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Abstract

In this paper, we consider an approach to update nonmonotonic knowledge bases represented

as extended logic programs under the answer set semantics. In this approach, new information

is incorporated into the current knowledge base subject to a causal rejection principle, which

enforces that, in case of conflicts between rules, more recent rules are preferred and older

rules are overridden. Such a rejection principle is also exploited in other approaches to update

logic programs, notably in the method of dynamic logic programming, due to Alferes et al.

One of the central issues of this paper is a thorough analysis of various properties

of the current approach, in order to get a better understanding of the inherent causal

rejection principle. For this purpose, we review postulates and principles for update and

revision operators which have been proposed in the area of theory change and nonmonotonic

reasoning. Moreover, some new properties for approaches to updating logic programs are

considered as well. Like related update approaches, the current semantics does not incorporate

a notion of minimality of change, so we consider refinements of the semantics in this direction.

We also investigate the relationship of our approach to others in more detail. In particular,

we show that the current approach is semantically equivalent to inheritance programs, which

have been independently defined by Buccafurri et al., and that it coincides with certain classes

of dynamic logic programs. In view of this analysis, most of our results about properties of the

causal rejection principle apply to each of these approaches as well. Finally, we also deal with

computational issues. Besides a discussion on the computational complexity of our approach,

we outline how the update semantics and its refinements can be directly implemented on

top of existing logic programming systems. In the present case, we implemented the update

approach using the logic programming system DLV.

KEYWORDS: logic programming, knowledge-based updates, nonmonotonic reasoning

1 Introduction

1.1 Motivation and context

Logic programming has been conceived as a computational logic paradigm for

problem solving and offers a number of advantages over conventional programming

languages. In particular, it is a well-suited tool for declarative knowledge repre-

sentation and common-sense reasoning (Baral and Gelfond, 1994), and possesses
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thus a high potential as a key technology to equip software agents with advanced

reasoning capabilities in order to make those agents behave intelligently (cf., for

example, Sadri and Toni, 2000).

It has been realized, however, that further work is needed on extending the

current methods and techniques to fully support the needs of agents. In a simple

(but, as for currently deployed agent systems, realistic) setting, an agent’s knowledge

base, KB , may be modeled as a logic program, which the agent may evaluate to

answer queries that arise. Given various approaches to semantics, the problem of

evaluating a logic program is quite well-understood, and (beside Prolog) provers for

semantics with more sophisticated treatment of negation may be used. Currently

available provers include the systems DeRes (Cholewiński et al., 1996), DLV (Eiter

et al., 1997a), smodels (Niemelä and Simons, 1996) and XSB (Rao et al., 1997).

An important aspect, however, is that an agent is situated in an environment

which is subject to change. This requests the agent to adapt over time, and to adjust

its decision making. An agent might be prompted to adjust its knowledge base KB

after receiving new information in terms of an update U, given by a clause or a

set of clauses that need to be incorporated into KB . Simply adding the rules of U

to KB does not give a satisfactory solution in practice, even in simple cases. For

example, if KB contains the rules a← b and b← , and U consists of the rule ¬a←
stating that a is false, then the union KB ∪U is not consistent under predominant

semantics such as the answer set semantics (Gelfond and Lifschitz, 1991) or the

well-founded semantics (Van Gelder et al., 1991). However, by attributing higher

priority to the update ¬a← , a result is intuitively expected which has a consistent

semantics, where the emerging conflict between old and new information is resolved.

To address this problem, some approaches for updating logic programs with (sets

of) rules have been proposed recently (Alferes et al., 1998, 2000; Inoue and Sakama,

1999; Zhang and Foo, 1998). In this paper, we consider an approach which is based

on a causal rejection principle. According to this principle, a rule r is only discarded

providing there is a ‘reason’ for doing so, in terms of another, more recent rule r′
which contradicts r. That is, if both r and r′ are applicable (i.e. their bodies are

satisfied) and have opposite heads, then only r′ is applied while r is discarded. In the

example from above, the rule r : a← b in the current knowledge base KB (whose

body is true given rule b ← ) is rejected by the new rule r′ : ¬a ← in the update

(whose body is also true), and thus in the updated knowledge base, r is not applied.

The causal rejection principle is not novel – in fact, it constitutes a major ingredient

of the well-known dynamic logic programming approach (Alferes et al., 1998, 2000).

Furthermore, it underlies, in slightly different forms, the related approaches of

inheritance logic programs (Buccafurri et al., 1999a) and ordered logic programs

(Laenens et al., 1990; Buccafurri et al., 1996). We provide here a simple and rigorous

realization of this principle, in terms of ‘founded’ rejection: a rule r may only be

rejected by some other rule r′ which itself is not rejected. While this foundedness

condition, as it appears, plays in effect no role in the particular semantics we

consider, it can do so for more involved semantics based on causal rejection, such

as the one by Alferes et al. (1998, 2000).

Starting from a simple formalization of a semantics for updating logic programs

https://doi.org/10.1017/S1471068401001247 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001247


On properties of update sequences 713

based on causal rejection, which offers the advantage of a clear declarative char-

acterization and of a syntactical realization at the same time, the main goal of

this paper is to investigate properties of this semantics, as well as to analyze the

relationship to other semantics for updating logic programs, in particular to dy-

namic logic programming. Notice that, although uses and extensions of dynamic

logic programming have been discussed (Alferes et al., 1999; Alferes and Pereira,

2000; Leite et al., 2000), its properties and relations to other approaches and related

formalisms have been less explored so far (but see Alferes and Pereira, 2000).

1.2 Main contributions

Inspired by ideas in Alferes et al. (1998, 2000), we consider a semantics for sequences

P = (P1, . . . , Pn) of extended logic programs, in terms of a syntactic transformation

to an update program, which is a single extended logic program in an extended

language. The semantics properly generalizes the answer set semantics (Gelfond

and Lifschitz, 1991) of single logic programs. The readable syntactic representation

of the semantical results – which is useful from a computational perspective – is

complemented, as in Alferes et al. (1998, 1999), by an elegant semantical charac-

terizations in terms of a modified Gelfond–Lifschitz reduction, resulting from the

usual construction by removal of rejected rules. The transformation we describe

is similar to the one by Alferes et al., but involves only a few types of rules and

new atoms. For capturing the rejection principle, information about rule rejection is

explicitly represented at the object level through rejection atoms; this is similar to

an implementation of the related inheritance logic program approach proposed by

Buccafurri et al. (1999a). Though not new in spirit, the approach we suggest offers a

more accessible definition and is suitable for studying general properties of updates

by causal rejection, providing insight in the mechanism of the rejection principle

itself.

The main contributions of this paper can be summarized as follows.

1. We extensively investigate, from different points of view, properties of update

programs and answer set semantics for update sequences. We first analyze them

from a belief revision perspective, and evaluate various (sets of) postulates

for revision and iterated revision from the literature (Alchourrón et al., 1985;

Katsuno and Mendelzon, 1991; Darwiche and Pearl, 1997; Lehmann, 1995).

To this end, we discuss possible interpretations of update programs as change

operators for nonmonotonic logical theories. As it turns out, update programs

(and thus equivalent approaches) do not satisfy many of the properties defined

in the literature. This is partly explained by the nonmonotonicity of logic

programs and the causal rejection principle embodied in the semantics, which

strongly depends on the syntax of rules.

Furthermore, we consider properties from a nonmonotonic reasoning perspec-

tive, by naturally interpreting update programs as nonmonotonic consequence

relations, and review postulates and principles which have been analyzed by

Kraus, Lehmann and Magidor (1990) and Makinson (1993).
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Finally, we present and discuss some further general properties relevant for

update programs. Among them is an iterativity property, which informally states

equivalence of nesting ((P1, P2), P3) and sequences (P1, P2, P3) of updates. A

possible interpretation of this property is that an immediate update strategy,

which incorporates new information immediately into the knowledge base, is

equivalent to demand-driven evaluation, where the actual knowledge base KB is

built on demand of particular queries, and full information about KB ’s update

history is known. As we shall see, the property does not hold in general, but

for certain classes of programs.

2. As it appears, update answer sets – like related concepts based on causal

rejection – do not respect minimality of change. We thus refine the semantics

of update sequences and introduce minimal answer sets and strictly minimal

answer sets. Informally, in minimal answer sets, the set of rules that need to

be rejected is minimized. This means that a largest set of rules should be

respected if an answer set is built; in particular, if all rules can be satisfied,

then no answer sets would be adopted, which request the rejection of any rule.

The notion of strict minimality further refines minimality by enforcing that

rejection of older rules should be preferred to rejection of newer rules, thus

performing hierarchic minimization.

The refined semantics come at the cost of higher computational complexity,

and increase the complexity of update answer sets for propositional programs

by one level, namely from the first to the second level in the polynomial

hierarchy. This parallels similar results for the update semantics by Sakama

and Inoue (1999), which employs a notion of minimality in the basic definition.

3. We conduct a comparison between update programs and alternative ap-

proaches for updating logic programs (Alferes et al., 1998, 2000; Zhang and

Foo, 1998; Inoue and Sakama, 1999; Leite and Pereira, 1997; Leite, 1997;

Marek and Truszczyński, 1994) and related approaches (Buccafurri et al.,

1999a; Delgrande et al., 2000). We find that for some of these formalisms,

syntactic subclasses are semantically equivalent to update programs. Thus,

update programs provide a (different) characterization of these fragments, and

by their simplicity, contribute to better understanding on the essential working

of these formalisms on these fragments. Furthermore, our results on properties

of update answer set semantics carry over to the equivalent fragments, and

establish also semantical results for these formalisms, which have not been

analyzed much in this respect so far. Finally, equivalent fragments of different

formalisms are identified via update programs.

First, we show that update programs are, on the language we consider, equiv-

alent to inheritance logic programs. More precisely, our notion of an answer set

for an update sequence P = (P1, . . . , Pn) coincides with the notion of an answer

set for a corresponding inheritance program P< in the approach by Buccafurri

et al. (1999a), where P< results from P by interpreting more recent updates

in the sequence (P1, . . . , Pn) (i.e., programs with higher index) as programs

containing more specific information. Thus, update programs (and classes of

dynamic logic programs) may semantically be regarded as fragment of the
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inheritance framework of Buccafurri et al. (1999a). We then compare our

update programs to revision programming by Marek and Truszczyński (1994)

and the related approach of Leite and Pereira (1997), which has been extended

to sequences of programs in Leite (1997). It appears that the fragment of

this formalism where programs merely use weak negation is, apart from extra

conditions on sequences of more than two programs, semantically weaker than

update programs. Furthermore, we give a thorough analysis of the dynamic

logic programming approach by Alferes et al. (1998, 2000). Their notion

of model of an update sequence P, which we refer to as dynamic answer

set, semantically imposes extra conditions compared to our update answer

set.1 Note that syntactic conditions for classes of programs can be found on

which dynamic answer sets and update answer sets coincide. Furthermore,

by this correspondence, some results for update principles and computational

complexity derived for our update programs carry over to dynamic logic

programs as well. Further inspection, which we do not carry out here, suggests

the same results beyond the corresponding fragments.

To the best of our knowledge, no investigation of approaches to updating logic

programs from the perspectives of belief revision and nonmonotonic consequences

relations has been carried out so far. In view of our results about the relationship

between update programs and other approaches, in particular to inheritance logic

programs and fragments of dynamic logic programming, our investigations apply to

these formalisms as well.

1.3 Structure of the paper

The paper is organized as follows. After providing some necessary preliminaries in

the next section, we introduce in Section 3 update programs and answer sets for such

programs, and establish some characterization results. In Section 4, we embark on

our study of general principles of update programs based on causal rejection from

various perspectives. The refinements of answer sets to minimal and strictly minimal

answer sets are considered in Section 5. Section 6 is devoted to computational issues

of our approach. After an investigation of the computational complexity of update

programs under the semantics introduced, we discuss an implementation of our

approach based on the DLV logic programming tool (Eiter et al., 1997a, 1998). In

Section 7, relations to other and related approaches are investigated. The paper

concludes with Section 8, containing a short summary and a discussion of further

work and open issues. Some proofs and further results, which are omitted here for

space reasons, can be found in Eiter et al. (2000b).

1 In a preliminary version of this paper (Eiter et al., 2000a), we erroneously reported, due to misunder-
standing notation in Alferes et al. (1998, 2000), that dynamic logic programs and update programs are
equivalent in general. This view was supported by the examples discussed in Alferes et al. (1998, 2000)
and many others we considered.
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2 Preliminaries

We deal with extended logic programs (Gelfond and Lifschitz, 1991), which consist

of rules built over a set A of propositional atoms where both default negation not

and strong negation ¬ is available. A literal, L, is either an atom A (a positive literal )

or a strongly negated atom ¬A (a negative literal ). For a literal L, the complementary

literal, ¬L, is ¬A if L = A, and A if L = ¬A, for some atom A. For a set S of

literals, we define ¬S = {¬L | L ∈ S}, and denote by LitA the set A∪ ¬A of all

literals over A. A literal preceded not is called a weakly negated literal.

A rule, r, is an ordered pair L0 ← B(r), where L0 is a literal and B(r) is a

finite set of literals or weakly negated literals. We also allow the case where L0

may be absent. We call L0 the head of r, denoted H(r), and B(r) the body of r.

For B(r) = {L1, . . . , Lm, not Lm+1, . . . , not Ln}, we define B+(r) = {L1, . . . , Lm} and

B−(r) = {Lm+1, . . . , Ln}. The elements of B+(r) are referred to as the prerequisites

of r. We employ the usual conventions forl writing rules like L0 ← B1 ∪ B2 or

L0 ← B1 ∪ {L} as L0 ← B1, B2 and L0 ← B1, L, respectively. Generally, rule r with

B(r) as above will simply be written as

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln.

If r has an empty head, then r is a constraint; if the body of r is empty, then r is

a fact; if n = m (i.e., if r contains no default negation), then r is a basic rule. We

denote by LA the set of all rules constructible using the literals in LitA.

An extended logic program (ELP), P , is a (possibly infinite) set of rules. If all rules

in P are basic, then P is a basic program. Usually, A will simply be understood as

the set of all atoms occurring in P .

An interpretation I is a set of literals which is consistent , i.e., I does not contain

complementary literals A and ¬A. A literal L is true in I (symbolically I |= L) iff

L ∈ I , and false otherwise. Given a rule r, the body B(r) of r is true in I , denote

I |= B(r), iff (i) each L ∈ B+(r) is true in I and (ii) each L ∈ B−(p) is false in I .

Rule r is true in I , denoted I |= r, iff H(r) is true in I whenever B(r) is true in I . In

particular, a constraint r is true in I iff I 6|= B(r). For a program P , I is a model of

P , denoted I |= P , if I |= r for all r ∈ P .

Let r be a rule. Then r+ denotes the basic rule obtained from r by deleting all

weakly negated literals in the body of r, i.e., r+ = H(r) ← B+(r). Furthermore, we

say that rule r is defeated by a set of literals S if some literal in B−(r) is true in S ,

i.e., if B−(r) ∩ S 6= ∅. As well, each literal in B−(r) ∩ S is said to defeat r.

The reduct, PS , of a program P relative to a set S of literals is defined by

PS = {r+ | r ∈ Π and r is not defeated by S}.
An interpretation I is an answer set of a program P iff it is a minimal model of P I .

By S(P ) we denote the collection of all answer sets of P . If S(P ) 6= ∅, then P is

said to be satisfiable.

We regard a logic program P as the epistemic state of an agent. The given

semantics is used for assigning a belief set to any epistemic state P as follows.
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Let I ⊆ LitA be an interpretation. Define

BelA(I) = {r ∈ LA | I |= r}.
Furthermore, for a class I of interpretations, let BelA(I) =

⋂
I∈I BelA(I).

Definition 1

For a logic program P , the belief set, BelA(P ), of P is given by BelA(P ) =

BelA(S(P )).

We write P |=A r if r ∈ BelA(P ), and for any program Q, we write P |=A Q if

P |=A q for all q ∈ Q. Programs P1 and P2 are equivalent (modulo A), symbolically

P1 ≡A P2, iff BelA(P1) = BelA(P2). It can be seen that if either P1 or P2 involves

only finitely many atoms, or if A is finite, then P1 ≡A P2 is equivalent to the

condition that P1 and P2 have the same answer sets modulo A. We will drop the

subscript ‘A ’ in BelA(·), |=A, and ≡A if no ambiguity can arise.

Belief sets enjoy the following natural properties:

Theorem 1

For every logic program P , we have that:

(i) P ⊆ Bel (P );

(ii) Bel (Bel (P )) = Bel (P );

(iii) {r | I |= r, for every interpretation I} ⊆ Bel (P ).

Proof

Properties (i) and (iii) hold trivially. Property (ii) can be seen as follows: Bel (P ) ⊆
Bel (Bel (P )) follows directly from property (i), and Bel (Bel (P )) ⊆ Bel (P ) holds due

to the fact that each answer set of P is also an answer set of Bel (P ). q

Clearly, the belief operator Bel (·) is nonmonotonic, i.e. in general, P1 ⊆ P2 does

not imply Bel (P1) ⊆ Bel (P2).

3 Update programs

We introduce a framework to update logic programs based on a compilation tech-

nique to ELPs. The basic idea is the following. Given a sequence (P1, . . . , Pn) of

ELPs, each Pi is assumed to update the information expressed by the initial section

(P1, . . . , Pi−1). The sequence (P1, . . . , Pn) is translated into a single ELP P ′, respect-

ing the successive update information, such that the answer sets of P ′ represent

the answer sets of (P1, . . . , Pn). The translation is realized by introducing new atoms

rej (·) which control the applicability of rules with respect to the update information2.

Informally, rej (r) states that rule r is ‘rejected’, in case a more recent rule r′ asserts

a conflicting information. This conflict is resolved by enabling rej (r) to block the

applicability of r, and so rule r′ is given precedence over r.

In some sense, the proposed update mechanism can be seen as some form of an

inheritance strategy, where more recent rules are viewed as ‘more specific’ information,

2 This idea can be found elsewhere in the literature (Kowalski and Toni, 1996; Inoue, 2000).
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which have to be given preference in case of a conflict. In Section 7.1, we will discuss

the relationship between our update formalism and the inheritance framework

introduced by Buccafurri et al. (1999a).

The general method of expressing update sequences in terms of single programs

has already been discussed by Alferes et al. (1998, 2000). However, in that framework,

applicability issues are realized in terms of newly introduced atoms referring to the

derivability of atoms of the original programs, and not to the applicability of rules

as in the present approach. A detailed comparison between our approach and the

method of Alferes et al. (1998, 2000) is given in Section 7.3.

