
TPLP 20 (2): 225–248, 2020. c© Cambridge University Press 2018

doi:10.1017/S1471068418000558 First published online 10 December 2018

225

Technical Note
The External Interface for Extending WASP

∗

CARMINE DODARO
DIBRIS, University of Genova, Genova, Italy

(e-mail: dodaro@dibris.unige.it)

FRANCESCO RICCA
DEMACS, University of Calabria, Rende, Italy

(e-mail: ricca@mat.unical.it)

submitted 2 December 2017; revised 6 November 2018; accepted 06 November 2018

Abstract

Answer set programming (ASP) is a successful declarative formalism for knowledge representa-
tion and reasoning. The evaluation of ASP programs is nowadays based on the conflict-driven
clause learning (CDCL) backtracking search algorithm. Recent work suggested that the perfor-
mance of CDCL-based implementations can be considerably improved on specific benchmarks
by extending their solving capabilities with custom heuristics and propagators. However, em-
bedding such algorithms into existing systems requires expert knowledge of the internals of ASP
implementations. The development of effective solver extensions can be made easier by provid-
ing suitable programming interfaces. In this paper, we present the interface for extending the
CDCL-based ASP solver wasp. The interface is both general, that is, it can be used for providing
either new branching heuristics or propagators, and external, that is, the implementation of new
algorithms requires no internal modifications of wasp. Moreover, we review the applications of
the interface witnessing it can be successfully used to extend wasp for solving effectively hard
instances of both real-world and synthetic problems.

KEYWORDS: knowledge representation and reasoning, answer set programming, application
programming interface, propagators, choice heuristics

1 Introduction

Answer set programming (ASP) is a declarative formalism for knowledge representation

and reasoning based on stable model semantics (Gelfond and Lifschitz 1991; Brewka

et al. 2011). ASP has been applied for solving complex problems in several areas, in-

cluding artificial intelligence (Balduccini et al. 2001; Garro et al. 2006; Dodaro et al.

2015), bioinformatics (Erdem and Öztok 2015; Koponen et al. 2015), hydroinformat-

ics (Gavanelli et al. 2015), databases (Marileo and Bertossi 2010; Manna et al. 2015;

∗ The paper has been partially supported by the Italian Ministry for Economic Development (MISE)
under project “PIUCultura – Paradigmi Innovativi per l’Utilizzo della Cultura” (no. F/020016/01-
02/X27), and under project “Smarter Solutions in the Big Data World (S2BDW)” (no. F/050389/01-
03/X32) funded within the call “HORIZON2020” PON I&C 2014-2020. Authors are grateful to Mario
Alviano, Bernardo Cuteri, Philip Gasteiger, Nicola Leone, Benjamin Musitsch, Peter Schüller, and
Kostyantyn Shchekotykhin for their suggestions.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558
https://orcid.org/0000-0002-5617-5286
mailto:dodaro@dibris.unige.it
https://orcid.org/0000-0001-8218-3178
mailto:ricca@mat.unical.it
https://doi.org/10.1017/S1471068418000558

226 C. Dodaro and F. Ricca

Manna et al. 2013), and scheduling (Alviano et al. 2017; Abseher et al. 2016; Dodaro

and Maratea 2017), to mention a few; see Erdem et al. (2016) for a detailed survey on

ASP applications. The success of ASP is due to the combination of its high knowledge-

modeling power and robust solving technology (Gebser et al. 2012; Maratea et al. 2012;

Alviano et al. 2015; Gebser et al. 2015; Gebser et al. 2016; Lierler et al. 2016; Gebser

et al. 2017; Alviano et al. 2017).

State-of-the-art ASP systems are usually based on the “ground+solve” approach

(Kaufmann et al. 2016), in which a grounder transforms the input program (containing

variables) in an equivalent variable-free one, whose stable models are subsequently

computed by the solver. The computation of stable models is usually performed applying

a variant of the conflict-driven clause learning (CDCL) backtracking search algorithm

(Silva and Sakallah 1999; Zhang et al. 2001). Effective CDCL implementations require

the combination of several features, including choice heuristic and propagators. Recently,

it has been suggested that the performance of CDCL-based solvers can be considerably

improved on specific benchmarks by adding domain-specific choice heuristics (Friedrich

2015) and propagators (Janhunen et al. 2016). However, extending in an effective

way existing solvers with new algorithms is not obvious, because it requires in-depth

knowledge of the internals of the implementations, which are nowadays very optimized

and sophisticated.

In this paper, we provide a practical contribution in the aforementioned context,

in particular we present the external programming interface of the ASP solver wasp

(Dodaro et al. 2011; Alviano et al. 2013; Alviano et al. 2015), whose idea is to sim-

plify the integration of custom heuristics and propagators in the solver. In particular, it

offers multi-language support including python and perl languages that require no mod-

ifications to the solver, as well as C++ for performance-oriented implementations. The

interface was partially described in Dodaro et al. (2016) and used in the literature to em-

bed domain-specific heuristics for two industrial problems proposed by Siemens, namely

partner units and combined configuration. More recently, the interface has been also

used to implement custom propagators as solution to the grounding bottleneck problem

in three benchmarks, namely stable marriage, packing, and natural language understand-

ing (NLU) (Cuteri et al. 2017). In particular, propagators were used to replace a small set

of constraints causing a grounding blow-up of the program, and thus making the usage

of plain “ground+solve” approach not viable.

This paper is organized as follows: in Section 2, we recall syntax and semantics of propo-

sitional ASP programs and contemporary solving techniques. In Section 3, we present

the interface for extending the solving capabilities of wasp by adding new propagators

and by modifying the choice heuristic. Subsequently, we show the usage of the inter-

face by presenting three examples. In the first example, we realize new propagators as

a tool for avoiding the grounding bottleneck while solving the stable marriage prob-

lem (Section 4.1). In the second example, we show how to obtain a naive solver for

constraint answer set programming (CASP) (Baselice et al. 2005) (Section 4.2). The

third one shows how the interface can be used for implementing a well-known gen-

eral purpose choice heuristic (Section 4.3). Then, we review the successful applications

of the interface in the literature, discussing its impact in improving the performance

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 227

of wasp (Section 5). Finally, after discussing related works in Section 6, we draw the

conclusion.

2 Preliminaries

This section recalls syntax and semantics of propositional ASP programs and contempo-

rary solving techniques. More detailed descriptions and a more formal account of ASP, in-

cluding the features of the language employed in this paper, can be found in Baral (2003),

Brewka et al. (2011), Gebser et al. (2012), Lifschitz (2016), and Janhunen and Niemelä

(2016). Hereafter, we assume the reader is familiar with logic programming conventions.

2.1 ASP syntax and semantics

Syntax. An ASP program Π is a finite set of rules of the form:

a1 ∨ . . . ∨ an ← b1, . . . , bj ,∼bj+1, . . . ,∼bm, (1)

where a1, . . . , an, b1, . . . , bm are atoms and n ≥ 0, m ≥ j ≥ 0. In particular, an atom

is an expression of the form p(t1, . . . , tk), where p is a predicate symbol and t1, . . . , tk
are terms. Terms are alphanumeric strings and are divided into variables and constants.

