayama et al.
2014). Figure 3 and table 1 present the main geometrical parameters as percentages of
the airfoil chord in the stowed configuration, which is cstowed = 0.5 m in the current
simulations. The slat and flap deflections (θ ) are the deflections of their chord lines. By
their chord lines we mean the segment of the airfoil chord passing in these elements in
the stowed position. Two slat geometrical configurations are investigated: the baseline,
i.e. clean geometry, and one containing a rectangular bulb spanning the whole model
and whose parameters are schematically represented in the zoomed view displayed in
figure 3. The bulb seal height and width as percentages of the slat chord (cs = 75 mm)
are h = 1.3 % (1 mm) and w = 4.0 % (3 mm), respectively, and the seal is installed on the
slat cove at a distance d from the slat trailing edge, which is equal to 41 % of cs. This seal
location is among the noisiest configurations observed in the experiments of Amaral et al.
(2019).
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Chord Deflection (θ ) Gap Overlap

Slat 15 % 30◦ 2.95 % −2.50 %
Flap 30 % 30◦ 1.27 % 0.25 %

Table 1. Geometrical parameters of MD30P30N as percentages of airfoil chord cstowed .
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Figure 4. Computational domain and refinement region details. (a) The seven refinement levels for the whole
domain and (b) the refinement at the slat region with and without the bulb seal with a zoomed view closer to
the seal edge showing the mesh points of this region.

The dimensions of the computational domain are 12.21 m × 1.714 m × 0.0512 m,
corresponding to the streamwise, cross-stream and spanwise directions, respectively. The
cross-stream dimension matches the wind tunnel test section width used in the experiments
of Amaral et al. (2019). The spanwise length is based on a sensitivity study (Souza et al.
2019) and homogeneity in this direction is assumed.

The inlet velocity is set to U∞ = 34 m s−1, resulting in a Mach number of M = 0.1
and a Reynolds number of Re = 1 × 106, based on the airfoil stowed chord. The inflow
turbulent intensity and length scale are 9 × 10−4 and 1 mm, respectively. At the outflow
the pressure is imposed as 1 atm and the velocity direction is the same as at the inlet. At
the upper and lower boundaries, a free-slip condition is adopted. In the spanwise direction,
a periodic boundary condition is applied. To avoid reflection at the domain boundaries, a
sponge zone is used at the margins of the computational domain in which the viscosity
is set to 100 times that employed in the useful physical domain. The dimensions of this
region of non-physical viscosity are justified by a sensitivity study, as described by Souza
et al. (2019).

The code uses a Cartesian mesh aligned with the domain axes and is composed of cubic
volume cells. Seven refinement regions are used to discretize the problem. Figure 4(a)
shows the external boundaries of these regions. Each refinement level increases to a factor
of 2 in each of the three directions. The most refined region (Lvl. 7) has a node spacing of
0.2 mm. Detailed views of the mesh in the slat region are presented in figure 4(b) for the
baseline and bulb-sealed slat.

The time step varies from one refinement level to another proportionally to the cell
length. For the most refined region, the time step (Δt) is 3.328 × 10−7 s, and the data
acquisition interval is 61 × Δt = 2.03 × 10−5. After discarding the initial transient, 0.199
and 0.154 s are available for the baseline and the bulb seal cases, respectively. We refer to
Pagani et al. (2016) and Amaral et al. (2019) for other details of the numerical procedures.
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2.2. Spectral POD
The POD method is a post-processing tool that has been successfully used to identify
coherent structures in turbulent flows (Berkooz, Holmes & Lumley 1993). This method
decomposes the available empirical data in set basis functions (referred to as POD modes)
that optimally represent the original input data. For turbulent flow analysis, the POD
representation is optimal in the sense that it requires the least number of modes to represent
any chosen portion of the flow energy. ‘Energy’ is used here in a broad sense and is
defined by a metric chosen to construct the correlation matrix. The dominant POD modes
correspond to the most correlated structures existing in the flow (Colonius & Freund 2002;
Rowley 2002).