3.1 Basic approach

By an update sequence, P, we understand a series (P1, . . . , Pn) of ELPs. We say that

P is an update sequence over A iff A represents the set of atoms occurring in the

rules of the constituting elements Pi of P (1 6 i 6 n).
Given an update sequence P = (P1, . . . , Pn) overA, we assume a setA∗ extending

A by new, pairwise distinct atoms rej (r) and Ai, for each r occurring in P, each

atom A ∈ A, and each i, 1 6 i 6 n. We further assume an injective naming function

N(·, ·), which assigns to each rule r in a program Pi a distinguished name, N(r, Pi),

obeying the condition N(r, Pi) 6= N(r′, Pj) whenever i 6= j. With a slight abuse of

notation we shall identify r with N(r, Pi) as usual. Finally, for a literal L, we write

Li to denote the result of replacing the atomic formula A of L by Ai.

Definition 2

Given an update sequence P = (P1, . . . , Pn) over a set of atoms A, we define the

update program P� = P1 � . . .� Pn over A∗ consisting of the following items:

(i) all constraints in Pi, 1 6 i 6 n;
(ii) for each r ∈ Pi, 1 6 i 6 n:

Li ← B(r), not rej (r) if H(r) = L;

(iii) for each r ∈ Pi, 1 6 i < n:

rej (r) ← B(r),¬Li+1 if H(r) = L;

(iv) for each literal L occurring in P (1 6 i < n):

Li ← Li+1; L← L1.

Informally, this program expresses layered derivability of a literal L, beginning at

the top layer Pn downwards to the bottom layer P1. The rule r at layer Pi is only

applicable if it is not refuted by a literal derived at a higher level that is incompatible

with H(r). Inertia rules propagate a locally derived value for L downwards to the

first level, where the local value is made global. The transformation P� is modular

in the sense that for P ′ = (P1, . . . , Pn, Pn+1) it augments P� = P1� . . .�Pn only with

rules depending on n+ 1.

We remark that P� can obviously be slightly simplified, which is relevant for

implementing our approach. All weakly negated literals not rej (r) in rules with
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heads Ln can be removed: Indeed, since rej (r) cannot be derived, each such atom

evaluates to false in any answer set of P� . Thus, no rule from Pn is rejected in an

answer set of P� , i.e., all most recent rules are obeyed.

The intended answer sets of an update sequence P = (P1, . . . , Pn) are defined in

terms of the answer sets of P� .

Definition 3

Let P = (P1, . . . , Pn) be an update sequence over a set of atoms A. Then, S ⊆ LitA
is an update answer set of P iff S = S ′ ∩ A for some answer set S ′ of P� . The

collection of all update answer sets of P is denoted by U(P).

Following the case of single programs, an update sequence P = (P1, . . . , Pn) is

regarded as the epistemic state of an agent, and the belief set Bel (P) is given by

Bel (U(P)). The update sequence P is said to be satisfiable iff U(P) 6= ∅, and P ≡ P′

iff Bel (P) = Bel (P′) (P′ some update sequence). General properties of the belief

operator Bel (·) in the context of update sequences will be discussed in Section 4.

For illustration of Definition 3, consider the following example, adapted from

Alferes et al. (1998).

Example 1

Consider the update of P1 by P2, where

P1 =
{
r1 : sleep← not tv on, r2 : night← , r3 : tv on← ,

r4 : watch tv← tv on
}

;

P2 =
{
r5 : ¬tv on← power failure, r6 : power failure← }

.

The single answer set of P = (P1, P2) is, as desired,

S = {power failure,¬tv on, sleep, night},
since the only answer set of P� is given by

S ′ =
{

power failure2, power failure1, power failure,

¬tv on2,¬tv on1,¬tv on, rej (r3), sleep1, sleep, night1, night
}
.

If new information arrives in form of the program P3:

P3 =
{
r7 : ¬power failure← }

,

then the update sequence (P1, P2, P3) has the answer set

T =
{ ¬power failure, tv on,watch tv, night

}
,

generated by the following answer set T ′ of P1 � P2 � P3:

T ′ =
{ ¬power failure3,¬power failure2,¬power failure1,¬power failure,

rej (r6), tv on1, tv on,watch tv1,watch tv, night1, night
}
.

3.2 Properties and characterizations

Next, we discuss some properties of our approach. The first result guarantees that

answer sets of P are uniquely determined by the answer sets of P� .
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Theorem 2

Let P = (P1, . . . , Pn) be an update sequence over a set of atoms A, and let S, T ⊆
LitA∗ be answer sets of P� . Then, S ∩ LitA = T ∩ LitA only if S = T .

Proof

See Appendix A.1. q

In view of this result, the following notation is well-defined.

Definition 4

Let P be an update sequence over A, and let S be an answer set of P. Then, Š

denotes the (uniquely determined) answer set of P� obeying S = Š ∩ LitA.

If an update sequence P consists of a single program P1, the update answer sets

of P coincide with the regular answer sets of P1.

Theorem 3

Let P be an update sequence consisting of a single program P1, i.e., P = P1. Then,

U(P) =S(P1).

Proof

This follows at once from the observation that the only difference between P1 and

P� is that each rule r = L ← B(r) occurring in P1 is replaced by the two rules

L1 ← B(r), not rej (r) and L ← L1. Since there are no rules in P� having head

literal rej (r), it holds that, for each set S of literals, r is defeated by S exactly if

L1 ← B(r), not rej (r) is defeated by S . q

Answer sets of update sequences can also be characterized in a purely declarative

way. To this end, we introduce the concept of a rejection set. Let us call two rules r1
and r2 conflicting iff H(r1) = ¬H(r2). For an update sequence P = (P1, . . . , Pn) over

a set of atoms A and S ⊆ LitA, based on the principle of founded rule rejection,

we define the rejection set of S by Rej (S,P) =
⋃n
i=1 Rej i(S,P), where Rej n(S,P) = ∅,

and, for n > i > 1,

Rej i(S,P) =
{
r ∈ Pi | ∃r′ ∈ Pj \ Rej j(S,P), for some j ∈ {i+ 1, . . . , n},

such that r, r′ are conflicting and S |= B(r) ∪ B(r′)
}
.

That is, Rej (S,P) contains those rules from P which are rejected on the basis of

rules which are not rejected themselves.

The next lemma ensures that the rejection set Rej (S,P) precisely matches the

intended meaning of the control atoms rej (·).

Lemma 1

Let P = (P1, . . . , Pn) be an update sequence over a set of atomsA, let S be an answer

set of P, and let Š be the corresponding answer set of P� . Then, r ∈ Rej (S,P) iff

rej (r) ∈ Š .
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Proof
We show by induction on j (0 6 j < n) that r ∈ Rej n−j(S,P) iff rej (r) ∈ Š , whenever

r ∈ Pn−j .
Induction Base. Assume j = 0. Then the statement holds trivially because Rej n(S,P) =

∅ and rej (r) /∈ Š for all r ∈ Pn.
Induction Step. Assume n > j > 0, and let the statement hold for all k < j. We

show the assertion for k = j. Consider some r ∈ Pn−j and suppose r ∈ Rej n−j(S,P).

We show rej (r) ∈ Š . According to the definition of Rej n−j(S,P), there is some

r′ ∈ Pn−k \ Rej n−k(S,P), 0 6 k < j, such that H(r′) = ¬H(r), B+(r) ∪ B+(r′) ⊆ S ,

and both r and r′ are not defeated by S . The rule r ∈ Pn−j induces the rule

rej (r) ← B(r),¬Ln−j+1 ∈ P� , where L = H(r). From the properties above, we have

rej (r) ← B+(r),¬Ln−j+1 ∈ (P�)Š . Now, since B+(r) ⊆ S ⊆ Š , in order to show

rej (r) ∈ Š it suffices to show that ¬Ln−j+1 ∈ Š . This can be seen as follows. First

of all, the rule r′ ∈ Pn−k induces the rule L′n−k ← B(r), not rej (r′) ∈ P� , where

L′ = H(r′). Since H(r′) = ¬H(r), we actually have ¬Ln−k ← B(r), not rej (r′) ∈ P� .

Now, given that r′ /∈ Rej n−k(S,P), and since k < j, by induction hypothesis we have

rej (r) /∈ Š . Furthermore, B−(r′) ∩ S = ∅ implies ¬Ln−k ← B+(r′) ∈ (P�)Š . Given

that B+(r′) ⊆ S ⊆ Š , we obtain ¬Ln−k ∈ Š . By observing that n − j + 1 6 n − k
(since k < j), and given the inertia rules ¬Lm ← ¬Lm+1 ∈ (P�)Š (1 6 m < n), we

eventually obtain Ln−j+1 ∈ Š . This proves rej (r) ∈ Š .

Conversely, assume rej (r) ∈ Š . We show r ∈ Rej n−j(S,P). By construction of

the update program P� , the atom rej (r) can only be derived by means of the

rule rej (r) ← B(r),¬Ln−j+1 ∈ P� . So, it must hold that B+(r) ⊆ S , ¬Ln−j+1 ∈ Š ,

and B−(r) ∩ S = ∅. Moreover, since ¬Ln−j+1 ∈ Š , there must be some r′ ∈ Pn−k ,
k < j, such that ¬Ln−k ← B(r′), not rej (r′) ∈ P� , B+(r′) ⊆ S , B−(r′) ∩ S = ∅, and

rej (r′) /∈ Š . By induction hypothesis, the latter fact implies r′ /∈ Rej n−k(S,P). So, we

have that there is some r′ ∈ Pn−k \ Rej n−k(S,P), k < j, such that H(r′) = ¬H(r),

B+(r) ∪ B+(r′) ⊆ S , and both r and r′ are not defeated by S . This means that

r ∈ Rej n−j(S,P). q

It turns out that update answer sets can be characterized in terms of a modified

Gelfond–Lifschitz reduction, by taking the elements of the respective rejection sets

into account. In what follows, for a given update sequence P = (P1, . . . , Pn), we write

∪P to denote the set of all rules occurring in P, i.e., ∪P =
⋃n
i=1 Pi.

Theorem 4
Let P = (P1, . . . , Pn) be an update sequence over a set of atoms A and S ⊆ LitA
a set of literals. Then, S is an answer set of P iff S is the minimal model of

(∪P \ Rej (S,P))S .

Proof
See Appendix A.2. q

Update answer sets can also be described using a weaker notion of rejection sets.

For P = (P1, . . . , Pn) over A and S ⊆ LitA, let us define

Rej ′(S,P) =
⋃n
i=1{ r ∈ Pi | ∃r′ ∈ Pj, for some j ∈ {i+ 1, . . . , n}, such that

r and r′ are conflicting and S |= B(r) ∪ B(r′) }.
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Obviously, Rej (S,P) ⊆ Rej ′(S,P) always holds. We get the following partial

characterization of update answer sets:

Theorem 5

Let P = (P1, . . . , Pn) be an update sequence over a set of atoms A and S ⊆ LitA
a set of literals. Then, S is an answer set of P if S is the minimal model of

(∪P \ Rej ′(S,P))S .

Proof

Suppose that S is the minimal model of (∪P \ Rej ′(S,P))S , but there is some

r ∈ (∪P \ Rej (S,P)) \ (∪P \ (Rej ′(S,P)) such that S |= B(r) and H(r) /∈ S . It follows

that r ∈ Rej ′(S,P) \ Rej (S,P).

Define Qi = {r′ ∈ Pi|H(r′) ∈ {H(r),¬H(r)} and S |= B(r′)} and let r′ ∈ Qk,

where k = max{i|r′ ∈ Qi} 6= 0. Then, r′ /∈ Rej ′(S,P). Since H(r) /∈ S , it follows

that H(r′) = ¬H(r). Furthermore, r′ /∈ Rej ′(S,P) implies r′ /∈ Rej (S,P). Therefore,

it follows that r ∈ Rej (S,P), a contradiction. We obtain that S is a model of

(∪P \Rej (S,P))S . Moreover, since (∪P \Rej ′(S,P))S ⊆ (∪P \Rej (S,P))S , S must be

a minimal model of (∪P \ Rej (S,P))S . q

The converse of Theorem 5 is not true in general, but holds for restricted classes

of programs. For example, consider the following property of an update sequence

P = (P1, . . . , Pn) and an answer set S of P (‘chain condition’):

(CH) For each pair r, r′ of rules r ∈ Pi and r′ ∈ Pj such that 1 6 i < j < n,

H(r) = ¬H(r′), and S |= B(r) ∪ B(r′), it holds that either r′ /∈ Rej (S,P) or some

r′′ ∈ Pj+1 ∪ · · · ∪ Pn exists such that H(r′′) = ¬H(r′) and B(r′′) ⊆ B(r).

Then we obtain the following result.

Theorem 6

Let P = (P1, . . . , Pn) be an update sequence over a set of atoms A and let S be an

answer set of P such that Property (CH) holds. Then, S is the minimal model of

(∪P \ Rej ′(S,P))S .

Proof

Suppose S is an answer set of P. Then, by Theorem 4, S is a minimal model of

(∪P \ Rej (S,P))S , i.e., S = Cn((∪P \ Rej (S,P))S ), where Cn(·) is the classical-literal

consequence operator. We show that for each rule r ∈ Rej ′(S,P) \ Rej (S,P), there

exists some rule r′′ ∈ ∪P \ Rej ′(S,P) such that H(r) = H(r′′) and B(r′′) ⊆ B(r); this

implies that Cn((∪P \Rej (S,P))S ) = Cn((∪P \Rej ′(S,P))S ), from which the result is

easily obtained.

Let r ∈ Pi for some i ∈ {1, . . . , n} such that r ∈ Rej ′(S,P) \Rej (S,P). By definition

of Rej ′(S,P), there exists some r′ ∈ Pj for some j ∈ {i + 1, . . . , n} such that H(r) =

¬H(r′) and S |= B(r′). Without loss of generality, let r′ be such that j is maximal.

We consider two cases: Assume first r′ /∈ Rej (S,P). The definition of Rej (S,P)

implies that r ∈ Rej (S,P), which is a contradiction. Assume now that r′ ∈ Rej (S,P)

holds. By Property (CH), there exists a rule r′′ in some Pj ′ , j
′ ∈ {j + 1, . . . , n} such

that H(r′′) = ¬H(r′) (= H(r)) and S |= B(r′′). Now if r′′ /∈ Rej ′(S,P), then r′′ is

as to prove. If, on the other hand, r′′ ∈ Rej ′(S,P), then some rule r′′′ ∈ Pj ′′ with
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j ′′ ∈ {j ′ + 1, . . . , n}, H(r′′′) = H(r′), and S |= B(r′′′) exists. However, r′′′ contradicts

the maximality of r′, and thus r′′ ∈ Rej ′(S,P) is not possible. This proves the claim

and the result. q

We can easily derive from this result syntactic classes of update sequences for

which the converse of Theorem 5 holds; a natural class is given by the following

conditions on an update sequence P = (P1, . . . , Pn):

(CH′) For each pair r, r′ of rules r ∈ Pi and r′ ∈ Pj such that 1 6 i < j < n,

H(r) = ¬H(r′), and B(r) ∪ B(r′) is satisfiable, there exists some r′′ ∈ Pj+1 ∪ · · · ∪ Pn
such that H(r′′) = ¬H(r′) and B(r′′) ⊆ B(r).

It is important to emphasize that in our approach, the update program P� is not

the result of the update intended to be the new knowledge state of the agent, but it

represents the semantic result of the information that a sequence of updates P2, . . . , Pn
has occurred to a knowledge base P1. Compiling the result of updates into a single

logic program in the original language (having the desired answer sets) would mean

losing history information about the update sequence. Instead, the formalism results

in a program over an extended set of atoms, which expresses at the object level

meta-concepts determining applicability of rules and computation of those intended

answer sets. In some sense, the result is therefore a declarative specification of how

rules of the original logic program and of subsequent updates should be applied,

expressed in the language of logic programs themselves.

4 Principles of program updates

In this section, we discuss several kinds of postulates which have been advocated

in the literature on belief change and examine to what extent update sequences

satisfy these principles. This issue has not been addressed extensively in previous

work. We first consider update programs from the perspective of belief revision and

assess the relevant postulates from this area. Afterwards, we briefly analyze further

properties, like viewing update programs as nonmonotonic consequence operators and

other general principles. We remark that our analysis applies, in slightly adapted

form, to dynamic logic programming as well (cf. Section 7.3).

4.1 Belief revision

Following Gärdenfors and Rott (1995), two different approaches to belief revision

can be distinguished: (i) immediate revision, where the new information is simply

added to the current stock of beliefs and the belief change is accomplished by the

semantics of the underlying (often, nonmonotonic) logic; and (ii) logic-constrained

revision, where the new stock of beliefs is determined by a nontrivial operation

which adds and retracts beliefs, respecting logical inference and some constraints.

In the latter approach, it is assumed that beliefs are sentences from a given logical

language LB, closed under the standard boolean connectives. A belief set, K , is a

subset of LB which is closed under a consequence operator Cn(·) of the underlying

logic. A belief base for K is a subset B ⊆ K such that K = Cn(B). A belief base is a
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special case of epistemic state (Darwiche and Pearl, 1997), which is a set of sentences

E representing an associated belief set K in terms of a mapping Bel (·) such that

K = Bel (E), where E need not necessarily have the same language as K .

In what follows, we first introduce different classes of postulates, and then we

examine them with respect to update sequences.

4.1.1 AGM postulates

One of the main aims of logic-constrained revision is to characterize suitable revision

operators through postulates. In the AGM approach (after Alchourrón, Gärdenfors

and Makinson (1985)), three basic operations on a belief set K are considered:

• expansion K + φ, which is simply adding the new information φ ∈ LB to K;

• revision K ? φ, which is sensibly revising K in the light of φ (in particular,

when K contradicts φ); and

• contraction K − φ, which is removing φ from K .

AGM proposes a set of postulates, K?1–K?8, that any revision operator ?

mapping a belief set K ⊆ LB and a sentence φ ∈ LB into the revised belief set K?φ

should satisfy. If, following both Darwiche and Pearl (1997) and Brewka (2000), we

assume that K is represented by an epistemic state E, then the postulates K?1–K?8

can be reformulated as follows:

(K1) E ? φ represents a belief set.

(K2) φ ∈ Bel (E ? φ).

(K3) Bel (E ? φ) ⊆ Bel (E + φ).

(K4) ¬φ /∈ Bel (E) implies Bel (E + φ) ⊆ Bel (E ? φ).

(K5) ⊥ ∈ Bel (E ? φ) only if φ is unsatisfiable.

(K6) φ1 ≡ φ2 implies Bel (E ? φ1) = Bel (E ? φ2).

(K7) Bel (E ? (φ ∧ ψ)) ⊆ Bel ((E ? φ) + ψ).

(K8) ¬ψ /∈ Bel (E ? φ) implies Bel ((E ? φ) + ψ) ⊆ Bel (E ? (φ ∧ ψ)).

Here, E ? φ and E + φ is the revision and expansion operation, respectively,

applied to E. Informally, these postulates express that the new information should

be reflected after the revision, and that the belief set should change as little as

possible. As has been pointed out, this set of postulates is appropriate for new

information about an unchanged world, but not for incorporation of a change to the

actual world. Such a mechanism is addressed by the next set of postulates, expressing

update operations.

