
Geological Magazine

www.cambridge.org/geo

Original Article

Cite this article: Ye Y-T, Wang H-J, Wang X-M,
Zhai L-N, Wu C-D, and Zhang S-C (2021) In situ
rare earth element analysis of a lower
Cambrian phosphate nodule by LA-ICP-MS.
Geological Magazine 158: 749–758. https://
doi.org/10.1017/S0016756820000850

Received: 29 September 2019
Revised: 7 July 2020
Accepted: 10 July 2020
First published online: 4 September 2020

Keywords:
Carbonate fluorapatite; cerium anomaly; MREE
enrichment; stratified ocean; Niutitang
Formation

Author for correspondence:
Hua-Jian Wang,
Email: wanghuajian@petrochina.com.cn

© The Author(s), 2020. Published by Cambridge
University Press.

In situ rare earth element analysis of a
lower Cambrian phosphate nodule by
LA-ICP-MS

Yun-Tao Ye1 , Hua-Jian Wang1 , Xiao-Mei Wang1, Li-Na Zhai2, Chao-Dong Wu3,4

and Shui-Chang Zhang1

1Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China
National Petroleum Corporation, Beijing 100083, China; 2Key Laboratory of Marine Geology and Environment,
Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 3Key Laboratory of Orogenic
Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University,
Beijing 100871, China and 4Institute of Oil and Gas, Peking University, Beijing 100871, China

Abstract

Rare earth elements (REE) in marine minerals have been widely used as proxies for the redox
status of depositional and/or diagenetic environments. Phosphate nodules, which are thought
to grow within decimetres below the sediment–water interface and to be able to scavenge REE
from the ambient pore water, are potential archives of subtle changes in REE compositions.
Whether their REE signals represent specific redox conditions or they can be used to track
the overlying water chemistry is worth exploring. Through in situ laser ablation – inductively
coupled plasma – mass spectrometry (LA-ICP-MS), we investigate the REE compositions of a
drill-core-preserved phosphate nodule from the lower Cambrian Niutitang Formation in the
Daotuo area, northeastern Guizhou Province, South China. REE distributions of the nodule
show concentric layers with systematic decreases in Ce anomalies (Ce/Ce*) from the core
to the rim. The lowest Ce/Ce* appears in the outer rim where REE concentrations are relatively
high. These results are interpreted to reflect REE exchange with pore water at a very early stage
or bathymetric variation during apatite precipitation. The origin of the shale-normalized
middle REE (MREE) enrichment in our sample is less constrained. Possible driving factors
include preferential MREE substitution for Ca in the apatite lattice, degradation of organic mat-
ter and deposition beneath a ferruginous zone. Although speculative, the last possibility is con-
sistent with the chemically stratified model for early Cambrian oceans, in which dynamic
fluctuations of the chemocline provided an ideal depositional context for phosphogenesis.

1. Introduction

Rare earth elements (REE) are reliable geochemical tracers and have been used successfully in
oceanographic studies of redox conditions. Significantly, because of the substitution of REE for
Ca, marine carbonates and phosphate particulates are often considered to be the archives of
seawater or pore-fluid REE signals (Jarvis et al. 1994; Shields & Stille, 2001; Jiang et al. 2007;
Hood & Wallace, 2015; Tostevin et al. 2016b; Wallace et al. 2017; Zhu & Jiang, 2017).
However, because of the complexity of the controlling factors involved in this process, interpre-
tations without careful assessment can be equivocal. Earlier studies usually utilized a leaching
procedure to extract the REE. However, Tostevin et al. (2016a) recently proved that this method
might be compromised by clay or Fe oxide contaminations during digestion. An alternative
approach is to use laser ablation – inductively coupled plasma – mass spectrometry
(LA-ICP-MS) to directly analyse solid samples. The advantages of LA-ICP-MS analysis include
comparatively easy measurements of multiple elements with low detection limits and the ability
to determine micrometric trace-element variations that are undetectable in bulk-rock analyses.
In fact, LA-ICP-MS has been demonstrated to be a powerful tool in understanding the super-
position of geological events, the formation of mineral deposits and even several fundamental
questions concerning the evolution of the Earth system (Bright et al. 2009; Large et al. 2014;
Auer et al. 2017; Wallace et al. 2017; Zhou et al. 2017; Zhu et al. 2019).