According to Prolog’s convention, only variables start with an uppercase letter. A literal

is an atom ai (positive) or its negation ∼ai (negative), where ∼ denotes the negation as

failure. Given a literal �, let � denote the complement of �, that is, a = ∼a and ∼a = a,

for an atom a. For a set of literals S, let S = {� | � ∈ S}. Given a rule r of the form (1),

the disjunction a1 ∨ . . . ∨ an is the head of r, while b1, . . . , bj ,∼bj+1, . . . ,∼bm is the body

of r, of which b1, . . . , bj is the positive body, and ∼bj+1, . . . ,∼bm is the negative body of r.

A rule r of the form (1) is called a fact if m = 0 and a constraint if n = 0. Given a rule

r of the form (1), H (r) and B(r) denote the set of atoms appearing in the head and in

the body of r, respectively. An object (atom, rule, etc.) is called ground or propositional

if it contains no variables. Rules and programs are positive if they contain no negative

literals, and general otherwise. Given a program Π, let the Herbrand Universe UΠ be the

set of all constants appearing in Π and the Herbrand Base BΠ be the set of all possible

ground atoms which can be constructed from the predicate symbols appearing in Π with

the constants of UΠ. Given a rule r, Ground(r) denotes the set of rules obtained by

applying all possible substitutions σ from the variables in r to elements of UΠ. Similarly,

given a program Π, the ground instantiation Ground(Π) of Π is the set
⋃

r∈Π Ground(r).

Given a program Π, At(Π) denotes the set of atoms occurring in Π.

Semantics. For every program Π, its stable models are defined using its ground instanti-

ation Ground(Π) in two steps: first, stable models of positive programs are defined, then

a reduction of general programs to positive ones is given, which is used to define stable

models of general programs.

A set L of ground literals is said to be consistent if, for every literal � ∈ L, its negated

literal � is not contained in L. Given a set of ground literals L, L+ ⊆ L denotes the set of

positive literals in L. An interpretation I for Π is a consistent set of ground literals over

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

228 C. Dodaro and F. Ricca

atoms in BΠ. A ground literal � is true w.r.t. I if � ∈ I; � is false w.r.t. I if its negated

literal is in I; � is undefined w.r.t. I if it is neither true nor false w.r.t. I. A rule r is satisfied

w.r.t. I if one of the atoms in the head is true w.r.t. I or one of the literals in the body

is false w.r.t. I. A constraint c is said to be violated by an interpretation I if all literals

in the body of c are true. An interpretation I is total if, for each atom a in BΠ, either a

or ∼a is in I (i.e., no atom in BΠ is undefined w.r.t. I). Otherwise, it is partial. A total

interpretation M is a model for Π if, for every r ∈ Ground(Π), at least one literal in the

head of r is true w.r.t. M whenever all literals in the body of r are true w.r.t. M . A model

M is a stable model for a positive program Π if M+ ⊆ X+, for each model X of Π.

The reduct of a general ground program Π w.r.t. an interpretation M is the positive

ground program ΠM , obtained from Π by (i) deleting all rules r ∈ Π whose negative

body is false w.r.t. M and (ii) deleting the negative body from the remaining rules.

A stable model (or answer set) of Π is a model M of Π such that M is a stable model of

Ground(Π)M . We denote by SM (Π) the set of all stable models of Π and call Π coherent

if SM (Π) �= ∅, incoherent otherwise.

Support. Given a model M for a ground program Π, we say that a ground atom a ∈M

is supported w.r.t. M if there exists a supporting rule r ∈ Π such that a is the only true

atom w.r.t. M in the head of r, and all literals in the body of r are true w.r.t. M . If M

is a stable model of a program Π, then all atoms in M are supported.

Algorithm 1: ComputeStableModel

Input : A ground program Π

Output: coherent if SM (Π) �= ∅. Otherwise, incoherent

1 begin

2 I := ∅;
3 (Π, I):= SimplifyProgram(Π, I); // remove redundant rules and atoms from Π

4 I := Propagate(I); // propagate deterministic consequences of I

5 if I is inconsistent then

6 r := CreateConstraint(I); // learning

7 if B(r)= ∅ then return incoherent; //Π does not admit stable models

8 Π := Π ∪ {r};
9 I := RestoreConsistency(I, Π); // unroll until I is consistent

10 else if I is total then

11 if CheckConsistency(I) then return coherent; // I is a stable model

12 R := CreateConstraints(I); // create constraints for the failure

13 Π := Π ∪ R;

14 I := RestoreConsistency(I, Π); // unroll until I is consistent

15 else

16 I := RestartIfNeeded(I); // restart of the computation

17 Π := DeleteConstraintsIfNeeded(Π); // deletion of learned constraints

18 I := I ∪ ChooseLiteral(I); // heuristic choice

19 end

20 goto 4;

21 end

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 229

Function Propagate(I)

1 I:= EagerPropagation(I);

2 if I is consistent then

3 I ′ := PostPropagation(I);

4 if I ′ = ∅ then return I;

5 I := I ∪ I ′;
6 end

7 if I is inconsistent then return I;

8 goto 1;

2.2 CDCL algorithm for stable model computation

The computation of a stable model is usually carried out by employing the CDCL

algorithm (Silva and Sakallah 1999; Zhang et al. 2001) with extensions specific to ASP

(Kaufmann et al. 2016), reported here as Algorithm 1. The algorithm takes as input a

propositional program Π and produces as output either coherent, if Π admits stable

models, or incoherent otherwise.

The computation starts by applying polynomial simplifications to strengthen and/or

remove redundant rules on the lines of methods employed in Gebser et al. (2008) and

inspired by Eén and Sörensson (2003) (see Dodaro (2015) for more details). After the

simplifications step, the non-chronological backtracking search starts. First, a partial

interpretation I, initially empty, is extended with all the literals that can be determin-

istically inferred by applying some inference rule (propagation step, line 4). Three cases

are possible after a propagation step is completed:

(i) I is consistent but not total. In that case, an undefined literal � (called branching

literal) is chosen according to some heuristic criterion (line 18) and is added to I.

Subsequently, a propagation step is performed that infers the consequences of this

choice.

(ii) I is inconsistent, thus there is a conflict, and I is analyzed. The reason of the

conflict is modeled by a fresh constraint r (learning, line 6), computed in such

a way to avoid the same conflict in the future search, for example, using the first

Unique Implication Point (UIP) learning schema (Zhang et al. 2001). If the learning

procedure determines that the conflict cannot be avoided, that is, the input program

is incoherent, then the algorithm terminates returning incoherent. Otherwise, the

algorithm backtracks (i.e., choices and their consequences are undone, this is often

referred to as unroll in the following) until the consistency of I is restored (line 9)

and r is added to Π.

(iii) x I is total; the algorithm performs a consistency check on the interpretation I

(line 11). If I is inconsistent, the conflict is analyzed and a set of constraints is

added to Π (line 13). Otherwise, the algorithm terminates returning I. This check

is required whenever the specific implementation of the CDCL algorithm lazily post-

pones some propagation inference which is required to assure the consistency of I.