4.1.2 Update postulates

For update operators B � φ realizing a change φ to a belief base B, Katsuno and

Mendelzon (1991) proposed a set of postulates, U�1–U�8, where both φ and B

are propositional sentences over a finitary language. For epistemic states E, these

postulates can be reformulated as follows.

(U1) φ ∈ Bel (E � φ).

(U2) φ ∈ Bel (E) implies Bel (E � φ) = Bel (E).
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(U3) If Bel (E) is consistent and φ is satisfiable, then Bel (E � φ) is consistent.

(U4) If Bel (E) = Bel (E ′) and φ ≡ ψ, then Bel (E � φ) = Bel (E � ψ).

(U5) Bel (E � (φ ∧ ψ)) ⊆ Bel ((E � φ) + ψ).

(U6) If φ ∈ Bel (E � ψ) and ψ ∈ Bel (E � φ), then Bel (E � φ) = Bel (E � ψ).

(U7) If Bel (E) is complete, then Bel (E � (ψ ∨ ψ′)) ⊆ Bel (E � ψ) ∧ Bel (E � ψ′)).3
(U8) Bel ((E ∨ E ′) � ψ) = Bel ((E � ψ) ∨ (E ′ � ψ).

Here, conjunction and disjunction of epistemic states are presumed to be definable

in the given language (e.g. in terms of intersection and union of associated sets of

models, respectively).

The most important differences between (K1)–(K8) and (U1)–(U8) are that re-

vision should yield the same result as expansion E + φ, providing φ is compatible

with E, which is not desirable for update in general (cf. Winslett, 1988). On the

other hand, (U8) says that if E can be decomposed into a disjunction of states (e.g.

models), then each case can be updated separately and the overall result is formed

by taking the disjunction of the emerging states.

4.1.3 Iterated revision

Darwiche and Pearl (1997) have proposed postulates for iterated revision, which can

be rephrased in our setting as follows (we omit parentheses in sequences (E?φ1)?φ2

of revisions):

(C1) If ψ2 ∈ Bel (ψ1), then Bel (E ? ψ2 ? ψ1) = Bel (E ? ψ1).

(C2) If ¬ψ2 ∈ Bel (ψ1), then Bel (E ? ψ1 ? ψ2) = Bel (E ? ψ2).

(C3) If ψ2 ∈ Bel (E ? ψ1), then ψ2 ∈ Bel (E ? ψ2 ? ψ1).

(C4) If ¬ψ2 /∈ Bel (E ? ψ1), then ¬ψ2 /∈ Bel (E ? ψ2 ? ψ1).

(C5) If ¬ψ2 ∈ Bel (E ? ψ1) and ψ1 /∈ Bel (E ? ψ2), then ψ1 /∈ Bel (E ? ψ1 ? ψ2).

(C6) If ¬ψ2 ∈ Bel (E ? ψ1) and ¬ψ1 ∈ Bel (E ? ψ2), then ¬ψ1 ∈ Bel (E ? ψ1 ? ψ2).

Another set of postulates for iterated revision, corresponding to a sequence E

of observations, has been formulated by Lehmann (1995). Here, each observation

is a sentence which is assumed to be consistent (i.e. falsity is not observed), and

the epistemic state E has an associated belief set Bel (E). Lehmann’s postulates

read as follows, where E, E ′ denote sequences of observations and ‘,’ stands for

concatenation:

(I1) Bel (E) is a consistent belief set.

(I2) φ ∈ Bel (E, φ).

(I3) If ψ ∈ Bel (E, φ), then φ⇒ ψ ∈ Bel (E).

(I4) If φ ∈ Bel (E), then Bel (E, φ, E ′) = Bel (E, E).

(I5) If ψ ` φ then Bel (E, φ, ψ, E ′) = Bel (E, ψ, E ′).
(I6) If ¬ψ /∈ Bel (E, φ), then Bel (E, φ, ψ, E ′) = Bel (E, φ, ψ, E ′).
(I7) Bel (E,¬φ, φ) ⊆ Cn(E + φ).

3 A belief set K is complete iff, for each atom A, either A ∈ K or ¬A ∈ K .
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4.1.4 Analysis of the postulates

In order to evaluate the different postulates, we need to adapt them for the setting of

update programs. Naturally, the epistemic state P = (P1, . . . , Pn) of an agent is subject

to revision. However, the associated belief set Bel (P) (⊆ LA) does not belong to a

logical language closed under boolean connectives. Closing LA under conjunction

does not cause much troubles, as the identification of finite logic programs with finite

conjunctions of clauses permits that updates of a logic program P by a program P ′
can be viewed as the update of P with a single sentence from the underlying belief

language. Ambiguities arise, however, with the interpretation of expansion, as well

as with the meaning of negation and disjunction of rules and programs, respectively.

Depending on whether the particular structure of the epistemic state E should

be respected, different definitions of expansion are imaginable in our framework.

At the ‘extensional’ level of sentences, represented by a program or sequence of

programs P, Bel (P + P ′) is defined as Bel (Bel (P) ∪ P ′). At the ‘intensional’ level of

sequences P = (P1, . . . , Pn), Bel (P + P ′) could be defined as Bel (P1, . . . , Pn ∪ P ′). An

intermediate approach would be defining Bel (P+P ′) = BelA(P�∪P ′). We adopt the

extensional view here. Note that, in general, adding P ′ to Bel (P) does not amount

to the semantical intersection of P ′ and Bel (P) (nor of ∪P and P ′, respectively).

As for negation, we might interpret the condition ¬φ /∈ Bel (E) (or ¬ψ /∈ Bel (E?φ)

in (K4) and (K8)) as satisfiability requirement for E+φ (or (E?φ)+ψ, respectively).

Disjunction ∨ of rules or programs (as epistemic states) appears to be meaningful

only at the semantical level. The unionS(P1)∪S(P2) of the answer sets of programs

P1 and P2 may be represented syntactically through a program P3, which in general

requests an extended set of atoms. We thus do not consider the postulates involving

the operator ∨.

Given these considerations, Table 1 summarizes our interpretation of postulates

(K1)–(K8) and (U1)–(U6), and includes references whether the respective property

holds or fails. We assume that P,P′ are sequences of ELPs, and P , P ′ denote

single ELPs. Moreover, the notation (P, P ) is an abbreviation for the sequence

(P1, . . . , Pn, P ) if P = (P1, . . . , Pn). Demonstrations and counterexamples concerning

these properties are given in Appendix A.3, and can be easily adapted for dynamic

logic programming too.

As can be seen from Table 1, apart from very simple postulates, the majority of the

adapted AGM and update postulates are violated by update programs. This holds

even for the case where P is a single program. In particular, Bel ((P, P )) violates

discriminating postulates such as (U2) for update and (K4) for revision. In the light

of this, update programs neither have update nor revision flavor.

We remark that the picture does not change if we abandon extensional expansion

and consider the postulates under intensional expansion. Thus, also under this view,

update programs do not satisfy minimality of change.

The postulates (C1)–(C6) and (I1)–(I7) for iterated revision are treated in Table 2;

proofs of these properties can be found in Appendix A.4. Observe that Lehmann’s

postulate (I3) is considered as the pendant to AGM postulate K?3. In a literal

interpretation of (I3), since the belief language associated with logic programs does
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Table 1. Interpretation of postulates (K1 )–(K8 ) and (U1 )–(U6 ).

Postulate Interpretation Postulate holds

(K1) (P, P ) represents a belief set yes

(K2), (U1) P ⊆ Bel ((P, P )) yes

(U2) Bel (P ) ⊆ Bel (P) implies Bel ((P, P )) = Bel (P) no

(K3) Bel ((P, P )) ⊆ Bel (Bel (P) ∪ P ) yesa

(U3) If P and P are satisfiable, then (P, P ) is satisfiable no

(K4) If Bel (P) ∪ P has an answer set, then no

Bel (Bel (P) ∪ P ) ⊆ Bel ((P, P ))

(K5) (P, P ) is unsatisfiable only if P is unsatisfiable no

(K6), (U4) P ≡ P′ and P ≡ P ′ implies (P, P ) ≡ (P′, P ′) no

(K7), (U5) Bel ((P, P ∪ P ′)) ⊆ Bel (Bel ((P, P )) ∪ P ′) yesb

(U6) Bel (P ′) ⊆ Bel ((P, P )) and Bel (P ) ⊆ Bel ((P, P ′)) no

implies Bel ((P, P )) = Bel ((P, P ′))

(K8) If Bel ((P, P )) ∪ P ′ is satisfiable, then no

Bel (Bel ((P, P )) ∪ P ′) ⊆ Bel ((P, P ∪ P ′))
a If either P or P has a finite alphabet.
b If either (∪P) ∪ P or P ′ has a finite alphabet.

not have implication, we may consider the case where ψ is a default literal L0 and

φ = L1 ∧ · · · ∧Lk is a conjunction of literals Li, such that φ⇒ ψ corresponds to the

rule L0 ← L1, . . . , Lk . Moreover, since the negation of logic programs is not defined,

we do not interpret (I7).

Note that, although postulate (C3) fails in general, it holds if P ′ contains a single

rule. Thus, all of the above postulates except (C4) fail, and, with the exception of

(C3), each change is given by a single rule.

We can view the epistemic state P = (P1, . . . , Pn) of an agent as a prioritized

belief base in the spirit of (Brewka, 1991b; Nebel, 1991; Benferhat et al., 1993).

Revision with a new piece of information Q is accomplished by simply changing

the epistemic state to P′ = (P1, . . . , Pn, Q). The change of the belief base is then

automatically accomplished by the nonmonotonic semantics of a sequence of logic

programs. Under this view, updating logic programs amounts to an instance of the

immediate revision approach.

On the other hand, referring to the update program, we may view the belief set of

the agent represented through a pair 〈P ,A〉 of a logic program P and a (fixed) set

of atomsA, such that its belief set is given by BelA(P ). Under this view, a new piece

of information Q is incorporated into the belief set by producing a representation,

〈P ′,A〉, of the new belief set, where P ′ = P � Q. Here, (a set of) sentences from

an extended belief language is used to characterize the new belief set, which is
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Table 2. Interpretation of postulates (C1 )–(C6 ) and (I1 )–(I6 ).

Postulate Interpretation Postulate holds

(C1) If P ′ ⊆ Bel (P ), then Bel ((P, P ′, P )) = Bel ((P, P )) no

(C2) If S 6|= P ′, for all S ∈ S(P ), then no

Bel ((P, P , P ′)) = Bel ((P, P ′))

(C3) If P ′ ⊆ Bel ((P, P )), then P ′ ⊆ Bel ((P, P ′, P )) no

(C4) If S |= P ′ for some S ∈ U((P, P )), then yes

S |= P ′ for some S ∈ U((P, P ′, P ))

(C5) If S 6|= P ′ for all S ∈ U((P, P )) and P 6⊆ Bel ((P, P ′)), no

then P 6⊆ Bel ((P, P , P ′))

(C6) If S 6|= P ′ for all S ∈ U((P, P )) and S 6|= P for all no

S ∈ U((P, P ′)), then S 6|= P for all S ∈ U((P, P , P ′))

(I1) Bel (P) is a consistent belief set no

(I2) P ⊆ Bel ((P, P )) yes

(I3) If L0 ← ∈ Bel ((P, {L1 ← , . . . , Lk ← })), then yes

L0 ← L1, . . . , Lk ∈ Bel (P)

(I4) If Q1 ⊆ Bel (P), then no

Bel ((P, Q1, Q2, . . . , Qn)) = Bel ((P, Q2, . . . , Qn))

(I5) If Bel (Q2) ⊆ Bel (Q1), then no

Bel ((P, Q1, Q2, Q3, . . . , Qn))=Bel ((P, Q2, Q3, . . . , Qn))

(I6) If S |= Q2 for some S ∈ U((P, Q1)), then no

Bel ((P, Q1, Q2, . . . , Qn)) = Bel ((P, Q1, Q1 ∪ Q2, Q3,. . . , Qn))

constructed by a non-trivial operation employing the semantics of logic programs.

Thus, update programs enjoy to some extent also a logic-constrained revision flavor.

Nonetheless, as also the failure of postulates shows, they are more an instance of

immediate than logic-constrained revision. What we naturally expect, though, is that

the two views described above amount to the same at a technical level. However, as

we shall demonstrate below, this is not true in general.

4.2 Update programs as nonmonotonic consequence relations

Following Gärdenfors and Makinson (1991, 1994), belief revision can be related

to nonmonotonic reasoning by interpreting it as an abstract consequence relation

on sentences, where the epistemic state is fixed. In the same way, we can interpret

update programs as abstract consequence relation on programs as follows. For a

fixed epistemic state P and logic programs P1 and P2, we define

P1 ∼P P2 if and only if P2 ⊆ Bel (P, P1),
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i.e., if the rules P2 are in the belief set of the agent after update of the epistemic

state with P1.

Various postulates for nonmonotonic inference operations have been identified

in the literature. In what follows, we consider some sets of postulates and discuss

their interpretations in terms of update programs. First of all, we review principles

discussed by Makinson (1993), who considered a set of (desirable) properties for

nonmonotonic reasoning, and analyzed the behavior of some reasoning formalisms

with respect to these properties. Afterwards, we consider postulates proposed by

Lehmann and Magidor (1992), which deal with properties of so-called preferential

consequence relations. It is argued that such properties are necessary but not sufficient

for a preferential consequence relation to be meaningful and useful in reasoning. As

we will see, updates fail also in satisfying the essential properties.

Although our analysis is based on the specific semantics expressed by the trans-

formation of Definition 2, arguably it holds for other update formalisms as well.

In fact, quite the same pattern can be found for dynamic logic programs (Alferes

et al., 2000), because, with few exceptions, all proofs and counterexamples hold

for this formalism too (dynamic logic programming will be discussed in detail in

Section 7.3). Thus, intuitively, the failure of some basic principles of nonmonotonic

reasoning in the context of updates stems from the same nature of update semantics

based on rule rejection, and not on the particular transformation chosen.

4.2.1 General patterns of nonmonotonic inference relations

Gabbay (1985) was the first to propose the idea that the output of nonmonotonic

systems should be considered as an abstract consequence relation, in order to

get a clearer understanding of the diverse nonmonotonic reasoning formalisms.

Ensuing research identified several important principles, based on both syntactic

and model-theoretic considerations. Among the different properties analyzed by

Makinson (1993), the following principles are amenable for logic programs under

the standard Gelfond-Lifschitz approach, and can thus be formulated for update

programs as well:

(N1) P1 ∼P P1.

(N2) If P1 ∼P Q1 ∧ . . . ∧ Qm and P1 ∧ Q1 ∧ . . . ∧ Qm ∼P P2, then P1 ∼P P2.

(N3) If P1 ∼P Q1 ∧ . . . ∧ Qm and P1 ∼P P2, then P1 ∧ Q1 ∧ . . . ∧ Qm ∼P P2.

(N4) If P1 ∼P P2, P2 ∼P P3, . . . , Pn ∼P P1 (n > 2), then {P ′ | Pi ∼P P
′} =

{P ′ | Pj ∼P P
′}, for all i, j 6 n.

Postulate (N1) is called Inclusion and coincides with (K2) and (U1). Properties (N2)

and (N3) are important nonmonotonic inference principles and are respectively called

Cut and Cautious Monotony. Inference relations which obey both of these properties

are said to be cumulative. It is well known that most nonmonotonic formalisms

are not cumulative, and several variants of standard nonmonotonic approaches

have been defined in order to satisfy cumulativity (Brewka, 1991a; Schaub, 1991).

The last principle, (N4), is called Loop and was first formulated and studied by
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Kraus, Lehmann, and Magidor (1990) as a property of inference relations generated

by preferential model structures. Roughly speaking, Loop expresses a syntactic

counterpart of transitivity on the model structure.

Other properties, additionally studied by Makinson (1993), which cannot be in-

terpreted for logic programs include Supraclassicality, Absorption, Distribution and

Consistency Preservation. We refer the reader to Makinson (1993) for more informa-

tion on these principles.

4.2.2 Properties of updates as a preferential relation

Kraus, Lehmann, and Magidor (1990) defined preferential consequence relations as

binary relations ∼ over propositional formulas satisfying the following properties

(here, ‘|=’ denotes validity in classical propositional logic):

(P1) If |= (φ⇔ ψ) and φ ∼ γ, then ψ ∼ γ.
(P2) If |= (φ⇒ ψ) and γ ∼ φ, then γ ∼ ψ.

(P3) φ ∼ φ.

(P4) If φ ∼ ψ and φ ∼ γ, then φ ∼ ψ ∧ γ.
(P5) If φ ∼ γ and ψ ∼ γ, then (φ ∨ ψ) ∼ γ.
(P6) If φ ∼ ψ and φ ∼ γ, then (φ ∧ ψ) ∼ γ.
Rule (P1) is called Left Logical Equivalence and (P2) is the principle of Right

Weakening. Property (P3) coincides with (N1) and is referred to by Kraus, Lehmann,

and Magidor as Reflexivity. (P4) and (P5) are respectively called And and Or. The

last rule, (P6), is identical with (N3), the principle of Cautious Monotony.

As noted by the above authors, any assertional relation satisfying (P1)–(P6) also

satisfies Cut, expressed here as the following rule:

If φ ∧ ψ ∼ γ and φ ∼ ψ, then φ ∼ γ.
Since not all preferential relations can be considered as reasonable inference

procedures, Lehmann and Magidor (1992) subsequently defined a more restricted

class of preferential relations, called rational consequence relations. They show that

such rational consequence relations give rise to logical closure operations which

satisfy the principle of cumulativity. Since none of the postulates for rational relations

can be formulated for logic programs, they are not discussed here.

4.2.3 Analysis

The interpretation of postulates (N1)–(N4) in terms of update sequences is given

in Table 3. The results show that (N1) and (N2) hold, whereas (N3) and (N4) fail.

This corresponds to the situation of standard logic programs under the answer set

semantics. Hence, in some sense, updates do not represent a loss in properties with

respect to standard answer set semantics.

