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We study non-inertial flows of single-phase yield stress fluids along uneven/rough-
walled channels, e.g. approximating a fracture, with two main objectives. First, we
re-examine the usual approaches to providing a (nonlinear) Darcy-type flow law and
show that significant errors arise due to self-selection of the flowing region/fouling of
the walls. This is a new type of non-Darcy effect not previously explored in depth.
Second, we study the details of flow as the limiting pressure gradient is approached,
deriving approximate expressions for the limiting pressure gradient valid over a range
of different geometries. Our approach is computational, solving the two-dimensional
Stokes problem along the fracture, then upscaling. The computations also reveal
interesting features of the flow for more complex fracture geometries, providing hints
about how to extend Darcy-type approaches effectively.
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1. Introduction

Many complex fluids used in industrial applications exhibit yield stress behaviour,
e.g. polymers, colloidal suspensions, foams, cement slurries, paints, muds, etc. (see
Coussot 2005). Flows of these fluids are actively studied from theoretical, rheological
and experimental perspectives (e.g. Balmforth, Frigaard & Ovarlez 2014; Coussot
2014). This paper addresses the non-inertial flow of single-phase yield stress fluids
along uneven/rough-walled (two-dimensional) channels, e.g. approximating a fracture;
see figure 1(a). Our paper has two main objectives. First, we wish to re-examine the
usual approaches to providing a (nonlinear) Darcy-type flow law, and to show that
such approaches may contain serious quantitative errors when yield stress fluid flows
are considered, due to self-selection of the flowing region. Second, we aim to explore
the details of the flow as the limiting pressure gradient is approached, showing that
determination of the critical pressure gradient (or yield stress) for flow is non-trivial,
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but also tractable in some situations. In satisfying these objectives we also shed light
on other complex features of yield stress fluid flows through these geometries.

Non-inertial flows of Newtonian fluids are governed by the Stokes equations.
Porous media and fractures cover a wide range of extremely complex geometries,
but the linearity inherent in the Newtonian constitutive law means that the flow rate
and pressure gradient are linearly related, as captured in Darcy’s law and observed
experimentally. Mathematical study of Darcy-type flows, the development of closure
models for permeability and the application to groundwater hydrology were all well
advanced by the 1950s, as was an understanding of many limitations of Darcy’s
law, e.g. inertial flows; see, e.g., Scheidegger (1957). A general model for non-Darcy
effects was proposed by Christianovich (1940), largely to extend mathematical analysis
to such flows. Here, we are concerned with non-Darcy effects that arise due to the
non-Newtonian character of the fluid.

The original motivation for much of this work stems from oil recovery. Different
non-Newtonian effects were of primary interest in different world regions. The
excellent review of Savins (1969), for example, covers shear-thinning and viscoelastic
effects, as these were the additives being used for enhanced recovery in North
America at the time, but does not mention yield stress effects. On the other hand, in
the former USSR, heavy oils exhibiting viscoplastic behaviour were being extracted,
and consequently the study of such fluids in porous media settings evolved there.
Fibre-bundle or capillary-tube models of yield stress fluids flowing through a
porous medium naturally lead to a limiting pressure gradient (LPG) which must be
exceeded in order to flow. Thus, LPG generalizations of Darcy’s law into nonlinear
filtration/seepage have been suggested and studied since the early 1960s, e.g. Sultanov
(1960), Entov (1967). Entov (1967) attributes the first usage of LPG models for oil
applications to Mirzadzhanzade (1959). Mathematically analogous systems were in
fact suggested earlier for water flowing through argillaceous rocks; i.e. the critical
pressure acts on the pore space not the fluid. Early work concerning LPG flows is
summarized in the text by Barenblatt, Entov & Ryzhik (1989) which contains further
references.

Applications that involve flow along uneven channels are various. In hydraulic
fracturing operations, some frac fluids used have a yield stress (designed in order to
enhance proppant transport). At the end of hydraulic fracturing, the flowback phase
attempts to clean the gelled fluids from the proppant-laden fracture. Sealants are
routinely injected into brickwork to block the spread of moisture in old buildings
(damp-proof courses). Cement injection into porous media is advocated as a means of
sealing CO2 storage reservoirs. Cement slurries and drilling fluids flow along uneven
narrow eccentric annuli in the primary cementing process (see Nelson & Guillot
2006). In the squeeze cementing process, oil and gas wells are repaired by injecting
cements and other fine suspensions into thin cracks. Rock grouting represents another
similar process; see El Tani (2012). Injection of yield stress fluids has also been
proposed as a potential method for porosimetry by Ambari et al. (1990).

Due to the length scale of flows, geometric uncertainty and/or the need for industrial
simplicity, it is often the case that nonlinear filtration/seepage approaches are preferred
to (Navier–)Stokes formulations for practical flow computations. Determination of a
closure relationship between the flow rate and the applied pressure, in porous or
fractured materials, is consequently of interest. One approach is to consider flow
through packed beds or porous structures, either experimentally (Park, Hawley &
Blanks 1973; Al-Fariss & Pinder 1987; Chase & Dachavijit 2003, 2005; Clain 2010;
Chevalier et al. 2013a) or numerically (Balhoff & Thompson 2004; Bleyer & Coussot
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2014). The flow laws developed typically conform to the LPG type. This type of
experiment can also be simulated using pore-throat or similar macro-scale models
of the porous medium. In such models, a pore network or lattice is connected by
capillary tubes along which one-dimensional (1D) flows (or similar closures) are
assumed (see Roux & Herrmann 1987; Sahimi 1995; Balhoff & Thompson 2004;
Chen, Rossen & Yortsos 2005; Sochi & Blunt 2008; Balhoff et al. 2012; Talon
& Bauer 2013; Talon et al. 2013; Chevalier & Talon 2015). Heterogeneity can be
introduced into the network via local throat resistance or length, either systematically
or stochastically. Since each flow path experiences different heterogeneous pore
throats, their critical opening pressures are different. As a result, the disorder of
the porous medium induces a hierarchy in the flow paths that open, leading to a
non-trivial relationship between the flow rate and the applied pressure drop (see
Talon et al. 2013; Chevalier & Talon 2015).

Other approaches to deriving (LPG) closure flow laws are mostly classical. In
the so-called ‘fibre-bundle model’ (e.g. Chen et al. 2005; de Castro et al. 2014),
the homogeneous porous medium is considered as a succession of parallel tubes,
each with a uniform cross-sectional area. The flow law is easily derived in each
throat and the critical pressure is known. The major drawback is, of course, that it
neglects the influence of heterogeneity along each flow path. For two-dimensional
(2D) fractures/fissures/channels the most classical approach is to assume a lubrication
or Hele-Shaw approximation, e.g. Ge (1997), Drazer & Koplik (2000), Malevich,
Mityushev & Adler (2006); i.e. the mean flow is driven by a uniform pressure
gradient along the varying gap. This approach has long been exploited in the
modelling of laminar primary cementing flows, e.g. Bittleston, Ferguson & Frigaard
(2002), Pelipenko & Frigaard (2004). After some algebra involving the solution of the
Buckingham–Reiner equation, the flow rate can be related to the local width of the
gap (inducing heterogeneity). In a single rough channel, Talon, Auradou & Hansen
(2014) show that the critical pressure is proportional to the harmonic mean of the
gap width, and the flow–pressure relationship is related to a series of power means.
In non-uniform Hele-Shaw geometries, the critical pressure is locally defined and the
fluid flows preferentially (similarly to pore-throat network approaches). For example,
in the eccentric annular cementing flows of Bittleston et al. (2002) and Pelipenko &
Frigaard (2004), the widest part of the annulus can flow while the narrowest part is
stationary.

In this paper, we look at the effects of heterogeneity along a single channel
(assumed to be 2D). We use accurate computations to solve the Stokes flow of a
Bingham fluid flowing along complex fracture-like geometries and analyse the results
to draw quantitative and qualitative conclusions useful for more general LPG-style
closures. While the Hele-Shaw/lubrication approach (or indeed a fibre-bundle
approach) can be straightforwardly applied to randomized varying gap widths, it
has long been recognized that to do so may result in significant error where yield
stress fluids are concerned. First of all, one faces the usual geometric restrictions of
slow geometric variation which are likely to be invalid for many fractures. Second,
the use of Hele-Shaw/lubrication scaling arguments needs careful attention (Walton
& Bittleston 1991; Balmforth & Craster 1999; Putz, Frigaard & Martinez 2009),
and the leading-order stress fields exhibit an O(1) deviation from those of the naïve
Hele-Shaw/lubrication approach. These errors arise from extensional stresses within
the central plug, causing it to yield for modest heterogeneities (see Frigaard & Ryan
2004; Putz et al. 2009).

Larger-amplitude heterogeneity leads to the emergence of so-called ‘fouling
layers’ at the walls of the duct, in which residual fluid is held stationary by the
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yield stress. This geometric effect has been observed in various experimental and
computational/analytical studies (de Souza Mendes et al. 2007; Chevalier et al. 2013b;
Roustaei & Frigaard 2013; Bleyer & Coussot 2014; Roustaei, Gosselin & Frigaard
2015). Roustaei & Frigaard (2013) demonstrate that as the heterogeneity amplitude
increases at fixed yield stress, fouling occurs beyond a critical amplitude, and give an
empirical prediction for the onset of fouling. Such predictions are, however, strongly
dependent on the specific geometry; e.g. in the abrupt expansion of de Souza Mendes
et al. (2007), fouling occurs first in the corners, whereas for the smooth geometries of
Roustaei & Frigaard (2013), fouling is first found in the deepest part of the channel.
The most important result, from the perspective of predicting flow-rate–pressure-drop
relationships, is that fouling results in self-selection of an O(1) variation of the
flowing geometry (Roustaei et al. 2015), which should therefore have an O(1) effect
on such relationships. Such phenomena have not been systematically studied from
the perspective of flow rate–pressure drop, as we do here.

Second, we have the objective of understanding and quantifying the flow onset
problem; i.e. in a given section of an uneven fracture, what is the critical pressure
drop at which the fluid begins to flow? Although having a porous media flow
objective, the methods we use focus on solving Stokes equations. The fracture
geometry defines the flow (uniquely for given physical parameters) and hence the
flow onset or limiting pressure drop. However, the reverse is not true, as shown nicely
by Balhoff & Thompson (2004), i.e. the same limiting pressure drops are found for
different geometries. For non-Newtonian fluids the geometry and rheology are closely
coupled in determining a closure law. Use of multi-dimensional flow simulation is
an essential tool for uncovering localized flow features which explain physical results
that appear to be non-intuitive, e.g. as in Bleyer & Coussot (2014).

