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Integration across a fully developed turbulent channel flow of the transport equations
for the mean and turbulent parts of the scalar dissipation rate yields relatively simple
relations for the bulk mean scalar and wall heat transfer coefficient. These relations
are tested using direct numerical simulation datasets obtained with two isothermal
boundary conditions (constant heat flux and constant heating source) and a molecular
Prandtl number Pr of 0.71. A logarithmic dependence on the Kármán number h+
is established for the integrated mean scalar in the range h+ > 400 where the mean
part of the total scalar dissipation exhibits near constancy, whilst the integral of the
turbulent scalar dissipation rate εθ increases logarithmically with h+. This logarithmic
dependence is similar to that established in a previous paper (Abe & Antonia, J. Fluid
Mech., vol. 798, 2016, pp. 140–164) for the bulk mean velocity. However, the slope
(2.18) for the integrated mean scalar is smaller than that (2.54) for the bulk mean
velocity. The ratio of these two slopes is 0.85, which can be identified with the value
of the turbulent Prandtl number in the overlap region. It is shown that the logarithmic
h+ increase of the integrated mean scalar is intrinsically associated with the overlap
region of εθ , established for h+ (>400). The resulting heat transfer law also holds at a
smaller h+ (>200) than that derived by assuming a log law for the mean temperature.

Key words: turbulence simulation, turbulent boundary layers, turbulent flows

1. Introduction
The transport of heat and mass (i.e. scalar) in wall-bounded turbulent flows has

attracted significant attention in the past several decades. In particular, similarity
arguments developed for the velocity field have been successfully extended to the
scalar field when the molecular Prandtl number Pr is close to unity (see, for example,
Monin & Yaglom 1971; Townsend 1976; Kader 1981; Subramanian & Antonia 1981;
Nagano & Tagawa 1988). Also, an increased use has been made of direct numerical
simulations (DNSs) to understand the underlying physics of turbulence since these
provide detailed spatial and temporal information with high accuracy. The seminal
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work by Kim & Moin (1989) dealt with a passive scalar transport in a turbulent
channel flow with a Kármán number h+(≡Uτh/ν)= 180 and three values (0.2, 0.71
and 2.0) of the molecular Prandtl number Pr. Here, h+ represents the ratio of the
half-width of the channel h and the viscous length scale ν/Uτ (Uτ (≡ (τw/ρ)

1/2) is
the friction velocity, where τw is the wall shear stress and ρ is the density of the
fluid; the superscript + denotes normalization by wall units). They used an internal
heating source so that the passive scalar was created internally and removed from
two isothermal walls. Since then, several DNS studies have been performed in a
turbulent channel flow with passive scalar transport for higher Reynolds numbers
and various thermal boundary conditions (Johansson & Wikström 1999; Kawamura,
Abe & Matsuo 1999; Morinishi, Tamano & Nakamura 2003; Abe, Kawamura &
Matsuo 2004a; Abe, Antonia & Kawamura 2009; Antonia, Abe & Kawamura 2009;
Hasegawa & Kasagi 2011; Saruwatari & Yamamoto 2014; Pirozzoli, Bernardini &
Orlandi 2016). In these studies, the functional Re and Pr dependence of mean and
turbulence quantities relating to the scalar dissipation function (defined in (1.19)) has
been examined intensively. As for the velocity field (Kaneda, Morishita & Ishihara
2013; Lee & Moser 2015), the maximum h+ in the DNS has increased significantly
for the scalar field and is now around 4000 (Pirozzoli et al. 2016). It became recently
evident that the mean scalar obeys the generalized logarithmic law in the lower half
of the channel and a parabolic defect profile in the core region (see Pirozzoli et al.
2016).

One of the important quantities to be obtained accurately is the heat transfer
coefficient (or equivalently the Stanton number), viz.

ht ≡Qw/ρCpUbTm = 1/U+b T+m , (1.1)

where Qw = ρCpUτTτ and Cp are the wall heat flux and specific heat at the constant
pressure, respectively; Tτ is the friction temperature. Here, Ub and Tm are the
bulk mean velocity and the mixed mean (or sometimes bulk mean) temperature,
respectively, defined such that

Ub ≡
1
h

∫ h

0
Ū dy (1.2)

and

Tm ≡
1
h

∫ h

0

ŪΘ̄
Ub

dy. (1.3)

The form of ht is analogous to that of the skin friction coefficient, viz.

Cf ≡ τw/
1
2ρU2

b = 2/U+ 2
b . (1.4)

The perfect analogy between Cf and ht (i.e. Cf = 2ht) is referred to as the Reynolds
analogy.

Significant attention was given to the possible h+ dependence of Cf on the basis of
the mean velocity log law. Recently, Zanoun, Nagib & Durst (2009) observed that the
logarithmic skin friction relation

U+b =
1
κ

ln(h+)−
1
κ
+ A (1.5)
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or, equivalently, √
2
Cf
=

1
κ

ln(Reb

√
Cf /2
√

2)−
1
κ
+ A (1.6)

obtained from the logarithmic law of the wall

U+ =
1
κ

ln(y+)+ A (1.7)

(κ and A denote the von Kármán constant and the additive constant, respectively), with
κ = 0.37 and A= 3.7, as obtained by Zanoun, Durst & Nagib (2003) represents more
accurately the experimental skin friction data than Dean’s (1978) formula,

Cf = 0.073Re−1/4
b , (1.8)

in particular, for h+ > 2000 (see figure 5 of their paper).
Likewise, a possible h+ dependence of ht was examined on the basis of scalar

log law. Monin & Yaglom (1971) (see also Kader & Yaglom (1972)) assumed that
the logarithmic defect laws for both velocity and scalar are valid up to channel/pipe
centreline and obtained a relation for the mixed mean scalar with respect to the
Reynolds number, i.e.

Tm = α ln(Reb

√
Cf )+ γ (Pr), (1.9)

where α and γ are constants and Reb denotes the Reynolds number based on Ub and
the channel/pipe width. Kader & Yaglom (1972) examined the experimental data in
a channel, pipe and boundary layer and noted that α(= 2.12) is independent of Pr
and the product of the turbulent Prandtl number Prt(= 0.85) and 1/κ(= 0.4) while γ
depends on Pr. They also tested the resulting heat transfer coefficient ht, i.e.

ht =

√
(Cf /2)

α ln(Reb
√

Cf )+ γ (Pr)
, (1.10)

in a pipe flow for Pr = 0.71 against large amount of experimental data. They stated
that the agreement with the experimental data is excellent except for Reb < 2 × 104

(R+< 500–600) where the well-known power-law relation of Kays (1966) given by

ht = 0.018Re−0.2
b Pr−0.5 (1.11)

fits the data slightly better than (1.10) (see also figure 2 of their paper).
On the other hand, a different approach can be taken for establishing possible h+

dependences for both Cf and ht with the use of energy balances for both mean and
turbulent parts (i.e. via a global energy balance). In this context, Abe & Antonia
(2016) examined the relationship between the skin friction coefficient Cf and the
energy dissipation function E (Rotta 1962), consisting of mean and turbulent parts,
i.e.