Table 3 contains also the interpretation of postulates (P1)–(P6). As a matter

of fact, since (P3) and (P6) coincide with (N1) and (N3), respectively, and (P5)

admits no interpretation in terms of logic programs, only postulates (P1), (P2),
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Table 3. Interpretation of postulates (N1 )–(N4 ), (P1 ), (P2 ) and (P4 )

Postulate Interpretation Postulate holds

(N1) P1 ∈ Bel ((P, P1)) yes

(N2) If
⋃m
i=1 Qi ⊆ Bel ((P, P1)) and yes

P2 ⊆ Bel ((P, P1 ∪⋃m
i=1 Q1)), then P2 ⊆ Bel ((P, P1))

(N3) If
⋃m
i=1 Qi ⊆ Bel ((P, P1)) and P2 ⊆ Bel ((P, P1)), then no

P2 ⊆ Bel ((P, P1 ∪⋃m
i=1 Q1))

(N4) If Pi+1 ⊆ Bel ((P, Pi)) (1 6 i < n) and no

P1 ⊆ Bel ((P, Pn)) (n > 2), then

{P ′ | P ′ ⊆ Bel ((P, Pi))} = {P ′ | P ′ ⊆ Bel ((P, Pj))},
for all i, j 6 n

(P1) If P1 ≡ P2 and P3 ⊆ Bel ((P, P1)), then no

P3 ⊆ Bel ((P, P2))

(P2) If P1 |= P2 and P1 ⊆ Bel ((P, P3)), then no

P2 ⊆ Bel ((P, P3))

(P4) If P2 ⊆ Bel ((P, P1)) and P3 ⊆ Bel ((P, P1)), then yes

P2 ∪ P3 ⊆ Bel ((P, P1))

and (P4) are included in Table 3. Like the failure of (K6) and (U4), the failure of

postulate (P1) showcases the syntax-dependency of update programs, as equivalent

programs do not behave the same way under identical update information. Proofs

and counterexamples for properties (N1)–(N4), (P1), (P2), and (P4) are given in

Appendix A.5.

4.3 Further properties

Rounding off our discussion on principles of update sequences, we describe some

additional general properties which, as we believe, updates and sequences of updates

should satisfy. The given properties are not developed in a systematic manner,

though, and they are not meant to represent an exhaustive list. Unless stated

otherwise, update programs enjoy these properties.

Addition of Tautologies: If the program Q contains only tautological rules (i.e., if Q

contains only rules of the form L← L), then (P, Q) ≡ P.

This property is violated, which is also the case e.g. for dynamic logic programs.

Consider the programs P1 = {a ← }, P2 = {¬a ← }, and P3 = {a ← a}. Then

(P1, P2) has the single answer set {¬a}. By updating with P3, the interaction between

P1 and P3 generates another answer set for (P1, P2, P3), namely {a}. Note, however,

that tautological rules in updates are, as we believe, rare in practical applications

and can be eliminated easily.

https://doi.org/10.1017/S1471068401001247 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001247


732 T. Eiter et al.

Initialization: (∅, P ) ≡ P .

This property states that the update of an initial empty knowledge base yields just

the update itself.

Idempotence: (P , P ) ≡ P .

Updating program P by itself has no effect. This property is in fact a special case

of the following principle:

Absorption: (P, Q, Q) ≡ (P, Q).

The next three properties express conditions involving programs over disjoint

alphabets.

Update of Disjoint Programs: If P = P1 ∪ P2 is the union of programs P1, P2 on

disjoint alphabets A1 and A2, then P � Q ≡A1∪A2
(P1 � Q) ∪ (P2 � Q).

Parallel Updates: If P = (P1, . . . , Pn) is an update sequence over A, and Q1 and

Q2 are programs defined over disjoint alphabets A1 and A2, respectively, then

P1 � · · ·� Pn � (Q1 ∪ Q2) ≡A∪A1∪A2
(P1 � · · ·� Pn � Q1) ∪ (P1 � · · ·� Pn � Q2).

In other words, the update by non-interfering programs can be done in parallel,

by merging the respective results. This property is not satisfied: Consider the case

n = 1, with P1 = P and Q2 = ∅. Assuming that the property holds, we would have

Bel (P � Q1) = Bel ((P � Q1) ∪ P ), i.e., P holds in (P ,Q1) no matter what. This is

quite obviously not the case.

Noninterference: If P1 and P2 are programs defined over disjoint alphabets, then

(P, P1, P2) ≡ (P, P2, P1).

That is, the order of updates which do not interfere with each other is immaterial.

This property is an immediate consequence of the following stronger property:

Suppose Q ⊆ P2 is a program such that there are no rules r ∈ Q and r′ ∈ (P2\Q)∪P1

with H(r) = ¬H(r′). Then, (P, P1, P2) ≡ (P, P1 ∪ Q, P2 \ Q).

Augmented Update: If P1 ⊆ P2, then (P, P1, P2) ≡ (P, P2).

Updating with additional rules makes the previous update obsolete. This property

is a somewhat stronger, syntactic variant of the postulate (C1) from above, which

fails. On the other hand, it includes Absorption as a special case.

Note that (P, P2, P1) ≡ (P, P2) does in general not hold, which may be desired in

some cases: Omission of a rule r in P2 with respect to P1 leaves the possibility to

violate r.

As mentioned before, a sequence of updates P = (P1, . . . , Pn) can be viewed either

from the point of view of ‘immediate’ revision, or as ‘logic-constrained’ revision.

The following property, which deserves particular attention, expresses equivalence

of these views (the property is formulated for the case n = 3):

Iterativity: For any epistemic state P1 and ELPs P2 and P3 over A, it holds that

P1 � P2 � P3 ≡A (P1 � P2)� P3.
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However, this property fails. Informally, soundness of this property would mean that

a sequence of three updates is a shorthand for iterated update of a single program,

i.e. the result of P1 � P2 is viewed as a singleton sequence. Stated another way,

this property would mean that the definition for P1 � P2 � P3 can be viewed as a

shorthand for the nested case. Vice versa, this property reads as possibility to forget

an update once and for all, by incorporating it immediately into the current belief

set.

For a concrete counterexample, consider P1 = ∅, P2 = {a ←, ¬a ← }, and

P3 = {a← }. The program P� = P1 � P2 � P3 has a unique answer set, in which a

is true. On the other hand, (P1 � P2)� P3 has no consistent answer set. Informally,

while the ‘local’ inconsistency of P2 is removed in P1 � P2 � P3 by rejection of the

rule ¬a ← via P3, a similar rejection in (P1 � P2) � P3 is blocked because of a

renaming of the predicates in P1 � P2. The local inconsistency of P2 is thus not

eliminated.

However, under certain conditions, which exclude such possibilities for local

inconsistencies, the iterativity property holds, given by the following result:

Theorem 7
Let P = (P1, . . . , Pm, Pm+1, . . . , Pn), n > m > 2 be a sequence of programs over a set

of atoms A. Suppose that for any conflicting rules r1, r2 ∈ Pi, i 6 m, one of the

following conditions holds:

(i) There is some rule r ∈ Pj , i < j 6 m, such that either H(r) = H(r1) and

B(r) ⊆ B(r1), or H(r) = H(r2) and B(r) ⊆ B(r2);
(ii) there are rules r′1, r′2 ∈ Pj , m < j 6 n, such that H(rk) = H(r′k) and B(r′k) ⊆

B(rk), k ∈ {1, 2}, and no rule r ∈ Pj ′ exists with j < j ′ 6 n and H(r) = H(r1)

or H(r) = H(r2); or
(iii) B(r1) ∪ B(r2) is unsatisfiable.

Then:

P1 � · · ·� Pn ≡A (P1 � · · ·� Pm)� Pm+1 � · · ·� Pn.
The proof of this theorem is technically involving and is not presented here; it

can be found in (Eiter et al., 2000b). Observe that Conditions (i)–(iii) of Theorem 7

are simple syntactic criteria, which can be easily checked.

A weaker version of Theorem 7 may be applied if updates should be incorporated

instantaneously, by only considering Condition (iii). This condition can be locally

checked on each update, and is useful, e.g. if P1 � P2 has already been constructed.

Since, for any programs Q1 and Q2, the update program Q1 � Q2 does not have

rules with opposite heads, we can conclude from Theorem 7 that incorporating

consecutive updates which obey assertion (iii) is equivalent to the update program

for the sequence of updates.

Theorem 8
Let P = (P1, . . . , Pn), n > 2, be an update sequence on a set of atoms A. Suppose

that, for any conflicting rules r1, r2 ∈ Pi, i 6 n, the union B(r1)∪B(r2) of their bodies

is unsatisfiable. Then:

(· · · (P1 � P2)� P3) · · ·� Pn−1)� Pn ≡A P1 � P2 � P3 � · · ·� Pn.
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In certain cases, the assertions in Theorem 7 can be dropped. One such case is a

repeated update, i.e. (P1, P2, P2); see Eiter et al. (2000b) for more details.

5 Refined semantics: minimal and strictly minimal answer sets

A property which update programs intuitively do not respect is minimality of change.

In general, it is desirable to incorporate a new set of rules P2 into an existing

program P1 with as little change as possible. This, of course, requests us to specify

how similarity (or difference) between programs is understood and, furthermore, how

proximity of programs is measured. In particular, the question is whether similarity

should be model-based, or syntactically defined.

Since the semantics of update programs depends on syntax, a pure model-based

notion of similarity between logic programs seems less appealing for defining mini-

mality of change. A natural approach for measuring the change which P1 undergoes

by an update with P2 is by considering those rules in P1 which are abandoned. This

leads us to prefer an answer set S1 of P = (P1, P2) over another answer set S2 if S1

satisfies a larger set of rules from P1 than S2.

Definition 5

Let P = (P1, . . . , Pn) be an update sequence. An answer set S ∈ U(P) is minimal iff

there is no S ′ ∈ U(P) such that Rej (S ′,P) ⊂ Rej (S,P).

Example 2

Consider the sequence (P1, P2, P3) from Example 1. Assume that the following

additional update is received, describing that a TV can also be turned off:

P4 =
{
r8 : switched off← not tv on, not power failure;

r9 : tv on← not switched off, not power failure;

r10 : ¬tv on← switched off;

r11 : ¬switched off← tv on
}
.

While (P1, P2, P3) has the single answer set S1 = {night,¬power failure, tv on,

watch tv}, the new sequence P = (P1, P2, P3, P4) has two answer sets: S1 ∪
{¬switched off} and, additionally, S2 = {night,¬power failure, switched off,¬tv on,

sleep}. Both answer sets reject rule r6, but S2 rejects r3, too. Thus, S1 is minimal and,

corresponding to our intuition, should be preferred to S2.

Minimal answer sets put no further emphasis on the temporal order of updates.

Rules in more recent updates may be violated in order to satisfy rules from previous

updates. Eliminating this possibility leads us to the following notion:

Definition 6

Let S, S ′ ∈ U(P), for some update sequence P = (P1, . . . , Pn). Then, S is preferred

over S ′ iff some i ∈ {1, . . . , n} exists such that (i) Rej i(S, P ) ⊂ Rej i(S
′, P ), and

(ii) Rej j(S, P ) = Rej j(S
′, P ), for all j = i + 1, . . . , n. An answer set S of P is strictly

minimal, if no S ′ ∈ U(P) exists which is preferred over S .
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Example 3

Suppose in the previous example we had observed that the TV was off when the

power returned, i.e., replace P3 in (P1, P2, P3, P4) by:

P ′3 =
{
r7 : ¬power failure←, r′7 : ¬tv on← }

.

The modified update sequence P′ = (P1, P2, P
′
3, P4) yields the same answer sets as

before:

S1 = {night,¬power failure,¬switched off, tv on,watch tv};
S2 = {night,¬power failure, switched off,¬tv on, sleep}.

However, now both answer sets are minimal: We have Rej (S1,P
′) = {r′7, r6} and

Rej (S2,P
′) = {r3, r6}. Thus, Rej (S1,P

′) and Rej (S2,P
′) are incomparable, and hence

both S1 and S2 are minimal answer sets. Since in S1 the more recent rule of P ′3 is

violated, S2 is the unique strictly minimal answer set.

We denote by Belmin(P) the set of all rules which are true in any minimal answer

set of an update sequence P. Likewise, Bel str(P) denotes the set of all rules which

are true in all strictly minimal answer sets of P.

Let us consider some further example stressing the difference between regular

update answer sets, minimal answer sets, and strictly minimal answer sets.

Example 4

An agent consulting different sources in search of a performance or a final rehearsal

of a concert on a given weekend may be faced with the following situation. First,

the agent is notified by one of the sources that there is no concert on Friday:

P1 =
{
r1 : ¬concert friday← }

.

Later on, a second source reports that it is neither aware of a final rehearsal on

Friday, nor of a concert on Saturday:

P2 =
{
r2 : ¬final rehearsal friday←, r3 : ¬concert saturday← }

.

Finally, the agent is assured that there is a final rehearsal or a concert on Friday

and that whenever there is a final rehearsal on Friday, a concert on Saturday or

Sunday follows:

P3 =
{
r4 : concert friday← not final rehearsal friday;

r5 : final rehearsal friday← not concert friday;

r6 : concert saturday← final rehearsal friday, not concert sunday;

r7 : concert sunday← final rehearsal friday, not concert saturday
}
.

The update sequence P = (P1, P2, P3) yields three answer sets:

S1 = {final rehearsal friday,¬concert friday, concert saturday};
S2 = {final rehearsal friday,¬concert friday,¬concert saturday, concert sunday};
S3 = {¬final rehearsal friday, concert friday,¬concert saturday},
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The corresponding rejection sets are:

Rej (S1,P) = {r2, r3};
Rej (S2,P) = {r2};
Rej (S3,P) = {r1}.

Thus, S2 and S3 are minimal answer sets, with S3 being the single strictly minimal

answer set of P.

Clearly, every strictly minimal answer set is minimal, but not vice versa. It is easily

seen that for the case of update sequences involving only two update programs, i.e.

for update sequences of the form P = (P1, P2), the notions of strictly minimal answer

sets and minimal answer sets coincide. As for the AGM postulates, inspection shows

that minimal and strictly minimal answer sets satisfy the same postulates as regular

update answer sets, with the exception that (K3) and (K4) hold for the former

ones.

Concerning the implementation of minimal and strictly minimal answer sets, in

Section 6.2 we will show how they can be characterized in terms of ELPs.

6 Computational issues

6.1 Complexity

In this section, we address the computational complexity of update programs. We

assume that the reader is familiar with the basic concepts of complexity theory; for

example, Johnson (1990) and Papadimitriou (1994) are good sources (for complexity

results in logic programming (Schlipf, 1995; Eiter and Gottlob, 1995; Dantsin

et al., 1997)). In our analysis, we focus on the case of finite, propositional update

sequences.

We briefly recall the definitions of the complexity classes relevant in the following

analysis. The class NP consists of all decision problems which are solvable in

polynomial time using a nondeterministic Turing machine, and ΣP
2 is the class of

all decision problems solvable by a nondeterministic Turing machine in polynomial

time with access to an oracle for problems in NP (ΣP
2 is also written as NPNP).

Furthermore, coNP refers to the class of problems whose complementary problems

are in NP, and ΠP
2 contains the complements of the problems in ΣP

2 .4 All the

mentioned classes belong to the polynomial hierarchy: NP and coNP are at the first

level of the hierarchy, and ΣP
2 and ΠP

2 are the second level. As well, NP ⊆ ΣP
2 and

coNP ⊆ ΠP
2 . It is widely held that these inclusions are proper.

It is clear that the complexity of normal logic programs, which resides at the first

level of the polynomial hierarchy (Marek and Truszczyński, 1991), is a lower bound

for the complexity of update programs. For arbitrary updates, the complexity does

not increase, even if we consider a sequence of updates.

4 Two decision problems, D1 and D2, are complementary (or, D1 and D2 are complements of each other)
if it holds that I is a yes-instance of D1 exactly if I is a no-instance of D2.
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Theorem 9

Given an update sequence P = (P1, . . . , Pn) over a set of atoms A, then:

(i) determining whether P has an answer set is NP-complete;

(ii) determining whether L ∈ Bel (P) for some literal L is coNP-complete.

Hardness holds in both cases for n = 1.

Proof

The program P� = P1 � P2 � · · · � Pn can obviously be generated in polynomial

time from P = (P1, . . . , Pn). Furthermore, deciding consistency of P� is in NP, and

checking whether L ∈ Bel (P�) is in coNP. This proves membership. NP-hardness

and coNP-hardness of the respective tasks is inherited from the complexity of

normal logic programs (Marek and Truszczyński, 1991). q

Under minimal updates, the complexity of updates increases by one level in the

polynomial hierarchy. This is no surprise, though, and parallels analogous results

on update logic programs by Sakama and Inoue (1999) as well as previous results

on updating logical theories and iterated circumscription (Eiter and Gottlob, 1992,

1995).

Theorem 10

Given an update sequence P = (P1, . . . , Pn) over a set of atoms A and some rule r,

the following two problems are ΠP
2 -complete:

(i) determining whether r ∈ Belmin(P); and

(ii) determining whether r ∈ Bel str(P).

Hardness holds even if n = 2.

Proof

We first show that the two tasks are in ΠP
2 . We treat only task (i); the case of

task (ii) is analogous. In order to show membership of (i) in ΠP
2 , we show that the

complementary problem is in ΣP
2 . To disprove r ∈ Belmin(P), we can construct the

update program P� = P1 � P2 � · · ·� Pn in polynomial time from P and guess an

answer set Š ⊆ A∗ of P� such that Š 6|= r and where S = Š ∩ A is a minimal

answer set of P (recall that S ∈ U(P) is minimal iff there is no T ∈ U(P) such that

Rej (T ,P) ⊂ Rej (S,P)). With the help of an NP-oracle, the guess for Š can be verified

in polynomial time. This concludes the proof that checking whether r 6∈ Belmin(P ) is

in ΣP
2 .

Hardness of both tasks is shown by a simple reduction from the ΠP
2 -hard

irrelevance test in abduction from normal logic programs (Eiter et al., 1997b),

which is the following problem: Given a normal logic program P , a set of atoms H ,

a set of literals M, and an atom h0 ∈ H , decide whether h0 is not contained in any

minimal brave explanation of M, i.e. decide whether h0 /∈ E holds for each minimal

E ⊆ H (with respect to inclusion) such that P ∪ E has some stable model S with

S |= L, for all L ∈M.
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The reduction is defined as follows: For each h ∈ H , let h′ and h′′ be fresh atoms,

and consider the update sequence P = (P1, P2), where

P1 = {¬h′ ← | h ∈ H},
P2 = P ∪ { ← not L | L ∈M} ∪ {h← h′, h′ ← not h′′, h′′ ← not h′ | h ∈ H}.

It can be shown that there is a one-to-one correspondence between the rejection sets

Rej (S,P) of the minimal answer sets S of P and the minimal brave explanations E

for M. In particular, the rule ¬h′0 ← is in Rej(S) iff h0 belongs to the corresponding

minimal explanation E. It follows that h0 ← ∈ Belmin(P) iff h0 is not contained in

any brave explanation for M, which establishes ΠP
2 -hardness of (i). Since the notions

of minimal and strictly minimal answer sets coincide for update sequences of length

2, we have that Belmin(P) = Bel str(P). Thus, ΠP
2 -hardness of (ii) holds as well. q

Similar results hold in the approach of Inoue and Sakama (1999). Furthermore,

they imply that minimal and strictly minimal answer sets can be polynomially

translated into disjunctive logic programming, which can serve as a basis for imple-

mentation purposes. The next section deals with some algorithmic issues.