For the performance of this search procedure, several details are crucial: learning effective

constraints from inconsistencies, an effective propagation function as well as heuristics

for restarting, constraint deletion, and for choosing literals.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

230 C. Dodaro and F. Ricca

Propagation. One of the key features of Algorithm 1 is the function Propagate, whose

role is to extend the partial interpretation with the literals that can be deterministically

inferred. In particular, a set of propagators is usually applied according to some prior-

ity sequence. Higher priority propagators are applied first (function EagerPropagation),

while lower priority propagators are applied later (function PostPropagation). In the

following, higher and lower priority propagators are referred to as eager and post prop-

agators, respectively. An example of eager propagator is the unit propagator. That is,

given a partial interpretation I consisting of literals, and a set of rules Π, unit prop-

agation infers a literal � to be true if there is a rule r ∈ Π such that r can be sat-

isfied only by I ∪ {�}. Consider a rule r of the form (1), its no-good representation

is C(r) = {∼a1, . . . ,∼an, b1, . . . , bj ,∼bj+1, . . . ,∼bm}, which intuitively represents a con-

straint that is satisfied w.r.t. I if and only if r is satisfied w.r.t. I. Therefore, the negation

of a literal � ∈ C(r) is unit propagated w.r.t. I and rule r iff C(r)\{�} ⊆ I, since this

represents the only way to satisfy the rule. The choice of the propagators used for the

computation of stable models depends on the implementation of CDCL, which may vary

the used propagators according to specific solving strategies or to features of the in-

put program. As an example, to ensure that models are supported in the presence of

disjunctive rules with more than two atoms in the head, clasp applies a (component-

wise) shift technique combined with unit propagation on the Clark completion of Π

(Gebser et al. 2013), whereas wasp employs a dedicated support propagator as described

in Alviano and Dodaro (2016).

Heuristic choice. The heuristic criteria used for selecting the branching literal play

a crucial role in the CDCL algorithm. During the recent years, several heuristic

strategies have been proposed. Among them, variable state independent decaying sum

(VSIDS) (Moskewicz et al. 2001) has been shown to be successful in solving a large

number of problems. The implementation of the state-of-the-art SAT solver minisat

(Eén and Sörensson 2003) provides a further boost in the usage of VSIDS-like heuristics.

Nowadays, ASP solvers clasp and wasp also use variants of the heuristic strategy pro-

posed by minisat. This strategy keeps an activity value, initially set to 0, for each atom

in At(Π). When a literal � = a or � = ∼a is used for computing a learned constraint

(e.g., during the computation of first UIP), the activity of a is incremented by a value

inc. The value of inc is not static, instead it is multiplied by a constant slightly greater

than 1 whenever a learned constraint is added to Π. Intuitively, this is done to give more

importance to atoms which have been included in the recent learned constraints. The

next branching literal is ∼a, where a is the undefined atom with the highest value of

activity (ties are broken randomly). In the following, the default heuristic coupled with

the CDCL algorithm is assumed to be the minisat heuristic.

3 The external interface of wasp

In this section, we describe the external interface of wasp (Alviano et al. 2015) for adding

new propagators and heuristics. The architecture of wasp allows by design the interac-

tion of its internal CDCL algorithm (as described in Section 2.2) with external algorithms

developed according to the interface of methods described in Sections 3.1 and 3.2. During

the computation of a stable model, and in particular when specific points of the compu-

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 231

tations are reached, wasp performs calls to the corresponding methods of the external

interface. Therefore, propagators and heuristics are algorithms providing an implemen-

tation of specific methods of the interface. In Sections 3.1 and 3.2, we describe such

methods providing their contract, that is, the input parameter (Parameter), the output

of the method (Return), the point of CDCL when the method is called (When), the con-

ditions that must be true when the method is called (Preconditions), and the conditions

that will be true when the method has completed its task (Postconditions). In order to

simplify the presentation some technical details are omitted and the general description

of the interface is not committed to a specific language. Moreover, we assume that wasp

takes as input a propositional program Π and creates an interpretation I initially set to ∅.

3.1 Propagators

The methods of the interface to add new propagators in wasp are reported in the fol-

lowing and described in what follows in separate paragraphs:

Method AttachLiterals. This method associates a set of literals to the specific propagator.

The contract of the method is the following:

Parameter: none.

Return: a set of literals L.
When: the method is called before the initial simplifications, that is, before line 3

of Algorithm 1.

Preconditions: the parsing of Π is executed and the initial simplifications are not

performed.

Postconditions: literals in L are associated to the propagator.

Literals in L are interpreted by wasp as attached to the propagator. That is, whenever

a literal in L is added to or removed from the partial interpretation I, a notification is

sent to the propagator using the methods described in the following (see OnLiteralTrue

and OnLiteralsUndefined, respectively). Otherwise, literals which are not included in L
are ignored. Intuitively, this method is used to limit the notifications only to a subset of

literals of interest for the propagator.

Method Simplify. This method can be used to further simplify the input program. The

contract of the method is the following:

Parameter: none.

Return: a set of literals.

When: the method is called during the execution of SimplifyProgram (line 3 of

Algorithm 1), that is, after all simplifications implemented by wasp.

Preconditions: initial simplifications of the input program have been performed

and I is consistent.

Postconditions: literals returned by the method are added to I.

During the simplifications, a custom propagator may identify a set of literals that must

be included in I. Stated differently, the propagator can return a set of literals that will

be always included in all stable models of Π.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

232 C. Dodaro and F. Ricca

Method OnLiteralTrue. This method can be used to implement eager propagators. The

contract of the method is the following:

Parameter: a literal � ∈ L that has been added to I.

Return: a set of literals.

When: the method is called during the execution of EagerPropagation (line 1 of

Propagate).

Preconditions: the interpretation I is consistent, � ∈ (L ∩ I).

Postconditions: literals returned by the method are added to I.

A literal � is added to the interpretation I. Such a literal may lead to the inference of

other literals, which are returned as output by this method and that will be later on

added to the interpretation I by wasp.

Method OnLiteralsTrue. This method can be used to implement post propagators. The

contract of the method is the following:

Parameter: a set of literals L ⊆ L.
Return: a set of literals.

When: the method is called during the execution of PostPropagation (line 3 of

Propagate).

Preconditions: the interpretation I is consistent, L ⊆ (L ∩ I).

Postconditions: literals returned by the method are added to I.

The parameter L includes the latest heuristic choice and literals added to I during the

execution of EagerPropagation. As the previous method, it returns a set of literals which

will be later on added to the interpretation I by wasp.

Method OnLiteralsUndefined. The method can be used by the propagator to keep track

of modifications of I. The contract of the method is the following:

Parameter: a set of literals L ⊆ L.
Return: none.

When: this method is called either during the execution of methods

RestoreConsistency or RestartIfNeeded (lines 9 and 16 of Algorithm 1, respectively).

Preconditions: an unroll of the interpretation I has been performed, I is consis-

tent, L ⊆ L, (L ∪ L) ∩ I = ∅.
Postconditions: none.

Literals in L have been removed from the partial interpretation I by wasp, thus they

are undefined, for example, after a conflict or a restart.

Method GetReasonForLiteral. The method can be used for providing an explanation for

the inference of a literal. The contract of the method is the following:

Parameter: a literal �.

Return: a constraint r.

When: this method is called for each literal � added to the interpretation by

methods OnLiteralTrue and OnLiteralsTrue.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 233

Preconditions: � is the literal (resp. one of the literals) returned by the method

OnLiteralTrue (resp. OnLiteralsTrue).