The plan of the paper is as follows. In § 2, we present the model problem
and fracture geometries that we consider in this paper, scale the corresponding
equations, give an overview of the computational method and present example results.
This is followed in § 3 by a systematic comparison of the flow-rate–pressure-drop
relationships from the computations with those from a naïve lubrication approximation,
including some methods to improve the approximations in the situation where fouling
occurs. Section 4 focuses on analysis of the critical limit of zero flow, from both the
mathematical and computational perspectives. This is largely focused on characterizing
the limiting flows in simple fracture geometries, although insights are also gained
from these results for more complicated and realistic fractures. The paper closes with
a discussion of the main results and future directions.

2. Model set-up
Figure 1 shows the flow geometry and notation used in the current study.

We assume a fracture of nominal minimal width 2D̂, with walls located at
ŷ = ±[D̂ + Ŷ±(x̂)], where 0 6 Ŷ±(x̂) 6 Ĥ. Both walls and the flow are assumed
to be periodic in x̂ with period L̂. The periodic fracture cell is assumed to be filled
with a yield stress fluid (assumed to be a Bingham fluid for simplicity), which is
flowing non-inertially. As we wish to understand how Darcy-law-type behaviour is
modified geometrically and rheologically, we are interested in the mapping from flow
rate (mean velocity) to pressure drop (and vice versa).

In a fracture of varying width the areal flow rate Q̂ is constant and the pressure
gradient varies along the flow direction. Therefore, an imposed flow formulation will
be adopted. To make the Stokes equations dimensionless we use D̂ as the length scale.
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2

2

(a)

(b)

FIGURE 1. (Colour online) (a) Schematic of the 2D fracture showing the dimensional
parameters; (b) schematic of the wavy-walled dimensionless geometry, with the lower wall
shifted to the right by ψL.

Let Û0 denote the mean velocity along the fracture, defined at the minimum fracture
width, i.e. Û0 = Q̂/2D̂. We use Û0 to scale the velocity. The shear stresses are then
scaled with µ̂Û0/D̂, where µ̂ is the plastic viscosity of the Bingham fluid. Any static
pressure component is subtracted from the pressure, before also scaling with µ̂Û0/D̂.
In the remainder of the paper, we consistently use the ‘hat’ symbol to denote variables
that are dimensional, e.g. x̂, and dimensionless variables are denoted without a hat,
e.g. x. The dimensionless Stokes equations are

0=−∂p
∂x
+ ∂

∂x
τxx + ∂

∂y
τxy, (2.1)

0=−∂p
∂y
+ ∂

∂x
τyx + ∂

∂y
τyy, (2.2)

0= ∂u
∂x
+ ∂v
∂y
, (2.3)

where u = (u, v) is the velocity, p is the modified pressure and τij is the deviatoric
stress tensor. The scaled constitutive laws are

τij =
(

1+ B
γ̇ (u)

)
γ̇ij⇐⇒ τ > B, (2.4a)

γ̇ij(u)= 0⇐⇒ τ 6 B, (2.4b)

where

γ̇ij(u)= ∂ui

∂xj
+ ∂uj

∂xi
, u= (u, v)= (u1, u2), x= (x, y)= (x1, x2), (2.4c)

and γ̇ , τ are the norms of γ̇ij, τij, defined as

γ̇ =
√

1
2

∑
ij

γ̇ 2
ij and τ =

√
1
2

∑
ij

τ 2
ij . (2.5a,b)
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A single dimensionless number appears above, the Bingham number, B,

B≡ τ̂YD̂

µ̂Û0
, (2.6)

which represents the competition between the yield stress τ̂Y and the viscous stresses.
Two other geometric groups characterize the fracture shape: the dimensionless length
L= L̂/D̂ and the maximal out of gauge depth H = Ĥ/D̂; see figure 1.

No-slip conditions are satisfied at the upper and lower walls:

u= 0, at y= 1+ y+(x) and y=−1− y−(x), (2.7)

where y±(x)= Ŷ±(x̂)/D̂. At the ends of the fracture we impose periodicity:

u(−L/2, y)= u(L/2, y), τij(−L/2, y)= τij(L/2, y),

p(−L/2, y)= p(L/2, y)+1p,

}
(2.8)

2=
∫ 1+y+(x)

−1−y−(x)
u1(x, y) dy. (2.9)

Here, 1p denotes the frictional pressure drop, which is part of the solution and is
determined by satisfying the flow rate constraint (2.9).

2.1. Fracture geometries
The dimensionless fracture wall shapes y±(x) satisfy the bounds 0 6 y±(x) 6 H =
Ĥ/D̂. We consider two generic simplified fracture geometries (sinusoidal walls and
triangular walls) and a more complex affine geometry. An example affine geometry
is shown schematically in figure 1(a) and the sinusoidal wavy fracture in figure 1(b).
The sinusoidal fracture widths are given by

y+(x)= H
2
[1+ cos(2πx/L)], y−(x)= H

2
[1+ cos(2π[x/L−ψ])], (2.10a,b)

with ψ ∈ [0, 1] denoting a phase shift of the lower wall relative to the upper one,
i.e. the lower wall is translated ψL to the right. The triangular geometry is defined
analogously.

In many applications, it has been observed that fracture roughness may display
self-affine correlations (Mandelbrot, Passoja & Paullay 1984; Schmittbuhl, Gentier &
Roux 1993; Bouchaud 1997). A surface ŷ(x̂) is self-affine if the probability to find
the increment 1ŷ after a distance 1x̂ displays the scaling invariance

p(1ŷ, 1x̂)= λζp(λζ1ŷ, λ1x̂), (2.11)

where λ is any scaling factor and ζ is called the Hurst exponent. An important
property of self-affine surfaces is that all of the moments scale with the length of
measurement as

Mn(x̂)= (〈|ŷ(x̂+1x̂)− ŷ(x̂)|n〉)1/n ∝ |1x̂|ζ . (2.12)

For the present paper, we have generated three types of fracture. In the first type,
the two walls y± are independently generated with a Hurst exponent ζ = 0.5 using a
Fourier transform method (see Sahimi 1995; Talon, Auradou & Hansen 2010). Both
surfaces are scaled to have min y± = 0 and max y± =H. In the second type, we used
y+ = y−. In the third type, we used y+ =−y−.
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2.2. Computational overview

Numerical solution of viscoplastic fluids poses a unique challenge, which is the
singularity of the effective viscosity in the constitutive equation (2.4), where γ̇ → 0
(unyielded regions). Aside from such points, the Bingham fluid is simply a generalized
Non-Newtonian fluid with an effective viscosity µ = (1 + B/γ̇ ). A common work
around for the singular effective viscosity is to simply regularize the viscosity,
introducing a small parameter ε� 1, such that the effective viscosity scales like ε−1

as γ̇ → 0. Many such regularizations are possible. It can be shown that as ε→ 0 the
velocity solution will converge to that of the exact Bingham fluid, but the stress field
may not; see Frigaard & Nouar (2005). Consequently, we may not infer the correct
shape of the yield surface from τ = B; e.g. Wang (1997).

Instead, we use the augmented Lagrangian (AL) method (Fortin & Glowinski 1983;
Glowinski & Le Tallec 1989), which uses the proper variational formulation of the
problem, as formulated, for example, by Duvaut & Lions (1976). The AL method
introduces two new fields, the strain rate γ and stress T , in addition to the velocity
and pressure (u, p) of the original problem. In this way, it relaxes the convex but non-
differentiable velocity minimization problem to an associated saddle point problem.
The saddle point problem is solved iteratively. Each iteration consists of three Uzawa
split steps, to update (un, pn), γ n and T n. These iterations are repeated untilmax{|γ n−
γ̇ n|L2, |un−un−1|}6 10−6 is satisfied or a maximum number of iterations (here 10 000)
is reached. The γ , T fields of the AL method converge respectively to the strain rate
and deviatoric stress tensors of the exact Bingham flow.

The AL approach is effectively a fixed-point iteration and suffers from slow
convergence. In recent years, a number of authors have been working on improving
the convergence speed; e.g. de los Reyes & González Andrade (2012), Treskatis,
Moyers-Gonzalez & Price (2015) and Saramito (2016). While undoubtedly these
approaches will come to fruition and common usage, familiarity with the AL approach
and access to multiple CPUs has made the search for improved efficiency less urgent
for the present study. We have implemented the AL method using the freely available
FreeFEM++ finite element environment (Hecht 2012). Our algorithm is based on that
of Saramito & Roquet (2001) with the addition of a flow rate constraint. To satisfy
the inf–sup condition, Taylor–Hood (P2–P1) elements are used for the velocity
and pressure. Linear discontinuous elements P1d are used for the γ and T fields,
to follow compatibility conditions between the velocity space and the strain/stress
spaces. Both the velocity and the pressure are implicitly solved and the system
matrix is factorized once for all iterations. To improve the accuracy of the solution
while keeping reasonable runtime, five cycles of the anisotropic mesh adaptation
(Borouchaki et al. 1997) are used.

A typical computation presented below starts with a size of 8000–10 000 mesh
points. A new mesh is generated based on a metric computed from the current
solution. We use the dissipation field as the metric, which results in a finer mesh
around the yield surface. After the fifth cycle, the mesh may contain up to 150 000
mesh points, and the yield surfaces can be clearly identified by a much finer local
mesh. The underlying combination of discretization and algorithm is analysed in
Saramito & Roquet (2001), with various benchmarks computed. More details on the
numerical algorithm specific to channel flows are described in Roustaei & Frigaard
(2013) and Roustaei et al. (2015) and are skipped here for conciseness.
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0 0.2 0.4 0.6 0.8 1.0 1.2 3010 200

(a) (b)

(c) (d)

(e) ( f )

FIGURE 2. (Colour online) Computed examples of speed |u| and streamlines (a,c,e), and
pressure p with (grey) unyielded plugs (b,d, f ), at H = 1, L= 10, B= 2. (a,b) Triangular
fracture profile, ψ = 0; (c,d) wavy fracture profile, ψ = 0; (e, f ) wavy fracture profile,
ψ = 0.5.

2.3. Example results
We have computed over 2000 flows, covering a wide range of H, L and B, for both
triangular and wavy fracture profiles with different values of ψ . In addition, we have
computed a smaller number of flows in affine fracture geometries. Before analysing
specific features of the flow, we present some examples to illustrate qualitative features
of our results.