Considering a set of flow realizations that are discretely sampled through N spatial
points, the POD modes are those which maximize their projection onto the set of
realizations, in an average sense. The POD modes are computed as the principal directions,
i.e. eigenmodes, of the correlation matrix, leading to an eigenvalue problem of order N.
This problem, however, is very expensive computationally due to the large number of
spatial points that are usually involved in most applicable analyses. This limitation is
circumvented by writing the POD modes as a linear combination of the realizations, as
proposed by Sirovich (1987). This approach, usually named as snapshot POD, leads to
another eigenvalue problem,

Rbj = λjbj; 0 ≤ λm ≤ · · · ≤ λ2 ≤ λ1, (2.2)

which is of order m, the number of flow realizations, or snapshots, commonly much smaller
than N. The correlation matrix R is a Hermitian matrix with elements defined by a chosen
correlation metric (2.4). This leads to orthogonal eigenvectors bj and non-negative real
eigenvalues λj. The eigenvalues are ordered from the first mode, which represents the
most intense mode inside the set. The POD eigenfunctions φj are recovered as

φj =
m∑

i=1

bi
jq

i, (2.3)

where qi is the ith snapshot.
When the problem analysed is assumed to be ergodic, one can split the available data

into time-resolved blocks and extract their spectral content to consider as snapshots in
the POD analysis (Citriniti & George 2000). This approach, named as SPOD, allows the
identification of turbulent structures that are associated with a particular frequency of
interest. This method is the same as that applied by Souza et al. (2019), who investigated
slat cove flow with parameters similar to those presented in the current study. A detailed
description of the SPOD method is provided by Towne et al. (2018).

Another important characteristic of the SPOD method used here concerns the metric
used to compose the elements of the correlation matrix. In the current simulations, the
vector of each flow realization is composed of the velocity components and the pressure,
i.e. q = {u, v, w, p}. A generic correlation metric is represented by

〈qi, q j〉 =
∫

Ω

(uiσuuj∗ + viσvv
j∗ + wiσwwj∗ + piσppj∗) dV, (2.4)

where the weighting vector is given by σ = [σu, σv, σw, σp]. When σ = [1, 1, 1, 0], the
commonly used turbulent kinetic energy (TKE) metric is retrieved.

Since the present investigation focuses on noise emission, we are mainly interested in
the coherent structures that account for acoustic noise and not all structures in the slat cove.
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Figure 5. (a) Root mean square of the dynamic pressure at a distance of 10 × cs from the origin for both
cases and (b) line where the pressure is integrated for the far-field SPOD metric.

Following the procedure applied by Souza et al. (2019), an acoustic pressure correlation
metric is applied in which σ = [0, 0, 0, 1] along a line outside the slat cove and null
elsewhere. This metric extracts the coherent structures present in the whole flow field
which are correlated with the pressure field in the integration line and, hence, it is intended
to reveal the turbulent structures in the slat cove that contribute most to the emitted noise.

Figure 5(a) shows the distribution of the root mean square of the far-field pressure
computed with the Ffowcs Williams–Hawkings analogy along a circumference centred
at the slat cove with radius equal to 10 airfoil chords (Amaral et al. 2019). This figure
indicates that the directivity pattern is very similar for both cases. Figure 5(b) shows that
the integration line is in the direction of maximum noise emission.

3. Mean-flow analysis

Prior to analysing the flow fluctuations, some important mean-flow characteristics from

both flow topologies are presented. Streamlines and resolved TKE (= 1
2(u′2 + v′2 + w′2)),

normalized by U2∞, are shown in figure 6. The mixing-layer path, shown as dashed red
lines, is defined as the streamline passing at a point just at the outer side of the cusp.
The same point is used for both configurations. The sealed case (figure 6b) also shows
the return path separating the two bubbles, defined as the streamline passing at a point
just at the inner side of the cusp. Using these definitions, the streamlines corresponding
to the mixing-layer path and the return path were visually identified in a refined plot of
streamlines in the cusp region. The highest TKE levels are observed from the reattachment
region to the slat trailing edge. The maximum normalized value, whose position is marked
with a white cross, is 0.124 for both cases. The two-bubble case shows an additional region
of high TKE upstream, with levels similar to those of the reattachment region.

The time-averaged spanwise vorticity (ωz) fields are compared in figure 7. The mixing
layers display positive vorticity, but there is negative vorticity inside the cove. For the
two-bubble case, this is associated with flow separation at the seal, which also prevents
negative vorticity from spreading into the cove. Both scenarios show a high vorticity level
at the cusp region, which attenuates and spreads as it evolves downstream. The attenuation
and spreading are stronger for the two-bubble case.
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Figure 6. Streamlines and resolved TKE for the (a) baseline and (b) bulb-sealed cases, respectively one- and
two-bubble reference topologies. Lines indicate the ( ) mixing layer and the ( ) return path separating the
two bubbles. The white crosses indicate the position of maximum TKE.