Postconditions: let r be the constraint returned by the method, the negation of

� is in r and all literals in r but � are true w.r.t. the partial interpretation I, r is

added to Π.

Whenever a literal � is inferred by one of the methods OnLiteralTrue and OnLiteralsTrue,

an explanation of the inference is needed to implement learning techniques properly. Such

an explanation is modeled by a constraint r. More formally, let S = {�1, . . . , �m} be a set

of literals such that if S ⊆ I then � ∈ I1 for each stable model I1 ⊇ I of Π, the constraint

r is of the form ← �1, . . . , �m,∼�.

Method CheckStableModel. The method can be used to check the consistency of I w.r.t.

the propagator. The contract of the method is the following:

Parameter: a set of literals representing the interpretation I.

Return: a Boolean value.

When: this method is called during the execution of CheckConsistency (line 11 of

Algorithm 1).

Preconditions: I is total and consistent w.r.t. Π.

Postconditions: If the method returns true, wasp terminates its execution. If the

method returns false, the method GetReasonsForCheckFailure is called.

The propagator may lazily postpone some inference that is required to assure the con-

sistency of I; therefore, this method returns true if I is consistent w.r.t. the propagator,

and false otherwise.

Method GetReasonsForCheckFailure. The method can be used for providing an explana-

tion of the stable model check failure. The contract of the method is the following:

Parameter: none.

Return: a set of constraints.

When: this method is called whenever the method CheckStableModel returns false.

Preconditions: method CheckStableModel returned false, I is total and consistent

w.r.t. Π.

Postconditions: let R be the set of constraints returned by the method, for each

constraint r ∈ R all literals in r are true w.r.t. I, R is added to Π, and the

computation of wasp restarts.

The failure of CheckStableModel is explained in terms of constraints that are implicitly

violated by the interpretation I. Indeed, the consistency check fails when the interpreta-

tion is inconsistent w.r.t. the propagator. Constraints in R are later on added to Π by

wasp (line 13 of Algorithm 1).

3.2 Heuristic

The interface of wasp also allows the definition of custom heuristics that modify the

default minisat heuristic, using the methods described in the following. Methods included

in the interface were chosen by looking at modern general-purpose and domain-specific

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

234 C. Dodaro and F. Ricca

heuristics. Note that an algorithm modifying the heuristic can also use the methods

described in the previous section.

Method OnConflict. The method can be used to keep track that a conflict occurred

during the search. The contract of the method is the following:

Parameter: none.

Return: none.

When: this method is called whenever the partial interpretation I is inconsistent

(i.e., line 5 of Algorithm 1).

Preconditions: the partial interpretation I is inconsistent, that is, a conflict

occurred during the search.

Postconditions: none.

The number of conflicts occurring during the search is a parameter that is often used

by many look-back heuristics, as the minisat one. Therefore, this method provides a

convenient way to keep track of the conflicts occurred.

Method OnLitInConflict. The method can be used to keep track of literals that are used

during the computation of the first UIP. The contract of the method is the following:

Parameter: a literal �.

Return: none.

When: this method is called during the execution of CreateConstraint and

CreateConstraints (lines 6 and 12 of Algorithm 1, respectively).

Preconditions: a learned constraint r is created after a conflict and � is a literal

used during the computation of first UIP.

Postconditions: none.

Literals used during the computation of the first UIP are usually considered good candi-

dates as branching literals by look-back techniques (Eén and Sörensson 2003). Therefore,

this method provides a convenient way to keep track of such literals.

Method OnLearningConstraint. The method can be used to keep track of constraints

learned during the search. The contract of the method is the following:

Parameter: a constraint r.

Return: none.

When: this method is called whenever a new constraint r is added to the input

program (lines 8 and 13 of Algorithm 1).

Preconditions: a learned constraint r is added to Π.

Postconditions: none.

Method OnRestart. The method can be used to keep track of restarts occurring during

the computation. The contract of the method is the following:

Parameter: none.

Return: none.

When: this method is called during the execution of RestartsIfNecessary (line 16

of Algorithm 1).

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 235

Preconditions: the solver restarted the computations from scratch and no branch-

ing choices are made.

Postconditions: none.

Method Init-minisat. The method can be used to initialize the minisat activities of

some atoms. The contract of the method is the following:

Parameter: none.

Return: a set of elements of the form (a, v), where a ∈ At(Π) and v ≥ 0 is an

integer.

When: this method is called by wasp after the initial simplification and before

the first propagation, that is, after line 3 of Algorithm 1.

Preconditions: the simplifications are performed, no branching choices are made,

and the minisat activities of all atoms in the program are set to 0.

Postconditions: let S be the set of elements of the form (a, v) returned by the

method where a ∈ At(Π) and v ≥ 0, the minisat activity of the atom a is set to v

for each element (a, v) in S.

The default implementation of minisat heuristic initializes the activity of all atoms to 0.

Therefore, this method can be used to initialize the activity of atoms to a different value.

Intuitively, since the minisat heuristic selects atoms with the highest activity value, a

proper selection of initial activity values can be useful to influence the first choices made

by the solver.

Method Factor-minisat. The method can be used to associate an amplifying factor to

the minisat activities of some atoms. The contract of the method is the following:

Parameter: none.

Return: a set of elements of the form (a, v), where a ∈ At(Π) and v ≥ 0 is an

integer.

When: this method is called by wasp after the initial simplification and before

the first propagation, that is, after line 3 of Algorithm 1.

Preconditions: the simplifications are performed, no branching choices are made,

and the minisat activities of all atoms are initialized.

Postconditions: let S be the set of elements of the form (a, v) returned by the

method where a ∈ At(Π) and v ≥ 0, the minisat activity of the atom a is associated

to the amplifying factor v for each element (a, v) in S.

The amplifying factor will be used by wasp during the computation of the heuristic

choice, in particular the activity value of an atom is multiplied by its amplifying factor.

Method Sign-minisat. The method can be used to provide a priority on the sign of

literals, that an atom will be selected with a specific polarity. The contract of the method

is the following:

Parameter: none.

Return: a set of elements of the form (a, v), where a ∈ At(Π) and v ∈ {pos, neg}.
When: this method is called by wasp after the initial simplification and before

the first propagation, that is, after line 3 of Algorithm 1.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

236 C. Dodaro and F. Ricca

Preconditions: the simplifications are performed, no branching choices are made,

and the minisat activities of all atoms are initialized.

Postconditions: let S be the set of elements of the form (a, v) returned by the

method where a ∈ At(Π) and v ∈ {pos, neg}, the atom a is associated with the

polarity v.

The sign of atoms allows to specify a preference of the choice polarity of atoms. In

particular, let a be an atom and v ∈ {pos, neg} its associated polarity, whenever the atom

a is selected as branching atom by the minisat heuristic, the corresponding branching

literal is ∼a if v = neg, otherwise it is a.

Method SelectLiteral. The method can be used to replace the default minisat heuristic

or to trigger a restart of the computation or an unroll. The contract of the method is the

following:

Parameter: none.

Return: an element of the following form: (i) (choice, �), where � is an undefined

literal w.r.t. I (ii) (minisat, n), where n ≥ 0 (iii) (unroll, �), where � is a true or

false literal w.r.t. I or (iv) (restart).