E≡ νui,j(ui,j + uj,i)︸ ︷︷ ︸
ε

+ νUi,j(Ui,j +Uj,i)︸ ︷︷ ︸
εmean

, (1.12)

using their DNS database in a turbulent channel flow together with other DNS and
experimental data up to h+ = 104. Note that u1, u2, u3 denote the streamwise,
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wall-normal and spanwise velocity fluctuations, respectively; u, v, w are used
interchangeably with u1, u2, u3; ν denotes the kinematic viscosity and the overbar
denotes averaging with respect to x, z (x, y, z are the streamwise, wall-normal and
spanwise directions, respectively) and t (time); upper cases denote instantaneous
quantities. Given that the total energy dissipated in the channel is equal to the energy
input via the mean pressure gradient, the energy balance was given by

E=−
1
ρ

dP̄
dx

Ubh=U2
τUb or equivalently, U+b = E/U3

τ . (1.13a,b)

It was noted that the logarithmic skin friction law, established on the basis of (1.13),
viz.

U+b (≡Ub/Uτ )= 2.54 ln(h+)+ 2.41, (1.14)

or, equivalently,
1√
Cf
= 1.80 ln(Reb

√
Cf )− 0.163, (1.15)

was shown to hold reasonably well over a wider range of h+ (i.e. 300 6 h+ 6 104)
than that based on the velocity log law. It was also noted that the logarithmic h+
dependence of (1.14) is essentially associated with the overlap scaling of ε even at
small h+.

Here, we extend the scope of the work by Abe & Antonia (2016) to a passive
scalar field. In this context, Pirozzoli et al. (2016) investigated global energy balances
for both streamwise velocity and scalar with a constant heating source (CHS) with
their DNS datasets. Their isothermal boundary condition leads to a nearly perfect
analogy between the Navier–Stokes and scalar conservation equations. The resulting
scalar energy balance is written as

ES =QhTb or equivalently, T+b = ES/UτT2
τ , (1.16a,b)

where the heat source
Q=Qw/ρCph=UτTτ/h (1.17)

and the integrated mean scalar

Tb ≡ (1/h)
∫ h

0
Θ̄ dy. (1.18)

Note that Tb is used instead of Tm owing to the given thermal boundary condition.
Like E, the scalar energy dissipation function ES consists of mean and turbulent parts,
i.e.

ES ≡ aθ 2
,j︸︷︷︸

εθ

+ aΘ2
,j︸︷︷︸

εθ mean

(1.19)

(a is the thermal diffusivity). Pirozzoli et al. (2016) reported a ln(h+) dependence
for both U+b and T+b for Pr = 1 in the range 550 6 h+ 6 4000 where there is a
discernible difference between U+b and T+b and the rate of increase is slightly larger
for U+b than for T+b . They also noted that the ln(h+) dependence of both U+b and
T+b is associated with the turbulent dissipation parts and inferred that the latter terms
are expected to dominate in the asymptotic high-Re regime. It is however not clear
whether the ln(h+) dependence of ES is intimately associated with the overlap region
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304 H. Abe and R. A. Antonia

of the turbulent dissipation part, as was previously established for E (Abe & Antonia
2016), and whether the resulting logarithmic relation of ht extends to a lower Reynolds
number than that for which the velocity and scalar log laws hold (viz. equation (1.10)).
The association with the overlap region (approximately between y+=30 and y/h=0.2)
is important since this region holds the key to understanding high Reynolds number
turbulent flows. This is the main theme of the present work, which uses the DNS
database of a turbulent channel flow with passive scalar transport for Pr= 0.71 (Abe
et al. 2004a, 2009); the present results are compared with those from other DNS data
(Kim & Moin 1989; Horiuti 1992; Kasagi, Tomita & Kuroda 1992; Morinishi et al.
2003; Tsukahara et al. 2006; Hasegawa & Kasagi 2011; Pirozzoli et al. 2016) up to
h+ = 4000.

Attention is also given to the effects associated with different thermal boundary
conditions since, as indicated by Pirozzoli et al. (2016), there is a discernible
difference in the mean temperature distributions between two analogous isothermal
boundary conditions (i.e. a constant heating source (Pirozzoli et al. 2016) and constant
heat flux (CHF) (Abe et al. 2004a) (see also § 2)) in the core part of the channel.
This difference is likely to affect the extent of the overlap region for the scalar field.
Possible effects of these two thermal boundary conditions are however yet to be
examined in detail, in particular, regarding quantities associated with ES. This issue
is also pursued in the present work.

This paper is organized as follows. In § 2, the expression for the total scalar energy
dissipation function ES is obtained by integrating the transport equations for the mean
and turbulent parts of the scalar dissipation for two isothermal conditions (i.e. CHS
and CHF). Following a brief description of the present DNS databases in § 3 and after
clarifying the degree of similarity between CHF and CHS in § 4.1, results for the h+
dependence of ES are given in § 4.2 and discussed in the context of available data for
the dependence on h+ of the integrated mean and turbulent scalar dissipation rates. In
§§ 4.3 and 4.4, we focus on the scaling laws of the turbulent scalar dissipation rate εθ
and provide an explanation for the ln(h+) dependence of ES. Conclusions are given
in § 5.

2. Relation for the scalar dissipation function
In this paper, we consider two heating conditions. One is CHS, which was

first used by Kim & Moin (1989). In this condition, the similarity between the
scalar conservation and Navier–Stokes equations is convincing (except for the
pressure-gradient term in the latter equation) when Pr= 1. The other is CHF proposed
by Kasagi et al. (1992) who noted that the constant heating source would be difficult
to set up experimentally (see also Teitel & Antonia 1993). In each case, the wall
is kept isothermal and the temperature fluctuation is assumed to be zero at the two
walls.

Here we assume that the fluid is hot whereas the two walls are cold (i.e. T =−Θ).
The normalized scalar conservation equation is then given by

∂Θ

∂t
+Uj

∂Θ

∂xj
= a

∂2Θ

∂x2
j
+Q. (2.1)

For CHS, the temperature is created internally and removed from both walls (i.e.
equation (1.17)). For CHF, it is required that the mixed mean temperature Tm, defined
in (1.3), increases linearly with x, i.e.