20

–20 –8.6 8.6 20

ω–z× cs/U∞

0

–20

–40

–40 –20

x (mm)

y 
(m

m
)

0 20

20

0

–20

–40

–40 –20

x (mm)

0 20

(a) (b)

Figure 7. Average spanwise vorticity for the cases of (a) one-bubble and (b) two-bubble topologies. Lines
indicate the ( ) mixing layer and the ( ) return path between bubbles.

Figure 8(a) shows the central streamline of the mixing layer for both cases. It also
shows segments of constant velocity-potential lines, defined as lines perpendicular to the
streamlines. We generically refer to these segments as η and normalize their length to 1.
The segment locations are given as percentages of the mixing-layer path (sML) length.
The TKE and spanwise vorticity profiles along these segments (0 ≤ η ≤ 1) are shown in
figure 8(b,c), for the locations indicated in figure 8(a). Only the outer part of the mixing
layer is shown because there the streamlines for both cases are similar, as observed in
figure 8(a), and the analysis is more meaningful. These plots provide a more definite
comparison between the two topologies. For the baseline case, the maximum TKE initially
grows, reaches a saturation at approximately 60 % of the mixing-layer path and increases
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Figure 8. (a) Scheme showing segments of constant velocity-potential lines (η) along stages of the
mixing-layer path (sML). Distribution of (b) TKE and (c) time-averaged spanwise vorticity over the η

segments.

again towards the trailing edge. For the two-bubble case, the TKE initially increases very
steeply reaching a local maximum at approximately 30 % of the mixing-layer path, after
which it decays. At 80 % of this path the TKE level reaches a local minimum where
the level is similar to that of the single-bubble case. From that point the TKE increases
slightly more than for the single-bubble case. With regard to the TKE distribution normal
to the mixing layer, the two-bubble case spreads over a wider region. However, the TKE
distributions normalized by their respective maxima are similar for both cases. Regarding
the vorticity distribution, figure 8(c) shows a continuous decay and spread along the
mixing-layer evolution. The baseline shows higher maxima while the two-bubble case
has a more even distribution, such that the integral of the vorticity in those planes is
similar between the cases. In summary, we can say that the most noticeable difference
is the upstream region of high TKE in the two-bubble case.

4. Spectral and SPOD analyses

Figure 9 shows the far-field noise spectra for one- and two-bubble topologies. These
results are calculated via the Ffowcs Williams–Hawkings analogy and refer to the noise
propagated from the slat near field to a position (x, y, z) = (0.25, −0.85, 0) in metres
or (3.33, −11.33, 0) × cs relative to the slat chord. The data used for this acoustic field
analysis were derived from the data used by Amaral et al. (2019) which had a Strouhal
number resolution (St = fcs/U∞) of 0.088 (40 Hz). The dotted lines also show the
estimated Rossiter modes which are discussed later in the paper.

Figure 10 shows instantaneous images of the velocity fluctuations in an x–y plane for
both scenarios and illustrates the complexity of the flow. Consistent with the observations
in figure 7, for the two-bubble case the velocity fluctuations concentrate in the primary
bubble, whereas for the baseline (one-bubble case) they are more evenly spread over the
slat cove. Souza et al. (2019) showed that only the two-dimensional structures contribute
to the narrowband peaks of the slat noise spectra. Moreover, Amaral et al. (2019) showed
that at the narrowband peaks the signals in the slat cove are well correlated along the span,
in particular for the two-bubble topology. For these two reasons, although the conducted
lattice Boltzmann simulations are three-dimensional, the spectral and the SPOD analyses
are based on the flow field at the central plane only, similarly to Souza et al. (2015).
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Figure 10. Typical snapshots of streamwise velocity fluctuations for (a) single-bubble and (b) two-bubble
topologies.

Figure 11 shows the PSD of the streamwise velocity fluctuation as it evolves along
the mixing-layer path for both cases. To produce each spectrum, the total length of the
recorded time series is divided into blocks of 1.67 × 10−2 s. For the single-bubble case, a
time series spanning 0.19 s is split into 22 blocks, while for the two-bubble case we use
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Figure 11. The PSD of the streamwise velocity along the mixing-layer path for (a) single-bubble and (b)
two-bubble topologies. Vertical dashed lines correspond to the Rossiter modes estimated using (4.1).