Figure 2 shows results from a relatively modest fracture geometry and yield stress
rheology (H = 1, L = 10, B = 2). Figure 2(a–d) shows the triangular and wavy
profiles for ψ = 0 (symmetric fracture). The flow is evidently symmetric about the
centreline and the widest part of the fracture. Unyielded plug regions are found
at the symmetry points in x and close to the fracture centreline. There is very
little difference, qualitatively or quantitatively, between triangular and wavy profiles.
Figure 2(e, f ) shows the wavy profile at ψ = 0.5, where the lower wall is out of
phase with the upper wall. Here, the differences are quite significant. The velocity
field appears to adapt smoothly to the wavy geometry, but no longer has the fastest
fluid in the centre of each cross-section. Instead, the fastest travelling fluid moves at
larger radius of curvature, while the plug regions are displaced into each bend. Due
to symmetry effects, we observe a rather spectacular effect on the pressure field: the
displaced central plug regions are joined by thin strands of unyielded fluid. It appears
that the pressure is discontinuous across these strands, which is possible. It should
be noted, however, that the traction vector, defined by the normal to these strands, is
continuous.

Figure 3 explores the effects of increasing the yield stress on the flow of figure 2
(H=1, L=10, ψ=0). The flow, of course, remains symmetric and, since the flow rate

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

49
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.491


230 A. Roustaei, T. Chevalier, L. Talon and I. A. Frigaard

0 2 4 6 80 0.2 0.4 0.6 0.8 1.0 1210

(a) (b)

(c) (d)

(e) ( f )

FIGURE 3. (Colour online) Computed examples of speed |u| and streamlines (a,c,e), and
scaled pressure p/B with (grey) unyielded plugs (b,d, f ), at H = 1, L= 10, ψ = 0, wavy
fracture profile; (a,b) B= 5, (c,d) B= 10, (e, f ) B= 100.

is fixed, we only observe a relatively small change in the streamlines (figure 3a,c,e) as
B is increased. This, however, masks the changes that are occurring in the pressure and
stress fields. Increasing B results in a widening of the plugs in both narrow and wide
parts of the fracture (figure 3b,d, f ). The magnitude of the pressure field also increases
with B: the flow rate is fixed and the pressure gradient therefore needs to overcome
the yield stress everywhere along the fracture to ensure flow (hence p/B is shown to
aid comparison). For B≈ 10 we observe that a region of stationary fluid emerges at
the upper and lower walls, in the deepest part of the fracture. We refer to this as a
fouling layer. The fouling layer grows in size as B increases. Growth of the fouling
layer has effects on the pressure drop along the fracture and is an important part of
the yield limit that is attained as B→∞, both of which are studied later; see § 4.

Figure 4 explores the effects of increasing H on the flow illustrated in figure 2(e, f )
(B= 2, L= 10, ψ = 0.5). The flow asymmetry is preserved as H is increased, together
with the interesting unyielded fluid strands. The main observation is that, although the
yield stress is maintained constant, the region of fouled fluid in the deepest parts of
the fracture increases markedly with H. The increase in fouling has the interesting
effect of reducing the tortuosity of the flowing region of fluid. This self-selection of
the flowing area is a unique effect of the yield stress.

Finally, we show an example from an affine fracture at H = 2, L = 20, for large
B; see figure 5. Even for B= 1, 10 (not shown), much of the small-scale roughness
of the fracture wall is smoothed out by fouled immobile fluid. This effect increases
with B as also the size of plug regions within the flowing region increases. Unyielded
flowing plugs grow from various symmetry points of the geometry and at large B
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0.2 0.4 0.6 10 200

(a) (b)

(c) (d)

FIGURE 4. (Colour online) Computed examples of speed |u| and streamlines (a,c), and
pressure p with (grey) unyielded plugs (b,d), at B = 2, L = 10, ψ = 0.5, wavy fracture
profile; (a,b) H = 3, (c,d) H = 5.

appear to approach the walls, leaving only thin shear layers. Some two-dimensional
parts of the flow also appear to remain yielded at large B. For all practical purposes,
the velocity field is symmetrical about the x-axis, but we can observe a slight
asymmetry in the positions of plug regions. This asymmetry is due to the tolerance
in the iteration and the unstructured mesh, which is not constrained to be symmetric.
The AL approach iterates until a specified tolerance is achieved on velocity and strain
rate. Plug regions are specified directly from the iteration on each element, which sets
the strain rate to zero if the (iterated approximation to the) stress does not exceed
the yield stress locally. Elements that are converging to zero strain rate may satisfy
the convergence criterion by virtue of the strain rate being small. Thus, yield surface
positions are determined by the element topology and consequently are less smooth
than the analytical representation. The alternative method of regularizing the viscosity
ensures a smooth contour, but the yield surface may be false as there is no guarantee
of stress convergence.
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0 0.2 0.4 0.6 0.8 1.0

(a)
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(c)

FIGURE 5. (Colour online) Computed examples of speed |u| and streamlines for a
symmetric affine fracture. The parameters are H = 2, L = 20, B = 100, 1000, 10 000,
from (a) to (c), with (grey) unyielded plugs.

3. Darcy-law estimates
In a uniform channel of dimensionless width 2(1+ h), the dimensionless pressure

gradient is found from the constraint of fixed flow rate. This amounts to solving the
Buckingham–Reiner equation:

1= B(1+ h)2

3φ
(1− φ)2(1+ φ/2) (3.1)

for the dimensionless parameter φ ∈ [0, 1], which denotes the ratio of yield stress to
wall shear stress. We note that φ depends only on the parameter B(1+ h)2, which can
be interpreted as an appropriately modified Bingham number; i.e. the mean velocity
is reduced by 1/(1+ h) due to mass conservation, and the minimal width is amplified
by (1 + h). Having found φ by solving (3.1) numerically, the pressure gradient is
computed from ∣∣∣∣∂p

∂x

∣∣∣∣= B
(1+ h)φ

. (3.2)

In the case that the fracture has a slowly varying width in x, it is natural to expect
that the uniform channel solution will give a leading-order approximation. The flow
rate is the same at each x along the fracture, so we simply compute φ(x) from (3.1)
using the varying width:

2(1+ h(x))= 2+ y+(x)+ y−(x), ⇒ h(x)= 1
2 [y+(x)+ y−(x)]. (3.3)
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FIGURE 6. (Colour online) Relative error in predicted pressure drops between numerically
computed values and the lubrication approximation (3.2), for B= 0.1 in wavy fracture: (a)
H= 2 and varying L; (b) L= 10 and varying H. For both panels: black circle, ψ = 0; red
square, ψ = 0.25; blue cross, ψ = 0.5.

We then evaluate the pressure gradient from (3.2). For example, for the wavy channel
we have

h(x)= H
4
[2+ cos(2πx/L)+ cos(2π[x/L−ψ])]. (3.4)

Adopting this procedure, we compute the lubrication theory pressure drop along the
fracture 1pL, using (3.1) and (3.2). The above procedure mimics that of constructing
Darcy-law-type estimates from capillary-tube/fibre-bundle approaches and allowing
slow variations in tube diameter. In the Newtonian setting, it leads to the usual
Hele-Shaw analogy to the Darcy-flow law.

The estimate 1pL may be compared directly with the numerical pressure drop
1pN , from the finite element solution. We evaluate the accuracy of the lubrication
approximation using the relative error in predicted pressure drops:

Relative error = |1pN −1pL|
1pN

. (3.5)

Figure 6 shows typical variations in relative error as both H and L are varied, for
relatively small B= 0.1. For this small value of B, the velocity field is very close to
that of a Newtonian fluid, as are the relative errors in pressure drop. We observe that
the relative error decreases for fixed H as L increases and for fixed L as H decreases.
The relative errors appear to be largest for ψ=0.5, when the sinusoidal wall variations
are out of phase. This particular effect is due to tortuosity.

For Newtonian fluids, various authors have proposed corrections to Darcy’s law,
based on improved representations of the geometric effects. For example, Zimmerman,
Kumar & Bodvarsson (1991) have used an effective fracture width, derived by
calibrating with the analytical solution from a sinusoidal variation. They have then
generalized this approach somewhat to more general planar fractures. A slightly
different approach is followed by Ge (1997), who essentially uses the fracture wall
geometry to define a centreline of the fracture and consequently the local fracture
width. This new fracture width is used in the classical lubrication approximation,
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FIGURE 7. (Colour online) (a) Ratio of pressure drops computed numerically (1pN)
and from the lubrication approximation (1pL): B = 1 (circles), B = 5 (squares), B =
10 (diamonds); filled symbols from triangular fracture profile, hollow symbols from
wavy profile; ψ = 0. (b) Relative error in predicted pressure drops between numerically
computed values and the lubrication approximation (3.2), for L> 10 and B> 1 in a wavy
fracture: black circle, ψ = 0; red square, ψ = 0.25; blue cross, ψ = 0.5.

integrated along the fracture length. This approach does have the advantage of
addressing tortuosity directly, i.e. the increase in flow path length, but is impractical
in rough fractures as it relies on differentiating the fracture geometry. In general,
we can say that the main efforts to correct geometric effects on Darcy’s law for
Newtonian fluids do not involve fluid rheology. This is for the simple reason that the
geometry and rheology decouple for a Newtonian fluid, due to the linearity of the
Stokes equations. We may infer from general continuity results as B→ 0 that any of
these correction methods could be extended perturbatively into the weakly nonlinear
regime of 0<B� 1; indeed, this is a relatively straightforward but laborious algebraic
exercise.

We turn instead to moderate values of B. Figure 7(a) shows the ratio of pressure
drops along the fracture, 1pN/1pL, for B= 1, 5, 10 and at ψ = 0. Both wavy and
triangular fracture shapes are plotted. We observe that the computed pressure drop
exceeds the lubrication pressure drop. The ratio approaches 1 as H/L→0. It should be
noted that multiple computations in our data set have the same values of H/L. Taking
now B> 1 and L> 10, we plot in figure 7(b) the relative error for the wavy fracture,
grouped by phase shift ψ . We observe that the relative errors are numerically of size
∼H/L over all parameters. It should be noted that at the same ψ and H/L different
data points correspond to different B. Interestingly, the smallest errors are found for
ψ = 0.5, i.e. out of phase (reversing the trend at small B). Possibly this results from
some form of cancellation of errors when averaged over a full wavelength (due to the
phase shift). Analogous results are found for the triangular fracture profile. This leads
us to suppose that for quite general geometries with H/L� 1, using (3.2) will give a
reliable approximation to the pressure drop; roughly speaking, errors of 10 % or less
are found for H/L< 0.05.