The goal of this study is to evaluate the effectiveness of using LA-ICP-MS for REE analysis of
a lower Cambrian phosphate nodule preserved in a drill core from the Daotuo manganese
deposit in Songtao County, northeastern Guizhou, South China. To our knowledge, this is
the first lower Cambrian nodule reported from core material, which minimizes the influence
of surface weathering. Previous geological and geochronological investigations of South
China have provided an ideal framework for the P-enriched Niutitang Formation, such as
the identification of the depositional condition and palaeolatitude (Chen et al. 2015a;
Yeasmin et al. 2017). Here, we emphasize that a combination of in situ LA-ICP-MS mapping
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and quantitative LA-ICP-MS spot analyses can provide unique
information to determine the evolutionary history of a target.

2. Geological setting

The South China Craton, which consists of the Yangtze and
Cathaysia blocks, developed a thick succession of well-studied
Neoproterozoic and lower Cambrian strata (Wang & Li, 2003;
Figs 1, 2). Palaeogeographic reconstruction of the upper Ediacaran
Yangtze Block has revealed three sedimentary facies: (1) the shal-
low platform in the NW composed of carbonate layers of thick-
ness > 100 m (the Dengying Formation); (2) the equivalent
deep-water basin in the SE represented by the Liuchapo/Laobao
cherts; and (3) a transitional slope characterized by mixed lithol-
ogies (Fig. 1; Steiner et al. 2007). During early Cambrian time, the
platform setting suffered widespread drowning and it subsequently
evolved into a muddy shelf (Yeasmin et al. 2017). The Niutitang
Formation, which overlies the Dengying/Liuchapo Formation, is
dominated by high total organic carbon (TOC) (up to 15%) black
shales (Zhai et al. 2016). This black shale sequence also hosts dis-
continuous phosphate nodule, barite, Ni–Mo–PGE (platinum-
group elements)–Au sulphide and V-rich deposits (Xu et al. 2011;
Lehmann et al. 2016). The polymetallic unit was once considered
to be close to the Ediacaran–Cambrian boundary (Horan et al.
1994; Mao et al. 2002), but more recent radiometric ages of
532.3 ± 0.7 Ma (Jiang et al. 2009), 522.7 ± 4.9 Ma (Wang et al.
2012), 522.3 ± 3.7 Ma and 524.2 ± 5.1 Ma (Chen et al. 2015a) from
tuff beds at the base of the Niutitang Formation suggest that the
polymetallic sulphide ore is much younger. Xu et al. (2011)
reported an Re–Os age of 521 ± 5Ma for the polymetallic unit,
which agrees well with the biostratigraphic Tommotian stage (or
Stage 2–3). Stratigraphically downward, U–Pb ages of 536.3 ±
5.5 Ma (Chen et al. 2009), 542.1 ± 5.0 Ma and 542.6 ± 3.7 Ma

(Chen et al. 2015a) from the underlying Liuchapo Formation shift
the position of the Ediacaran–Cambrian boundary within the
Liuchapo Formation.

The Daotuo drill site, where we obtained the nodule sample, is
located in Songtao County, c. 90 km NW of Tongren City (Fig. 1).
The core covers a complete succession from the Sturtian-aged
Tiesi’ao Formation to the lower Cambrian Bianmachong
Formation. The phosphate nodule investigated in this study was
preserved in the basal part of the Niutitang Formation, just below
the polymetallic sulphide ore horizon (Figs 2, 3).