When: this method is called by wasp whenever an heuristic choice is required,

that is, during the execution of ChooseLiteral (line 18 of Algorithm 1).

Preconditions: the interpretation I is consistent,

Postconditions: in case (i) the undefined literal � is selected as branching literal

and added to I; in case (ii) the custom heuristic is disabled for the subsequent n

choices switching to the minisat one, or the minisat heuristic is enabled perma-

nently in case n = 0; in case (iii) all the choices are retracted until � is not included

anymore in I; in case (iv) wasp performs a complete restart of the computation.

3.3 Implementation

The interface described in the previous section has been implemented as an extension

of wasp. Current implementation supports perl and python scripts for obtaining fast

prototypes, and C++ in case better performance is needed. It is important to emphasize

that C++ implementations must be integrated in the wasp binary at compile time,

whereas perl and python scripts are specified by means of files given as parameters for

wasp, thus they do not require changes and recompilation of its source code. In particular,

perl or python propagators and heuristics are files that are provided to wasp by means of

a command line option. Note that such files do not contain any reference to the internal

data structures of wasp. The communication between the solver and the file is done

by means of a message passing protocol, which is however transparent to the developer

of propagators and heuristics. The source code and the documentation are available at

alviano.github.io/wasp/.

4 Examples of usage

In this section, we provide two usage examples of the interface described in the previous

section. Section 4.1 reports the implementation of two propagators for solving the sta-

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

alviano.github.io/wasp/
https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 237

ble marriage problem. Section 4.2 shows a proof-of-concept implementation of a CASP

solver. Section 4.3 describes the instantiation of the interface for implementing the VSIDS

heuristic as proposed by the solver chaff (Moskewicz et al. 2001).

4.1 Propagators for stable marriage

In this section, the interface of wasp is used for adding new external propagators for solv-

ing the stable marriage problem. The role of propagators is to replace the instantiation

of some problematic constraints as described by Cuteri et al. (2017). The stable marriage

problem can be described as follows: given n men and m women, where each person has a

preference order over the opposite sex, marry them so that the marriage is stable. In this

case, the marriage is said to be stable if there is no pair (m′, w′) for which both partners

would rather be married with each other than their current partner. In particular, an

ASP encoding of the stable marriage problem used for the fourth ASP competition is

reported in Figure 1, where the two disjoint sets of men M and women W are encoded

by instances of the predicates man and woman, respectively. Instances of the predicate

pref represent preferences of men to women and of women to men. In particular, an atom

of the form pref (m,w ,n) encodes the preference of man m to woman w.

The first two rules of the encoding define the search space by guessing a match of

men and women, while subsequent constraints filter out matches that do not satisfy the

requirements. As argued in Cuteri et al. (2017), the last constraint (r7), which guaran-

tees that the stability condition is not violated, might be problematic to be evaluated

by classical solving strategies. Indeed, the instantiation of this constraint requires the

generation of a huge number of ground constraints. Thus, a possible solution is to replace

r7 by means of external propagators. In particular, given the encoding reported in

Figure 1, the idea is to evaluate only rules r1–r6, while r7 is removed from the encoding.

Algorithm 2: LazyStableMarriage

1 Global variables: Π, C;

2 Method: CheckStableModel(I)

3 C := ∅;
4 Matches := {a | a ∈ At(Π) ∩ I, a is of the form match(m,w)};
5 for match(m,w1) ∈ Matches do

6 for match(m1, w) ∈ Matches and m �= m1 do

//pref (m,w1, sm1),pref (m,w, sm),pref (w,m1, sw1),pref (w,m, sw) ∈
At(Π)

7 if sm > sm1 and sw ≥ sw1 then C := C ∪ {← match(m,w1),

match(m1, w)};
8 end

9 end

10 return C = ∅; //no constraints to add: model is stable and return true

11 Method: GetReasonForCheckFailure()

12 return C; // C is modified by CheckStableModel

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

238 C. Dodaro and F. Ricca

Algorithm 3: EagerStableMarriage

1 Global variables: Π, �1;

2 Method: AttachLiterals()

3 return {a | a ∈ At(Π), a is of the form match(m,w1)};
4 Method: OnLiteralTrue(�)

5 �1 := �; L := ∅; Matches := {a | a ∈ At(Π), a is of the form

match(m1, w),m �= m1};
// � is of the form match(m,w1)

6 for match(m1, w) ∈ Matches do

// pref (m,w1, sm1),pref (m,w, sm),pref (w,m1, sw1),pref (w,m, sw) ∈
At(Π)

// pref (m1, w1, sm2),pref (m1, w, sm3),pref (w1,m, sw2),pref (w1,m1, sw3)

∈ At(Π)

7 if sm > sm1 and sw ≥ sw1 or sm2 > sm3 and sw3 ≥ sw2 then

8 L := L ∪ {∼match(m1, w)};
9 end

10 end

11 return L;

12 Method: GetReasonForLiteral(�)

// let � be of the form ∼match(m1, w)

13 return ← match(m1, w), �1; // �1 is modified by OnLiteralTrue

Then, stable models of the resulting program violating r7 are filtered out by means of ad

hoc implementations. Two strategies were proposed and analyzed in Cuteri et al. (2017).

The first one was called lazy and basically lazily instantiates r7 whenever it is violated

by a stable model candidate. The second strategy was called eager. In this case, the idea

is to simulate the unit propagation over r7 during the computation of the stable model

candidate. Both strategies can be implemented in wasp using the interface described in

Section 3.

Lazy. Lazy approach is reported in Algorithm 2. This strategy uses methods

CheckStableModel and GetReasonForCheckFailure. Whenever a stable model candidate

is found, wasp calls the method CheckStableModel , which checks whether the stability

condition modeled by constraint r7 is violated. If there is no violation, then the algo-

rithm terminates returning true, thus witnessing the stability of the model candidate.

Otherwise, it produces a set of violated constraints which are later on added to wasp

using the method GetReasonForCheckFailure.

Eager. Eager approach is reported in Algorithm 3. In contrast to the previous strategy

that aims at adding violated constraints when a stable model candidate is found, this one

evaluates the constraints during the computation of the stable model. Thus, constraint

r7 is never instantiated in practice but its inference is simulated by an ad hoc procedure

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 239

% Guess matches
r1 : match(M ,W) ← man(M), woman(W), ∼nmatch(M ,W)
r2 : nmatch(M ,W) ← man(M), woman(W), ∼match(M ,W)

% No polygamy
r3 : ← match(M1 ,W), match(M2 ,W), M1 �= M2

r4 : ← match(M ,W1), match(M ,W2), W1 �= W2

% No singles
r5 : married(M) ← match(M ,W)
r6 : ← man(M), ∼married(M)

% Strong stability condition
r7 : ← match(M ,W1), match(M1,W), W1 �= W ,

pref (M ,W1,SM1), pref (M ,W ,SM), SM > SM1,
pref (W ,M1,SW1), pref (W ,M ,SW), SW ≥ SW1

Fig. 1. ASP encoding of the stable marriage problem.

implemented for that purpose. In particular, this strategy takes advantage of methods

AttachLiterals, OnLiteralTrue, and GetReasonForLiteral . Method AttachLiterals returns

a list of all literals of the form match(m,w), thus whenever an atom of this kind is

propagated as true the method OnLiteralTrue is called. The role of OnLiteralTrue is to

simulate unit propagation inferences over constraint r7.