6.2 Implementation

The notion of update sequence can be easily extended to the case where rules may

contain variables. As usual, the semantics of a program P containing variables is

defined in terms of the semantics of its ground instances P ∗ over the Herbrand

base. Rules r with variables X = X1, . . . , Xn are denoted r(X), and rejection of

r is represented by a predicate rej r(X); further details, can be found in Eiter et

al. (2000b). In the rest of this section, we consider function-free update sequences P.

Since answer sets of (first-order) update sequences are defined by answer sets of

(first-order) ELPs, it is relative straightforward to implement the current update

approach. In fact, an implementation can be built on top of existing solvers for

answer set semantics. In the present case, we implemented updates as a front-end

for the logic programming tool DLV (Eiter et al., 1997a, 1998). The latter system is

a state-of-the-art solver for disjunctive logic programs (DLPs) under the answer set

semantics. It allows for non-ground rules and calculates answer sets by performing a

reduction to the stable model semantics. (Another highly efficient logic programming

implementation, realizing stable model semantics, is the system smodels (Niemelä

and Simons, 1996), which would similarly fit as underlying reasoning engine. We

chose DLV because of familiarity and its optimization techniques for grounding, as

well as its expressiveness which would allow an integral solution to compute strict

and strictly minimal answer sets, respectively.) Formally, DLPs are defined as ELPs

where disjunctions may appear in the head of rules; the answer set semantics for

DLPs is due to Gelfond and Lifschitz (1991).

The implemented tasks agree with the decision problems discussed in the previous

section, i.e. they comprise the following problems: (i) checking the existence of an

answer set for a given update sequence, (ii) brave reasoning, and (iii) skeptical

reasoning; as well as the corresponding problems for minimal and strictly minimal
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answer sets. All of these tasks have been realized for first-order update sequences,

employing the advanced grounding mechanism of DLV.

As regards the implementation for minimal and strictly minimal update answer

sets, although in principle it is possible to express the corresponding reasoning

tasks in terms of DLPs (which is a consequence of Theorem 10 and well-known

expressibility results for the disjunctive answer set semantics (Eiter et al., 1997c)), we

chose instead to pursue a two-step evaluation approach for our purposes, remaining

within the present non-disjunctive framework, and, at the same time, adhering more

closer to the underlying intuitions. Roughly speaking, this two-step approach can

be described as follows: First, all candidates for minimal (strictly minimal) answer

sets are calculated, i.e. all answer sets of the update program P� . Afterwards, every

candidate is tested for being minimal (strictly minimal).

Testing a candidate, S , for minimality (strict minimality) is performed by evalu-

ating a test program, Pmin
S (Pstrict

S ), consisting of the rules of P� and a set of additional

rules. Intuitively, the additional rules constrain the answer sets of Pmin
S (Pstrict

S ) to

those answer sets of P� having a smaller set of rejected rules compared to the rules

rejected by S (or to those answer sets of P� preferred over S , respectively). Hence,

the candidate S is minimal (strictly minimal) if the corresponding test program Pmin
S

(Pstrict
S ) has no answer set. In the following subsections, the implementation approach

is described more formally.

6.2.1 Minimal answer sets

Definition 7

Let P� = P1 � . . . � Pn be a (first-order) update program and S an answer set of

P� . Let ok be a new nullary predicate symbol (i.e. propositional atom) and, for each

predicate symbol rej r occurring in P� , let sr be a new predicate symbol of the same

arity as rej r . Then, the minimality-test program with respect to S , Pmin
S , consists of

all rules and constraints of P� , together with the following items:

(i) for each predicate symbol rej r occurring in P�:

← rej r(X), not sr(X);

(ii) for each ground formula rej r(t) ∈ S:

ok ← not rej r(t);

sr(t) ← ;

(iii) the constraint

← not ok.

Note that in the above definition, only the rules and facts of (ii) manifest the

dependence of Pmin
S from S . Informally, the constraints (i) eliminate all answer sets

with rejection sets which cannot be subsets of Rej (S,P), i.e., which reject at least

one rule not rejected in S . In the remaining answer sets, if any, either ok is true, i.e.,

at least one rule which is rejected in S is not rejected in such a set, or ok is false, in
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Algorithm Compute Minimal Models(P)

Input: A sequence of ELPs P = (P1 ,. . . ,Pn ).

Output: All minimal answer sets of P.

var Cands : SetOfAnswerSets;

var MinModels : SetOfAnswerSets;

Cands := Compute Answer Sets(P�);

for all S ∈ Cands do

var Counter : SetOfAnswerSets;

Counter := Compute Answer Sets(Pmin
S );

if (Counter = ∅) then

MinModels := MinModels ∪ {S};
fi

rof

return MinModels;

Fig. 1. Algorithm to calculate minimal answer sets.

which case their rejection sets equal Rej (S,P), and thus these sets are eliminated by

Constraint (iii). Actually, the following proposition holds:

Theorem 11

Let S be an answer set of P� . Then, S is a minimal answer set of P� iff Pmin
S has

no answer set.

Proof

Only-if part. Suppose Pmin
S has an answer set S ′. Then ok must be true in S ′ due to the

constraint (iii) of Definition 7. Since rules (ii) of Definition 7 are the only ones in Pmin
S

with head ok, there exists a ground term rej r(t) ∈ S such that rej r(t) /∈ S ′. Moreover,

no ground term rej r′ (t) ∈ S ′ \ S can exist due to the constraints (i) of Definition 7.

(Observe that rej r′ (t) /∈ S implies sr′ (t) /∈ S ′; hence, if rej r′ (t) ∈ S ′, then the body of

one of the constraints is true in S ′.) This proves Rej (S ′,Pmin
S ) = Rej (S ′,P) ⊂ Rej (S,P).

Since the predicate symbols ok and sr do not occur in P� , and Pmin
S contains all

rules and constraints of P� , results on the splitting of logic programs (Lifschitz and

Turner, 1994) imply that S̃ = S ′ \ ({ok} ∪ {sr(t) | sr(t) ∈ S ′}) is an answer set of P� .

Given that Rej (S̃ ,P) = Rej (S ′,P) ⊂ Rej (S,P), we obtain that S is not minimal.

If part. Suppose S is not minimal. Then there exists an answer set S̃ of P� with

Rej (S̃ ,P) ⊂ Rej (S,P). Consider S ′ = S̃∪{ok}∪{sr(t) | rej r(t) ∈ S}. It is easily verified

that S̃ is an answer set of Pmin
S . q

This result allows us to calculate all minimal answer sets of P� using the straight-

forward algorithm depicted in Figure 1, which proceeds as follows: compute all

answer sets of P� and check for every answer set S if the corresponding minimality-

test program Pmin
S has at least one answer set. If not, then add S to the set of minimal

answer sets of P� .
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6.2.2 Strictly minimal answer sets

Definition 8

Let P� = P1� . . .�Pn be a (first-order) update program and S an answer set of P� .

Let ok, oki (1 6 i 6 n), and eqi (1 6 i 6 n+1) be new nullary predicate symbols, and,

for each predicate symbol rej r occurring in P� , let sr be a new predicate symbol of

the same arity as rej r . Then, the program Pstrict
S consists of all rules and constraints

of P� , together with the following items:

(i) for each predicate rej r occurring in P� , corresponding to r ∈ Pi:
← rej r(X), not sr(X), eqi+1;

(ii) for each ground term rej r(t) ∈ S , corresponding to r ∈ Pi:
oki ← not rej r(t), eqi+1;

sr(t) ← ;

(iii) for 1 6 i 6 n:

eqi ← eqi+1, not oki;

ok ← oki;

(iv) the constraint

← not ok

and the fact

eqn+1 ← .

Again, program Pstrict
S depends on S only in virtue of Item (ii). The constraints of

Item (i) eliminate all answer sets S ′ which cannot be preferred over S because at

some level i they reject a rule not rejected in S , and Rej j(S,P) = Rej j(S
′,P) holds

for j = i+ 1, . . . , n (expressed by eqi+1). In the remaining answer sets, if there is any,

ok is either true, or false. If ok is true in S ′, then oki is true in S ′ for some level i,

i.e. S ′ does not reject a rule of Pi which is rejected in S , and Rej j(S,P) = Rej j(S
′,P)

for j = i+ 1, . . . , n. In this case, S ′ is preferred over S . If, however, ok is false in S ′,
then Rej i(S,P) = Rej i(S

′,P), for i = 1, . . . , n, and S ′ is killed by the constraint of

Item (iv).

An equivalent result as for minimality-test programs holds for the above test

programs as well. Hence, the same algorithm using Pstrict
S instead of Pmin

S can be used

to compute all strictly minimal answer sets of P� .

Theorem 12

Let S be an answer set of P� . Then, S is a strictly minimal answer set of P� iff

Pstrict
S has no answer set.

Proof

Only-if part. Suppose Pstrict
S has an answer set S ′. Then ok must be true in S ′, due

to Constraint (iv) of Definition 8. Since the rules of Item (iii) of Definition 8 are

the only ones in Pstrict
S with head ok, there exists some i, 1 6 i 6 n, such that
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oki ∈ S ′. This implies that the body of the corresponding rule of (ii) must be true

in S ′. Hence, there exists a ground term rej r(t) ∈ S \ S ′, where r ∈ Pi and such that

eqi+1 ∈ S ′. Moreover, except for the fact eqn+1 ← , the rules of (iii) are the only

ones in Pstrict
S with eq predicate symbols in their heads, so that eqi+1 implies eqj ∈ S ′

and okj /∈ S ′ for j = i + 1, . . . , n if i < n. From this, and the constraints of (i), it

follows that no ground term rej r′ (t)S
′ \ S , r′ ∈ Pj , j = i, . . . , n, can exist (rej r′ (t) /∈ S

implies sr′ (t) /∈ S ′; hence, having rej r′ (t) ∈ S ′ and eqj+1 ∈ S ′, the body of one of the

constraints is true in S ′). It also follows that for every r′ ∈ Pj , j = i + 1, . . . , n, if

rej r′ (t) ∈ S , then rej r′ (t) ∈ S ′ (otherwise the body of one of the rules of (ii) would be

true in S ′, implying okj ∈ S ′, a contradiction).

Summarizing, we have shown Rej i(S
′,Pstrict

S ) = Rej i(S
′,P�) ⊂ Rej i(S,P�) and

Rej j(S
′,Pstrict

S ) = Rej j(S
′,P�) = Rej j(S,P�), for j = i + 1, . . . , n. So, S ′ is preferred

over S .

Since none of the predicate symbols ok, eq, and sr occurs in P� , and Pstrict
S contains

all rules and constraints of P� , by a similar argument as in the proof of Theorem 11

(i.e., invoking splitting results from Lifschitz and Turner (1994)) it follows that

S̃ = S ′ \ ({ok, oki} ∪ {eqj | j = i+ 1, . . . , n+ 1} ∪ {sr(t) | sr(t) ∈ S ′})
is an answer set of P� . Given that Rej (S̃ ,P�) = Rej (S ′,P�), we obtain that S̃ is

preferred over S . Consequently, S is not a strictly minimal answer set.

If part. Suppose S is not a strictly minimal answer set. Then there exists an answer set

S̃ of P� which is preferred over S . In particular, there exists some i, 1 6 i 6 n, such

that Rej j(S̃ ,P�) = Rej j(S,P�) for j = i + 1, . . . , n and Rej i(S̃ ,P�) ⊂ Rej i(S,P�).

Consider

S ′ = S̃ ∪ {ok, oki} ∪ {eqj | j = i+ 1, . . . , n+ 1} ∪ {sr(t) | rej r(t) ∈ S}.
It is easily verified that S̃ is an answer set of Pstrict

S . q

7 Relations to other approaches

In this section, we analyze the relations between the current update framework and

other formalisms. First of all, we discuss the connection with inheritance programs

by Buccafurri et al. (1999a), which has not been introduced as a formalism for

updates but can be successfully interpreted as such, coming to an equivalence result

with our update sequences over the common fragment.

In a second step, we study the relation on the one hand to the approach of

Leite and Pereira (1997), also modeling Revision Programming by Marek and

Truszczyński (1994), on the other hand to dynamic logic programming (Alferes

et al., 1998, 2000), which is close in spirit to the present update method, in the

sense that update sequences are translated to standard logic programs. In particular,

we describe the semantical differences between our update programs and dynamic

programs, and show that both proposals have problems on certain examples.

Then, we briefly discuss update approaches for logic programs based on preference

handling (Zhang and Foo, 1998) and abduction (Inoue and Sakama, 1999). Finally,

we mention a method due to Delgrande, Schaub, and Tompits (2000) for handling
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preference information in the context of logic programs, which is also based on an

encoding to ELPs.

7.1 Relation to inheritance programs

The update semantics we suggest resolves conflicts by assigning ‘preference’ to the

more recent information. As already pointed out earlier, this can also be interpreted

as some form of inheritance mechanism, where the more recent information is

considered as being more specific. In this section, we discuss this aspect in more

detail. To wit, we consider the inheritance approach introduced by Buccafurri et

al. (1999a) and we show that update sequences can equivalently be described in

terms of inheritance programs.

In what follows, we briefly describe the basic layout of the inheritance approach

by Buccafurri et al. (1999a). Since that method has originally been specified for

non-ground DLPs, and we deal here only with non-disjunctive ELPs, we adapt

some of the original definitions accordingly.

A DLP<-program, P<, is a finite set {〈o1, P1〉, . . . , 〈on, Pn〉} of object identifiers oi
(1 6 i 6 n) and associated ELPs Pi, together with a strict partial order ‘<’ between

object identifiers (pairs 〈oi, Pi〉 are called objects).5 As well, we say that P< is a

DLP<-program over a set of atoms A iff A denotes the set of all atoms appearing

in P<. Informally, possible conflicts in determining properties of the objects are

resolved in favor of rules which are more specific according to the hierarchy, in the

sense that rule r ∈ Pk is considered to represent more specific information than rule

r′ ∈ Pl whenever ok < ol holds (1 6 k, l 6 n and k 6= l). In the following, ρ(P<)

denotes the multiset of all rules appearing in the programs of P<.

Consider some DLP<-program P< over a set of atoms A. Let I ⊆ LitA be

an interpretation and let r1 ∈ P and r2 ∈ P ′ be two conflicting rules, where

〈o, P 〉, 〈o′, P ′〉 ∈ P<. Then, r1 overrides r2 in I iff (i) o < o′, (ii) H(r1) is true in I ,

and (iii) B(r2) is true in I . A rule r ∈ ρ(P<) is overridden in I iff there exists some

r′ ∈ ρ(P<) which overrides r in I .

An interpretation I ⊆ LitA is a model of P< iff every rule in ρ(P<) is either

overridden or true in I; moreover, I is minimal iff it is the least model of all these

rules. The reduct, GI (P
<), of the DLP<-program P< relative to I results from ρ(P<)

by (i) deleting any rule r ∈ ρ(P<) which is either overridden in I or defeated by I;

and (ii) deleting all weakly negated literals in the bodies of the remaining rules of

ρ(P<). Then, I is an answer set of P< iff it is a minimal model of GI (P
<).

This concludes our brief review of the inheritance framework of Buccafurri et

al. (1999a); we continue with our correspondence result.

Theorem 13

S ⊆ LitA is an answer set of the update sequence P = (P1, . . . , Pn) over A iff S is

an answer set of the DLP<-program P< = {〈o1, P1〉, . . . , 〈on, Pn〉} having inheritance

order on < on−1 < · · · < o1.

5 Strictly speaking, in the current context, the term ‘DLP<-program’ (as introduced by Buccafurri et
al. (1999a)) is a bit of a misnomer, because ‘DLP’ points to disjunctive logic programs; however, we
retained the original name for reference’s sake.
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Proof

We first note the following two properties, which can be verified in a straightforward

way. Let I ⊆ LitA be some interpretation and r ∈ ρ(P<). Then:

(i) If r ∈ Rej (I,P), then r is overridden in I .

(ii) Assume I satisfies for any r′ ∈ ρ(P<) the condition that B(r′) is true in I

whenever H(r′) is true in I . Then, r is overridden in I only if r ∈ Rej (I,P).

We proceed with the proof of the main result. Suppose S is an answer set of

P = (P1, . . . , Pn). We show S is an answer set of P< = {〈o1, P1〉, . . . , 〈on, Pn〉} with

inheritance order on < on−1 < · · · < o1.

First, we show that S is a model of GS (P<). Consider some r ∈ GS (P<). Then, there

is some rule r̂ ∈ ρ(P<) such that r = r̂+ and r̂ is neither overridden in S nor defeated

by S . Applying Property (i), we get that r̂ /∈ Rej (S,P). Hence, r̂ ∈ (∪P \ Rej (S,P))S

since r̂ is not defeated by S . Thus, given that S is an answer set of P, Theorem 4

implies that r = r̂+ is true in S . It follows that S is a model of GS (P<).

Next, we show that there is no proper subset of S which is also a model of GS (P<).

Suppose there is such a set S0 ⊂ S . Since S is an answer set of P, Property (ii) can

be applied, and we obtain r ∈ GS (P<) whenever r ∈ (∪P \ Rej (S,P))S holds. As a

consequence, S0 is a model of r ∈ (∪P \ Rej (S,P))S , which contradicts the fact that

S is an answer set of P. This concludes the proof that S is an answer set of P< if S

is an answer set of P.

For the converse direction, assume S is an answer set of P<. Similar to the

argumentation given above, Property (ii) implies that S is a model of (∪P\Rej (S,P))S .

As well, S is a minimal model of (∪P \ Rej (S,P))S , because otherwise Property (i)

would yield a proper subset S0 of S being a model of GS (P<), contradicting the fact

that such a subset S0 cannot exist, because S is an answer of P<. q

Inheritance programs are also related to ordered logic programs, due to Laenens

et al. (1990) and further analyzed by Buccafurri et al. (1996). The difference between

inheritance programs and ordered logic programs is that the latter ones have a built-

in contradiction removal feature, which eliminates local inconsistencies in a given

hierarchy of programs. Thus, for linearly ordered programs P1 < P2 < · · · < Pn
where such inconsistencies do not occur, e.g. if for any two conflicting rules in Pi
(1 6 i 6 n) their bodies cannot be simultaneously satisfied, the above equivalence

result holds for ordered logic programs as well.

7.2 Revision programs and the approach of Leite and Pereira

In the framework of Marek and Truszczyński (1994), a knowledge base is a collection

of positive facts, and revision programs specify conditional insertions or removals

of facts under a semantics very similar to the stable semantics. In discussing this

approach, Leite and Pereira (1997) argued that the approach of revision programs

is not adequate if more complex knowledge is represented in the form of logic

programs, because revision programs compute only ‘model-by-model updates’, which

do not capture the additional information encoded by logic programs. Accordingly,
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they proposed an extended framework in which a suitable inertia principle for rules

realizes the update independently of any specific model of the original program. In

the following, we briefly sketch their approach.