3. Methods

LA-ICP-MS was used to provide both imaging of the nodule and
core-to-rim quantitative spot analysis. The REE contents were
quantitatively measured at the Ministry of Education, Key
Laboratory of Orogenic Belts and Crustal Evolution, School of
Earth and Space Sciences, Peking University. The instruments used
include a 193-nm excimer LA system (COMPexPro 102) and an
Agilent 7500ce ICP-MS. Masses of 139La, 140Ce, 141Pr, 146Nd, 147Sm,
153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb and 175Lu were
determined and calibrated through internal standardization of
43Ca, assuming 48.02% CaO (Jarvis et al. 1994). The NIST 610
standard was used as a reference. Although this NIST glass is
not matrix matched to the phosphate sample, it offers evident
advantages compared with various matrix-matched materials
(Auer et al. 2017). Two other quality-control standards were
analysed: NIST 612 and NIST 614. In total, 66 and 67 spots
(60 μm in size) in the horizontal and vertical directions of the oval
nodule were ablated, respectively. The GLITTER software (version
4.4.2) was used to obtain time-averaged REE concentrations.
Reference materials ran alongside the samples were within 10%
of the reported values for each element.

Fig. 1. (Colour online) Palaeogeographic map showing the distribution of various ore deposits on the Yangtze Block during early Cambrian time (McKerrow et al. 1992; Lehmann
et al. 2016; Yeasmin et al. 2017). P – phosphorite.
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The resulting REE abundances were normalized to Post-
Archaean Average Shale (PAAS; Taylor & McLennan, 1985) to
remove the odd–even effect of element distributions and to pro-
duce curves in which enrichments and depletions are apparent.

Because of excess La in seawater, the conventional Ce/Ce*
calculation, Ce/Ce* = 2CeN/(LaN þ PrN), can lead to incorrect
Ce anomalies. The Ce/Ce* values presented here were therefore
calculated geometrically by extrapolating back from Pr and Nd,
that is, Ce/Ce* = CeN/(PrN × PrN/NdN), as suggested by Lawrence
et al. (2006).

The imaging experiment was conducted at the Key Laboratory
of Petroleum Geochemistry, Research Institute of Petroleum
Exploration and Development, using an Analyte Excite 193-nm
excimer LA system coupled with an iCAP Q ICP-MS. A detailed
description of the operating parameters can be found inWang et al.
(2016), including the laser energy, spot size, scan rate, gas flow and
radio frequency power. LA-ICP-MS imaging of an approximately
0.9 cm2 area covering one-quarter of the total nodule was obtained
to display two-dimensional maps of element distributions. The raw
LA-ICP-MS data were evaluated by means of factor analysis to
assess the inter-element relationships. After calibration of variables
and extraction of principal components, the factor axes were
optimized using the Varimax rotation method.

4. Results

As illustrated in Figure 4, the LA-ICP-MS mapping reveals that
the nodule is highly enriched in Ca, P, Sr and REE, but is depleted
in Al, Si, Sc, Ti and Zr compared with its shale matrix. Notably, the
REE distributions exhibit a concentric structure with moderate
REE contents in the inner zone and elevated levels in the outer
zone. Other elements – Fe, S, As and Se – are only concentrated
between the nodule and the surrounding shale. Factor analysis
of the raw LA-ICP-MS dataset led to the extraction of three com-
ponents, explaining 64.1% of the total variance (Fig. 5; online
Supplementary Tables S1 and S2, available at http://journals.
cambridge.org/geo).

For quantitative spot analysis, the concentrations of most of the
REE as well as the calculated Ce anomalies exhibit systematic var-
iations in both the horizontal and vertical directions of the nodule
(Fig. 6; online Supplementary Table S3). Specifically, Ce anomalies
decrease gradually from the centre to the edge (Ce/Ce* = 0.8 to
0.92), while the REE contents generally increase towards the rim.
This feature is significant for light REE (LREE) and MREE, but is
not significant for heavy REE (HREE). The PAAS-normalized
REE patterns are characterized by striking MREE enrichments
(DyN/SmN= 0.61 to 1.31), with no apparent variation along the
transections (Figs 6, 7).