0.15 s and 17 blocks, respectively, with 50 % overlap. The mean velocity is removed from
each block. In both cases, the initial transient flow is discarded and a Hanning window is
applied to each block, which is then Fourier-transformed. The resulting PSDs are averaged
over the blocks. This procedure provides a Strouhal number resolution of 0.13 (60 Hz).
Following Welch (1967), the variance σ 2 in the computed PSDs using a number Nb
of blocks with 50 % overlap is given by σ 2 ∼ 11/18Nb. This yields σ 2 ≈ 0.028 for the
baseline case and σ 2 ≈0.036 for the two-bubble case. Note that the present results may
contain a non-negligible random uncertainty associated with the relatively low number
of blocks. However, the predicted peaks are in good agreement with the far-field spectra
(figure 9), building confidence in the validity of our results for the purposes of this work.
The SPOD computations use the same sampling parameters.

The narrowband peaks observed in the acoustic field (figure 9) reflect on the slat cove
flow (Amaral et al. 2019). These narrowband peak Strouhal numbers are consistent with
the literature (Pascioni & Cattafesta 2018a,b). The high-frequency hump is not observed
in our simulations, but it is possibly very sensitive to numerical dissipation (Souza et al.
2019). There is also a low-frequency noise (Strouhal number below 1 for the baseline case
and below 0.5 for the two-bubble case) in the early stages of the mixing layer. It is possible
that this is linked to the very-low-frequency oscillations reported by Pascioni & Cattafesta
(2018a,b) and associated with mixing-layer flapping, but our data are insufficient to
investigate these oscillations.

Some narrowband peaks are better defined than others. For the baseline, the Strouhal
number 4.37 (1980 Hz) is clearly defined, while for the two-bubble case the Strouhal
number 1.72 (780 Hz) is the most defined. We used these Strouhal numbers in combination
with a formula proposed by Souza et al. (2019) to establish all the other Strouhal numbers
in the Rossiter sequence. According to Souza et al. (2019), a mode Strouhal number is
given by

Stn =
(

n + 1
4

)
× cs

U∞
× Vc

Lc + Vc

c∞
La

=
(

n + 1
4

)
× St0, (4.1)

where Vc is the average vortex speed along the convective path, Lc the convective path
length, La the acoustic path length and n the mode number. Equation (4.1) defines the
fundamental Strouhal number (St0) of the Rossiter sequence. In the formula, the term 1/4
accounts for a 90◦ phase shift between the vortex interaction with the slat trailing edge
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Baseline Bulb seal

Mode Strouhal number Hz Strouhal number Hz

R1 1.04 471 0.96 433
R2 1.87 849 1.72 780
R3 2.70 1226 2.49 1127
R4 3.54 1603 3.25 1473
R5 4.37 1980 4.01 1820
R6 5.20 2357 4.78 2167
R7 6.03 2734 5.54 2513
R8 6.86 3111 6.31 2860
R9 7.70 3489 7.07 3207
R10 8.53 3866 7.84 3553

Table 2. Estimated Rossiter mode Strouhal numbers and frequencies based on (4.1) proposed by Souza et al.
(2019).

and the sound wave emission, which was established in the analysis of Souza et al. (2019).
The fundamental Strouhal number does not correspond to the first Rossiter mode Strouhal
number (St1), but to the Strouhal number shift between the modes.

Considering that the Strouhal number 4.37 (1980 Hz) corresponds to n = 5, we obtain
St0 = 0.83 (377 Hz). Analogously for two-bubble topology, considering that Strouhal
number 1.72 (780 Hz) corresponds to n = 2, we obtain St0 = 0.76 (347 Hz). Based on
these fundamental Strouhal numbers we can establish the Strouhal numbers of all the
other modes, which we refer to as Rn (n = 1, 2, 3, . . .), summarized in table 2.

The calculated Strouhal numbers are marked in figures 11 and 9 as dashed lines. There
is good agreement where the peaks are better defined in the acoustic far field and along
the mixing layer. Except for the very-low-frequency noise (St < 0.1), the baseline is
remarkably quiet close to the cusp. Downstream, the narrowband peaks emerge, starting
with the higher-frequency peaks and evolving to lower frequencies as the trailing edge is
approached. For the two-bubble case there is about two orders of magnitude higher activity
close to the cusp throughout the frequency range considered. In this region, the spectral
peaks are poorly defined as if immersed in noise. Further downstream, low-frequency
narrowband peaks emerge from the noise in a pattern that resembles the baseline case,
but is less clear. In comparison with the baseline, the two-bubble case is dominated by
lower Rossiter modes.