We now explore a slightly different yield stress effect. We have seen in figure 3
that the flow domain may self-select. From our earlier work, e.g. Roustaei & Frigaard
(2013), Roustaei et al. (2015), we expect to find this phenomenon for sufficiently large
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H/L and B. The occurrence of a significant unyielded plug region in the deep parts
of the fracture (called fouling layers) clearly changes the flow geometry, making this
a non-Darcy-flow effect that is unique to yield stress fluids. In the case that we have
fouling layers, the yield surface forms one boundary of the flow domain. This surface
is defined as a contour of constant τ = B, and is coincidentally a material surface
when u= 0 within the plug. Imposing the condition u= 0 on the yield surface and
solving only within the flowing region of the fracture gives the same velocity solution.
This suggests that a reasonable way of approximating the pressure drop through such
a fracture would be to replace y±(x) in (3.3) with the yield surface positions of the
boundary of the fouling layer, denoted say y=±yy,±(x), i.e.

h(x)= 1
2 [min{y+(x), yy,+(x)} +min{y−(x), yy,−(x)}]. (3.6)

To illustrate this approach, we take a fracture geometry H= 2 and L= 2, for which
the lubrication approximation (3.2) should not provide a good approximation. The 2D
computed mean pressure gradients and those approximated from (3.2) are shown in
figure 8(a) for both triangular and wavy profiles, over ψ = 0, 0.125, 0.25, 0.5, and
for increasing values of B> 1. Both mean pressure gradients increase with B, as might
be expected, and we observe a consistent and significant error for all parameters. The
relative error is shown in figure 8(b) for the same data (squares), and we see this is
∼1 over all parameters. Also in figure 8(b) (diamonds) are the results of predicting the
pressure drop using (3.2) but taking the modified fracture width from (3.6); i.e. where
there is a fouling layer we take the yield surface position instead of the fracture
wall position. Physically, as B increases the fouling layer progressively fills in and
smoothes the fracture wall variations. Thus, as B increases, the geometry of (3.6)
resembles a geometry more suited to a lubrication approximation. On using (3.6) we
see a significant decrease in the relative error, so that at large B equation (3.2) again
leads to a reasonable approximation of the pressure drop, but with the inconvenient
caveat that we must first know the extent of the fouling region in order to make this
prediction! Nevertheless, this is an interesting and unusual flow in that increasing the
non-Newtonian nature of the fluid leads to an improved approximation.

Finally, we must note that the improvement in approximation is geometry-dependent.
For a fracture that is anyway relatively long and thin, as B→∞ we may either (i)
have no fouling at all or (ii) have a fouling layer that does not fill the entire wall
profile at large B. Characteristics of the limit of large B relate to the limit of no flow
along the fracture, which we study below in § 4. Figure 8(c) illustrates the reduction
in relative error, using (3.6) compared with (3.3), for two specific fracture geometries.
We see that short-wavelength fractures are most affected by using (3.6).

4. The limit of no flow
We now address the limiting pressure gradient directly, which is known for many

simple flows, e.g. in a pipe of diameter D̂ the pressure gradient must exceed 4τ̂Y/D̂
in order to flow. Critical pressure gradients are also known for many other duct cross-
section shapes, following the seminal work of Mosolov & Miasnikov (1966, 1967),
but these are 1D flows in uniform ducts of complex cross-section. Here, the flow is
fully 2D, but physical intuition still suggests that a critical pressure drop is required
in order to initiate flow.

One approach to finding the critical pressure drop would be to compute flows at
successively larger pressure drops, until flow is initiated. However, the dimensionless
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FIGURE 8. (Colour online) (a) Consistent errors in average pressure gradient prediction
using (3.2), for H=2, L=2: black: wavy, red/white: triangular; circles: numerical, squares:
lubrication approximation. (b) Relative error for the data in (a) (squares); relative error
using the lubrication approximation (3.2) with the fracture width replaced by the yield
surface position (diamonds). (c) Ratio of relative errors (lubrication approximation using
yield stress position versus lubrication approximation using fracture width): H = 2, L= 2
in black; H = 5, L= 20 in red. It should be noted that the multiple points displayed at
the same B correspond to different values of ψ .

formulation we have adopted appears to prevent this, since we have scaled with a
mean velocity so that (2.9) is always satisfied. Thus, an alternative scaling is needed
to study this limiting flow directly. Suppose therefore that we impose a fixed pressure
drop 1P̂ along the fracture. We then define a velocity scale Û∗ to implicitly balance
with the shear stress, i.e.

1P̂

L̂
= µ̂Û∗

D̂2
⇒ Û∗ = 1P̂D̂2

L̂µ̂
. (4.1)

The viscous stresses and the modified pressure are scaled with µ̂Û∗/D̂, the velocity is
scaled with Û∗ and lengths again with D̂. This results in the same system (2.1)–(2.4b),
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with all variables now designated with an asterisk to denote the different scaling. In
place of B in the constitutive laws (2.4a) and (2.4b) we now have

Y ≡ τ̂YD̂

µ̂Û∗
= L̂

D̂

τ̂Y

1P̂
, (4.2)

representing the balance between the yield stress and the imposed pressure drop. We
refer to Y as the yield number. The boundary conditions are again

u∗ = 0, at y= 1+ y+(x) and y=−1− y−(x),
u∗(−L/2, y)= u∗(L/2, y),
τ ∗ij (−L/2, y)= τ ∗ij (L/2, y),

p∗(−L/2, y)= p∗(L/2, y)+ L,

 (4.3)

i.e. now the pressure drop is known (with average gradient −1 along the fracture); the
flow rate must be calculated. Our physical intuition about requiring a finite pressure
drop to initiate flow along the fracture translates into the belief that there will be a
critical value, say Y = Yc, that separates flowing and static fractures. This notion will
be made more precise below in § 4.2.

As in either formulation described, the flow is a Stokes flow with a unique velocity
solution, we expect that the solutions may be mapped to one another. Equivalence
of the two formulations is established straightforwardly by rescaling, from which we
deduce

Y = L
B
1p
= Bq∗, 2q∗ =

∫ 1+y+(x)

−1−y−(x)
u∗1(x, y) dy, (4.2a,b)

i.e. 2q∗ is the areal flow rate from the imposed pressure formulation, which is
equivalent to the inverse of the mean pressure gradient, L/1p, computed in the
imposed velocity formulation.

Although it is quite possible to compute u∗ from the imposed pressure formulation
and then vary Y to study the limit of no flow, numerically this is less well conditioned
than using the fixed flow rate formulation. Since the computational method is iterative
and has tolerances imposed for convergence, it proves easier to impose a tolerance on
an iteration for which u∼O(1) than where u∗→ 0. The identity (4.2) shows that it
is feasible to work in this way. Using the imposed flow formulation, we find 1p as
part of the solution and monitor convergence of Y = LB/1p→ Yc as we increase B.
We also see that if a critical stress balance is achieved, u∗→ 0 (i.e. as Y→ Yc), then
implicitly q∗ ∼ B−1 as B→∞.

4.1. Examples
We now examine three example sequences where we take increasingly large B at fixed
geometry, to understand the limiting behaviour. For simplicity we fix ψ = 0. Figure 9
shows a relatively short fracture (H = 1.5, L = 4) at B = 10, 100, 1000. Even at
B = 10, the majority of the flow is unyielded, with stationary fouling regions filling
the deep parts of the fracture and an intact plug moving along the centre. These
regions are separated by a thin shear layer that extends between the narrowest parts
of the fracture, widening slightly at the deepest parts. As B increases, the width of
this sheared layer is reduced, albeit slowly.

Next, we consider a relatively long fracture with small H/L (H= 0.1, L= 20); see
figure 10. The flow has unyielded plug regions at the narrowest and widest parts of
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FIGURE 9. (Colour online) Colourmap of the speed with superimposed streamlines in a
relatively short fracture H = 1.5, L = 4: increasing B = 10, 100, 1000 (from a to c).
Unyielded regions are shown in grey.
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FIGURE 10. (Colour online) Colourmap of the speed with superimposed streamlines in a
relatively short fracture H = 0.1, L = 20: increasing B = 10, 100, 1000 (from a to c).
Unyielded regions are shown in grey.

the fracture, but no static fouling layers in the deepest parts of the fracture. The plug
in the widest part is moving more slowly than that in the narrowest part, and these
two plugs remain separated as B is increased.

Finally, we consider a more intermediate geometry (H = 2, L= 20); see figure 11.
As may be expected, the limiting process at large B is qualitatively somewhere
between the previous two examples. The narrowest and widest parts of the fracture
have moving central plug regions, but there is also a static fouling layer in the
deepest part of the fracture, extending between say x ∈ (−xf , xf ). The fouling layer
and central plug are separated by a shear layer, which decreases slowly in width
as B increases (similarly to the short fracture). The length xf appears to approach a
constant value as B increases. Similarly to the long fracture, the narrow and wide
plugs remain separated at large B, moving at different speeds.

Figure 12 plots the variation of Y and 1P/L, with increasing B, for the three
geometries illustrated in figures 9–11. We see that in all cases the computed Y
appears to asymptote to a constant value at large B. This value denotes the critical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

49
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.491


Non-Darcy effects in fracture flows of a yield stress fluid 239

0.2 0.4 0.6 0.8 1.0

(a)

(b)

(c)

FIGURE 11. (Colour online) Colourmap of the speed with superimposed streamlines in
a relatively short fracture H = 2, L = 20: increasing B = 10, 100, 1000 (from a to c).
Unyielded regions are shown in grey.

limit Yc. Interestingly, the short and long fractures appear to asymptote to Yc ≈ 1,
whereas the intermediate geometry asymptotes to a value that is significantly larger.
These examples are typical of the behaviour found over the whole range of our
results.

4.2. The critical limit from a variational method
We now define the critical limit more precisely. Use of the imposed pressure
formulation has some advantages for this, as we may use standard variational
techniques (e.g. Putz & Frigaard 2010) to consider the zero flow limit. The solution
u∗ satisfies

0 6 a(u∗, u∗) = −Y j(u∗)+ L
∫ 1+y+(x)

−1−y−(x)
u∗1(x, y) dy (4.5)

= −Y j(u∗)+
∫ L/2

−L/2

∫ 1+y+(x)

−1−y−(x)
u∗1(x, y) dy dx= Y j(u∗)+Q(u∗). (4.6)
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FIGURE 12. Limiting behaviour as B→∞ for the geometries of figures 9–11: (a) Y
plotted against B; (b) 1P/L plotted against B.