5. Discussion

5.a. Principal component analysis

Principal component analysis (PCA), which enables dimension
reduction of multivariate datasets, is widely used to understand
element enrichments and their governing processes in geological
environments (e.g. Gregory et al. 2015; Ahm et al. 2017; Ye
et al. 2020). PCA enables the investigation of how different varia-
bles vary with each other, and the grouping of them into principal
components. The first component in our PCA model includes two
groups: PC1 (Ca, P and Sr) and negative PC1 (Al, Si, Sc, Ti and Zr).
The former represents carbonate fluorapatite (CFA), while the
latter corresponds to detrital components of the black shale host,
such as quartz, rutile, zircon and other silicate minerals. The com-
parable distributions of Sr and Ca indicate extensive substitution of

Fig. 2. (Colour online) Generalized litho- and bio-stratigraphy of the upper
Ediacaran–lower Cambrian strata in South China (Wang et al. 2012).

Fig. 3. (Colour online) Phosphate nodule thin-section under reflected light.
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represents the mapping area. The scales of LA-ICP-MS images are counts-per-second (CPS).
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Sr2þ for Ca2þ with no change in charge balance (Figs 4, 5;
Chakhmouradian et al. 2017).

Component 2 consists of the entire REE series, which share very
similar physical and chemical properties. This uniformity arises
from the nature of their electronic configurations, resulting in a
primarily stable oxidation state. The small differences in this set
of elements can be attributed to a steady decrease in ionic radius
with increasing atomic number (i.e. the lanthanide contraction).
REE can reside in CFA through the substitution of REE3þ for
Ca2þ or through direct attachment to crystal surface (Jarvis et al.
1994; Reynard et al. 1999). Fleet et al. (2000) found that both the
ninefold-coordinated Ca1 site and the sevenfold-coordinated Ca2
site can accommodate significant amounts of REE. The REE sig-
natures retained by CFA are believed to be critical for determining
the environmental dynamics, as discussed in the following section.

Component 3 includes Fe, S, As and Se, which are typical
elements within the structure of pyrite. In organic-rich deposits,
syngenetic and diagenetic pyrites have been recognized as sinks
of several trace metals (Large et al. 2014; Gregory et al. 2015).
The incorporation of As into pyrite can occur in two different
ways: (1) the substitution of As− for S in the S unit; or (2) the sub-
stitution of As3þ for Fe2þ (Reich & Becker, 2006; Deditius et al.
2008; Neumann et al. 2013). Selenium concentration of pyrite is
primarily regulated by its substitution for S. Experimental studies
have shown that up to 99.5% Se in solution could be taken up by
pyrite precipitation, demonstrating the high affinity of Se for Fe
sulphides (Diener et al. 2012). Notably, the pyrites formed around
the periphery of our nodule are most likely the consequence of late-
stage sulphate reduction and void filling (Fig. 3).

5.b. Interpretations of REE patterns

5.b.1. Ce anomaly
Cerium is the only REE that undergoes redox transformation
under low-temperature conditions. The oxidation of dissolved
Ce3þ to form insoluble Ce4þ takes place in the modern oxygenated
water column through coating of organic matter and/or Mn–Fe
oxides, resulting in lower Ce concentrations in the deep ocean rel-
ative to La and Pr, which is expressed as a negative Ce anomaly.

Under reducing conditions, the insoluble Ce4þ is converted back
into soluble Ce3þ, which behaves similarly to the other REEs. In
this case, little or no inter-element fractionation is identified
(Elderfield & Sholkovitz, 1987; Moffett, 1990; Alibo & Nozaki,
1999; Bau & Koschinsky et al. 2009).