The spectral plots permit the selection of the relevant frequencies for the SPOD analysis
described in § 2.2. The SPOD technique is applied to all frequencies indicated in the
spectra in figure 11. For both cases, the first SPOD mode accounts for over 99 % of the
pressure–intensity correlation used (see figure 12). We note that, because of the frequency
discretization of 60 Hz (ΔSt = 0.13), for the SPOD analysis we use the closest possible
frequency. Figure 13 displays contour plots of the real part of the first SPOD mode for all
of the selected frequencies, for the one- and two-bubble cases. The figure suggests K–H
structures evolving along the mixing layer. Consistently, the lower frequencies display
higher wavelengths.

The amplitude distribution of the complex SPOD modes is displayed in figure 14. The
plots are normalized by the maximum value, whose location in each frame is indicated by
a cross symbol. Hence, these plots cannot be used to compare the relative magnitude of
the modes, for which the spectral plots (figure 11) should be used. In comparison with the
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Figure 12. The POD eigenvalues for (a) single-bubble and (b) two-bubble topologies.
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Figure 13. Real part of the first SPOD mode for (a) one-bubble (baseline) and (b) two-bubble cases at selected
frequencies. Dashed lines indicate the mixing layers of both cases and the return path of the two-bubble case.
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Figure 14. Magnitude of the first SPOD mode for (a) one-bubble and (b) two-bubble cases. Dashed lines
indicate the mixing layers of both cases and the return path of the two-bubble case.

spectral analysis (figure 11), the SPOD analysis shows more clearly that the lower Rossiter
modes are more active further from the cusp.

The spectral analysis also shows that the fundamental Strouhal number of the Rossiter
modes (St0) in the two-bubble case is lower than that of the baseline. Regarding (4.1),
Souza et al. (2019) defined St0 = (cs/U∞)(Tc + Ta)

−1, where Tc = Lc/Vc and Ta =
La/c∞ (c∞ is the speed of sound) correspond to the convective and acoustic times,
respectively. It is important to investigate whether these times are consistent with the
Rossiter feedback model for the topologies studied. Souza et al. (2019) defined the
convective path as the path taken by the dominant SPOD structures. They also point out
that this path is essentially the dividing streamline of the mixing layer, except very close
to the reattachment point, where it deviates towards the slat trailing edge.

Figure 15 shows the acoustic and convective paths considered in the current analysis.
The acoustic path is defined as the straight line connecting the slat trailing edge and the
cusp. For both cases, the acoustic path lengths are identical, La = 0.82 × cs (61.4 mm),
which leads to the non-dimensional acoustic time Ta × U∞/cs = 0.082. For the baseline
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Figure 16. Convective velocity (Vc) along the convective paths indicated in figure 15.

and the two-bubble case, we choose respectively modes R5 and R2 as reference of the
convective path, based on a compromise between relevance of the mode and clarity of the
path. While this is somewhat arbitrary, the results are not very sensitive to this choice.
The lengths of the convective paths are Lc = 0.87 × cs (65.2 mm) and Lc = 0.86 × cs
(64.8 mm) for the one- and two-bubble cases, respectively. For each case, we calculate
the velocity component (Vc) tangent to the convective path, shown in figure 16. The
convective time (Tc) is calculated by integrating the inverse of Vc along its path. Even
though the mixing layers dividing streamlines are almost identical (see figure 8), the
velocity magnitude differs and the convective time increases from Tc × U∞/cs = 1.1
for the one-bubble case to 1.2 for the two-bubble case. Finally, with Ta and Tc values,
we find St0 = 0.85 (385 Hz) and St0 = 0.78 (352 Hz) for the one- and two-bubble
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cases, respectively. These estimates are within an accuracy of 3 % relative to the values
used to produce table 2.

5. Spanwise vorticity structures

This section aims at identifying in the flow evolution the structures elicited by the SPOD
analysis. It also aims at understanding their origin. For this purpose we investigate
supplementary movie 1 available at https://doi.org/10.1017/jfm.2021.93, as well as
sequences of snapshots of the spanwise vorticity in the central x–y plane of the simulation
(figure 17).