T =
∂T̃m

∂x
x−Θ, (2.2)
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where the tilde denotes averaging with respect to z and t. This first term on the right-
hand side of (2.2) can be written as

∂T̃m

∂x
=
∂T̃w

∂x
=

2Qw

ρCp

∫ 2h

0
Ū dy

. (2.3)

Energy balance then leads to a relation

Q=U
∂T̃m

∂x
or equivalently, Q=

2QwU

ρCp

∫ 2h

0
Ū dy

. (2.4a,b)

In a channel flow, a relation for the total scalar dissipation ES is obtained readily
using the total heat flux relation, viz.

Qtotal ≡−vθ + a
dΘ̄
dy
=

(
Qw

ρCp
− yQ

)
. (2.5)

By multiplying (2.5) by dΘ/dy, we obtain the mean energy balance for the scalar
field, viz.

− vθ
dΘ
dy
+ a

(
dΘ
dy

)2

=

(
Qw

ρCp

dΘ
dy
− yQ

dΘ
dy

)
. (2.6)

(Qw/ρCp)(dΘ/dy) represents the rate of energy transfer from the outer part of the
boundary layer to the inner region; the term which includes Q is the energy input
from the heat source. Part of the energy is dissipated directly by thermal diffusivity
(the second term on the left of (2.6)), whilst the rest is extracted to turbulence via the
work done by the wall-normal turbulent heat flux (the first term on the left of (2.6)).

On the other hand, the transport equation for scalar variance kθ (≡ θ 2/2) is written
as

Pθ −
1
2

d
dy
(θ 2v)+

a
2

d2

dy2
(θ 2)− εθ = 0, (2.7)

where

Pθ =−vθ
dΘ
dy
. (2.8)

While CHF leads to an additional term for (2.8), i.e. uθ(∂T̃w/∂x), its magnitude is
negligibly small (see Kasagi et al. 1992) and thus this term can be omitted in (2.8).
Relation (2.8) is identical with the first term of (2.6), indicating that the energy
extracted from the mean field is used for the production for the turbulent field.
Integrating (2.7) across the half-channel leads to a relation,

〈Pθ 〉 = 〈εθ 〉. (2.9)

Relation (2.9) implies that the total production of the scalar variance is balanced by
the scalar dissipation rate.
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The mean energy balance (i.e. equation (2.6)) can thus be written, after some
algebra, as

− vθ
dΘ
dy
+ a

(
dΘ
dy

)2

= uτTτ
dΘ
dy

(
1−

y
h

)
(2.10)

and

− vθ
dΘ
dy
+ a

(
dΘ
dy

)2

= uτTτ
dΘ
dy

1−

∫ y

0
U dy

Ub

 (2.11)

for CHS and CHF, respectively. By assuming symmetry with respect to the centreline,
integrating (2.10) and (2.11) across the half-channel then yields relations, in
normalized forms, for the total scalar dissipation ES, i.e.

ES/UτT2
τ ≡ 〈εθ 〉/UτT2

τ +

〈
a
(

dΘ̄
dy

)2
〉/

UτT2
τ = Tb/Tτ (2.12)

and

ES/UτT2
τ ≡ 〈εθ 〉/UτT2

τ +

〈
a
(

dΘ̄
dy

)2
〉/

UτT2
τ = Tm/Tτ (2.13)

for CHS and CHF (the angular brackets denote integration with respect to y across
the channel half-width). Relation (2.12) is the same as that obtained in Pirozzoli et al.
(2016) in their global energy balance (see relation (3.12) of their paper). Importantly,
h+ does not appear explicitly in these two relations.

In (2.12) and (2.13), the total scalar dissipation ES contains contributions from the
turbulent and viscous dissipation parts. The latter and former should dominate near the
wall and in the outer region, respectively. Since the viscous contribution is unlikely to
depend on h+ when the latter is sufficiently large, one expects the dependence on h+
of the integrated mean scalar (Tb/Tτ and Tm/Tτ ) which is related to the heat transfer
coefficient ht, to reflect that of 〈εθ 〉. This will be discussed further in § 4, mainly in
the context of the present and available DNS datasets.

3. DNS databases
The present numerical databases have been obtained from DNSs in a turbulent

channel flow with passive scalar transport by Abe et al. (2004a) and Abe et al.
(2009). The present flow is a fully developed turbulent channel flow driven by a
constant streamwise mean pressure gradient. Four values of h+ (= 180, 395, 640 and
1020) are used. CHF is considered as a thermal boundary condition. The working
fluid is air (viz. Pr = 0.71). We also compare with our unpublished data (h+ = 180,
395 and 640) for CHS and other DNS data available in the literature up to h+ =
4000 (Kim & Moin 1989; Horiuti 1992; Kasagi et al. 1992; Morinishi et al. 2003;
Tsukahara et al. 2006; Hasegawa & Kasagi 2011; Pirozzoli et al. 2016).

The numerical methodology for the DNSs is briefly as follows. A fractional step
method is used with semi-implicit time advancement. The third-order Runge–Kutta
method is used for the viscous terms in the y direction and the Crank–Nicolson
method is used for the other terms. A finite difference method is adopted for the
spatial discretization. A fourth-order central scheme is used in the x and z directions,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

56
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.564


Scalar dissipation function in a turbulent channel flow 307

whilst a second-order central scheme is used in the y direction. The periodic boundary
condition is employed in the x and z directions, whereas the no-slip condition applies
in the y direction. For the flow field, all the variables have been normalized by the
friction velocity Uτ (≡

√
τw/ρ) and channel half-width h. Uτ is obtained from the

mean momentum balance, i.e.

τw =−h
dP̄
dx
. (3.1)

For the scalar field, they are non-dimensionalized by the friction velocity Uτ , friction
temperature Tτ (≡Qw/ρCpUτ ) and channel half-width h. Tτ is inferred from the mean
scalar balance (i.e. equation (1.17)). Further details on the simulations are given in
Abe, Kawamura & Matsuo (2001), Abe et al. (2004a,b, 2009) and Antonia et al.
(2009), and the reader may refer to these papers for information on basic turbulence
statistics.