4.2 Implementation of a CASP solver

In this section, we sketch how the interface of wasp can be used for implementing a

naive CASP solver. Our example is based on a fragment of the EZ language, as described

in Balduccini and Lierler (2017) and Susman and Lierler (2016), and is inspired by the

solving approach of clingcon (Ostrowski and Schaub 2012).

An EZ program P is a triple (Π,B, γ), where Π is ASP program, B is a set of constraints

of a Constraint Satisfaction Problem (CSP) (e.g., linear constraints) (Rossi et al. 2006),

and γ is an injective function from the set of irregular atoms C ⊆ atoms(Π) to B. An
answer set of P is an answer set X of Π such that

⋃
p∈X∩C{γ(p)} has a solution (Susman

and Lierler 2016).

We implement the semantics by using the propagator reported in Algorithm 4, which

basically checks whether the CSP associated to the current candidate answer set has so-

lution. If this is the case, the solution is printed, otherwise a reason for the failure of the

check is a single constraint having in the body all irregular atoms that are true (see func-

tion GetReasonForCheckFailure). For completeness, the role of function AttachLiterals

in Algorithm 4 is simply to intercept irregular atoms. In our example, all irregular atoms

are expected to be of the form required(·), and the specification of domain variables

uses the special atoms cspdomain(·) and cspvar(·). This format is compliant with the

output of the preprocessor of ezsmt (Susman and Lierler 2016). We refer the reader

to Balduccini and Lierler (2017) and Susman and Lierler (2016) for more details.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

240 C. Dodaro and F. Ricca

Algorithm 4: A naive CASP solver

1 Global variables: Π, C, R;

2 Method: AttachLiterals()

3 C := {a | a ∈ At(Π), a is of the form required(c)};
4 C := C ∪ {a | a ∈ At(Π), a is of the form cspdomain(d)};
5 C := C ∪ {a | a ∈ At(Π), a is of the form cspvar(x, n,m)};
6 return ∅;
7 Method: CheckStableModel(I)

8 T := {a | a ∈ C ∩ I}; // identify true irregular and special atoms

9 C := Atoms2Constraints(T); // implements γ

10 (res , S) := ConstraintSolver(C); // call an external solver

11 if res then

12 Print(S); // print the solution

13 else

14 R := T ; // trivial reason of failure

15 end

16 return res; // no constraints to add: model is stable and return true

17 Method: GetReasonForCheckFailure()

18 return ← l1, . . . , ln; // R = {l1, . . . , ln} is modified by CheckStableModel

We remark that the goal of this example is to show the applicability of the interface.

Therefore, the simple CASP-solving strategy presented here is not expected to be effi-

cient, since it does not include all sophisticated techniques proposed by state-of-the-art

CASP solvers that would complicate the description.

4.3 Implementation of VSIDS heuristic

In this section, the interface of wasp is used for implementing the general-purpose VSIDS

heuristic. VSIDS was proposed in the SAT solver chaff (Moskewicz et al. 2001) and it

inspired several modern heuristics, including the minisat heuristic. The basic idea is to

store atoms in a list and to associate a numerical score to each atom, initially set to 0.

After learning a constraint, the score of the atoms included in its body is incremented

(called bumping). The score of each atom is halved every 256 conflicts (called rescoring)

and the list of atoms is sorted descending according to their new score. Whenever a

choice is required the first undefined atom in the list is selected. An implementation

of the VSIDS heuristic as described in Biere and Fröhlich (2015) using the interface of

wasp is reported in Algorithm 5. Method AttachLiterals is used to initialize the scores

of atoms, while OnLiteralsTrue and OnUnrollLiteral are used to store and update the

partial interpretation I. Method OnLearningConstraint is used to bump the scores of

atoms appearing in the constraint, while method OnConflict is used to count the number

of conflicts and to periodically update the scores of atoms. Finally, SelectLiteral is used

when a choice is needed.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 241

Algorithm 5: VSIDS

1 Global variables: Π, I := ∅, scores := [], conflicts := 0;

2 Method: AttachLiterals()

3 for a ∈ At(Π) do scores [a] := 0; // init scores of atoms

4 return {a | a ∈ At(Π)} ∪ {∼a | a ∈ At(Π)};
5 Method: OnLiteralsTrue(L)

6 I := I ∪ L;

7 return ∅; // No inferences done here

8 Method: OnUnrollLiterals(L)

9 I := I \ L;
10 return;

11 Method: OnLearningConstraint(r)

12 for a ∈ B(r) do scores [a] := scores [a] + 1; // atoms bumping

13 return;

14 Method: OnConflict()

15 conflicts := conflicts + 1;

16 if conflicts = 256 then

17 conflicts := 0;

18 for a ∈ At(Π) do scores [a] := scores [a]÷ 2; // atoms rescoring

19 sort(scores , descending); // sort scores in descending order

20 end

21 return;

22 Method: SelectLiteral()

23 a := GetFirstUndefined(scores , I); // select the first undefined atom

24 return ∼a;

Note that modern implementations of VSIDS also bump the scores of atoms when they

are used for the computation of a learned constraint. In this case, methodOnLitInConflict

of the interface can be used.

5 Successful applications

The interface of wasp described in Section 3 has been already used in the literature to

enhance the standard solving capabilities of wasp (Cuteri et al. 2017; Dodaro et al. 2016;

Dodaro et al. 2016). In the following, such applications are reviewed discussing how the

interface was used and its impact on the performance of wasp.

5.1 Propagators

The interface of wasp was used in Cuteri et al. (2017) and Dodaro et al. (2016) for

avoiding the instantiation of some problematic constraints as shown in Section 4.1.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

242 C. Dodaro and F. Ricca

In particular, three propagators were proposed called lazy, eager, and post. The first

two propagators use the same methods as described in Section 4.1. In particular, meth-

ods CheckStableModel and GetReasonForCheckFailure were used for implementing the

lazy propagator, while OnLiteralTrue and GetReasonForLiteral were used for imple-

menting the eager propagator. In addition, the post propagator was implemented using

OnLiteralsTrue and GetReasonForLiteral . Those propagators were evaluated on three

benchmarks, namely stable marriage, packing, and NLU. In the following, we review the

main results obtained in Cuteri et al. (2017).

Stable marriage. The experiment was executed on randomly generated instances. Basi-

cally, instances were generated as follows: each man (resp. woman) gives the same prefer-

ence to each woman (resp. man), so that the stability condition is never violated. Then,

a value percentage k of preferences was also considered, that is, each man (resp. woman)

gives the same preference to all the women (resp. men) but a lower preference is given

to k% of them. For each considered percentage k, 10 randomly generated instances were

considered. Results show that for instances where the value of k is small (up to 50%) the

lazy approach was better than the eager approach and than standard solving strategy of

wasp. On the other hand, for high values of k the advantages of the lazy approach disap-

pear and the eager propagator obtained the best performance overall. Interestingly, wasp

without external propagators was better than its counterparts only when the value of k

was 95%. Thus, the usage of external propagators was beneficial for solving this problem.