In the baseline case flow, the mixing layer is rather quiet and steady close to the
cusp. Fine-grained turbulence is present in the slat cove which recirculates slowly and
interacts mildly with the mixing layer in this region. Vortices of small wavelength
become observable downstream, between 20 % and 40 % of the mixing-layer path. These
vortices evolve into wider and more complex vortical structures further downstream. The
two-bubble case presents a much stronger interaction between the recirculating vorticity
and the mixing layer: vortices are formed at an earlier stage in comparison with the
baseline case, nearly immediately at the cusp. Further downstream, the vortices evolve
into wider and more complex vortical structures.

The frequency-domain structures educed by the SPOD are not readily identifiable in
supplementary movie 1 or in figure 17. To facilitate their identification in time and space
evolution along the mixing layer, the grid formed by the streamlines and equipotential
lines of the slat cove mixing layer is mapped onto an equivalent Cartesian grid, as shown
in figure 18. Only the outer part of the mixing layer is used. For the two-bubble case,
the internal streamlines involve the return path and it would be difficult to interpret their
role in the transformed grid. On the other hand, the external streamlines are very similar
for both cases, facilitating comparison. Figure 19 shows a number of snapshots of the
spanwise vorticity fields in the transformed grid. For both cases, the frames cover the time
interval 3.84 × 10−3. The spatio-temporal evolution of the vortical structures, showing
the formation of vortices and their downstream evolution, allows the identification of
wavelengths and frequencies that can be used to relate the vortex dynamics to the results
of the spectral/SPOD analysis.

Figure 19(a) shows the vorticity evolution for the baseline case. The formation of K–H
vortices occurs in an apparently irregular fashion. These vortices widen as they travel along
the mixing layer, in a manner consistent with the frequency-domain analyses that show a
progressive cascade towards lower Rossiter modes (figure 11). The time interval shown
in the figure corresponds to slightly more than six periods of the mode R4. In the time
evolution at the fixed location of approximately 70 % of the mixing-layer path, six or more
vortex structures can be observed, even if not in a completely periodic sequence. Thus, the
observed evolution is consistent with the spectral analysis that shows the predominance of
the modes R4 and higher in this region.

Figure 19(b) shows the vorticity evolution for the two-bubbles case. The vortex
structures are more complex and wider than in the baseline case. However, in the time
evolution at the fixed location, their temporal periodicity is more regular than for the
baseline, in particular at the trailing edge. There we see three time periods of a broader
structure arriving at the trailing-edge region in the time interval shown, which incidentally
corresponds to approximately three periods of the mode R2 for this case. These structures
have a spatial periodicity of about half of the mixing-layer path, which further relates
them to the mode R2 recovered by the SPOD. The spectral analysis (figure 11) suggests
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Figure 17. Instantaneous spanwise vorticity inside the slat cove along 10 frames spaced by 1.42 × 10−4 s
which covers a time period corresponding to Strouhal number 1.72 (782 Hz) for (a) one-bubble and
(b) two-bubble cases. Dashed lines indicate the mixing layers of both cases and the return path of the
two-bubble case.
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Figure 18. Instantaneous spanwise vorticity of frame 10 from the one-bubble case (figure 17) and mesh
composed of the intersection points between the streamlines and equipotential lines, Ψi and Φj, shown both
in their original coordinates and also in orthogonal axes.

that mode R2 is dominant over a large portion of the mixing-layer path and that higher
Rossiter modes are observable only in the initial stages of evolution, e.g. the compact
vortex structures seen up to approximately 20 % of the mixing layer.

Comparing the results from the baseline and the two-bubble case, it is found that later
structures of the baseline resemble structures of an earlier stage in the two-bubble case.
For example, the structures at 80 % of the mixing layer in frames 0 to 3 for the baseline
case resemble those at 30 % of the mixing layer in frames 10 to 13 for the two-bubble case
(see region indicated by black continuous lines in figure 19). As a second example, the
structure at 70 % of the mixing layer in frame 25 for the baseline case resembles that at
40 % of the mixing layer in frame 17 for the two-bubble case (see region indicated by black
dashed lines in figure 19). This suggests that the two-bubble case develops more quickly
or bypasses some stages of the evolution. This aspect is associated with the origin of these
structures that we address next.