In a first step, Leite and Pereira (1997) define their approach for normal logic

programs, and afterwards they extend it to handle programs with strong negation

as well. Furthermore, Leite and Pereira (1997) deals only with the situation where

a given program is updated by a single program; the general case involving an

arbitrary number of updates is described in Leite (1997). We describe here the latter

approach, but, for the sake of simplicity, only the case of normal logic programs.

Following the method of revision programs (Marek and Truszczyński, 1994), an

update program in the sense of Leite and Pereira (1997) is a finite collection of rules

of the form

in(A) ← in(B1), . . . , in(Bm), out(C1), . . . , out(Cn), and (1)

out(A′) ← in(B′1), . . . , in(B′m), out(C ′1), . . . , out(C ′n), (2)

where A,A′, Bi, B′i , Cj , C ′j are atoms (1 6 i 6 m, 1 6 j 6 n). Intuitively, Rule (1)

states that A should be true given that B1, . . . , Bm are true and C1, . . . , Cn are false,

and a similar meaning holds for Rule (2). Rule (1) is called an in-rule, and Rule (2)

is an out-rule. Semantically, in-rule (1) is interpreted as the logic program rule

A ← B1, . . . , Bm, not C1, . . . , not Cn,

whilst out-rule (2) is interpreted as

¬A ← B1, . . . , Bm, not C1, . . . , not Cn.

When speaking about update programs, in the following they are always identified

with finite sets of rules of the above form. Let us call a sequence P = (P1, . . . , Pn) of

such programs an IO-sequence (for ‘sequence of in- and out-rules’). Consider an IO-

sequence P = (P1, . . . , Pn) over A, and let S ⊆ LitA be a set of literals. Leite (1997)

introduces the following notion of a rejection set (for 1 6 i, j 6 n):

Rejected (S, i, j) =
⋃
i<k6j{ r ∈ Pi | ∃r′ ∈ Pk such that r and r′ are conflicting

and S |= B(r) ∪ B(r′) }.
Then, S ∩A is a P-justified update at state j (1 6 j 6 n) iff S is an answer set of⋃

i6j

(Pi \ Rejected (S, i, j)),

provided that each program
⋃
i6l(Pi \Rejected (S, i, j)), for l < j, possesses an answer

set.6

It is easily seen that for P = (P1, . . . , Pn) and S as above, S is an answer set of⋃
i6n(Pi \ Rejected (S, i, j)) iff it is an answer set of ∪P \ Rej ′(S,P), where Rej ′(S,P)

is the weak form of a rejection set, as defined in Section 3.2. Hence, we can state

the following proposition:

6 Strictly speaking, Leite (1997) requires that, for each l 6 j,
⋃
i6l(Pi \ Rejected (S, i, j)) has a consistent

answer set. However, in our setting, answer sets are always consistent.
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Theorem 14

Let P = (P1, . . . , Pn) be an IO-sequence over A and S ⊆ LitA a set of literals.

Assume that each subsequence (P1, . . . , Pj) has an answer set, for 1 6 j 6 n. Then, S

is an answer set of P if it is a P-justified update at state n.

The converse of the above result, viz. that P-justified updates at state n are answer

sets of P, holds under certain restrictions (cf. Section 3.2).

Concerning the extended framework of Leite and Pereira in which rules of the form

(1) and (2) may contain literals instead of plain atoms, only weaker correspondences

can be found, assuming that update sequences contain only in-rules. Omitting further

details, we just mention that in this case our framework corresponds to Leite and

Pereira’s providing update sequences contain only in-rules.

7.3 Dynamic Logic Programming

Alferes et al. (1998, 2000) introduced the concept of dynamic logic programs as

a generalization of both the idea of updating interpretations through revision

programs (Marek and Truszczyński, 1994) and of updating programs as defined by

Alferes and Pereira (1997) and by Leite and Pereira (1997). Syntactically, dynamic

logic programs are based on generalized logic programs (GLPs), which allow default

negation in the head of rules, but no strong negation whatsoever.

In dynamic logic programming (DynLP in the following), the models of a sequence

of updates are defined as the stable models of the program resulting from a syntactic

rewriting, similar to the transformation used in our approach. This is called a dynamic

update. Elements of the sequence are GLPs.

Regarding the formalisms discussed in the previous subsection, in Alferes et

al. (2000) it is demonstrated that revision programs and dynamic updates are

equivalent, provided that the original knowledge is extensional, i.e. the initial program

contains only rules of the form A← or not A← .

Our analysis of dynamic updates can be summarized as follows. First, basic defi-

nitions and semantical characterizations of dynamic update programs are given.

Afterwards, the relation between dynamic updates and updates according to Defini-

tion 2 is investigated. Since the two approaches are defined over different languages,

the comparison must include suitable translations to take this distinction into ac-

count. As a matter of fact, Alferes et al. (2000) already discussed how ELPs can

be handled within their framework; likewise, we define a similar translation schema

such that GLPs can be treated by our update method.

As it turns out, there is a semantic difference between dynamic updates and

updates according to Definition 2. Although any dynamic update is an update

answer set in the sense of Definition 2, the converse does not hold in general, even

if Property (CH) from Section 3.2 holds. Intuitively, this can be explained by the

fact that dynamic updates are more restrictive as regards to certain circularities in

the given update information. On the other hand, there are conditions under which

both approaches yield equivalent results (cf. (Eiter et al., 2000b)). We briefly discuss

that dynamic logic programs do not eliminate all kinds of circularities.
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A1 A2 A3

P2P1

AnAn-1

P3 Pn-1 Pn
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P2P1

AnAn-1

P3 Pn-1

A3

Pn

A

Fig. 2. ‘Top-down’ evaluation of update sequences (left diagram) vs. ‘bottom-up’ evaluation

of dynamic logic programs (right diagram).

In view of the equivalent semantics for the example programs, except in case of

Addition of Tautologies, the failure of update principles we presented in Section

4 applies to dynamic logic programs as well. Satisfaction of properties may be

established using similar arguments. Furthermore, similar complexity results for

dynamic logic programs can be concluded, based on the constructions in Section 6.1.

7.3.1 Semantics of Dynamic Logic Programs

Given an update sequence P = (P1, . . . , Pn) of GLPs overA, letAdyn beA extended

by new, pairwise distinct atoms A−, Ai, A
−
i , APi , A

−
Pi

, and reject(Ai), for each A ∈ A
and each i ∈ {1, . . . , n}. The dynamic update program P⊕ = P1 ⊕ · · · ⊕ Pn over Adyn

is defined as the GLP consisting of the following items:

(i) for each r ∈ Pi, 1 6 i 6 n, with B−(r) = {C1, . . . , Cn}:
APi ← B+(r), C−1 , . . . , C−n if H(r) = A;

A−Pi ← B+(r), C−1 , . . . , C−n if H(r) = not A;

(ii) for each atom A occurring in P and each i ∈ {1, . . . , n}:
Ai ← APi; reject(A−i−1) ← APi;

A−i ← A−Pi; reject(Ai−1) ← A−Pi;

A−i ← A−i−1, not reject(A−i−1);

Ai ← Ai−1, not reject(Ai−1);

(iii) for each atom A occurring in P:

A−0 ← ; A← An; A− ← A−n ; not A← A−n .

One major difference can immediately be identified between our update programs

and dynamic updates: In dynamic updates, the value of each atom is determined from

the bottom level P1 upwards towards Pn (in virtue of rules Ai ← Ai−1, not reject(Ai−1)

and A← An for positive atoms, and the corresponding ones for dashed atoms), whilst

update programs determine such values in a downward fashion (cf. rules Li ← Li+1

and L ← L1 in Definition 2). This difference is visually depicted in Figure 2. More

importantly, the different evaluation strategy leads in effect to different semantics,

which will be shown later on.
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Before we can properly define the semantics of dynamic updates, based on the

transformation P⊕ introduced above, we must emphasize that Alferes et al. (1998,

2000) use a slightly non-standard concept of stable models. To wit, weakly negated

literals not A (A some atom) are treated like ordinary propositional atoms, so that

rules A0 ← A1, . . . , Am, not Am+1, . . . , not An are effectively be viewed as propositional

Horn formulas. Accordingly, an interpretation I is in this context understood as

a set consisting of atoms and weakly negated atoms such that for each atom

A it holds that A ∈ I iff not A /∈ I . To distinguish such interpretations from

interpretations in the usual sense, we call them generalized interpretations. As usual,

a set B, comprised of atoms and weakly negated atoms, is true in a generalized

interpretation I , symbolically I |= B, iff B ⊆ I . Towards defining stable models, the

following notation is required:

Let A be a set of atoms. Then, notA denotes the set {not A | A ∈ A}. Further-

more, for M ⊆ A∪notA, we set M− = {not A | not A ∈M}, and, for Z ∈ A∪notA,

we define not Z = not A if Z = A and not Z = A if Z = not A. For a program P

over A, the deductive closure, CnA(P ), is given by the set

{L | L ∈ A∪ notA and P ` L},
where P is interpreted as a propositional Horn theory and ‘`’ denotes classical

derivability. Usually, the subscript ‘A’ will be omitted from CnA(P ). A generalized

interpretation S is a stable model of a program P iff S = Cn(P ∪ S−).

Let P = (P1, . . . , Pn) be a sequence of GLPs over A, and let I be a generalized

interpretation. Alferes et al. (1998, 2000) introduce the following concepts:

Rejected (I,P) =
⋃n
i=1{r ∈ Pi | ∃r′ ∈ Pj, for some j ∈ {i+ 1, . . . , n}, such

that H(r′) = not H(r) and I |= B(r) ∪ B(r′)};
Defaults(I,P) = {not A | 6 ∃r in P such that H(r) = A and I |= B(r)}.

The dynamic stable models of P are defined as the projections S = S ′ ∩(A∪not A)

of the stable models of P⊕. As shown by Alferes et al. (1998, 2000), S ⊆ A∪ not A
is a stable model of P if and only if S satisfies the following condition:

S = Cn((∪P \ Rejected (S,P)) ∪ Defaults(S,P)).

Alferes et al. (2000) defined also an extension of their semantics to the three-

valued case: Let P = (P1, . . . , Pn) be a sequence of ELPs over A. Then, a consistent

set S ⊆ LitA is a dynamic answer set of P iff S ∪ {not L | L ∈ LitA \ S} is a dynamic

stable model of the sequence P = (P1, . . . , Pn ∪ {not A← ¬A, not ¬A← A | A ∈ A})
of GLPs. Here, the rules in {not A← ¬A, not ¬A← A | A ∈ A} serve for emulating

classical negation through weak negation.

7.3.2 Relating dynamic answer sets and update answer sets

Let us now define how GLPs are to be rewritten in order to constitute a valid input

for update programs according to Definition 2. For any rule r, by r◦ we denote the

rule which results from r by replacing weak negation occurring in the head of r by
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strong negation, i.e.,

r◦ =

{ ¬A← B(r) if H(r) = not A;

r otherwise.

Furthermore, for any GLP P , we define P ◦ = {r◦ | r ∈ P }.
Definition 9

Let P = (P1, . . . , Pn) be a sequence of GLPs overA. Then, the update sequence Q(P)

is given by the sequence (P ◦1 , . . . , P ◦n ∪ {¬A← not A | A ∈ A}).
Notice that the part {¬A ← not A | A ∈ A} serves for making all answer

sets complete. Moreover, no strong negation occurs in rule bodies of Q(P). Thus,

application of a rule with ¬A in the head can never lead to the application of further

rules; it can only enable that rules with A in their heads are overridden. As well, the

rules in {¬A← not A | A ∈ A} are not able to override any rule in Q(P).

Theorem 15

Let P = (P1, . . . , Pn) be any sequence of GLPs over a set of atoms A, and let

S ⊆ A ∪ notA be a dynamic stable model of P. Then, (S ∩ A) ∪ ¬(A \ S) is an

answer set of Q(P).

Proof

Let S ⊆ A∪ not A be a dynamic stable model of P, i.e.,

S = Cn(P̃ ),

where P̃ = (∪P \ Rejected (S,P)) ∪ Defaults(S,P).

Let, for each set of atoms X ⊆ A∪notA, denote X◦ = (X∩A)∪{¬A|notA ∈ X},
and let Q(P) = (P ′1, . . . , P ′n). Note that, for any rule r from P, it holds that S |= r iff

S◦ |= r◦.
We have to show that S◦ is an answer set of Q(P), i.e., in view of Theorem 4, that

S◦ is a minimal model of Q̃ = (∪Q(P) \ Rej (S◦,Q(P)))S
◦
.

We first show that for each r ∈ P, it holds that r ∈ Rejected (S,P) iff r◦ ∈
Rej ′(S◦,Q(P)).

Indeed, if r ∈ Rejected (S,P), then we immediately obtain from the definitions of

Rejected (S,P)), S◦, and Rej ′(S◦,Q(P)), that r◦ ∈ Rej ′(S◦,Q(P)). Conversely, suppose

that r◦ ∈ Rej ′(S◦,Q(P)). Then, r ∈ Pi where i ∈ {1, . . . , n−1}, and some r̂ ∈ P ′j , where

j ∈ {i + 1, . . . , n}, exists such that H(r◦) = ¬H(r̂) and S◦ |= B(r◦) ∪ B(r̂). If r̂ stems

from P, i.e., r̂ = r′◦ for some r′ ∈ Pj , then r ∈ Rejected (S,P) follows. Otherwise,

if r̂ is a rule of the form ¬A ← notA which has been added in Q(P) to P ′n, then

A /∈ S◦ and H(r◦) = A, which by definition means A /∈ S and H(r) = A. Since

S◦ |= B(r◦) implies that S |= B(r) and S is closed under the rules in P̃ , it flows that

r ∈ Rejected (S,P) must hold. This proves the claim.

Thus, for every r ∈ P̃ , we conclude that

S |= B(r) ∩ notA iff

{
A← B+(r) ∈ Q̃, if H(r) = A,

¬A← B+(r) ∈ Q̃, if H(r) = notA.

Consider, for any program P , the standard TP operator and its powers, where notA
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and ¬A are viewed as propositional atoms. Since Rej (S◦,Q(P)) ⊆ Rej ′(S◦,Q(P)) and

for each notA ∈ Defaults(S,P) we have ¬A←∈ Q̃, it clearly holds that

Tk
P̃

(∅)◦ ⊆ Tk
Q̃

(∅), ∀k > 0. (∗)
On the other hand,

Tk
Q̃

(∅) ⊆ TP̃ (S)◦ = S◦, ∀k > 0. (∗∗)
holds. Indeed, note that TP̃ (S)◦ = S◦ since S is a fixed point of TP̃ . For the left-hand-

side inclusion, consider any rule r̂ ∈ Q̃ which fires in Tk
Q̃

(∅). If r̂ stems from a default

rule ¬A← notA which has been added in Q(P) to P ′n, then A /∈ S; hence, not A ∈ S ,

which means ¬A ∈ S◦. If r̂ stems from a rule r̂′ ∈ (∪P)◦ \Rej ′(S◦,Q(P)), then r̂′ = r◦
for some rule r ∈ ∪P \ Rejected (S,P) which fires in S . Thus, H(r̂) (= H(r)◦) ∈ S◦.
Finally, if r̂ stems from a rule r̂′ ∈ Rej ′(S◦,Q(P)), then r̂′ /∈ Rej (S◦,Q(P)) and hence

some r̂′′ ∈ (∪P)◦ \Rej ′(S◦,Q(P)) must exist such that H(r̂′′) = H(r′) and S◦ |= B(r̂′′).
Similar as above, we conclude that H(r̂) (= H(r̂′′)) ∈ S◦.

From (*) and (**), we conclude

lfp(TP̂ )◦ ⊆ lfp(TQ̃) ⊆ S◦,
where lfp(TP ) denotes the least fixed point of the TP operator. Since lfp(TP̃ )◦ = S ,

it follows lfp(TQ̃) = S◦. This means that S◦ is a minimal model Q̃, which completes

the proof. q

Theorem 16

Let P = (P1, . . . , Pn) be a sequence of ELPs over A. Suppose S ⊆ LitA is a dynamic

answer set of P. Then, S ∈ U(P).

Proof

Let us denote classical negation in P by ∼A, and rewrite S accordingly, i.e. S ′ =

(S ∩A) ∪ ({∼A | ¬A ∈ S}). Then, by combining the emulation of classical negation

in P through rules not A← ∼A and not ∼A← A (A ∈ A), and the transformation

Q(·), we obtain by Theorem 15 that the set

S ′′ = S ′ ∪ ¬({A,∼A | A ∈ A} \ S ′)
is an answer set of P′ = (P1, . . . , Pn ∪Q), where each ∼A is viewed as a propositional

atom and Q contains for each atom A ∈ A the following rules:

¬ ∼A ← A;

¬A ← ∼A;

¬ ∼A ← not ∼A;

¬A ← not A.

Observe that ∼A ∈ S ′′ implies A /∈ S ′, and A ∈ S ′′ implies ¬A /∈ S ′′. Furthermore,

atoms ∼A or A are included in S ′′ due to applications of rules r ∈ Pi, 1,6 i 6 n,

which are not rejected.

By induction on i (0 6 i < n) one can show that Rejn−i(S ′′,P′) = Rejn−i(S,P)

holds. It follows that S is a minimal model of ((∪P) \Rej (S,P))S , i.e., S is an answer

set of P. q
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Theorems 15 and 16 do not hold in the converse direction, even if Property (CH)

from Section 3.2 (suitably adapted for default negation in rule heads) is satisfied.

This can be seen by the following example:

Example 5

Consider programs P1, P2, and P ′2, where

P1 = { it is raining← };
P2 = { not it is raining← not it is raining };
P ′2 = { ¬it is raining← not it is raining }.

The sequence P = (P1, P2) of GLPs has one dynamic stable model, {it is raining}, but

Q(P) has two answer sets, {it is raining} and {¬it is raining}. Likewise, the sequence

P′ = (P1, P
′
2) of ELPs has also {it is raining} as single dynamic stable model, but

{it is raining} and {¬it is raining} are answer sets of P′.

Intuitively, the syntactic mechanism responsible for the elimination of some stable

models in dynamic updates as above is the renaming of weakly negated literals

in the body of rules. This renaming ensures that weakly negated literals are not

derived in a cyclic way, i.e., the truth value of a weakly negated literal has to be

supported by other information besides the literal itself. This, however, is in general

not the case with the transformation for update programs based on Definition 2.

One can find syntactic criteria, employing graph-theoretical concepts, under which

both approaches yield equivalent results.

Recalling the update sequence P = (P1, P2) and P′ = (P1, P
′
2) from Example 5, the

single dynamic stable model {it is raining} of P seems, in the sense of inertia, more

intuitive than the answer set {¬it is raining} of P′ = Q(P) because the tautological

update information

P3 = {not it is raining← not it is raining}
is quite irrelevant to the fact that it is raining, as given by

P1 = {it is raining←}.
So, in some sense, the semantics of Alferes et al. (1998, 2000) eliminates unintended

stable models, as it does not allow for cyclic derivations of negative information.