The functionals a(u∗, u∗) and j(u∗) denote respectively the viscous and plastic
dissipation rate functionals:

a(u∗, v∗)≡
∫ L/2

−L/2

∫ 1+y+(x)

−1−y−(x)

1
2
γ̇ij(u∗)γ̇ij(v

∗) dy dx, u∗, v∗ ∈ V , (4.7)

j(v∗)≡
∫ L/2

−L/2

∫ 1+y+(x)

−1−y−(x)
γ̇ (v∗) dy dx, v∗ ∈ V . (4.8)

It should be noted that we have extended the velocity integral at the inflow to the
entire fracture:

Q(u∗)≡
∫ L/2

−L/2

∫ 1+y+(x)

−1−y−(x)
u∗1(x, y) dy dx, (4.9)

as the flow rate is identical through each cross-section. Continuing this analysis,

0 6 a(u∗, u∗)6−j(u∗)
[

Y − sup
v∗∈V ,v∗6=0

Q(v∗)
j(v∗)

]
≡−j(u∗) [Y − Yc] , (4.10)

where V denotes the space of admissible velocity solutions. The critical value of Y
is thus formally defined as

Yc = sup
v∗∈V ,v∗6=0

Q(v∗)
j(v∗)

. (4.11)

Following a similar procedure to Putz & Frigaard (2010) we can show that

a(u∗, u∗)∼O([Yc − Y]2) as Y→ Y∗−c , (4.12)
Yj(u∗)∼Q(u∗)∼O(Yc − Y) as Y→ Y∗−c , (4.13)

j(u∗)& a(u∗, u∗)
[Yc − Y] > 0 as Y→ Y∗−c . (4.14)
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FIGURE 13. (Colour online) Viscous dissipation, plastic dissipation and flow rate,
a(u∗, u∗), j(u∗) and Q(u∗), for the three geometries illustrated in figures 9–11, from (a)
to (c).

Figure 13 shows the computed values of a(u∗, u∗), j(u∗) and Q(u∗) as B is increased,
for the three geometries illustrated in figures 9–11. We see that a(u∗, u∗) does indeed
converge much faster than j(u∗) and Q(u∗), as is implicit in the above bounds. It
should be noted that the O([Yc − Y]2) in (4.12) is a lower bound on the decay rate
of the viscous dissipation, and we can see that the decay rate is indeed faster than
quadratic. Equation (4.14) ensures that the plastic dissipation decays to zero at least
one order slower, and (4.13) ensures that the limiting balance is between the plastic
dissipation and the flow rate. We again observe this in figure 13. This in turn can be
used to argue that the supremum in (4.11) is in fact achieved by the solution. Indeed,
if one knows the distribution of the limiting velocity solution, this can be used to
estimate Yc by inserting in (4.11). It should be noted that the size of the limiting
velocity is not important in this determination as (4.11) is scale-invariant.

For computing the velocity, especially numerically, it can be more convenient
to work with O(1) quantities, e.g. in tracking convergence. In moving between
formulations it is necessary to rescale velocities with q∗. Thus, to evaluate Yc by
inserting the limiting solution u∗ into (4.11), we may instead work directly with u in
the large B limit, i.e.

Yc ∼ lim
B→∞

Q(u)
j(u)
= lim

B→∞
2L

j(u)
, (4.15)

on noting that Q(u) = 2L in the fixed flow rate formulation. In the next section we
will estimate j(u) in order to derive approximations to Yc.

4.3. Characteristics of the different geometries
The flows illustrated in figures 9–11 represent the range of all observed behaviours (at
least for Ψ =1). By exploring these flows numerically as B is increased, we have been
able to understand the different flow structures that emerge and in this way estimate
the dominant contributions to j(u) from each type of flow. This leads to a prediction
of Yc for the different fracture geometries. A summary of the results of this analysis
follows, with the details confined to a number of appendices.

Short fractures. By short fractures we mean fractures in which we have observed
a single central plug region along the fracture as B→∞, e.g. figure 9. The analysis
of short fractures is presented in appendix A. We are able to deduce that these flows
approach the same limit as that of a uniform channel, hence Yc = 1. However, the
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104103102 104103102

10–1

10–2

(a) (b)

BB

FIGURE 14. (Colour online) Limiting behaviour as B → ∞ for five short fracture
geometries: (a) shear layer thickness d0; (b) Yc− Y . Data are shown for (E, H= 1, L= 3),
(@, H = 0.5, L= 2), (A, H = 0.25, L= 4), (∗, H = 3, L= 2), (+,H= 4, L= 4); recall that
Yc = 1 for short fractures.

approach to the limit differs from that of a straight channel. As B→∞, Y → 1 −
O(B−2k) and d0 ∼ B−k for some k ∈ [1/3, 0.4]. Here, d0 represents the maximal width
of the thin yielded shear layers observed. Figure 14 explores this convergence from
our numerical results, taken from five different short fracture geometries, each as B
is increased. It appears that, in fact, d0 ∼ B−1/3 and Y→ 1−O(B−2/3), in accordance
with this analysis. It should be noted that in a plane channel flow of a Bingham fluid,
from the analytical solution as B→∞ we find d0 ∼ B−1/2. Here, the yielded layer is
different, being non-uniform and influenced by extensional stresses.

Long fractures with no fouling. The analysis of long fractures is presented in
appendix B. We are able to deduce that

Yc = 1
L

∫ L/2

−L/2

1
1+ h

dx. (4.16)

From the analysis we find Yc − Y ∼ B−1/2 as B→∞, i.e. faster than convergence
with B for the short fractures. Figure 15 illustrates the convergence rate of Yc − Y as
B→∞ for one of our computed ‘long’ fractures. The B−1/2 scaling is verified.

Intermediate fractures with partial fouling. We have seen that for both short and
long fractures, it is possible to estimate the critical limit, essentially by using (3.2).
For sufficiently short periodic fractures, the flow yields at the narrowest width, which
means that (3.2) can be used, taking the modified fracture width from (3.6), which
amounts to h(x)→ 0 as B→∞. For long enough fractures, no fouling occurs and
(3.2) is applied directly. However, as we have seen in figure 11, for intermediate H/L,
the limit B→∞ results in only a limited portion of the fracture being fouled, say
x ∈ [−xf , xf ] for a symmetric fracture (ψ = 0). So far it is unclear (i) how to predict
Yc for such intermediate fractures, (ii) how the fouling length xf is determined and (iii)
what determines transitions from nominally short to intermediate to long fractures.

One feature observed in, e.g., figure 11 is that for intermediate H/L a significant
portion of the fracture length remains yielded in the limit B→∞. Indeed, the limiting
solutions appear to result in true unyielded regions only in the narrowest and widest
parts of the fracture (approximately x ∈ [−xf , xf ]), with a sheared pseudo-plug region
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10–1

100 103102101

B

FIGURE 15. Convergence of Yc − Y (Yc = 1.227) as B→∞ for H = 1, L= 20.

in between. The pseudo-plug region is of course necessary, since the true plug speeds
in wide and narrow parts of the fracture are different. This type of pseudo-plug region
arises in many viscoplastic flows

In appendix C, we first analyse the pseudo-plug, assuming that it is a lubrication
flow limit (§ C.1), but discover that, in fact, the stress and velocity distributions are
not compatible with this interpretation. This leads us to an empirical approach in
which we fit a leading-order expression to the stress field (§ C.2). This understanding
of the solution leads us, via an estimation of the plastic dissipation functional, to an
approximation of Y as a function of the unknown xf , as B→∞:

Y(xf )∼ Q(u)
j(u)
≈ L/2∫ L/2

xf

1
1+ h(x)

dx+ xf

1+ h(xf )
+π ln(1+ h(xf ))

(4.17)

(see § C.3). If we regard xf as being selected by minimizing the strain rate, the
actual xf is determined by maximizing Y(xf ) with respect to xf , thus giving Yc. It
should be noted that the first two terms in the denominator of (4.17) effectively
interpolate between the limiting Yc derived for short channels (xf → L/2) and that
for long channels with no fouling (xf → 0). The third term in (4.17) also vanishes as
xf → L/2, so that the expression for short channels is contained in (4.17).

Figure 16(a) shows examples of the variation of Y(xf ) computed from (4.17) for
L = 20, H = 0, 1, . . . , 8 (black), and L = 6, H = 0, 0.25, 0.5, . . . , 2 (red). The
maximum of Y(xf ) is attained either at an endpoint or at the zero of

xf =π(1+ h(xf )), (4.18)

which is straightforwardly computed. For the examples shown, for L=6 the maximum
is Yc = 1, attained at xf = L/2, for all H. As (1+ h(xf )) ∈ [1, 1+H], we see that the
above equation has a root only for L> 2π. Since when this is not satisfied we find
Yc = 1, which is the short-fracture limit, we adopt the condition

L< 2π (4.19)

as our definition of short fractures. At larger L we see that there is a maximum in
(0, L/2) and compute this numerically. As L→ ∞ we find that 2xf /L→ 0 since
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FIGURE 16. (Colour online) (a) Variation of Y(xf ) from (4.17) for L=20, H=0, 1, . . . ,8
(black); L=6, H=0, 0.25, 0.5, . . . ,2 (red). (b) Variation of Yc (computed by maximizing
Y(xf ) in (4.17)) with L for H= 1 (black) and H= 4 (red). Broken lines indicate the limit
of Yc with no fouling.

xf→ (1+H)π. The second and third terms in the denominator of (4.17) then become
O(1/L) smaller than the first one, which converges to Yc for the long-fracture limit
without fouling. Figure 16(b) shows the variation of Yc with L for two values of
H, computed as the maximum of (4.17). For L satisfying (4.19) we see that Yc = 1,
increasing smoothly to the asymptotic values for no fouling at large L, marked with
the broken lines.

We have computed Yc from this toy model, by maximizing (4.17) over xf , and
compare this with the values of Yc from our 2D computations. The agreement is
reasonable, as is shown in figure 23 in § C.3. Although reasonable, it is possible to
improve (4.17) by a better estimate of j(u) in which the pseudo-plug stresses use a
more accurate approximation. This derivation is detailed in § C.4, resulting in

Y(xf )∼ Q(u)
j(u)
≈ L/2∫ L/2

xf

1
1+ h(x)

dx+ xf

1+ h(xf )
+π

∫ L/2

xf

|h′|
(1+ h)

1
1+√f0|h′| dx

, (4.20)

where f0 is a constant (see § C.4). We again find xf by maximizing Yxf . This results in
Yc and xf as illustrated in figure 17(a,b) respectively. We observe a general increase in
Yc and a small shift in xf compared with (4.17). The relative error with the computed
2D results is however diminished, see figure 17(c), now typically remaining below
10 % for most of the parameter space.