With the aid of figure 19 we can more easily interpret figure 17 and supplementary movie
1. Note that the frames in figure 17 correspond to frames 10 to 19 in the red box in figure 19.
Supplementary movie 1 shows results for the baseline and the two-bubble case which are
synchronized to facilitate comparison. They correspond to four times the time interval
shown in figure 18, e.g. 12 periods of mode R2 of the two-bubble case. As discussed
above, the baseline case presents compact vortices which gradually develop into wider
and more complex structures. The latter structures are associated with the intermediate
Rossiter modes (R4 and R6), which are evinced closer to the reattachment point in the
SPOD analysis. The spatio-temporal evolution of these vortical structures resemble those
discussed by Trieling, Fuentes & van Heijst (2005), who investigated the interaction of two
unequal co-rotating vortices. They refer to the phenomena observed as vortex straining
and vortex merging; both phenomena coexist, but their relative importance depends on
the relative magnitude and distance of the vortices. A dominant feature is the formation
of a wide vortical structure composed of vorticity filaments surrounding a vortex core, as
observed in supplementary movie 1 and in figure 19. In the slat cove flow, considerably
more complex than that studied by Trieling et al. (2005), the incoherent turbulence
recirculating in the cove presents both positive and negative vorticity. This turbulence
is engulfed in the process and contributes to the formation of vortex clusters, which
dominate the flow dynamics beyond 60 % of the mixing-layer path. These clusters continue
entrapping the recirculating vorticity and widening and, as seen in supplementary movie
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Figure 19. Instantaneous spanwise vorticity for (a) one-bubble and (b) two-bubble slat cove flow cases along
a time interval of 3.84 × 10−3 s, which corresponds to a Strouhal number of 0.57 (260.6 Hz). The contours
are plotted along a mesh composed of transformed streamlines and equipotential lines (see figure 8a). Results
shown in figure 17 correspond to frames 10 to 19 of this figure. The colourbar is the same as that of figures 17
and 18.

1, occasionally experience a process akin to vortex pairing in the reattachment region.
This gives rise to the clusters associated with modes R2 and R3 that both the spectral
and SPOD analyses identify only very close to the reattachment region. Sometimes the
small-wavelength vortices at the early stages of the mixing layer also exhibit vortex
pairing, but, as shown in supplementary movie 1, it seems a less common event in this flow.
It is interesting to note in passing that while the SPOD suggests classical K–H vortices,
the typical structures are much more complex than that. They are very distorted, but, on
average, with a remarkably regular core captured by the SPOD analysis.
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For the two-bubble case, supplementary movie 1 and figure 17 indicate an intense
recirculation of vorticity within the primary bubble, following the return path. Relative to
the baseline recirculation path, the return path is shorter and the speed along it is higher.
These differences enhance both the recirculation and the interaction of the recirculating
vorticity with the mixing layer. The return path streamline indicates that the recirculating
vorticity can be convected to regions very close to the slat cusp. At locations below
20 % of the mixing-layer path, supplementary movie 1 and figure 17 show that the
recirculating vorticity is entrapped by the K–H vortices, forming structures that resemble
the later structures of the baseline. A very strong interaction between the primary clusters
and recirculating vorticity occurs at approximately 40 % of the mixing-layer path. First,
the primary clusters in the mixing layer are already developed in this region and can
entrap recirculating vorticity from further away from the mixing layer, in comparison
with the initial compact vortices. Second, because of the higher speed in the return
path, the recirculating vorticity seems to impinge onto these primary clusters. The strong
interactions destroy the coherence of the higher Rossiter modes (say above R5; see
figure 14), while promoting the formation of very wide clusters. These mature clusters
are very distorted structures, with both positive and negative vorticity, but in general still
exhibit a slow counterclockwise rotation, more easily observed in supplementary movie
1. For the reasons discussed before, these dominant vortical structures are associated with
Rossiter mode R2. Figure 14(b) suggests that the formation of the mode R2 is augmented
by the recirculation of structures with the same frequency (see the circular arrow in the R2
frame of figure 14b). The location where this mode becomes observable is also very regular
and constitutes a local maximum in the SPOD magnitude distribution. Its immediate decay
may be a manifestation of the complexity of the resulting structure as it is convected.
In the reattachment region a second amplitude maximum is reached as occurs for most
other modes, specially R3 and R4. In supplementary movie 1, mode R2 can be more easily
identified by observing its periodicity close to the trailing edge.