The computational domain size (Lx× Ly× Lz), number of grid points (Nx×Ny×Nz)
and spatial resolution (1x, 1y, 1z) are given in table 1, the superscript * representing
normalization by either vK (≡(νε)1/4; the Kolmogorov velocity scale) or η (≡(ν3/ε)1/4;
the Kolmogorov length scale); the subscripts w and c referring to the wall and
centreline, respectively. The effect of the domain size was examined by Abe,
Kawamura & Choi (2004b) (h+ = 640) who compared two cases: (Lx × Lz) =
(6.4h× 2h) and (12.8h× 6.4h). They found that the effect on the mean flow variables
and second-order moments was negligible. Abe & Antonia (2016) also examined
possible effects of the streamwise domain size Lx on the total dissipation function
E. They noted that while a relatively long channel is required for the experiment to
achieve a fully developed flow condition (i.e. dP̄/dx= const.) (Monty (2005) suggests
L = 260h), the accurate determination of τw in the DNS requires the channel length
to be Lx > 2πh, which supports the finding of Lozano-Durán & Jiménez (2014) that
Lz = 2πh is sufficient to obtain good one-point statistics up to the centre of the
channel.

Since the degree of similarity/dissimilarity between CHF and CHS is yet to be
addressed in detail, we examine this issue in § 4.1 on the main quantities of interest,
viz. those which contribute mostly to Es. This will be done by comparing the present
simulations with the two thermal boundary conditions for h+=180, 395 and 640. Note
that we run simulations with two different thermal boundary conditions simultaneously
with the same domain size, number of grid points and spatial resolutions listed in
table 1.

4. Results for the scalar dissipation function and heat transfer coefficient
4.1. Constant heat flux versus constant heating source

We first examine the degree of similarity between CHF and CHS on quantities
associated with Es. Figure 1 shows distributions of the normalized mean scalar
Θ/Tτ (or equivalently Θ

+

), the dissipation associated with the mean scalar a(dΘ/dy)2

ν/U2
τT

2
τ (or equivalently (dΘ

+

/dy+)2/Pr), the wall-normal turbulent heat flux
−vθ/UτTτ (or equivalently −v+θ+) and the production term Pθν/U2

τT
2
τ (or equivalently

P+θ ) for Pr= 0.71. In figure 1(a), the empirical relation of Kader (1981) is also plotted.
While the logarithmic law

Θ
+

=
1
κθ

ln y+ + Aθ (4.1)

with a von Kármán constant for the mean scalar κθ = 0.43 and an additive constant
Aθ = 3.0 provides a good fit to the DNS data for h+= 1020 (see figure 1a), the value
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FIGURE 1. Distributions of Θ
+

, (dΘ
+

/dy+)2/Pr, −v+θ+ and Pθν/U2
τT

2
τ for Pr= 0.71:

(a) Θ
+

; (b) (dΘ
+

/dy+)2/Pr; (c) −v+θ+; (d) Pθν/U2
τT

2
τ .

of κθ tends to increase slowly with h+ for h+< 4000 (see also figure 12 and the more
critical examination of the log law in § 4.4). The log law is most likely established
for the largest h+ (>4000). There is also a slight difference in the magnitude of Θ

+

between CHF and CHS. This difference is pronounced in the core region, in which the
empirical relation of Kader (1981) is closer to Θ

+

for CHF than for CHS, as noted by
Pirozzoli et al. (2016). The magnitude of a(dΘ/dy)2ν/U2

τT
2
τ (see figure 1b) is hence

slightly greater for CHF than for CHS. The magnitude of −vθ/UτTτ is also larger for
CHF than for CHS (figure 1c). These results imply a more effective heating for CHF
than for CHS. Distributions of Pθ (i.e. the product of −vθ and dΘ̄/dy) normalized
by U2

τT
2
τ /ν thus exhibit a discernible difference between the two thermal boundary

conditions (figure 1d). In contrast to CHS, the peak value of Pθ for CHF reaches
the theoretical maximum value of Pr/4 when h+ is larger than 395 (figure 1d), i.e.
the scalar field for CHF reaches a local equilibrium state at a smaller h+ than for
CHS. Since 〈Pθ 〉 = 〈εθ 〉 (see (2.9)), the difference in the magnitude of Pθ between
CHS and CHF cannot be dismissed when considering the magnitude of the total scalar
dissipation rate ES (see § 4.2).

Whilst the two heating conditions lead to different magnitudes of mean and
turbulent scalar quantities when normalized by either the wall heat flux Qw or
the friction temperature Tτ , the underlying turbulent scalar transport mechanism is
essentially the same for CHS and CHF (see figure 2a,b which show the quadrant
analysis of vθ and its probability for h+ = 640). The turbulent Prandtl number Prt

defined as the ratio of turbulent eddy viscosity νt (≡ uv/dU/dy) to turbulent eddy
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1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6

CHF
CHS

0.8 1.0

–1

0

1

 0.5

1.0

0.5

0.1

0.2

0.3

0.4

 0.5

1.0

1.5

CHF
CHS

CHF
CHS

(a) (b)

(c) (d)

FIGURE 2. Quadrant analysis of vθ , its probability Pj and distributions of Prt,
(dU/dy)/(dΘ/dy) and uv/vθ for Pr = 0.71 as a function of y/h: (a) (vθ)j/(vθ); (b) Pj;
(c) Prt; (d) (dU/dy)/(dΘ/dy) and uv/vθ .

diffusivity at (≡ vθ/dΘ/dy), viz.

Prt =
νt

at
=

uv
vθ

dΘ/dy
dU/dy

, (4.2)

is also identical for the two isothermal boundary conditions (see figure 2c). For y/h>
0.2, the distributions of Prt are described approximately by

Prt = 0.9–0.3(y/h)2 (4.3)

(Abe & Antonia 2009), which is analogous to the relation proposed by Rotta (1962)
in a turbulent boundary layer (see also Simpson, Whitten & Moffat 1970). Other
DNS data (Kozuka, Seki & Kawamura 2009) also indicate that (4.3) seems to apply
not only for air but also for water (viz. Pr= 5–7). In the logarithmic region and the
lower part of the outer region (y+> 100 and y/h< 0.4), Prt is nearly constant (about
0.85), where the magnitudes of νt/Uτh and at/Uτh, which are important measures
of the momentum transport and scalar transport respectively, increase monotonically
(the distributions of νt/Uτh and at/Uτh are not shown here) and they are in the
range νt/Uτh= 0.06–0.08 and at/Uτh= 0.08–0.1 (the Prandtl number dependence is
negligibly small when Pr is not far from unity (see Kim & Moin 1989)). The latter
two values agree reasonably well with model constants of the two-equation model
(i.e. Cµ and Cλ) proposed by Nagano & Kim (1988). For y/h > 0.4, the magnitude
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of Prt decreases gradually to approximately 0.6 at the channel centreline. This is
most likely due to the mean scalar gradient being smaller than the mean velocity
gradient (see figure 2d). In this context, for a DNS with a constant temperature
difference (i.e. both isothermal walls are either heated or cooled, so that there is a
constant difference in mean temperature between the two walls) (Lyons, Hanratty &
Mclaughlin 1991; Seki, Abe & Kawamura 2003), the largest mean scalar gradient
occurs at the centreline; in this case, Prt increases towards the channel centre. The
importance of the mean scalar gradient was also suggested for homogeneous shear
flows by Rogers, Mansour & Reynolds (1989). They showed that the magnitude of
Prt increases when the alignment between the turbulent heat flux and mean scalar
gradient is perfect. The implication of the present results is that, like the similarity
between q (the fluctuating velocity vector) and θ (see Antonia et al. (2009)), the
presence of a source (production) term is an important ingredient for a close analogy
between the velocity and scalar transport. The difference in magnitude between dU/dy
and dΘ̄/dy will also be discussed in § 4.4 in the context of the von Kármán constants
κ and κθ .