Packing. Concerning this problem, propagators were evaluated on 50 instances submitted

to the third ASP competition. Interestingly, without the usage of external propagators

none of the instances can be instantiated by the state-of-the-art grounder gringo, thus

standard solving strategies were not feasible for this kind of problem. On the other hand,

performance of propagators was much better. Indeed, lazy approach solved 20% of the in-

stances, while eager and post propagators were able to solve all the considered instances.

Natural language understanding. Concerning NLU, propagators were evaluated on 50

instances using the objective functions proposed in Schüller (2016), namely Cardinality,

Coherence, and Weighted Abduction. The performance of propagators was dependent on

the specific objective function considered, for example, the lazy approach was slightly

faster than other propagators on Cardinality and Weighted Abduction, while for Coher-

ence post propagator was the best alternative. However, all the propagators outperform

the standard solving strategy, thus showing also in this case a clear advantage of using

custom propagators.

5.2 Heuristics

In Dodaro et al. (2016), the interface of wasp was used for integrating domain-specific

heuristics for two industrial problems proposed by Siemens, namely partner units and

combined configuration. In the following, we review the main results obtained by wasp

in Dodaro et al. (2016).

Partner units. Concerning partner units problem, three different heuristics were pro-

posed. All of them take advantage of AttachLiterals to initialize their internal data

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 243

structures and OnConflict to update them during the search. In addition, methods

OnLiteralTrue (OnLiteralsTrue) and OnUnrollLiteral are used to synchronize the in-

ternal state of the heuristics with the partial interpretation of the CDCL algorithm.

Moreover, the heuristics are able to recognize that the current partial assignment can-

not be completed to a valid solution. Thus, in this case, a restart is performed returning

(restart) after the subsequent call to the method SelectLiteral . The performance of wasp

employing such heuristics was empirically evaluated on 36 instances provided by Siemens.

The results reported in Dodaro et al. (2016) show that wasp equipped with custom

heuristics outperforms state-of-the-art approaches, including clasp, claspfolio, and

measp.

Combined configurations. Concerning combined configurations problems, a set of six

heuristics were analyzed. All of them share a similar skeleton, and as for the partner units

problem, methods AttachLiterals and OnConflict are used to initialize and update the

internal structures and strategies, respectively. Methods OnLiteralTrue (OnLiteralsTrue)

and OnUnrollLiteral are used to synchronize the internal state of the heuristics with the

partial interpretation of the CDCL algorithm. An interesting aspect of some the strate-

gies proposed is the interoperability with the default minisat heuristic implemented in

wasp. Indeed, one strategy switches to the minisat heuristic when some conditions are

satisfied. This is implemented by returning (minisat, 0) when the method SelectLiteral

is called. While, another strategy alternates the custom heuristic with the minisat one.

In particular, method SelectLiteral returns (minisat, 1) every 1 s. The experiment con-

sidered 36 instances provided by Siemens. The results in Dodaro et al. (2016) show that

wasp equipped with the heuristic implementing the alternating strategy solves all the

tested instances outperforming state-of-the-art approaches, including clasp, claspfo-

lio, and measp.

6 Related work

Propagators. The extension of CDCL solvers with propagators is at the basis of Satisfia-

bility Modulo Theories (SMT) solvers (Nieuwenhuis et al. 2006). Indeed, external theories

are usually implemented by means of propagators on top of state-of-the-art SAT solvers.

Similar extensions have been envisaged also for ASP (Bartholomew and Lee 2013). Other

extensions of ASP such as CASP (Baselice et al. 2005) or aggregates (Alviano et al. 2018)

have been implemented by adding propagators to CDCL solvers (Ostrowski and Schaub

2012).

The extension of wasp presented in this paper can serve as a platform for implementing

such language extensions. Indeed, new propagators can be added to implement specific

constraints (such as acyclicity constraints (Bomanson et al. 2015; Bomanson et al. 2016)),

ASP modulo theories (Bartholomew and Lee 2013; Bartholomew and Lee 2014), and

CASP (Baselice et al. 2005), and can be also used for boosting the performance of wasp

on specific benchmarks.

An extension similar to the one presented in this paper has been implemented in solvers

of Potassco project (Gebser et al. 2011). The ASP solver clasp (Gebser et al. 2015)

provides a C++ interface for post-propagation, where it is possible to invalidate a stable

model candidate. The interface for defining new propagators is conceptually equivalent

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

244 C. Dodaro and F. Ricca

to the one presented in Section 3.1. However, at the moment clasp does not support

any external python (or perl) API to specify new propagators. A python library is

currently supported by clingo (Gebser et al. 2014). First versions of the API supported

by clingo (up to version 4) (Gebser et al. 2014) have no concept of post propagators

but only support a function similar to CheckStableModel, which is called whenever a

stable model is found. The version 5 of clingo (Gebser et al. 2016) supports also a

similar API to define external propagation using scripting languages. Several important

differences exist between the interface of wasp and the one of clingo. In particular,

clingo provides only a post-propagator interface and no possibility for realizing an

eager propagator (that runs before unit propagation is finished). Moreover, wasp first

collects constraints added in python and then internally applies them and handles

conflicts, while clingo requires an explicit propagation call after each added constraint.

Finally, clingo offers the possibility to control both grounding and solving via python,

while wasp only works on propositional programs.

Heuristics. A declarative approach to define domain-specific heuristics in ASP is pre-

sented in Gebser et al. (2013). The suggested hclasp framework extends the gringo

language with a special _heuristic predicate. Atoms over this predicate allow one to

influence the choices made by the default heuristic of clasp. In fact, a user can provide

initial weights, importance factors, sign selection, and decision levels for atoms involved

in non-deterministic decisions. The first three elements can be also specified in wasp

using methods Initminisat, Factorminisat, and Signminisat, respectively, while levels

are not supported by the interface of wasp. Moreover, hclasp supports the definition

of dynamic heuristics by considering only those atoms over _heuristic predicate that

are true in the current interpretation. In contrast to static heuristics, where heuristic

decisions are encoded as facts, dynamic ones comprise normal rules with a _heuristic

atom in the head. As argued in Gebser et al. (2015), the grounding of programs compris-

ing definitions of dynamic heuristics can be expensive as it impacts on grounding speed

and size. The reason is that a grounder needs to output a rule for every possible heuris-

tic decision. Since version 5 of clingo, the _heuristic predicate has been replaced by

the directive #heuristic, whose working principles are similar. In Balduccini (2011), a

technique which allows learning of domain-specific heuristics in DPLL-based solvers is

presented. The basic idea is to analyze off-line the behavior of the solver on representa-

tive instances from the domain to learn and use a heuristic in later runs. The interface

of wasp presented in this paper could be considered for porting the ideas of Balduccini

(2011) in a CDCL solver. As far as we know, there are no other ASP solvers that support

python (or perl) implementations to specify new heuristics.

7 Conclusion

In this paper, we presented the external interface of the ASP solver wasp conceived for

easing the burden of extending its solving capabilities by means of new propagators and

choice heuristics. The implementation of the interface supports both rapid development

by means of scripting languages, where no modifications to the solver is required, and

performance-oriented development in C++. Successful applications of the interface in the

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 245

literature witness that the usage of the interface for developing domain-specific propaga-

tors and heuristics can be very effective for solving real-world problems and in general

for speeding up the performance of wasp.