However, the rewritten rule of

P ′2 = {¬it is raining← not it is raining}
differs in that it allows to conclude that it is not raining given that there is no

information whether it is raining. In this sense, both answer sets {it is raining}
and {¬it is raining} are, in principle, reasonable. Observing that the more intuitive

answer set of P′ is minimal while the other is not, one can use the notion of

minimality to filter out the unintended answer set. But, in general, there exist

dynamic stable models such that the corresponding answer sets are not minimal (or

strictly minimal) and vice versa. Also, acyclic derivations of negative information do

not always capture the intuition of inertia as shown by the following example:
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Example 6

Let us consider a slight modification of Example 5, where the knowledge base

P = { it is raining← , it is cloudy← it is raining }
is updated by the information

U = {not it is raining← not it is cloudy},
which, by the same intuition of inertia, is also irrelevant to the fact that it is

now actually raining and thus cloudy. However, this yields two dynamic stable

models

S ′1 = {it is raining, it is cloudy};
S ′2 = {not it is raining, not it is cloudy},

corresponding to the answer sets

S1 = S ′1;

S2 = {¬it is raining,¬it is cloudy}
of the rewritten ELP,7 showing that also the mechanisms enacted in DynLP do not

completely avoid cyclic derivations.

Despite their differences, the general properties of program updates, as investigated

in Section 4, hold for dynamic logic programs also. One can easily verify that every

counterexample for an invalid property belongs to a class where update answer sets

and dynamic stable models coincide. As well, arguments similar to those used for

the demonstrations of the valid properties of Section 4 can be found in order to

show that these properties also hold for dynamic logic programs.

7.4 Program updates through abduction

The use of abduction for solving update problems in logic programming and

databases goes back to Kakas and Mancarella (1990). Taking advantage of their

framework of extended abduction (Inoue and Sakama, 1995), Inoue and Sakama

(1999) integrated three different types of updates into a single framework, namely

view update, theory update and inconsistency removal. In particular, view update

deals with the problem of changing extensional facts (which do not occur in the

heads of rules), whilst theory update covers the general case in which (a set of)

rules should be incorporated into a knowledge base. We discuss the latter problem

here.

Informally, for ELPs P1 and P2, an update of P1 by P2 is a largest program P ′
such that P1 ⊆ P ′ ⊆ P1∪P2 holds and where P ′ is consistent (i.e., P ′ has a consistent

answer set). This intuition is formally captured by reducing the problem of updating

P1 with P2 to computing a minimal set of abducible rules Q ⊆ P1 \ P2 such that

7 Similar to Example 5, here, the intuitively preferred answer set is also a minimal answer set, while the
other is not.
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(P1 ∪ P2) \ Q is consistent. In technical terms of (Inoue and Sakama, 1995), the

program P1∪P2 is considered for abduction where the rules in P1 \P2 are abducible,

and the intended update is realized via a minimal anti-explanation for falsity, which

removes abducible rules to restore consistency.

While this looks similar to our minimal updates, there is, however, a salient

difference: abductive update does not respect causal rejection. That is, a rule r from

P1 \ P2 may be rejected even if no rule r′ in P2 fires whose head contradicts the

application of r. For example, consider P1 = {q ← ,¬q ← a} and P2 = {a ←}.
Both P1 and P2 have consistent answer sets, but (P1, P2) has no (consistent) answer

set because no rule in P1 is rejected and thus both rules must fire. On the other

hand, in Inoue and Sakama’s approach, one of the two rules in P1 will be removed.

Furthermore, inconsistency removal in a program P occurs in this framework as

special case of updating (take, e.g., P1 = P and P2 = ∅).
From a computational point of view, abductive updates are – due to inherent

minimality criteria – harder than update programs; in particular, some abductive

reasoning problems are shown to be ΣP
2 -complete (Inoue and Sakama, 1999).

7.5 Updates through priorities

Zhang and Foo (1998) described an approach for updating logic programs

based on their preference-handling framework for logic programs introduced in

Zhang and Foo (1997). The general approach is rather involved and proceeds in

two stages, roughly described as follows. For updating P1 with P2, in the first

stage, each answer set S of P1 is updated to a ‘closest’ answer set S ′ of P2, where

distance is measured in terms of the set of atoms for which S and S ′ have dif-

ferent truth values, and closeness is set inclusion. Then, a maximal set of rules

Q ⊆ P1 is chosen in such a way that P3 = P2 ∪ Q has an answer set containing

S ′. In the second stage, P3 is viewed as a prioritized logic program in which rules

from P2 have higher priority than rules from Q, and its answer sets are computed.

The resulting answer sets are identified as the answer sets of the update of P1

with P2.

This approach is apparently different from our update framework. In fact, it is

in the spirit of Winslett’s (1988) possible models approach, where the models of a

propositional theory are updated separately and which satisfies update postulate

(U8). More specifically, the two stages in Zhang and Foo’s approach, respectively,

aim at removing contradictory rules from P1 and resolving conflicts between the

remaining rules of P2. However, like in Inoue and Sakama’s approach, rules are not

removed on the basis of causal rejection. In particular, on the example considered

in Zhang and Foo (1998), both approaches yield the same result. The second stage

of the procedure indicates a strong update flavor of the approach, since rules

are unnecessarily abandoned. For example, the update of P1 = {p ← not q} with

P2 = {q ← not p} results in P2, even though P1 ∪ P2 is consistent. Since, in general,

the result of an update is given by a set of programs, naive handling of sequences

of updates consumes exponential space in general.
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7.6 Compiled preferences

Since the underlying conflict-resolution strategy of many update formalisms, in-

cluding the current one, is to associate, in some sense, ‘higher preference’ to new

pieces of information, as final installment of our discussion on related work, we

briefly review the approach of Delgrande et al. (2000) to preference handling in

logic programming, which is also based on a transformational principle.

To begin with, Delgrande et al. (2000) define an ordered logic program as an ELP

in which rules are named by unique terms and in which preferences among rules

are given by a new set of atoms of the form s ≺ t, where s and t are names. Thus,

preferences among rules are encoded at the object-level. An ordered logic program

is transformed into a second, regular ELP wherein the preferences are respected, in

the sense that the answer sets obtained in the transformed theory correspond to the

preferred answer sets of the original theory. The approach is sufficiently general to

allow the specification of preferences among preferences, preferences holding in a

particular context, and preferences holding by default.

The encoding of ordered logic programs into standard ELPs is realized by means

of dedicated atoms, which control the applicability of rules with respect to the

intended order. More specifically, if rule r has preference over rule r′, the control

elements ensure that r is considered before r′, in the sense that, for a given answer

set S , rule r is known to be applied or defeated ahead of r′.
This control mechanism is more strict than the rejection principle realized in

Definition 2. For instance, in the preference approach, it may happen that no

answer set exists because the applicability of a higher-ranked rule depends on the

applicability of a lower-ranked rule, effectively resulting in a circular situation which

cannot be resolved in a consistent manner. On the other hand, this is not necessarily

the case in the current update framework, where newer rules may only be applicable

given older pieces of information. So, to simulate updates within the framework of

Delgrande et al. (2000), under the proviso that newer information has preference

over older information, it is necessary to relax the conditions which enable successive

rule applications.

8 Conclusion

In this paper, we considered a formalization of an approach to sequences of logic

program updates based on a causal rejection principle for rules, which is inherent to

other approaches as well. We provided, in the spirit of dynamic logic programming

(Alferes et al., 1998, 2000), a definition of the semantics of sequences P of ELPs in

terms of a simple transformation to update programs, P� , which are ordinary ELPs,

and described a declarative semantical characterization as well. Then, as a main

novel contribution, we investigated the properties of this approach and of similar

ones from the perspective of belief revision and nonmonotonic reasoning, based on

the given characterization. For this purpose, we considered different possibilities of

interpreting update programs as theory change operators and abstract nonmonotonic

consequence operators, respectively. Our main findings on this aspect were that many

of the postulates and principles from these areas are not satisfied by update programs.

https://doi.org/10.1017/S1471068401001247 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068401001247


On properties of update sequences 755

We then have introduced further properties, including an iterativity property, and

evaluated them on update programs.

Motivated by an apparent lack of minimality of change, we then considered refine-

ments of the semantics in terms of minimal and strictly minimal answer sets, and dis-

cussed their complexity and implementation. Furthermore, we compared the current

proposal to other related approaches, and found that it is semantically equivalent to a

fragment of inheritance logic programs as defined by Buccafurri et al. (1999a). More-

over, our approach is more liberal than dynamic logic programming, which has been

introduced by Alferes et al. (1998, 2000) and can be seen to coincide with it on cer-

tain classes of programs (cf. Eiter et al. 2000b). Our discussion on general principles

of update sequences based on causal rejection applies for these formalisms as well.

Several issues remain for further work. An interesting point concerns the formu-

lation of postulates for update operators on logic programs and, more generally, on

nonmonotonic theories. As we have seen, several postulates from the area of logical

theory change fail for update programs (cf. Brewka (2000) for related observations

on this topic). This may partly be explained by the nonmonotonicity of answer

sets semantics, and by the dominant role of syntax for update embodied by causal

rejection of rules. However, similar features are not exceptional in the context of

logic programming. Therefore, it would be interesting to consider further postulates

and desiderata for updating logic programs besides the ones we analyzed here, as

well as an AGM style characterization of update operators compliant with them.

This issue seems to be rather demanding, though, and we might speculate – without

further evidence – that it will be difficult to find a general acceptable set of postulates

which go beyond ‘obvious’ properties.

A natural issue for update logic programs is the inverse of addition, i.e. re-

traction of rules from a logic program. Dynamic logic programming evolved into

LUPS (Alferes et al., 2000), which is a language for specifying update behavior in

terms of conditional addition and retraction of sets of rules to a logic program.

LUPS is generic, however, as in principle different approaches to updating logic

programs could provide the underlying semantical basis for the single update steps.

Exploring properties of the general framework, as well as of particular instanti-

ations, and reasoning about update programs describing the behavior of agents

programmed in LUPS or in other similar languages is topic of ongoing research.

Finally, building real-life applications, like intelligent information agents whose

rational component is modeled by a knowledge base, which is in turn maintained

using update logic programs, is an interesting issue for further research. The inte-

gration of reasoning components into agent architectures amenable to logic pro-

gramming methods, such as the one of the IMPACT agent platform (Subrahmanian

et al., 2000), is an important next step in order to make the techniques available to

agent developers. This is also part of our current research.
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A Proofs

A.1 Proof of Theorem 2

For any set U ⊆ LitA∗ , define U0 = U ∩ LitA, and, for 1 6 i 6 n, let Ui =

{Li | Li ∈ U} and U
rej
i = {rej (r) | rej (r) ∈ U, r ∈ Pi}. Clearly, it holds that

U = U0 ∪⋃n
i=1(Ui ∪Urej

i ).

Consider the answer sets S, T of P� and assume that S ∩ LitA = T ∩ LitA. We

show by induction on j (0 6 j 6 n − 1) that Sn−j = Tn−j and S
rej
n−j = T

rej
n−j . From

this, and given the relation S0 = T0 (by the assumption S ∩ LitA = T ∩ LitA), it

follows that S = T .

Induction Base. Assume j = 0. First of all, it is quite obvious that S rej
n = T rej

n = ∅.
Consider now some Ln ∈ LitA∗ . According to the construction of the transformation

P� , the literal Ln can only be derived by some rule Ln ← B(r), not rej (r) ∈ P� , where

r ∈ Pn. Since S rej
n = T rej

n = ∅, it follows that Ln ← B+(r) must be a member of both

PS
� and PT

� . Since B+(r) ⊆ LitA and S0 = T0, we have B+(r) ⊆ S iff B+(r) ⊆ T .

Thus, Ln ∈ Sn iff Ln ∈ Tn. This implies Sn = Tn.

Induction Step. Assume n − 1 > j > 0, and let the assertions Sn−k = Tn−k and

S
rej
n−k = T

rej
n−k hold for all k < j. We show that they hold for k = j as well. Consider

some atom rej (r) where r ∈ Pn−j . Given the transformation P� , the atom rej (r) can

only be derived by means of rule rej (r) ← B(r),¬Ln−j+1 ∈ P� . Since B−(r) ⊆ LitA
and S0 = T0, it holds that B−(r) ∩ S = B−(r) ∩T . Hence, rej (r)← B+(r),¬Ln−j+1 is

in PS
� iff it is in PT

� . By induction hypothesis, ¬Ln−j+1 ∈ S iff ¬Ln−j+1 ∈ T . Since

we also have that B+(r) ⊆ S iff B+(r) ⊆ T , it follows that rej (r) ∈ S iff rej (r) ∈ T ,

and so S rej
n−j = T

rej
n−j .

Consider now some literal Ln−j ∈ LitA∗ . This literal can only be derived by

means of rule Ln−j ← Ln−j+1, or by a rule of the form Ln−j ← B(r), not rej (r), for

some r ∈ Pn−j . If Ln−j is derived by Ln−j ← Ln−j+1, it follows immediately from the

induction hypothesis that Ln−j ∈ S iff Ln−j ∈ T . So assume now that the second case

applies. Since we already know that S rej
n−j = T

rej
n−j , and since B−(r) ∩ S = B−(r) ∩ T ,

we have that Ln−j ← B+(r) lies in PS
� iff it lies in PT

� . Again using the property that

B+(r) ⊆ S iff B+(r) ⊆ T , we obtain that Ln−j ∈ S iff Ln−j ∈ T . Combining the two

cases, and since the literal Ln was arbitrarily chosen, it follows that Sn−j = Tn−j .

A.2 Proof of Theorem 4

Only-if part. Suppose S is an answer set of P = (P1, . . . , Pn). We show that S

is a minimal model of (∪P \ Rej (S,P))S . First, we show that S is a model of

(∪P \ Rej (S,P))S .

Let Š be the uniquely determined answer set of P� such that S = Š ∩ LitA.
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Consider some r+ ∈ (∪P \ Rej (S,P))S . We first assume that r is a constraint. So,

r ∈ P� . Since B−(r) ∩ S = ∅, B−(r) ⊆ LitA, and S ⊆ Š , we have B−(r) ∩ Š = ∅.
Hence, B+(r) 6⊆ Š , since Š is an answer set of P� and r+ ∈ (P�)Š . It follows that r+

is true in S . Let us now consider the case when r is not a constraint. Then, there is

some i, 1 6 i 6 n, such that r ∈ Pi and r 6∈ Rej (S,P). We must show that H(r) ∈ S
whenever B+(r) ⊆ S . By construction of the update program P� , r induces some

rule Li ← B(r), not rej (r) ∈ P� , where L = H(r). We claim that Li ← B(r), not rej (r)

is not defeated by Š . First of all, since B−(r) ∩ S = ∅, it follows that B−(r) ∩ Š = ∅,
as argued above. Furthermore, since r 6∈ Rej (S,P), Lemma 1 implies rej (r) /∈ Š . This

proves the claim. Thus, Li ← B+(r) ∈ (P�)Š . Consequently, assuming B+(r) ⊆ S , it

holds that Li ∈ Š , since Š is an answer set of P� and S ⊆ Š . Moreover, since (P�)Š

contains the inertia rules Li ← Li+1 (1 6 i < n) and L ← L1, it follows that L ∈ Š .

By observing that L ∈ LitA, L ∈ S follows, which implies that r+ is true in S . This

concludes the proof that S is a model of (∪P \ Rej (S,P))S . It remains to show that

S is a minimal model of (∪P \ Rej (S,P))S .

Assume that S0 ⊂ S is a model of (∪P \ Rej (S,P))S . Consider the set

S̃0 = Š \ ({L | L ∈ S \ S0} ∪ {Li | L ∈ S \ S0, 1 6 i 6 n}).
It is easy to show that S̃0 is a model of (P�)Š . Moreover, S̃0 ⊂ Š . We arrive at a

contradiction, because Š is assumed to be an answer set of P� . As a consequence,

S must be a minimal model of (∪P \Rej (S,P))S . This concludes the proof that S is

a minimal model of (∪P \ Rej (S,P))S whenever S is an answer set of P.

If part. Assume that S is a minimal model of (∪P \Rej (S,P))S . Define S̃ ⊆ LitA∗ as

follows:

S̃ = S ∪ {rej(r) | r ∈ Rej (S,P)} ∪
n⋃
i=1

{Lj | 1 6 j 6 i, ∃r ∈ Pi \ Rej (S,P) such that H(r) = L and S |= B(r)}.

We show that S̃ is an answer set of P� . Since S̃ ∩ LitA = S , this will imply that S

is an answer set of P.

We first show that S̃ is a model of (P�)S̃ . Consider some r+ ∈ (P�)S̃ . Depending

on the construction of P� , there are several cases to distinguish.

(i) r is a constraint. Then, B+(r) 6⊆ S̃ . Otherwise, we would have B+(r) ⊆ S and

r+ ∈ (∪P \Rej (S,P))S (since S ⊆ S̃ , B+(r) ⊆ LitA, and B−(r)∩ S̃ = ∅), violating the

condition that S is a model of (∪P \ Rej (S,P))S . Thus, r+ is true in S̃ .

(ii) r is a rule of form Li ← B(r′), not rej (r′), where L = H(r′). Since r+ ∈ (P�)S̃ ,

r+ is not defeated by S̃ and rej (r′) 6∈ S̃ . According to the definition of S̃ , the latter

condition implies that r′ /∈ Rej (S,P). Since H(r) = Li, it holds that r′ ∈ Pi, so

r′ ∈ Pi \ Rej (S,P). Assume B+(r′) ⊆ S̃ . Since S ⊆ S̃ and B+(r′) ⊆ LitA, we get

B+(r′) ⊆ S . Moreover, since r is not defeated by S̃ , the definition of S̃ implies that

Li ∈ S̃ . This shows that r+ is true in S̃ .

(iii) r is a rule of form rej (r′)← B(r′),¬Li+1, where r′ ∈ Pi and L = H(r′). Assume

B+(r) ⊆ S̃ . Hence, ¬Li+1 ∈ S̃ . By definition of S̃ , this implies that there is some

rule r′′ ∈ Pj \ Rej (S,P), i + 1 6 j 6 n, such that H(r′′) = ¬L, B+(r′′) ⊆ S , and
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r′′ is not defeated by S . Since Rej j(S,P) ⊆ Rej (S,P), it follows immediately that

r′ ∈ Rej i(S,P) ⊆ Rej (S,P), which in turn implies rej (r′) ∈ S̃ , by definition of S̃ ,

proving that r+ is true in S̃ .

(iv) r is a rule of form Li ← Li+1 (1 6 i < n). Then r is trivially true in S̃ , by

construction of S̃ .