4.4. Affine fractures
Finally, we present some examples of the limiting process in affine fractures. Three
different styles of affine fracture are generated for intermediate H=2, L=20. Figure 5
earlier and figures 18 and 19 below present the sequence B= 100, 1000, 10 000 for
each fracture, plotting the speed, streamlines and unyielded plug regions. In general,
we observe that the small-scale fracture roughness is always fouled. As B increases,
a larger fraction of the fracture becomes immobilized. The boundaries of the flowing
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FIGURE 17. (Colour online) (a) Variation of Yc computed by maximizing (4.20). (b)
Variation of the value of xf that maximizes (4.20), scaled with L/2. (c) Absolute relative
error between (a) and our Yc calculated from the 2D computations.

part of the fracture are formed by arc-like surfaces that span between locally narrow
points of the fracture wall. The radius of curvature of these surfaces increases with B.

It is notable that as B increases, the self-selected flowing channel geometry consists
of a series of joined segments along which the streamlines are approximately parallel.
In such sections, shear components evidently dominate. These parallel segments
are connected by angular converging and diverging segments, in which extensional
stresses and strain rates will be significant. The limiting process as B→∞ appears
to result again in a combination of thin yielded shear layers and non-vanishing
O(1) pseudo-plug regions. Although the evident complexity of the self-selection
and limiting processes so far eludes a simple explanation, there is some hope that
these component structures can be understood. Thus, if one can first understand the
geometric features of flow self-selection (meaning the fouling process and orientation
of the flowing part of the fracture, generating tortuosity) it should be possible to
estimate the critical pressure drops (or yield stresses).

More quantitatively, we may evaluate Yc for these geometries from the computed 2D
solution. Figure 20 shows convergence of Y→ Yc as B→∞. The symmetric fracture
has the smallest Yc, and also appears to have the more constricted flow apertures. The
other two geometries appear to compensate increasing tortuosity (smaller Y) with a
larger effective channel width (larger Y).
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FIGURE 18. (Colour online) Computed examples of speed |u| and streamlines for a
fracture formed from two different affine surfaces. The parameters are H = 2, L = 20,
B= 100, 1000, 10 000, from (a) to (c), with (grey) unyielded plugs.

5. Discussion/conclusions

In this study we have investigated the two-dimensional flow of a Bingham
fluid along an uneven fracture. The work has two principal foci. The first is to
determine numerically the flow-rate–pressure-drop relationship in such geometries
(the appropriate Darcy law), to understand better the limits of simple approximations
that are presently used in a somewhat ad hoc manner. Second, we explore the limiting
values of the pressure drop (equivalently yield stress) at which non-zero flows are
first found. This question has critical consequences for the study of flow onset in
pressure-driven porous media flows, i.e. selection of the critical initial path, as well as
helping to provide practical estimates for invasive sealing of porous media/channels,
i.e. how far will a sealing fluid penetrate under a given driving pressure?

The initial part of the paper has extensively studied geometric effects in idealized
fractures (periodic with wavy or triangular profiles) of dimension (H, L). Strict
application of lubrication/Hele-Shaw approximations to the flow to provide (nonlinear)
Darcy-type flow laws has been shown to be limited to H/L� 1, as may be expected.
As a rule of thumb, errors of 10 % or less appear to require H/L / 1/20. For
geometries outside these limits, flow approximations are vulnerable to similar effects
to Newtonian fluids, e.g. development of tortuosity, etc. One significant difference
between Newtonian and Bingham (or other generalized Newtonian) fluids is in the
coupling of geometrical and rheological parameters in the flow law. In the Newtonian
fluid literature, there are many efforts to improve and extend Darcy-law-type estimates
to these situations. Here, we have resisted the temptation to develop analogous
methods. It is clear that some of these methods would be effective, especially in the
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FIGURE 19. (Colour online) Computed examples of speed |u| and streamlines for a
fracture formed from two identical affine surfaces, shifted. The parameters are H = 2,
L= 20, B= 100, 1000, 10 000, from (a) to (c), with (grey) unyielded plugs.
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FIGURE 20. (Colour online) Computed yield number as a function of the Bingham
number for the three different affine fractures of figures 5–19. Blue squares: the two
surface are symmetrical. Red circles: the two surfaces are uncorrelated. Black lozenges:
the two surfaces are identical, shifted laterally with a constant gap.

limit of low B and for H/L increasing away from the lubrication limit, but infliction
of this algebraic misery on the reader is left to other researchers.

Moving to larger B or for H/L 6� 1, a more serious limitation of lubrication-type
approximations to the Darcy law emerges. Unyielded fluid appears at the wall in
deeper parts of the fracture (fouling layers). Fouling layers provide an O(1) adjustment
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of the flowing area and hence O(1) errors in the predictions of lubrication-type
approximations. We have demonstrated that these errors can be reduced significantly
by adopting the yield surface of the fouling layers as the new fracture wall and
applying the usual lubrication approximation. Therefore, approximation of the flow
law presents no particular problem provided that the fouling layers are known.
Unfortunately, this is not the case as the fluid self-selects the flowing area.

Previous work has addressed the question of the onset of fouling in idealized
geometries with O(1) variations (Roustaei & Frigaard 2013; Roustaei et al. 2015).
Smaller-scale roughness also seems to readily foul, although to the best of our
knowledge this has not been quantified. At intermediate B, estimation of the degree
of fouling appears to be difficult, as a general problem for which one would like to
specify a simple predictive closure relationship. However, numerical solution as here
is an effective tool even for the very complex affine geometries, and can be easily
extended to more general yield stress fluid models. Although Newtonian fluids do not
foul and self-select, sufficiently deep undulations do result in zones of recirculation.
This link is explored in Roustaei & Frigaard (2013). Thus, except for very large B,
it may be that the range of speeds encountered in Bingham and Newtonian fluids
flowing through the same geometry may not differ significantly. This is also observed
in packed-bed models of porous media at fixed flow rates (Chevalier et al. 2013a;
Bleyer & Coussot 2014).

A significant part of the paper has considered the limit of no flow, B→∞, which
via a rescaling can be characterized with the yield number:

Y ≡ L̂

D̂

τ̂Y

1P̂
, (5.1)

directly representing the balance between the applied pressure and the resisting yield
stress. Above a critical value Yc there is no flow. On the theoretical side, we have
formally characterized Yc as a limiting ratio of flow rate to plastic dissipation, shown
that this limit is attained by the velocity solution and provided general bounds on
convergence of the viscous dissipation, plastic dissipation and flow rate in the limit
Y → Y−c . We have then studied the approach to Yc numerically and asymptotically
for simpler symmetric fracture geometries, deriving the leading-order behaviour in the
cases of both short and long–thin fractures.

For short fractures, we find that Yc = 1: at large B the flow consists of an intact
central plug region separated from the walls (and fouling layers) by a progressively
thinning shear layer. This limit is analogous to the flow in a uniform channel, for
which also Yc=1. Short fractures, for the purposes of this limiting process, are defined
as L<2π. For long–thin fractures, no fouling occurs and the lubrication approximation
is valid. The critical yield number can be approximated from the harmonic mean of
the fracture width. However, application of this naïve approximation more widely will
incur O(1) errors, and we have seen that the lubrication approximation is quite limited.

Intermediate fractures are more interesting. The central plug region here is broken
into two parts (in wide and narrow parts of the fracture) and remains so as B→
∞. The plug in the widest part occupies a length approximately equal to that of the
fouling layer (defined as 2xf ), whereas the size of plugs in the narrowest part of the
fracture remains of O(1). Between the two plug regions, we find a slightly sheared
pseudo-plug region. The pseudo-plug joins to the wall in a narrow layer of high shear,
and a similar high-shear layer separates fouling layers and the central plug in the wide
part of the fracture. Based on these observations, we have proposed a rather simple
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toy model to describe the limiting flows. In each of the above regions, we are able to
estimate the strain rate and hence construct an approximation to the plastic dissipation
that depends only on the single parameter xf , the half-length of the fouled layers. By
minimizing the plastic dissipation at fixed flow rate we are able both to estimate xf
and to calculate the limiting Yc. The relative errors in this crude approximation are
typically / 10–15 %, allowing us to effectively predict the critical pressure for the
onset of flow.

We have also performed several simulations in self-affine fractures, as shown in
figures 5–19. Although these geometries deserve a far more complete study, we may
infer some trends from our current results. First, both pseudo-plugs and fouling layers
are present in affine fractures. Second, the limiting zero flow behaviour again appears
to be characterized by geometries that simplistically are componentwise constructed
of shear layers, pseudo-plugs and fouled regions. This leads us to the conclusion
that to understand the flow one needs to understand how the fouling layer is self-
selected. It seems, for instance, obvious that it acts as a filter for the small scales –
the roughness problem. It is, however, unclear how the larger-scale heterogeneities are
filtered. Similarly to the wavy fractures, the final selected flowing channel seems to
have a rather constant width, at least in sections.

Finally, we may consider to what extent our results are valid for more complex
viscoplastic fluids, e.g. Herschel–Bulkley fluids. First, the type of Hele-Shaw/lubri
cation approach is straightforwardly derived and the numerical code may be extended
to such fluids with little additional effort. We expect a very similar set of limits (in
terms of H/L� 1) for application of the lubrication approximations. At intermediate
B, H and L, we expect to see different solutions according to the different constitutive
laws, but qualitatively similar to those reported earlier.

Insofar as determining the critical Y goes, the situation is only partly clear. First,
from the theoretical perspective, the definition of Yc is analogous (except that the test
space for solutions may be different – depending on the power-law index n). It is
slightly more complex to show that the viscous dissipation converges faster than the
plastic dissipation as Y → Yc, but this is also the case. Since the critical limit has
no deformation, i.e. the flow has stopped, it simply represents an admissible stress
solution to the Stokes equations. This means that Yc will be the same for all yield
stress fluids satisfying the von Mises yield criterion. This fact could be established
more formally by using the stress maximization principle. As a consequence, we
would also expect a qualitatively similar structure to the flow at large B. However,
the actual limiting behaviour as B→∞ may differ with n, e.g. convergence rate of d0.
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Appendix A. Short fractures: qualitative analysis
In short fractures, we have seen that increasingly narrow sheared layers separate

fouling layers and the moving plug. As the plug remains intact as B→ ∞, from
mass conservation we may assume that the plug velocity up ∼ 1. There is an evident
symmetry in the shape of the sheared regions, which we assume can be reasonably
approximated by boundaries, y = ±[yc ± d0(B, x)], in the upper and lower sheared
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layers respectively. Here, y=±yc denote the central positions of the sheared layers at
x= 0. To leading order we may expect that within the sheared layers

γ̇ (u)∼
∣∣∣∣∂u
∂y

∣∣∣∣∼O
(

up

d0

)
. (A 1)

On integrating first with respect to y and then along the sheared layer, we find a
leading-order contribution to j(u), of size ∼upL, from each sheared layer. Therefore,
we find that j(u)∼ 2upL∼ 2L, and hence that Yc ∼ 1, as observed.