It is interesting that the strong interaction with the recirculating vorticity does not disrupt
the Rossiter frequency selection mechanism, except by changing the dominant mode.
The recirculation of structures oscillating with the same frequency of mode R2 for the
two-bubble case certainly contributes to the robustness of this mode. Moreover, mode R2
may help to stabilize the frequency of all other modes. The results also suggest that most
interactions constitute engulfment of random and weak vorticity by vortices or vorticity
clusters. In both cases, the engulfed vorticity does not substantially displace the structure
core.

6. Conclusions

An important part of slat noise is composed of narrowband spectral peaks, which are
known to be associated with a Rossiter acoustic feedback mechanism. It has been
demonstrated (Amaral et al. 2019) that a bulb seal can produce a counter-rotating
secondary recirculating bubble and enhance noise emission. In this work, the flow
fluctuations inside a slat cove with and without a bulb seal are compared. The seal position
is chosen to produce the secondary bubble while the single-bubble scenario corresponds
to the baseline configuration, with no seal. The recirculation of turbulence in the primary
bubble of the two-bubble case is much stronger than for the baseline. This produces
a region of large TKE close to the slat cusp, which does not appear in the baseline
configuration.

A spectral analysis demonstrates that, in both cases, the narrowband peak frequencies
conform with the formula proposed by Souza et al. (2019), which includes a π/2 phase
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shift between the interaction of the vortices with the slat trailing edge and the emission of
the sound wave. A SPOD analysis was conducted for the peak frequencies, which considers
an ad hoc correlation matrix involving only the acoustic pressure radiated from the slat
cove region. Our results show a cascade of progressively lower Rossiter modes along the
mixing-layer evolution for both cases. For the single-bubble case, the cascade initiates
earlier and progresses much more rapidly leading to the predominance of lower Rossiter
modes. Calculations of the convective time of the SPOD structure and the acoustic time
provided very accurate predictions of the Rossiter mechanism fundamental frequency.

Guided by the SPOD analysis, we identified the actual Rossiter mode structures
in spanwise vorticity fields. For the baseline, the initially dominant high-frequency
Rossiter modes (above mode R6) are regular K–H vortices, while the latterly dominant,
intermediate Rossiter modes (modes R4 to R6) are clusters of vorticity composed of
a core and filaments of vorticity surrounding the core. The spectrum composed of
narrowband peaks manifests itself in physical space as structures modulated in amplitude
and wavelength. The interaction of vortices of different magnitude gives rise to phenomena
like vortex straining and merging (Trieling et al. 2005), leading to the vortex clusters
observed in the slat cove. For the two-bubble case, such clusters are observed at a much
earlier stage. The latterly dominant, low-frequency Rossiter modes (mostly R2) are much
more complex and wider structures composed of positive and negative vorticity, slowly
rotating according to the mixing layer. A substantial part of these wide structures is
composed of recirculating vorticity which was engulfed into the clusters. Even though
the structures are complex and every realization differs from another in detail, the core
behaves very regularly as demonstrated by the SPOD analysis.

The origin of these large structures is tracked down to a very strong interaction
between the mixing layer and the vorticity recirculating in the primary bubble of the
two-bubble case. This stronger interaction is promoted by the fact that, in this scenario,
the recirculation path is substantially shorter and the speed along the path substantially
higher. Of particular importance is that along this path there is recirculation of structures
that oscillate at the same frequency as mode R2. On average, this interaction happens
at a well-defined place, approximately 40 % of the mixing-layer path for this particular
configuration. At this position, the coherence of higher Rossiter modes is severely
destroyed and mode R2 is greatly enhanced. This location also corresponds to the region of
large TKE close to the slat cusp in the two-bubble case. Overall, these results indicate that
a significant part of this TKE is not associated with random turbulence but with coherent
structures.

The seal also distorts the slat cove mean flow by reducing the convective velocity of
the structures and hence the fundamental frequency of the Rossiter mechanism. This
is, however, a minor effect. It is interesting that although in the two-bubble case the
interaction with recirculating vorticity is very strong, it does not disrupt the Rossiter
frequency selection mechanism. This is thought to be a consequence of the fact that part of
the recirculating vorticity remains coherent. Also, the nature of the interaction, consisting
mostly of vorticity engulfment, does not involve significant displacement of the cluster
core. The interaction only greatly accelerates the process towards lower Rossiter modes.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.93.
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