(v) r is a rule of form L ← L1. If L1 ∈ S̃ , then there is some r′ ∈ P1 \ Rej (S,P)

such that H(r′) = L, B+(r′) ⊆ S , and r′ is not defeated by S . Since S is a model of

(∪P \ Rej (S,P))S , it follows that L ∈ S ⊆ S̃ . Thus, r is true in S̃ .

This concludes the proof that S̃ is a model of (P�)S̃ . We proceed by showing that

S̃ is a minimal model of (P�)S̃ . Suppose S̃0 is a model of (P�)S̃ such that S̃0 ⊂ S̃ .

We show that this implies S̃ ⊆ S̃0, a contradiction. Hence, S̃ must be minimal.

Let us first assume that S̃0 ∩ LitA ⊂ S̃ ∩ LitA, i.e., S̃0 is smaller on the literals

in LitA. Then, for some L ∈ LitA, no rule r+ ∈ P S̃
� with H(r) = Li fires in S̃0, i.e.,

B+(r) 6⊆ S̃0. Hence, by definition of S̃ and P S̃
� , there is no r′ ∈ (∪P \ Rej (S,P))S

such that H(r′) = L and B+(r′) ⊆ S . Consequently, S \ {L} satisfies all rules in

(∪P \ Rej (S,P))S . This, however, contradicts the fact that S is a minimal model of

(∪P \ Rej (S,P))S . It follows that S̃0 ∩ LitA = S̃ ∩ LitA holds.

Now consider any Li ∈ S̃ . Then, there is a rule r ∈ Pj \ Rej (S,P), i 6 j 6 n, such

that B+(r) ⊆ S and r is not defeated by S . According to the definition of P� , and by

Lemma 1, rule r introduces a rule Aj ← B+(r) ∈ (P�)S̃ . Since B+(r) ⊆ S = S̃ ∩LitA
and S̃ ∩ LitA = S̃0 ∩ LitA, it follows that Aj ∈ S̃0, by the assumption that S̃0 is

a model of (P�)S̃ . Moreover, since i 6 j, the inertia rules Lk ← Lk+1 ∈ (P�)S̃

(1 6 k < n) imply Li ∈ S̃0.

Finally, consider rej (r) ∈ S̃ , where r ∈ Pi. By the definitions of Rej (S,P) and S̃ , it

follows that B+(r) ⊆ S , B−(r)∩S = ∅ and ¬Li+1 ∈ S̃ . From the above considerations,

¬Li+1 ∈ S̃ implies ¬Li+1 ∈ S̃0. Moreover, B−(r)∩ S̃ = ∅. So, rej (r)← B+(r),¬Li+1 ∈
PS̃
� . Since S̃0 is a model of (P�)S̃ , and given the fact that S̃0 ∩ LitA = S , we obtain

rej (r) ∈ S̃0. This concludes the proof that S̃ ⊆ S̃0.

A.3 Proofs of the revision and update postulates

In what follows, we assume that P is a nonempty sequence (P1, . . . , Pn) of ELPs.

(K1) (P, P ) represents a belief set.

This holds by convention.

(K2) & (U1) P ⊆ Bel ((P, P )).

This is clearly satisfied, as the rules of P cannot be rejected in the updated program.

(U2) Bel (P ) ⊆ Bel (P) implies Bel ((P, P )) = Bel (P).

This postulate states that no change occurs if the update is already entailed. This

means that inconsistency is preserved under updates and contradictions cannot be

removed by updates. This is clearly not the case : Updating P = {a ← ,¬a ←}
with P = {a ←} removes inconsistency. Also for a consistent P, update by a

logically implied rule may lead to a change in semantics. Consider, for example,
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P = {a ← not b} and P = {b ← not a}. Then P has the unique answer set S = {a},
and S |= b← not a. However, (P, P ) has, besides S , another answer set S ′ = {b}.
(K3) Bel ((P, P )) ⊆ Bel (Bel (P) ∪ P ).

This property fails in general, if programs have infinite alphabets. This can be seen

by the following example. Let P = P1 and P = P2, where

P1 = {ai ← not bi, bi ← not ai, c← ai | i > 1} ∪ { ← not c};
P2 = { ← bi | i > 1}.

It is easy to see that every answer set S of P1 must contain c, and that either ai
or bi (but not both) are contained in S . Therefore, c ∈ Bel (P) holds. Furthermore,

S ′ = {ai | i > 1} ∪ {c} is an answer set of Bel (P). Since S ′ |= P2, it follows that

S ′ is an answer set of Bel (P) ∪ P . This implies Bel (Bel (P) ∪ P ) ⊂ Bel ({←}), i.e.

Bel (Bel (P) ∪ P ) does not contain all possible rules.

On the other hand, Bel ((P, P )) = Bel ({←}): Since negation does not occur in rule

heads of P1 and P2, we have Rej (S, (P, P )) = ∅, and thus U((P, P )) = S(P1 ∪ P2)

holds. However, P1 ∪ P2 clearly has no answer set, which implies Bel ((P, P )) =

Bel (P1∪P2) = Bel ({←}). It follows that Bel ((P, P )) 6⊆ Bel (Bel (P)∪P ), which proves

our claim.

That property (K3) holds if either P or P has a finite alphabet follows from (K7),

which subsumes (K3) by choosing P = ∅ in (K7), and by virtue of Bel ((P, ∅)) =

Bel (P).

(U3) If both P and P are satisfiable, then (P, P ) is satisfiable.

This is clearly violated. Consider, e.g., P = P1 and P = P2, where

P1 = {a← b, not a};
P2 = {b← }.

(K4) If Bel (P) ∪ P has an answer set, then Bel (Bel (P) ∪ P ) ⊆ Bel ((P, P )).

The property is violated. Consider P1 = {a ← , b ← not c, c ← not b} and

P2 = {¬a← b}. As easily seen, the sequence (P1, P2) has two answer sets, S = {b,¬a}
and S ′ = {a, c}. On the other hand, since P1 ⊆ Bel (P1), S cannot be an answer set of

Bel (P1) ∪ P2; in fact, S ′ is its unique answer set. Since, e.g., S ′ |= c← not a, b whilst

S 6|= c← not a, b, it follows that Bel (Bel (P1) ∪ P2) 6⊆ Bel ((P1, P2)).

(K5) (P, P ) is unsatisfiable iff P is unsatisfiable.

This is violated, since contradictory rules in P are not affected unless they are

rejected by rules in P . For instance, if P consists of the single program {a ← ,

¬a← }, then the update of P by P = {b← } does not have an answer set.

(K6) & (U4) P ≡ P′ and P ≡ P ′ implies (P, P ) ≡ (P′, P ′).

This expresses irrelevance of syntax which is clearly not satisfied, since rejection of

rules depends on their syntactical form. For instances, take P = P′ = P1, P = P2,
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and P ′ = P ′2, where

P1 = {a← , b← };
P2 = {¬a← b};
P ′2 = {¬b← a}.

Then clearly P ≡ P′ and P2 ≡ P ′2, but the resulting updates have different answer

sets: {¬a, b} is an answer set of (P1, P2) but not of (P1, P
′
2).

(K7) & (U5) Bel ((P, P ∪ P ′)) ⊆ Bel (Bel ((P, P )) ∪ P ′).
The property does not hold if both P and P ′ (or P and P ′) have infinite alphabets,

which follows from the example showing the failure of (K3) (set P = ∅, and exploit

the relation Bel ((P, ∅)) = Bel (P)).

Property (K7) holds if (∪P)∪P or P ′ has a finite alphabet. Towards a contradiction,

suppose it fails. Then, there exists r ∈ Bel ((P, P ∪ P ′)) \ Bel (Bel ((P, P )) ∪ P ′), and

hence an answer set S ∈ S(Bel ((P, P )) ∪ P ′) such that S 6|= r.

Consider P′ = (P, P ), and let A′ denote the atoms in P′. Then, for every finite set

of atoms A0 ⊆ A′, there must exist some answer set SA0
of P′ such that S and SA0

coincide with respect to A0. Indeed, Bel (P′) must contain, for each interpretation

M which does not coincide with any answer set of P′ with respect to A0, the

constraint ← L1, . . . , Lm, not Lm+1, . . . , not Ln, where {L1, . . . , Lm} = LitA0
∩M and

{Lm+1, . . . , Ln} = LitA0
\M, respectively. Furthermore, all answer sets of Bel (P′)∪P ′

must coincide on the atoms in A \ A′. Thus, assuming that either P′ or P ′ has

a finite alphabet, it follows that S is an answer set of P′ or P ′. Without loss of

generality, we assume that S is an answer set of P′.
Hence, Theorem 4 implies that S is a minimal model of ((∪P′)\Rej (S,P′))S . Since

S |= P ′, we conclude that S is also a minimal model of (((∪P′) ∪ P ′) \ Rej (S,P))S .

Furthermore, for the update sequence P′′ = (P, P ∪ P ′), it holds that Rej (S,P′′) =

Rej (S,P′). Indeed, S |= r′ for all r′ ∈ P ∪ P ′, thus r′ /∈ Rej (S,P′) and r /∈ Rej (S,P′′).
Equivalence for the rules in P can be shown by induction on the length of P. Hence,

we obtain that S is a minimal model of ((∪P′′) \ Rej (S,P′′))S . From Theorem 4, we

obtain that S is an answer set of P′′. Since S 6|= r, it follows r /∈ Bel (P, P ∪ P ′), a

contradiction.

(U6) Given Bel (P ′) ⊆ Bel ((P, P )) and Bel (P ) ⊆ Bel ((P, P ′)), then

Bel ((P, P )) = Bel ((P, P ′)).

This postulate fails. Consider, for example, P = P1, P = P2, and P ′ = P3, where

P1 = { b← , d← };
P2 = { ¬a← ,¬e← d,¬d← e };
P3 = { ¬a← ,¬c← b,¬b← b }.

Then, {¬a, b, d,¬e} is the unique answer set of (P1, P2), and {¬a, b, d,¬c} is the

unique answer set of (P1, P3). Moreover, it is easily verified that ¬a ∈ S ∩ S ′, for any

answer set S of P2 and any answer set S ′ of P3. Hence, Bel (P3) ⊆ Bel ((P1, P2)) and

Bel (P2) ⊆ Bel ((P1, P3)). However, Bel ((P1, P2)) 6= Bel ((P1, P3)).
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(K8) If Bel ((P, P )) ∪ P ′ is satisfiable, then

Bel (Bel (P, P ) ∪ P ′) ⊆ Bel ((P, P ∪ P ′)).
This postulate fails. Setting P = ∅, the property reduces to (K4) since Bel (P, ∅) =

Bel (P). The failure follows from the failure of (K4).

A.4 Proofs of the postulates for iterated revision

(C1) If P ′ ⊆ Bel (P ), then Bel ((P, P ′, P )) = Bel ((P, P )).

Adding rules which are implied after the previous update does not change the

epistemic state. This is not satisfied: take, for example, P = ∅, P = {b ← not a},
and P ′ = {a← not b}. Then (P, P ′, P ) has two answer sets, while (P, P ) has a single

answer set. The associated belief sets are thus different.

(C2) If S 6|= P ′, for all S ∈ S(P ), then Bel ((P, P , P ′)) = Bel ((P, P ′)).

This property is not satisfied. For a counterexample, consider P1 = {a ← b},
P2 = {b ← }, and P3 = {¬b ← not a}. Then (P1, P2, P3) has two answer sets, {a, b}
and {¬b}, whilst (P1, P3) possesses the single answer set {¬b}.
(C3) If P ′ ⊆ Bel ((P, P )), then P ′ ⊆ Bel ((P, P ′, P )).

Implied rules can be added before the update. This property fails in general. For

example, let P = P1, P = P2, and P ′ = P3, where

P1 = ∅;
P2 = { a← not b, b← not a, g ← a, g ← not g, c← };
P3 = { g ←, ¬c← not a }.

Note that P2 has a single answer set, S = {a, g, c}, and clearly S |= P3. However,

(P1, P3, P2) has among its answer sets S ′ = {b, g, c}, and S ′ 6|= ¬c← not a.

The property holds, however, providing P ′ contains a single rule. Suppose P ′ ⊆
Bel ((P, P )) but r /∈ Bel ((P, P ′, P )), for P ′ = {r}. Then, r ∈ Rej(S, (P, P ′, P )) for some

answer set S of (P, P ′, P ). This means, however, that S is an answer set of (P, P ) (as

r cannot reject any rule in P). Thus, r /∈ Bel ((P, P )).

(C4) If S |= P ′ for some S ∈ U((P, P )), then S |= P ′ for some S ∈ U((P, P ′, P )).

This property holds. By hypothesis, there exists some S ∈ U((P, P )) such that S |= P ′.
By Theorem 4, S is a minimal model of(

((∪P) ∪ P ) \ Rej (S, (P, P ))
)S
.

Since S |= P ′ and S |= P (due to S ∈ U((P, P ))), no rule r′ ∈ P ′ can be rejected by

a rule r of P . Also, r′ can reject a rule r′′ in P only if r′′ is rejected within P . Thus,

Rej (S, (P, P )) = Rej (S, (P, P ′, P )), and S is a minimal model of(
((∪P) ∪ P ′ ∪ P ) \ Rej (S, (P, P ′, P ))

)S
.

This means, by Theorem 4, that S is an answer set of (P, P ′, P ).
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(C5) If S 6|= P ′ for all S ∈ U((P, P )) and P 6⊆ Bel ((P, P ′)), then

P 6⊆ Bel ((P, P , P ′)).

This property fails: just consider P = ∅, P = {a← }, and P ′ = {b← }.

(C6) If S 6|= P ′ for all S ∈ U((P, P )) and S 6|= P for all S ∈ U((P, P ′)), then

S 6|= P for all S ∈ U((P, P , P ′)).

This property fails as well, which can be seen by the counterexample for (C5), set-

ting P = ∅. Another counterexample for (C6)—which does not exploit minimization

of answer sets – is P = {¬b← , ¬a← b}, P = {a← }, and P ′ = {b← }.

(I1) Bel (P) is a consistent belief set.

This is clearly violated in general.

(I2) P ⊆ Bel ((P, P )).

The postulate is easily seen to be satisfied (cf. (K2) and (U1)).

(I3) If L0 ← ∈ Bel ((P, {L1 ← , . . . , Lk ← })), then

L0 ← L1, . . . , Lk ∈ Bel (P).

This property holds. Suppose there is some S ∈ U(P) such that {L1, . . . , Lk} ⊆ S

but L0 /∈ S . Let P′ = (P, {L1 ← , . . . , Lk ← }). Then, the following holds: For

every rule r in P′, r ∈ Rej (S,P′) iff r ∈ Rej (S,P). Indeed, each Li (1 6 i 6 n)

is neither in Rej (S,P′) nor in Rej (S,P). By Theorem 4, S is a minimal model of

((∪P) \ Rej (S,P))S . It follows that S is a minimal model of ((∪P′) \ Rej (S,P′))S ,

which in turn implies, by using Theorem 4 again, that S ∈ U(P). Since L0 /∈ S , we

obtain L0 ← /∈ Bel (P′).

(I4) If Q1 ⊆ Bel (P), then Bel ((P, Q1, Q2, . . . , Qn)) = Bel ((P, Q2, . . . , Qn)).

This property fails. Consider P = {a← not b} and Q1 = {b← not a} for n = 1.

(I5) If Bel (Q2) ⊆ Bel (Q1), then

Bel ((P, Q1, Q2, Q3, . . . , Qn)) = Bel ((P, Q2, Q3, . . . , Qn)).

This property fails, because it generalizes (C1), which fails.

(I6) If S |= Q2 for some S ∈ U((P, Q1)), then

Bel ((P, Q1, Q2, Q3, . . . , Qn)) = Bel ((P, Q1, Q1 ∪ Q2, Q3, . . . , Qn)).

The property fails: Let P = {a ← not b, b ← not a}, Q1 = {c ← }, and Q2 =

{¬c ← a}. Then, S = {c, b} is an answer set of (P, Q1) such that S |= Q2. However,

(P, Q1, Q2) has two answer sets, S1 = {a,¬c} and S2 = {c, b}, whilst (P, Q1, Q1 ∪ Q2)

has the single answer set {c, b}.
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A.5 Proofs of the postulates of updates as nonmonotonic consequence relations

(N1) P1 ∈ Bel ((P, P1)).

This is clearly satisfied (cf. (K2), (U1), and (I2)).

(N2) If
⋃m
i=1 Qi ⊆ Bel ((P, P1)) and P2 ⊆ Bel ((P, P1 ∪⋃m

i=1 Q1)), then

P2 ⊆ Bel ((P, P1)).

The property holds. Let Q =
⋃m
i=1 Qi and P′ = (P, P1). Assume Q ⊆ Bel (P′) and

P2 ⊆ Bel ((P, P1∪Q)), and consider some answer set S of P′. Then, S |= Q. Moreover,

Š is an answer set of P′� ∪ Q. Since Q ⊆ Bel (P′), it follows that for each rule s ∈ Q
rejecting a rule r from P, there exists a rule r1 ∈ P1 also rejecting r. Hence, no

further rule in P can be rejected using Q. Let P′′ = (P, P1 ∪Q). Then, Š is an answer

set of P′′� , so S is an answer set of (P, P1 ∪Q). Since P2 ⊆ Bel ((P, P1 ∪Q)), we obtain

S |= P2. This proves the property.

(N3) If
⋃m
i=1 Qi ⊆ Bel ((P, P1)) and P2 ⊆ Bel ((P, P1)), then

P2 ⊆ Bel ((P, P1 ∪⋃m
i=1 Q1)).

The property fails: Consider the counterexample P = ∅, P1 = {a ← not b}, P2 =

{a← }, and for m = 1, Q1 = {b← not a}.
(N4) If Pi+1 ⊆ Bel ((P, Pi)) (1 6 i < n) and P1 ⊆ Bel ((P, Pn)) (n > 2), then

{P ′ | P ′ ⊆ Bel ((P, Pi))} = {P ′ | P ′ ⊆ Bel ((P, Pj))}, for all i, j 6 n.

The property does not hold, because it includes (U6) as a special case, which fails.

(P1) If P1 ≡ P2 and P3 ⊆ Bel ((P, P1)), then P3 ⊆ Bel ((P, P2)).

The property fails, due to the following counterexample: P = {a ← , b ← },
P1 = {¬a← b}, P2 = {¬b← a}, and P3 = {b← }.
(P2) If P1 |= P2 and P1 ⊆ Bel ((P, P3)), then P2 ⊆ Bel ((P, P3)).

This property does not hold. For a counterexample, consider P = ∅, P1 = {a ←
not b}, P2 = {a← }, and P3 = {b← ,¬a← }.
(P4) If P2 ⊆ Bel ((P, P1)) and P3 ⊆ Bel ((P, P1)), then P2 ∪ P3 ⊆ Bel ((P, P1)).

The property is trivially satisfied.
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