We may extend this analysis to examine the convergence of Y→Y−c . Let us suppose
that d0(B, 0)∼B−k as B→∞. Examination of the velocity profile at x= 0 reveals that
u(0, y) shows a variation across the sheared layer that is approximately cubic in y∓ yc.
This leads to the approximation

u(x, y)≈ up

2
− 3up

2

[(
y− yc

d0(B, x)

)
− 1

3

(
y− yc

d0(B, x)

)3
]

(A 2)

in the upper sheared layer. In fact, as the ends x =±L/2 are approached, the cubic
approximation changes to quadratic, but at the same time d0(B, x) decreases, so that
contributions from these regions are smaller. It can be observed that the above profile
integrates in y to satisfy the flow rate constraint exactly with up= 1 (and analogously
in the lower shear layer). The leading-order components of the shear rate are

γ̇xy ∼ ∂u
∂y
≈− 3

2d0

[
1−

(
y− yc

d0

)2
]
, γ̇xx ∼ 2

∂u
∂x
≈ 3

d′0
d0

[(
y− yc

d0

)
−
(

y− yc

d0

)3
]
.

(A 3a,b)

As the sheared layers are relatively long and thin, we may assume that |d′0(B, x)| ∼
d′0(B, 0)/L� 1, and therefore find in the upper layer

γ̇ (u) ≈ 3
2d0

[
1−

(
y− yc

d0

)2
] 1+ 4[d′0]2

[(
y− yc

d0

)
−
(

y− yc

d0

)3
]2

[
1−

(
y− yc

d0

)2
]2


1/2

∼ 3
2d0

[
1−
(

y− yc

d0

)2
]
+ 3[d′0]2

d0

[(
y− yc

d0

)2

−
(

y− yc

d0

)4
]
+O([d′0]4), (A 4)

and a similar contribution from the lower layer. Integration over the two sheared layers
gives

j(u)∼ 2L+ 8
5

∫ L/2

−L/2
[d′0]2 dx, (A 5)

and therefore, as B→∞,

Y ∼ Q(u∗)
j(u∗)

= Q(u)
j(u)
∼ 1− 4

5L

∫ L/2

−L/2
[d′0]2 dx∼ 1−O

(
1

L2B2k

)
. (A 6)
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Therefore, we have Yc − Y ∼ L−2B−2k, and since also Y = Bq∗, as B→∞ we have
q∗ ∼ 1/B−O(L−2B−2k−1). Returning now to (4.13),

Q(u∗)= 2Lq∗ ∼ 2L/B−O(L−1B−2k−1)∼O(Yc − Y)∼O(L−2B−2k). (A 7)

This implies that k6 1/2 is the maximal convergence rate for the width of the sheared
layer in short fractures (recall that d0(B, 0)∼ B−k).

Following similar lines, for short fractures, we may deduce that a(u∗, u∗) ∼
L(q∗)2/d0 as B→∞. From the bound (4.12), we deduce that

LB−2+k ∼ L(q∗)2/d0 ∼ a(u∗, u∗)∼O([Yc − Y]2)∼O(L−4B−4k), H⇒ 5k 6 2, (A 8)

i.e. k 6 0.4. Finally, we examine (4.14):

LB−1 ∼ Lq∗ ∼ j(u∗)& a(u∗, u∗)
[Yc − Y] ∼

L(q∗)2

d0L−2B−2k
∼ L3B3k−2 H⇒ k > 1/3. (A 9)

Appendix B. Long fractures: qualitative analysis
In a long symmetric fracture, we commonly observe true plug regions in the widest

and narrowest parts of the fracture, separated by pseudo-plug regions. For L� 1, we
can expect that the flow is pseudo-1D and that the lubrication approximation should
give a reasonable estimate of the pressure gradients and flow velocity. Indeed, this
has been verified in § 3. Therefore, we may use the lubrication pressure gradient to
evaluate the limiting Y . At large B, we may expand (3.1) in series form:

φ ∼ 1−
√

2
(1+ h)B1/2

+ 2
3(1+ h)2B

+
√

2
9(1+ h)3B3/2

+ · · · . (B 1)

Thus, the total pressure drop is

1p =
∫ L/2

−L/2

∣∣∣∣∂p
∂x

∣∣∣∣ dx=
∫ L/2

−L/2

B
(1+ h)φ

dx, (B 2)

∼ B
∫ L/2

−L/2

1
1+ h

+
√

2
(1+ h)2B1/2

+O(B−1) dx, (B 3)

Y = BL
1p
∼ L∫ L/2

−L/2

1
1+ h

dx+
√

2
B1/2

∫ L/2

−L/2

1
(1+ h)2

dx+O(LB−1)

, (B 4)

∼
(

1
L

∫ L/2

−L/2

1
1+ h

dx
)−1

1−
√

2
B1/2

1
L

∫ L/2

−L/2

1
(1+ h)2

dx

1
L

∫ L/2

−L/2

1
1+ h

dx
+O(B−1)

 . (B 5)

The first term above is clearly Yc, and can be derived by effectively integrating the
yield stress along the slowly varying wall. For example, for the wavy interface we
find the expression

Yc =
√

1+H + 1− cos(πψ)
8

H2. (B 6)
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Referring back to figure 10 and the limiting behaviour illustrated in figure 12, we
note that typically Yc > 1 for this flow regime. The condition for having no fouling
layer seems to require a small ratio H/L. Provided that this is satisfied, Yc is in fact
independent of L. In the example shown, since we have small H it appears that Yc≈ 1,
but this need not be the case.

From the analysis leading to (B 5), we see that Yc− Y ∼B−1/2 as B→∞, i.e. faster
than convergence with B for the short fractures. Comparing with the bounds (4.12)–
(4.14) we deduce that

q∗ ∼
(

B
L

∫ L/2

−L/2

1
1+ h

dx
)−1

+O(B−3/2), j(u∗)∼ 2L
B
+O(B−3/2), as B→∞,

(B 7a,b)
and the following bound:

a(u∗, u∗). O(B−3/2), as B→∞. (B 8)

Appendix C. Intermediate fractures: qualitative analysis
Figure 11 shows that for intermediate H/L, a significant portion of the fracture

length remains yielded in the limit B→∞. Indeed, the limiting solutions appear to
result in true unyielded regions only in the narrowest and widest parts of the fracture
(approximately x ∈ [−xf , xf ]), with a sheared pseudo-plug region in between. The
pseudo-plug region is of course necessary, since the true plug speeds in wide and
narrow parts of the fracture are different. This type of pseudo-plug region arises in
many viscoplastic flows.

We first analyse the pseudo-plug, assuming that it is a lubrication flow limit (§ C.1).
We discover that, in fact, the stress and velocity distributions are not compatible with
this interpretation. This leads us to an empirical approach in which we fit a leading-
order expression to the stress field (§ C.2). This appreciation of the solution leads to
an approximation of Y , as a function of the unknown xf , which is maximized to find
both xf and Yc. We first introduce this for a simple qualitative approximation of the
plastic dissipation in § C.3 and then improve the estimate in § C.4.

C.1. The classical pseudo-plug procedure
Analysis of the pseudo-plug region stems from the studies of Walton & Bittleston
(1991) and Balmforth & Craster (1999). We examine this approach as offering
a potential description of the pseudo-plug observed here. In this approach, the
plug velocity is derived from the Buckingham–Reiner equation (3.1), which is
approximated at large B by (B 1). From φ we deduce the yield surface position at
y=±yY(x)= (1+ h(x))φ:

yY(x)∼ 1+ h(x)−
√

2
B1/2
+ 2

3(1+ h(x))B
+

√
2

9(1+ h(x))2B3/2
+ · · · . (C 1)

Interestingly, the thickness of the high-shear layer is independent of h(x) to leading
order at large B, simply following the wall profile. The pseudo-plug velocity to leading
order is calculated as

up,0 ∼ 1
1+ h

[
1+

√
2

3(1+ h)B1/2
− 16

9(1+ h)2B
+O((1+ h)−3B−3/2)

]
. (C 2)
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As for the thin shear layers observed in short fractures, we deduce that γ̇xy ∼ up,0B1/2

within the sheared layer. The size of γ̇xx comes from differentiating up,0 with respect
to x, i.e.

|γ̇xx| ∼
∣∣∣∣dh
dx

∣∣∣∣∼ 1
L
, (C 3)

since the x-dependence is through both h(x) and yY(x), both derivatives of which scale
with dh/dx at large B (we assume H ∼O(1)).

In the sheared layers, the leading-order shear rate varies linearly with y:

∂u
∂y
∼ γ̇xy = τ̇xy + B∼ B

(
1− y

yY

)
, (C 4)

so that the velocity profile is parabolic in y. It becomes apparent that the scaling
arguments that have been made (i.e. assuming |γ̇xy| � |γ̇xx|) break down as y→ y+Y
and more specifically for

y− yY ∼ dh
dx

B−1 ∼ 1
BL
. (C 5)

The above is the usual argument for emergence of a pseudo-plug region, within which
the strain rates are of comparable size. Since within any pseudo-plug the main cause
of straining will come from the geometrical changes, we may assume that |γ̇xy| ∼
|γ̇xx| ∼ |dh/dx| ∼ 1/L. Therefore, within the pseudo-plug we expect that

τij =
[

1+ B
γ̇

]
γ̇ij ∼ B

γ̇ij

γ̇

[
1+O

(
1

BL

)]
. (C 6)

At leading order, therefore, we have that τ = B in the pseudo-plug.
For large L, the x-momentum equation at leading order in the pseudo-plug still does

not include τxx. It follows that

τxy ∼−B
y

1+ h(x)
, τxx ∼−sign(h′(x))B

√
1− y2

(1+ h(x))2
, (C 7a,b)

noting that yY(x)∼ 1+ h(x). Equally, we may deduce that to leading order

γ̇xx ∼− 2h′(x)
(1+ h(x))2

, γ̇xy ∼ −y|γ̇xx|√
y2 + (1+ h(x))2

, (C 8a,b)

which may be integrated to give the velocity distribution across the pseudo-plug:

u∼ up,0 + |γ̇xx|
[√

2(1+ h(x))−
√

y2 + (1+ h(x))2
]
. (C 9)

It should be noted that under the assumption of near-parallel flow, i.e. L→∞, both
strain rates scale with |γ̇xx|∼H/L and consequently the correction to the leading-order
velocity from the variation across the plug is also ∼H/L.