Note that the decreasing magnitude of Prt is essentially associated with the
unmixedness of the scalar (Guezennec, Stretch & Kim 1990; Antonia et al. 2009;
Pirozzoli et al. 2016). Here, close inspection of instantaneous fields has further
revealed that negative regions of θ are more significantly transported than those of
u by vortical motions in the outer region (see also the relationship between the
vorticity and scalar derivative vectors in Abe et al. (2009)), leading to an increased
dissimilarity between velocity and scalar transports (see, for example, y/h≈ 0.8 and
z/h ≈ 1.5 in figure 3). In the latter context, Djenidi & Antonia (2009) also noted
that, for a three-dimensional transitional wake of a heated square cylinder, the passive
scalar is more effectively transported by vortical motions than momentum except
close to the cylinder where the magnitudes of the mean velocity and scalar gradients
are large. The enhanced scalar transport by vortical motions is most likely responsible
for the decrease of Prt towards the centreline. This may also explain the difference
in scaling behaviours between uu and θθ ; the collapse of θθ/T2

τ is more convincing
than that of uu/U2

τ in the outer region (Pirozzoli et al. 2016) where a mixed scaling,
or normalization by UτU0 (U0 is the mean centreline velocity), seems to yield an
adequate collapse for uu (Bernardini, Pirozzoli & Orlandi 2014).

4.2. Scalar integrals and their Reynolds number dependence
Next, attention is given to the h+ dependence of the total scalar dissipation function
ES/UτT2

τ , hence T+m for CHF (2.13) or T+b for CHS (2.12). Distributions of Tm and Tb,
normalized by Tτ are given in figures 4(a) and (b), respectively, as a function of h+.
Clearly, the magnitudes of both T+m and T+b increase logarithmically with increasing
h+ when h+ exceeds 400. This increase is described well by

T+m = 2.18 ln(h+)+ 2.40 (4.4)

and
T+b = 2.18 ln(h+)+ 1.30 (4.5)

for CHF and CHS, respectively. While the slope for T+m (4.4) is close to that obtained
by Kader & Yaglom (1972) for a pipe flow (see figure 4(a) where the CHF pipe
data of Ould-Rouiss, Bousbai & Mazouz (2013) are also plotted), the intercept is
somewhat smaller than for the channel. Figure 4 underlines that the slope of 2.18
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FIGURE 3. Instantaneous isocontours in the y–z plane of the streamwise velocity and
scalar fluctuations for h+ = 1020: (a) u+; (b) θ+ for Pr = 0.71 (CHF). Lines denote the
positive values of the second invariant of the velocity gradient tensor Q+ (line contour
levels are from 5× 10−4 to 5× 10−3 with an increment of 5× 10−5).

is intrinsically the same between the two thermal boundary conditions, whilst it is
smaller than that (2.54) for U+b (see also (1.14)). The resulting Reynolds analogy
factor 2ht/Cf =U+b /θ

+

b or U+b /θ+m is approximately 1.2 for h+≈ 500. Nearly the same
value was obtained in a thermal boundary layer with air at low Reynolds number
(Kong, Choi & Lee 2000; Li et al. 2009). The magnitude of 2ht/Cf however tends
to increase slowly with h+. To clarify the possible Pr effect, we have included the
available DNS data for Pr = 1 (Hasegawa & Kasagi 2011; Pirozzoli et al. 2016) in
figure 4(b). Whilst the magnitude of 2ht/Cf becomes closer to unity for Pr = 1 at
low Reynolds number, the slope remains invariably unchanged so that the difference
becomes increasingly pronounced with h+. We infer that the difference in slope
between U+b and T+b (or T+m ) is associated with different characteristics in the overlap
region between velocity and scalar fields, as will be seen below.

Figure 5 demonstrates that the relative contributions of the normalized values of
〈εθ 〉 (or equivalently 〈Pθ 〉) and 〈a(dΘ̄/dy)2〉 to T+m (2.13) and T+b (2.12). Clearly, the
magnitude of 〈εθ 〉/UτT2

τ increases logarithmically with increasing h+ (figure 5a), while
that of 〈a(dΘ̄/dy)2〉/UτT2

τ is approximately constant (≈7.6 and 7.4 for CHF and CHS,
respectively) for h+> 400 (figure 5b). As for 〈ε〉/U3

τ (see figure 3b of Abe & Antonia
(2016)), the logarithmic h+ increase for 〈εθ 〉/UτT2

τ is established even at small h+
(i.e. h+ > 400), which is much lower than the Reynolds number for which the mean
temperature log law holds. The latter reason is essentially associated with the overlap
region of the mean turbulent scalar dissipation rate εθ (see § 4.3). The logarithmic h+
dependence of 〈εθ 〉/UτT2

τ is represented well by

〈εθ 〉/UτT2
τ = 2.18 ln(h+)−Cθ , (4.6)

with Cθ = 5.2 and 6.1 for CHF and CHS, respectively. Relation (4.6) was obtained by
substituting the relations for T+m (4.4) and T+b (4.5) and the constants (7.6 and 7.4 for
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FIGURE 4. Distributions of T+m and T+b for Pr= 0.71 as a function of h+: (a) T+m ; (b)
T+b .

CHF and CHS, respectively) of 〈a(dΘ̄/dy)2〉/UτT2
τ into (2.13) and (2.12). Viscosity

affects 〈εθ 〉 and 〈a(dΘ̄/dy)2〉 significantly below h+= 400 since there is no separation
between the inner and outer regions.