Since phosphate nodules grow beneath the sediment–water
interface, it is reasonable to assume that the systematic variations
in Ce/Ce* and the total REE contents (ΣREE) are the result of
progressive diagenetic alternation. Shields & Stille (2001) proposed
that the diagenetic reaction can be evaluated using plots of Ce/Ce*
versus ΣREE and DyN/SmN because diagenetic REE exchange with
host sediments would erase the original negative Ce anomaly and
induce greater REE enrichment and MREE arching. Accordingly,
Ce/Ce* is expected to correlate positively with ΣREE and nega-
tively with DyN/SmN. However, as shown in Figure 8, neither of
these relationships was observed for the studied sample. Instead,
there is a negative correlation between Ce/Ce* and ΣREE. If
diagenesis did play a role in producing the elevated REE concen-
trations, the nodule rim, which underwent severe diagenetic addi-
tion of REE, should havemoremuted Ce anomalies compared with
its core. Such a scenario contradicts our data, where the most
prominent negative Ce anomaly is present in the rim concurrent
with the relatively higher REE abundances (Fig. 6); other
explanations for these variations are therefore required.

Based on observations of the modern environment, two
hypotheses are proposed to account for the Ce/Ce* and ΣREE pro-
files of the nodule. First, we note that there could be a significant
difference between the inner and outer parts in terms of the expo-
sure time to pore water. As CFA crystallites grew, the inner part
would be impermeable and more closed, while the outer part
was still in contact with ambient fluid, resulting in the incorpora-
tion of REE into the rim (Ilyin 1998; Zhu et al. 2014). It should be
emphasized that, unlike the late diagenetic modification discussed
above, this processmust occur at a very early stage when pore water
was not completely isolated from seawater and possessed a promi-
nent negative Ce anomaly. The outer zone, which experienced a
stronger exchange with the pore water, therefore exhibits lower
Ce/Ce* (i.e. is more oxygenated). This hypothesis also explains
why the core-to-rim increasing trend is less pronounced for HREE
than for LREE andMREE (Fig. 4; online Supplementary Table S3).
REE mainly exist as carbonate complexes in seawater. The
stability of REE – carbonate ion complexes and the opportunity
for particulate adsorption vary inversely through the REE series
(Koeppenkastrop & De Carlo, 1992; Sholkovitz, 1992; Sholkovitz
et al. 1994). As a consequence, LREE and MREE with higher
mobilities were preferentially bonded to the CFA surface, whereas
HREE were retained in the solution.

Second, the changes in Ce/Ce* and ΣREE may be related to
changes in the water depth. Modern coastal and marine surface
waters generally have little or no negative Ce anomalies, but the
Ce/Ce* values decrease steadily with increasing depth to form a
more typical Ce deficit. The REE contents also exhibit systematic
variations with increasing water depth (Alibo & Nozaki, 1999;
Deng et al. 2017). The observed Ce anomalies are therefore
considered to be a function of bathymetry. Importantly, this
assumption holds true only if the pore water always had a good
connection to the overlying seawater during precipitation of CFA.

5.b.2. MREE enrichment
Most of our analysed spots are markedly enriched in MREE
(Fig. 7). Several models have been suggested to explain the mech-
anisms of this pattern. One possibility is that the MREE are

Fig. 5. (Colour online) Principal component analysis based on the raw LA-ICP-MS
dataset.
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preferentially taken up and are substituted for Ca in the CFA
lattice. The partition coefficients of the REE between apatite and
melt exhibit a convex-upwards shape, indicating that apatite
accommodates MREE more readily than LREE or HREE (Reynard
et al. 1999; Klemme & Dalpé, 2003). However, seawater-like REE
distributions are known to be preserved in many modern and
ancient P-enriched deposits (Toyoda & Tokonami, 1990; Jiang
et al. 2007; Zhu et al. 2014; Xin et al. 2015; Zhai et al. 2016); the
substitution model alone may therefore not explain all of the
MREE enrichments.