In figure 21, we make a comparison between the predicted pseudo-plug x-velocity
and that from the 2D computations. We can see that the prediction is not particularly
good, in terms of the shape of the velocity profiles. It should be noted that we have
not carried out a matching procedure here (Putz et al. 2009), which would soften the
corners of the pseudo-plug x-velocity. The shape of the corrected velocity, across the
pseudo-plug, does not capture the variations in the computed velocity field.
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FIGURE 21. (Colour online) Comparison of the computed velocity (solid line) with the
asymptotic approximation at (a) 2x/L = 0.2, (b) 2x/L = 0.4, (c) 2x/L = 0.6, (d) 2x/L =
0.8 (as marked by vertical broken lines in the colourmap). The upper figure shows the
colourmap of speed with streamlines and unyielded regions in grey; H = 2, L = 20,
B= 10 000.

C.2. Pseudo-plug regions
One reason for the poor performance of the classical pseudo-plug procedure above is
that the limit we consider at zero flow is the critical limit of zero flow as B→∞, for
reasonably large L. However, it is not necessarily close to the asymptotic limit L→∞,
which is required for the preceding analysis to be valid. The stress distribution found
as L→∞ is shear-dominated, even within the pseudo-plug. Thus, for example, τxx→0
in (C 7a,b) as the yield surface is approached, as the solution must match with that
in the thin shear layer close to the wall. This is not found to be the case here at
intermediate L.
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On the other hand, parts of the scaling of the previous section are correct. First,
the velocity is observed to vanish in a relatively thin layer close to the wall. Second,
since the strain rate is γ̇ � B within the pseudo-plug, the approximation τ ∼ B holds
throughout the pseudo-plug. In place of (C 7a,b), the following is found to give a
reasonable representation of the shear stress field within the pseudo-plug:

τxy

B
∼−sign(y)

√
1−

[
f0|h′(x)|η2 +

√
1− η2

]2
, (C 10)

τxx

B
∼−sign(h′(x))[ f0|h′(x)|η2 +

√
1− η2], (C 11)

where η= y/(1+ h(x)). It should be noted that f0h′(x) approximates a normalized τxx
as the walls are approached. Setting f0=0, the distribution of (C 7a,b) is recovered, but
generally we find that f0≈ 1 within the pseudo-plug. Figure 22 compares (C 11) with
the computed stress distributions across the pseudo-plug for two different intermediate
geometries, in both cases illustrating the good agreement.

C.3. Toy model for estimating j(u) as B→∞
We expect that the intermediate fractures will have asymptotic behaviour as B→∞
that is intermediate between that of the short fractures and the long fractures with
no fouling. Let us therefore consider fractures with relatively large L and H ∼ O(1)
so that h′(x) is relatively small. For simplicity, we consider ψ = 0. The flow rate
constraint determines Q(u) = 2L, and therefore to estimate Y in the limit B→∞
it suffices to estimate j(u). We suppose that the limiting flows are divided into two
distinct regions. First, in the wider part of the fracture, we assume that there are
fouling layers that fill the deepest parts of the fracture for x ∈ (−xf , xf ). Second, for
x 6∈ (−xf , xf ), we assume that there are no fouled regions at the walls of the fracture.

In the unfouled regions, the mean velocity in the x-direction is simply ū= 1/(1+
h(x)). In these regions, as we approach the walls, the velocity drops from u ≈ ū to
zero over a thin layer of O(B−1/2). This thin layer gives a contribution to j(u) of
approximate size

js(u)≈ 4
∫ L/2

xf

1
1+ h(x)

dx, (C 12)

with the subscript denoting the shear layer. Further away from the wall, in the pseudo-
plug, we assume that variations from the mean velocity are driven by axial variations
in the fracture shape, and that u≈ ū. Assuming u≈ ū suggests that

∂u
∂x
≈− h′(x)

(1+ h(x))2
⇒ v ≈O(h′(x)), (C 13)

and hence we expect the next order of terms approximating u to also have size
O(h′(x)). It follows that within the pseudo-plug

γ̇ (u)= |γ̇xx|
[

1+
(
γ̇xy

γ̇xx

)2
]1/2

∼ 2|h′(x)|
(1+ h(x))2

[
1+

(
γ̇xy

γ̇xx

)2
]1/2

. (C 14)

The contribution to j(u) for x 6∈ (−xf , xf ) within the pseudo-plug is therefore

jpp(u)≈ 4
∫ L/2

xf

2|h′(x)|
(1+ h(x))2

∫ 1+h(x)

0

[
1+

(
γ̇xy

γ̇xx

)2
]1/2

dy dx. (C 15)
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FIGURE 22. (Colour online) Colourmaps of τxx (unyielded regions in grey) for B= 1000.
In (a–c), H= 0.5, L= 40; comparisons are shown with the predictions of (C 11) at values
of 2x/L= 0.25, 0.5, 0.7, as marked with broken lines on the colourmap. In (d–f ), H =
2, L = 20; comparisons are shown with the predictions of (C 11) at values of 2x/L =
0.45, 0.6, 0.8.

It should be noted that since we have assumed ψ = 0 we have exploited symmetry
in both x and y to simplify this expression. To calculate the strain rates we assume
that (C 10) and (C 11) approximate the stresses in the pseudo-plug. The ratio of the
strain rates is then given by that of the stresses. Therefore, we find∫ 1+h

0

[
1+

(
γ̇xy

γ̇xx

)2
]1/2

dy = (1+ h)
∫ 1

0

1

f0|h′|η2 +√1− η2
dη

= π

2
1+ h

1+√f0|h′| ≈ (1+ h)
π

2
[1+O(|h′|1/2)], (C 16)
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jpp(u)≈ 4π

∫ L/2

xf

|h′|
(1+ h)

1
1+√f0|h′| dx= 4π ln(1+ h(xf ))[1+O(|h′|1/2)]. (C 17)

Second, we consider x ∈ (−xf , xf ), where only a thin layer of fluid is sheared. The
contribution jf (u) to j(u) from the fouling region comes from the thin shear layers, at
y≈±[1+h(xf )]. The plug velocity is approximately up≈[1+h(xf )]−1, and it therefore
follows that

jf (u)≈ 4xf

1+ h(xf )
[ 1+O((d′0)

2), (C 18)

where again d0(x, B) is taken to represent the width of the sheared layer (see
the analysis of the short fracture). To summarize, if xf is known, then j(u) is
approximately

j(u) ≈ js(u)+ jpp(u)+ jf (u)

≈ 4
∫ L/2

xf

1
1+ h(x)

dx+ 4π ln(1+ h(xf ))+ 4xf

1+ h(xf )
+ · · · , (C 19)

where the additional terms are of smaller order in either 1/L or 1/B. Consequently,
as B→∞ we approximate

Y(xf )∼ Q(u)
j(u)
≈ L/2∫ L/2

xf

1
1+ h(x)

dx+ xf

1+ h(xf )
+π ln(1+ h(xf ))

, (C 20)

which is (4.17), given earlier. In general, we expect that the strain rate will be
minimized, among all constraints. If we regard xf as being selected in this way, the
actual xf is determined by maximizing Y(xf ) with respect to xf , thus giving Yc.

We have computed Yc from this toy model, by maximizing (4.17) over xf . Figures
23(a) and 23(b) plot respectively Yc and xf as functions of (H, L). We see that the
limiting behaviour for both short and very long fractures is represented in Yc. As
(H, L) both increase, the predicted Yc also increases away from 1. The computed
values of xf are close to L/2 for short fractures and approach zero only for very long
fractures (figure 23b). Figure 23(c) presents a contour plot of the largest value of Y
attained in our computations at each (H, L) (typically computed for B= 104), which
may be regarded as a computed estimate of Yc. Comparing with figure 23(a), we see
that the qualitative trends are extremely well represented by this approximation and
the quantitative agreement is good for either smaller H or smaller L, but deteriorates
as both parameters increase. This is, of course, not surprising, as the approximation
is based on the strain rates being driven mostly by variation in ū with x, and we
have neglected correction terms involving f0|h′| (valid for large L). Figure 23(d) plots
the relative error between the computed Yc from our 2D computed results and that
approximated from maximizing (4.17). We see that the relative error is < 10 % close
to the axes and increases to approximately 15 % over much of the (H, L) parameter
space explored. Evidently, once both H and L are much larger than 1, the geometry
represents a large vacuous space rather than a fracture.
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FIGURE 23. (Colour online) (a) Variation of Yc computed by maximizing (4.17). (b)
Variation of the value of xf that maximizes (4.17), scaled with L/2. (c) Variation of Yc
approximated as the largest value of Y from our 2D computations, typically at B = 104.
(d) Absolute relative error between (a) and (c).

C.4. An improved toy model
It is possible to improve the estimate of j(u). From consideration of figure 21 and
similar, it is evident that the pseudo-plug behaviour is more complex than that given
by the proposed jpp(u). The simplest improvement is to include the neglected f0|h′|
term, i.e.

jpp(u)≈ 4π

∫ L/2

xf

|h′|
(1+ h)

1
1+√f0|h′| dx. (C 21)

The stress approximations (C 10) and (C 11) can be matched with the computed
stresses at each x in the pseudo-plug, approximating f0(x) from the stress values close
to the wall. Interestingly, this procedure suggests that f0(x)= constant throughout the
pseudo-plug region. Inspection of many computations suggests that f0 ≈ 1.

We may now repeat the same procedure as for the toy model. We find xf by
maximizing Yxf , now defined by

Y(xf )∼ Q(u)
j(u)
≈ L/2∫ L/2

xf

1
1+ h(x)

dx+ xf

1+ h(xf )
+π

∫ L/2

xf

|h′|
(1+ h)

1
1+√f0|h′| dx

,

(C 22)
which is (4.20), given earlier.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

49
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.491


Non-Darcy effects in fracture flows of a yield stress fluid 259

REFERENCES

AL-FARISS, T. & PINDER, K. L. 1987 Flow through porous media of a shear-thinning liquid with
yield stress. Can. J. Chem. Engng 65 (3), 391–405.

AMBARI, A., BENHAMOU, M., ROUX, S. & GUYON, E. 1990 Distribution des tailles de pores d’un
milieu poreux déterminée par l’écoulement d’un fluide á seuil. C. R. Acad. Sci. 311 (11),
1291–1295.

BALHOFF, M., SANCHEZ-RIVERA, D., KWOK, A., MEHMANI, Y. & PRODANOVIĆ, M. 2012
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