We next discuss a possible relation for the heat transfer coefficient ht (1.1), which
may readily be obtained on the basis of a global energy balance by substituting the
present T+m relation (4.4) into (1.1), viz.

ht =

√
(Cf /2)

2.18 ln(Reb
√

Cf /2
√

2)+ 2.40
. (4.7)

Note that (4.7) is no longer analogous to (1.10), as derived by Kader & Yaglom
(1972) from the log law since the latter is not assumed when obtaining (4.7). With the
use of the logarithmic skin friction law (1.15), the present logarithmic heat transfer
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FIGURE 5. Distributions of 〈εθ 〉/UτT2
τ and 〈a(dΘ/dy)2〉/UτT2

τ for Pr= 0.71 as a
function of h+: (a) 〈εθ 〉/UτT2

τ ; (b) 〈a(dΘ/dy)2〉/UτT2
τ .

law (4.7) can then be used for evaluating the Reynolds number dependence of the
Nusselt number, Nu ≡ htRebPr. Figure 6 shows distributions of Nu for Pr = 0.71
with the DNS data for both CHF and CHS in the range 1.6 × 103 6 Reb 6 2.0 ×
105 (i.e. 60 6 h+ 6 4000). This figure highlights that Nu obtained from both (4.7)
and (1.15) gives a reasonable fit to the DNS data for CHF provided Reb > 6000
(or equivalently h+ > 200). On the other hand, since the constant heat flux is not
guaranteed for CHS, the resulting Nu for CHS is a few per cent larger than that
for CHF in the range Reb > 1.4 × 104 (or equivalently h+ > 400) where T+m also
differs between the two thermal boundary conditions (see figure 4a). There is also
a discernible difference between the present prediction and the well-known empirical
relation obtained by Kays & Crawford (1980), i.e.

Nu= 0.021Re0.8
b Pr0.5. (4.8)
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FIGURE 6. Distributions of Nu for Pr= 0.71 as a function of Reb. Solid line represents
the present relation obtained from both (4.7) and (1.15), whereas dashed line represents
the empirical relation of Kays & Crawford (1980), Nu= 0.021Re0.8

b Pr0.5.

This latter relation tends to overpredict the Nusselt number slightly in the range
Reb > 1.4 × 104 and follow the DNS data for CHS. The lower h+ bound of the
present prediction for Nu (i.e. h+ > 200) is approximately a factor of 2 smaller than
that for T+m (h+ > 400). This is most likely due to the combined effect of the bulk
mean velocity U+b and the bulk mean scalar T+m in the heat transfer coefficient ht (i.e.
equation (1.1)) since the logarithmic skin friction law is established on the basis of
a global energy balance for h+ > 300 (see Abe & Antonia 2016).

4.3. Scaling laws of εθ and matching argument
In this subsection, we focus on the scaling of εθ for Pr = 0.71 in the present flow
to provide further insight into the logarithmic h+ dependence of the integrated scalar
dissipation 〈εθ 〉/UτT2

τ . The underlying idea of this analysis comes from the scaling
arguments of Townsend (1976) (see § 8.8 of his book). Given that the effect of Pr on
εθ is confined near the wall (Na, Papavassiliou & Hanratty 1999; Kozuka et al. 2009;
see also figure 6a), the inner and outer scaling laws may be written as

εθ
+
≡ εθν/U2

τT
2
τ = f (y+, Pr) (4.9)

and
εθh/UτT2

τ = g(y/h), (4.10)

respectively. While the magnitude of εθ+ increases with h+ close to the wall due to
the effect of the inactive motion (Bradshaw 1967), εθ+ seems to collapse for y+> 30
provided h+ > 400 (figure 7). Viscous effects are unlikely to affect the turbulent
scalar dissipation rate significantly for y+ > 30. On the other hand, εθ collapses
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FIGURE 7. Distributions of εθν/U2
τT

2
τ for Pr= 0.71: (a) CHF; (b) CHS.
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FIGURE 8. Distributions of εθh/UτT2
τ and (Θ0 −Θ)/Tτ for Pr = 0.71 as a function of

h+: (a) εθh/UτT2
τ (CHF); (b) εθh/UτT2

τ (CHS); (c) (Θ0 −Θ)/Tτ (CHF); (d) (Θ0 −Θ)/Tτ
(CHS).

almost perfectly on UτT2
τ and h in the region 30/h+ < y/h < 1 for h+ > 400 (see

figure 7a,b). The present results highlight that the outer layer similarity is more
convincing for εθ than for Θ even at small h+ (see figure 8) as was observed for ε
by Abe & Antonia (2016).

We now apply a matching argument to εθ . Here, we assume that h+ is large
enough to have a clear distinction between the inner and outer regions, and that there
is a region where relations (4.9), (4.10) overlap so that the gradient of εθ should
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coincide, viz.
dεθ
dy
=

U3
τT

2
τ

ν2

df
dy+
=

UτT2
τ

h2

dg
dy∗

, (4.11)

where y∗ ≡ y/h. After multiplying by y2, the equality between the second and third
members of (4.11) becomes

y+
2 df
dy+
= y∗

2 dg
dy∗

. (4.12)

This is satisfied if
df

dy+
=

D
y+2 or

dg
dy∗
=

D
y∗ 2 . (4.13a,b)

Equation (4.12) indicates that εθ should indeed scale on UτT2
τ and y in the overlap

region. After integrating (4.13), we obtain

f =−
D
y+
+D1 or g=−

D
y∗
+D2. (4.14a,b)

Here, we adopt a small parameter γ = 1/h+ and an outer variable y∗ = γ y+ as was
done by Afzal (1976) for the mean velocity gradient. We then obtain D1=−γ cθ and
D2 =−cθ so that (4.14) is rewritten as

f =−
D
y+
− γ cθ or γ g=−γ

D
y∗
− γ cθ , (4.15a,b)

where cθ is a constant. After normalization, it follows from (4.15) that the overlap
scaling may be written as

εθy/UτT2
τ = 1/κεθ − cθ(y+/h+) (4.16)

and
εθy/UτT2

τ = 1/κεθ − cθ(y/h) (4.17)

in inner and outer coordinates, respectively, where D=−1/κεθ and κεθ is a constant.
Relations (4.16), (4.17) are analogous to those established for ε by Abe & Antonia
(2016). The matching argument highlights that the overlap scaling of εθ requires
neither the existence of a scalar log law nor energy equilibrium (Pθ = εθ ). It does
however require the Reynolds number to be large enough (h+ ≈ 400) to allow the
overlap region, where the relevant length scale is y (the distance from the wall), to
be distinguished unambiguously.