Another possibility is that this pattern represents the REE char-
acteristics of organic matter. Several studies have revealed that
organic colloids can dominate REE retention in aqueous systems
(Elderfield et al. 1990; Sholkovitz, 1992; Stolpe et al. 2013). An
extraction experiment by Freslon et al. (2014) demonstrated that

sedimentary organic compounds from different environments
share similar MREE-enriched patterns. The remineralization of
organic particles in highly productive areas or during diagenesis
is capable of imparting its signature to the dissolved load.
Authigenic CFA precipitated in equilibrium with the evolved fluid
would record the organic REE patterns accordingly. Based on the
apparent black opaque appearance of our sample, the REE distri-
butions are at least partially controlled by organic component.
However, some organic-poor phosphorites from this time are also
enriched in MREE (Xin et al. 2015; Zhu & Jiang, 2017), suggesting
that there are other REE sources in addition to the organic matter.
Furthermore, the REE compositions of kerogen in the Niutitang
black shales show diverse patterns instead of a single MREE bulge,
which might be related to different contributions of marine bio-
mass (Pi et al. 2013).

Fig. 6. (Colour online) Horizontal (A01–A66) and vertical (B01–B67) profiles of Ce/Ce*, ΣREE and DyN/SmN. See Figure 4 for trails of the spots.

Fig. 7. (Colour online) PAAS-normalized REE patterns of phosphate nodule.
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The reduction of Fe oxides can also be a potential driver of
elevated MREE concentrations. In sediments off the coast of
Peru and on the California margin, the coincidence of pore water
exhibiting the MREE bulge with the peak of dissolved Fe produc-
tion suggests that Fe oxides are the carriers of this MREE signal
(Johannesson & Zhou, 1999; Haley et al. 2004). Accordingly,
MREE enrichment is sometimes considered to be the diagnostic
pattern for ferruginous environments (e.g. Kim et al. 2012; Chen
et al. 2015b; Ye et al. 2020). For example, MREE enrichments of the
Mesoproterozoic Xiamaling carbonate concretions (Liu et al. 2019)
and the Ediacaran Doushantuo cap carbonates (Wu et al. 2019) are
both attributed to metal oxide reduction. Since carbonate samples
generally have low TOC, it is reasonable to exclude organic matter
as a candidate. But for our nodule, assigning the REE pattern to
individual sources is still challenging. Future research, such as
sequential leaching experiment, may provide new insights into
the causes of such MREE enrichment pattern.

Interestingly, among these hypotheses regarding MREE
enrichment, some researchers have speculated that seawater of
pre-Cenozoic oceans was itself MREE-enriched (Grandjean-
Lécuyer et al. 1993; Ilyin, 1998; Lécuyer et al. 2004; Emsbo et al.
2015). Ilyin (1998) found that almost all Proterozoic–Cambrian
phosphorites have a so-called old-phosphorite REE type, which
contains a negative Ce anomaly and remarkable HREE depletion.
However, this secular variation idea was strongly criticized by
Shields & Webb (2004), given that contemporaneous calcites have
retained REE signals similar to the modern seawater pattern. They
claimed that this HREE deficiency and other non-seawater-like
features were likely derived from post-depositional exchange or
non-quantitative uptake of REE.

Here, we propose that the conflicting views about seawater REE
composition can be reconciled through a chemically stratified
model (Fig. 9). A growing amount of evidence has demonstrated
that Precambrian and early Cambrian oceans were characterized
by extreme spatial heterogeneity and stratification (Li et al.
2010; Poulton et al. 2010; Jin et al. 2016; Zhang et al. 2016;
Hammarlund et al. 2017). Because of the redox control on REE
behaviour, the REE patterns of ancient seawater should be compa-
rable to those of modern pore water, which has been verified to