In (4.16), (4.17), the second terms of the right are responsible for the finite
Reynolds number effect, i.e. −cθ(y+/h+) (the second term of (4.16)) goes to zero
as h+ → ∞, while −cθ(y/h) (the second term of (4.17)) does not depend on h+
but may enhance the outer limit of the overlap scaling. A fit to the DNS data
over 30/δ+ 6 y/δ 6 0.2 then yields 1/κεθ = 2.18 (viz. κεθ = 0.46) and cθ = 0.6 and
1.5 for CHF and CHS, respectively (see figure 9a,b). This finite Reynolds number
effect comes from the effect of the mean pressure gradient, which is absent in
a zero-pressure-gradient thermal boundary layer (Li et al. 2009). When the finite
Reynolds number effect disappears (h+ > 5000), equations (4.16) and (4.17) reduce
to εθy/UτT2

τ = 1/κεθ analogous to the classical scaling based on the scalar log law
εθy/UτT2

τ = 1/κθ (see Abe & Antonia 2011).
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FIGURE 9. Distributions of Pθy/UτT2
τ and εθy/UτT2

τ for Pr= 0.71: (a) εθy/UτT2
τ (CHF);

(b) εθy/UτT2
τ (CHS); (c) Pθy/UτT2

τ (CHS); (d) εθy/UτT2
τ (CHS). Note that (b) is replotted

in (d) with different scales to highlight the overlap scaling of Pθ and εθ .

A comparison between the normalized Pθ and εθ (i.e. Pθy/UτT2
τ and εθy/UτT2

τ ) may
provide further insight into the overlap scaling for large and small scales. Figure 9(c,d)
indicates that the collapse is more convincing for εθ than for Pθ when h+ is larger than
400. This is because the log-law conditions for mean temperature (i.e. constant κθ and
vθ ) are required for the collapse of Pθy/UτT2

τ , while the overlap scaling of εθ only
requires the Reynolds number to be large enough. The same trend is also observed
for the relationship between the turbulent kinetic energy production Pk and the energy
dissipation rate ε (see Abe & Antonia 2016). Note that Pθ = εθ does not hold strictly
in the logarithmic and outer regions (see Pirozzoli et al. 2016) due to the presence
of large-scale structures (see figure 3). This small departure from energy equilibrium
however does not appear to affect the overlap scaling for Θ significantly since it is
difficult to distinguish κθ from κεθ when the Reynolds number is sufficiently large
(see figure 12). It would appear that the overlap region for the dissipation has indeed
a higher rank than that for the mean field since the small scales (i.e. dissipation) are
likely to ‘lose’ their dependence on the Reynolds number more rapidly than the large
scales (i.e. the mean field).

Note that (4.16), (4.17) represent the outer scaling in a wider range of the y location
than expected, viz.

εθh/UτT2
τ = 2.18/(y/h)− cθ (4.18)

(see figure 10). In particular, there is excellent collapse of (4.18) for CHS up to the
centreline (see figure 10b), consistent with a smaller departure from the mean scalar
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FIGURE 10. Distributions of εθh/UτT2
τ for Pr= 0.71 with log–log coordinates: (a) CHF;

(b) CHS.

log law (see figure 12c where 1/κθ ≡ y+(dΘ̄+/dy+) is plotted). This underlines the
existence of a large overlap region for εθ at Pr= 0.71, as was observed for Θ .

4.4. Fractional contributions to 〈εθ 〉/UτT2
τ

It is of importance to clarify if the integral of εθ over the overlap region yields the
logarithmic h+ dependence of 〈εθ 〉/UτT2

τ . In the present study, we follow the same
approach as in Sreenivasan (1995) and Abe & Antonia (2016) for 〈ε〉/U3

τ , viz.

〈εθ 〉

UτT2
τ

=

∫ 30

0
εθ
+dy+︸ ︷︷ ︸

Ci

+

∫ 0.2h

30ν/Uτ

εθ

UτT2
τ

dy︸ ︷︷ ︸
Clog

+

∫ 1

0.2

εθh
UτT2

τ

d
( y

h

)
︸ ︷︷ ︸

Co

, (4.19)

where the limits for the second integral in (4.19) correspond to the extent of the
overlap region of εθ for Pr= 0.71 (i.e. from y+' 30 to y/h= 0.2). Values of Ci, Clog
and Co obtained from the present DNS data are shown in figure 11. Also included in
this figure are the Clog and Co data of Pirozzoli et al. (2016) for Pr=1 since the outer
layer similarity is convincing for εθh/UτT2

τ (see figure 8b). Clearly, there is a ln(h+)
dependence for Clog. This dependence is obtained by integrating (4.16) or (4.17), viz.

Clog '

∫ 0.2h

30ν/Uτ

(
1
κεθy
−

cθ
h

)
dy= 2.18(ln(h+)+ ln(0.2)− ln(30))− cθ(0.2− 30/h+),

(4.20)
in which the last term of (4.20), the finite Reynolds number effect, cannot be
dismissed when h+ is small. Given that Co is essentially constant but the magnitude
of Ci increases slowly with h+ (figure 11), we integrate εθ from y = 0 to 0.2h (viz.
Ci +Clog). The resulting integral is described adequately by

Ci +Clog =

∫ 0.2h

0

〈εθ 〉

UτT2
τ

dy= 2.18 ln(h+)−C2 (4.21)

for h+> 400 with C2= 7.7 and 8.2 for CHF and CHS, respectively. Note that the sum
of (4.21) and Co ((2.5) and (2.1) for CHF and CHS, respectively) is identical to (4.6).
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FIGURE 11. Distributions of piecewise contributions to 〈εθ 〉/UτT2
τ for Pr = 0.71 as a

function of h+: (a) from y+ = 0 to 30 (Ci); (b) from y+ = 30 to y/δ = 0.2 (Clog) and
from y/δ= 0 to 0.2 (Ci+Clog); (c) from y/δ= 0.2 to 1 (Co).E, Present (CHF);u, Present
(CHS);p, Pirozzoli et al. (2016) for Pr= 1.

This implies that the more appropriate expression for the logarithmic dependence of
〈εθ 〉/UτT2

τ for the channel requires integration from y= 0 to 0.2h, viz. the contribution
of Ci (h+) cannot be ignored. The present results highlight that the slope of 2.18 in
(4.21) can be identified with 1/κεθ as inferred from the overlap scaling of εθ , and
that 1/κεθ is identical with the slope for the ln(h+) dependence of the integrated mean
scalar.

When h+→∞, the overlap region should contribute exclusively to the 2.18 ln(h+)
dependence of the integrated turbulent scalar energy dissipation rate. The present
logarithmic h+ dependence of T+b and T+m for CHS and CHF, respectively, is
essentially linked to the excellent overlap region we observe for εθ even at small
h+. Note that κεθ = 0.46 defined in (4.16), (4.17) is not identical with κθ obtained
from the scalar log law (4.1) for the Reynolds numbers examined (see figure 12).
This is because, as for the mean velocity (see McKeon & Morrison 2007, Smits,
McKeon & Marusic 2011), the constancy of 1/κθ ≡ y+(dΘ̄+/dy+) is most likely to
be established beyond h+ = 5000 (see figure 12b) due to the non-negligible viscous
effect (note that no collapse of the data is observed for h+ = 180 due to the low Re
effects). Figure 12 highlights the slow increase of κθ with increasing h+, i.e. κθ = 0.40
for h+ = 395 (CHF) (Kawamura et al. 1999), κθ = 0.43 for h+ = 1020 (CHF) (Abe
et al. 2004a) and κθ = 0.46 for h+ = 4088 (CHS) (Pirozzoli et al. 2016). Pirozzoli
et al. (2016) inferred κθ = 0.46 as the high Re asymptotic value on the basis of
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FIGURE 12. Distributions of y+(dU+/dy+) and y+(dΘ
+

/dy+) for Pr= 0.71: (a)
y+(dU+/dy+); (b) y+(dΘ

+

/dy+) (CHF); (c) y+(dΘ
+

/dy+) (CHS).

their datasets for the CHS case. Note that the departure from the scalar log law is
smaller for CHS than for CHF due to the smaller magnitude of the mean scalar
gradient, as discussed in § 4.1. Figure 12 also demonstrates that values of κ and κθ
have most likely converged to different values (viz. κ = 0.39 and κθ = 0.46) at large
Reynolds numbers, where the ratio κ/κθ ≈ 0.85 corresponds to the magnitude of Prt

in the logarithmic region (see figure 2b). Marusic et al. (2013) reported κ = 0.39 in
a laboratory boundary layer, pipe and atmospheric surface layer. Kader & Yaglom
(1972) also analysed the experimental data in a channel, pipe and boundary layer
for a wide range of the Reynolds number and concluded κθ = 0.47. Subramanian &
Antonia (1981) also reported κθ = 0.48± 0.02 in a laboratory thermal boundary layer.
The present value of κεθ = 0.46 may be reconcilable with the value of κθ (obtained
at very large h+) if one recognizes that the outer layer similarity of εθ is established
at a much smaller h+ than for Θ

+

. Indeed, this appears to be adequately supported
by the available DNS data (see figure 8).

5. Conclusions

The integration of mean and turbulent scalar dissipation rates across half the channel
(which is equivalent to performing a global energy balance) has been carried out using
the present DNS datasets (up to h+ = 1000) in a fully developed turbulent channel
flow with passive scalar transport for Pr= 0.71. The results are compared with those
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obtained from existing DNS datasets up to h+= 4000. Two isothermal conditions (i.e.
CHS and CHF) have been examined. After clarifying the difference between these
conditions, unambiguous relations for the dependence of T+b (CHS) and T+m (CHF) on
h+ have been obtained based on the energy balances for both the mean and turbulent
scalar variance. The scaling behaviour of the turbulent scalar dissipation rate has also
been carefully examined in order to confirm the logarithmic dependence of T+b and
T+m on h+. The main conclusions are as follows.

After normalizing by UτT2
τ , the scalar dissipation function, or sum of the

integrals of the mean and turbulent scalar dissipation rates, is equal to T+b and
T+m (i.e. equations (2.12)–(2.13)) for CHS and CHF, respectively. The logarithmic h+

dependence is established quite well (i.e. with significant confidence and minimal
ambiguity) for the integrated mean scalar provided h+ > 400 where the integral
of the mean scalar dissipation rate associated with the mean scalar gradient, i.e.
〈a(dΘ/dy)2〉, normalized by UτT2

τ , is essentially constant, whereas 〈εθ 〉/UτT2
τ

increases logarithmically with increasing h+. Viscosity affects 〈a(dΘ/dy)2〉/UτT2
τ

significantly for h+ < 400. The logarithmic h+ dependence of 〈εθ 〉/UτT2
τ is hence

linked to that of T+b or T+m . The resulting relation for the heat transfer coefficient
(4.7) is supported convincingly by the DNS data for CHF in the range h+> 200. The
lower h+ bound of (4.7) is about by a factor of 3 smaller than that of (1.10) derived
by Kader & Yaglom (1972) from the log law in a pipe flow.

Support for the logarithmic h+ dependence of 〈εθ 〉/UτT2
τ is provided by the scaling

behaviour of the mean turbulent scalar dissipation rate. The inner layer scaling, i.e.
εθν/U2

τT
2
τ = f (y+, Pr), does not hold for y+ 6 30. On the other hand, εθ collapses

almost perfectly with UτT2
τ and h in the region 30/h+ < y/h < 1. Unlike the mean

scalar, the turbulent scalar dissipation rate is not affected significantly by viscosity
for y+> 30. Whereas the classical overlap argument based on Θ strictly holds only at
large h+ (Monin & Yaglom 1971; Kader 1981), the overlap region for εθ is established
at small h+ (≈400) independently of the existence of a scalar log law. It does however
require the Reynolds number to be large enough (h+≈ 400) to allow an overlap region
where the relevant length scale is y. In this region (30/h+ 6 y/h 6 0.2), εθy/UτT2

τ

approaches a constant (κ−1
εθ = 2.18), allowing for a finite Reynolds number correction,

equations (4.16), (4.17), for h+ > 400. When h+ is sufficiently large (>5000) (see
figure 12b) for the scalar log law to be established over a region where Pθ ' εθ
and −vθ ' constant, the von Kármán constant for the mean scalar κθ = 0.46 can be
identified with κεθ ; the ratio κ/κθ ≈ 0.85 corresponds to the value of Prt in the overlap
region. The enhanced scalar transport by vortical motions is also responsible for the
decrease of Prt towards the centreline. The present logarithmic h+ dependence of T+b
and T+m follows from the overlap argument based entirely on the behaviour of εθ in
the inner and outer regions. We stress that the outer layer similarity of εθ is more
convincing than that of Θ and is established at a smaller value of h+ (see figure 8).
This is the reason why the present T+b and T+m relations (4.5), (4.4) are validated over
a wide range of h+ and are established at a lower Reynolds number than the mean
temperature log law.

The establishment of the slopes for the logarithmic skin friction law (i.e. 2.54) (see
Abe & Antonia 2016) and heat transfer law (i.e. 2.18) at small h+ is an important
outcome resulting from the present approach, viz. the use of the global energy budget,
since these slopes are intrinsically associated with the ‘asymptotic’ values of the log-
law slopes even though the mean velocity and mean temperature have yet to reach
their asymptotic state.
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