record discernible REE patterns within a fixed respiration sequence
(i.e. oxic, nitrogenous, manganous, ferruginous, sulphidic and
methanic; Haley et al. 2004; Canfield & Thamdrup, 2009; Kim
et al. 2012; Li et al. 2015). Marine minerals precipitated in different
locations of the ocean would therefore carry different REE signals
(that is to say, the ferruginous condition mentioned above might
not have been restricted to pore water). In the modern oceans, the
massive sedimentation of carbonates occurs on tropical and sub-
tropical continental shelves, referred to as the carbonate factory
(Bosscher & Schlager, 1992). The REE distributions of these car-
bonates are inherited from the oxic surface waters. In contrast,
the depositions of contemporaneous phosphorites are more con-
strained to marginal settings beneath highly productive upwelling
currents (as discussed further in the following section), although
some may suffer reworking and winnowing. With regard to early
Cambrian oceans, such environments could be close to the oxygen-
deficient manganous and/or ferruginous or even sulphidic zone
(Pufahl & Hiatt, 2012). Indeed, the stratification of REE has been
identified in oceans during Proterozoic to early Cambrian time
(Planavsky et al. 2010; Hood & Wallace, 2015; Tostevin et al.
2016b; Wu et al. 2019). A fundamental change of marine redox
state during late Phanerozoic time might have ultimately led to
a uniform seawater REE pattern.

5.c. Mechanisms of phosphogenesis

The main realms of modern phosphorite formations are the major
upwelling systems along continental margins, such as on the
western coasts of Peru and Chile (Manheim et al. 1975; Burnett,
1977; Glenn & Arthur, 1988). The initial enrichments of P in these
settings are orchestrated by a complex interplay between several
processes, including organic matter degradation, Fe oxide pump-
ing and microbial activity.

The role of microbes in phosphogenesis has particularly
attracted the attention of scientists in recent years. For sediments
beneath the Benguela upwelling area off the coast of Namibia,
Schulz & Schulz (2005) reported the co-occurrence of a narrow
horizon of CFA, a spike in the dissolved phosphate content
and an aggregation of giant sulphide-oxidizing bacteria

Fig. 8. (Colour online) Cross-plots of Ce/Ce* versus ΣREE and DyN/SmN.
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Thiomargarita namibiensis. T. namibiensis is known to be capable
of accumulating polyphosphate intracellularly under oxic condi-
tions, then hydrolysing the polyphosphate and releasing phosphate
when the surrounding water becomes anoxic (Schulz & Schulz,
2005). Moreover, Goldhammer et al. (2010) found that sulphide-
oxidizing bacteria can collect 33P-labelled phosphate into their cells
and catalyse nearly instantaneous conversion of phosphate to apa-
tite. Brock & Schulz-Vogt (2011) investigated parameters that
could stimulate the decomposition of polyphosphate in a marine
Beggiatoa strain, and concluded that sulphide exposure would trig-
ger phosphate release by Beggiatoa. Overall, under alternating oxic
and anoxic regimes, sulphur bacteria appear to have a remarkable
effect on focusing pore-water phosphate. Such a condition could
easily have been achieved in Ediacaran–Cambrian oceans, in which
oxidant supply and oxygen level were relatively unstable, fostering
frequent redox oscillations, vigorous microbial activity and sub-
sequent pore-water phosphate build-up.

Indeed, filamentous microfossils that resemble modern
sulphide-oxidizing bacteria were reported from the Ediacaran
Doushantuo Formation in South China (Bailey et al. 2013). These
fossils contain opaque inclusions that represent putative relict
S globules. Although such fossils are not observed in our nodule,
their findings reflect that sulphur bacteria, which are known to
mediate CFA precipitation in modern environments, might have
been present in phosphogenic settings during the Ediacaran–
Cambrian period.

6. Conclusions

In summary, the observed core-to-rim Ce/Ce* variations of a
phosphate nodule from the basal part of the Niutitang
Formation are interpreted to represent REE exchange with pore
water at a very early stage or they might be correlated with increas-
ing water depth during progressive growth of the nodule. The rare
presence of pyrite within the nodule indicates that CFA was pre-
cipitated before extensive sulphate reduction. Causes of the MREE
enrichment are still enigmatic. Potential mechanisms include pref-
erential MREE substitution for Ca, degradation of organic matter
and deposition under ferruginous environments. It is likely that the

observed MREE patterns are the result of a combination of these
mechanisms. Phosphate nodules deposited on continental margins
during early Cambrian time were subject to a mid-depth chemical
zonation with high organic loading from the surface waters. Such a
scenario is consistent with the idea that transient redox switches
can play an important role in phosphate accumulation.
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