References

Abseher, M., Gebser, M., Musliu, N., Schaub, T. and Woltran, S. 2016. Shift design
with answer set programming. Fundamenta Informaticae 147, 1, 1–25.

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P. and Zangari, J. 2017. The ASP system DLV2. In International Conference on
Logic Programming and Nonmonotonic Reasoning. Lecture Notes in Computer Science, vol.
10377. Springer, 215–221.

Alviano, M. and Dodaro, C. 2016. Completion of disjunctive logic programs. In International
Joint Conference on Artificial Intelligence. IJCAI/AAAI Press, 886–892.

Alviano, M., Dodaro, C., Faber, W., Leone, N. and Ricca, F. 2013. WASP: A native ASP
solver based on constraint learning. In International Conference on Logic Programming and
Nonmonotonic Reasoning. Lecture Notes in Computer Science, vol. 8148. Springer, 54–66.

Alviano, M., Dodaro, C., Leone, N. and Ricca, F. 2015. Advances in WASP. In Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning. Lecture Notes in
Computer Science, vol. 9345. Springer, 40–54.

Alviano, M., Dodaro, C. and Maratea, M. 2017. An advanced answer set programming
encoding for nurse scheduling. In AI*IA. Lecture Notes in Computer Science, vol. 10640.
Springer, 468–482.

Alviano, M., Dodaro, C. and Maratea, M. 2018. Shared aggregate sets in answer set pro-
gramming. Theory and Practice of Logic Programming 18, 3–4, 301–318.

Balduccini, M. 2011. Learning and using domain-specific heuristics in ASP solvers. AI Com-
munications 24, 2, 147–164.

Balduccini, M., Gelfond, M., Watson, R. and Nogueira, M. 2001. The USA-advisor:
A case study in answer set planning. In International Conference on Logic Programming
and Nonmonotonic Reasoning. Lecture Notes in Computer Science, vol. 2173. Springer,
439–442.

Balduccini, M. and Lierler, Y. 2017. Constraint answer set solver EZCSP and why integra-
tion schemas matter. Theory and Practice of Logic Programming 17, 4, 462–515.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

Bartholomew, M. and Lee, J. 2013. Functional stable model semantics and answer set
programming modulo theories. In International Joint Conference on Artificial Intelligence.
IJCAI/AAAI, 718–724.

Bartholomew, M. and Lee, J. 2014. System aspmt2smt: Computing ASPMT theories by
SMT solvers. In European Conference on Logics in Artificial Intelligence. Lecture Notes in
Computer Science, vol. 8761. Springer, 529–542.

Baselice, S., Bonatti, P. A. and Gelfond, M. 2005. Towards an integration of answer set
and constraint solving. In International Conference on Logic Programming. Lecture Notes in
Computer Science, vol. 3668. Springer, 52–66.

Biere, A. and Fröhlich, A. 2015. Evaluating CDCL variable scoring schemes. In SAT. Lecture
Notes in Computer Science, vol. 9340. Springer, 405–422.

Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B. and Schaub, T. 2015. Answer
set programming modulo acyclicity. In International Conference on Logic Programming and
Nonmonotonic Reasoning. Lecture Notes in Computer Science, vol. 9345. Springer, 143–150.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

246 C. Dodaro and F. Ricca

Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B. and Schaub, T. 2016. Answer
set programming modulo acyclicity. Fundamenta Informaticae 147, 1, 63–91.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Cuteri, B., Dodaro, C., Ricca, F. and Schüller, P. 2017. Constraints, lazy constraints,
or propagators in ASP solving: An empirical analysis. Theory and Practice of Logic Program-
ming 17, 5–6, 780–799.

Dodaro, C. 2015. Computational Tasks in Answer Set Programming: Algorithms and Imple-
mentations. Ph.D. dissertation, University of Calabria.

Dodaro, C., Alviano, M., Faber, W., Leone, N., Ricca, F. and Sirianni, M. 2011. The
birth of a WASP: Preliminary report on a new ASP solver. In Italian Conference on Compu-
tational Logic. CEUR Workshop Proceedings, vol. 810. CEUR-WS.org, 99–113.

Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F. and Schekotihin, K.

2016. Combining answer set programming and domain heuristics for solving hard industrial
problems (application paper). Theory and Practice of Logic Programming 16, 5–6, 653–669.

Dodaro, C., Leone, N., Nardi, B. and Ricca, F. 2015. Allotment problem in travel industry:
A solution based on ASP. In International Conference on Web Reasoning and Rule Systems.
Lecture Notes in Computer Science, vol. 9209. Springer, 77–92.

Dodaro, C. and Maratea, M. 2017. Nurse scheduling via answer set programming. In Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning. Lecture Notes in
Computer Science, vol. 10377. Springer, 301–307.

Dodaro, C., Ricca, F. and Schüller, P. 2016. External propagators in WASP: Prelimi-
nary report. In International RCRA Workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion. CEUR Workshop Proceedings, vol. 1745.
CEUR-WS.org, 1–9.

Eén, N. and Sörensson, N. 2003. An extensible sat-solver. In International Conference on
Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol.
2919. Springer, 502–518.

Erdem, E., Gelfond, M. and Leone, N. 2016. Applications of answer set programming. AI
Magazine 37, 3, 53–68.

Erdem, E. and Öztok, U. 2015. Generating explanations for biomedical queries. Theory and
Practice of Logic Programming 15, 1, 35–78.

Friedrich, G. 2015. Industrial success stories of ASP and CP: What’s still open? Joint invited
talk at ICLP and CP 2015. http://booleconferences.ucc.ie/iclp2015speakers.

Garro, A., Palopoli, L. and Ricca, F. 2006. Exploiting agents in e-learning and skills man-
agement context. AI Communications 19, 2, 137–154.

Gavanelli, M., Nonato, M. and Peano, A. 2015. An ASP approach for the valves position-
ing optimization in a water distribution system. Journal of Logic and Computation 25, 6,
1351–1369.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Wanko, P.

2016. Theory solving made easy with clingo 5. In International Conference on Logic Pro-
gramming (Technical Communications). OpenAccess Series in Informatics, vol. 52. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2:1–2:15.

Gebser, M., Kaminski, R., Kaufmann, B., Romero, J. and Schaub, T. 2015. Progress in
clasp Series 3. In International Conference on Logic Programming and Nonmonotonic Rea-
soning. Lecture Notes in Computer Science, vol. 9345. Springer, 368–383.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2014. Clingo = ASP + control:
Preliminary report. CoRR abs/1405.3694.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

http://booleconferences.ucc.ie/iclp2015speakers
https://doi.org/10.1017/S1471068418000558

The External Interface for Extending WASP 247

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T. and Schneider,

M. T. 2011. Potassco: The potsdam answer set solving collection. AI Communications 24, 2,
107–124.

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2008. Advanced preprocessing
for answer set solving. In European Conference on Artificial Intelligence. Frontiers in Artificial
Intelligence and Applications, vol. 178. IOS Press, 15–19.

Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T. and Wanko, P. 2013.
Domain-specific heuristics in answer set programming. In AAAI Conference on Artificial In-
telligence. AAAI Press.

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, 52–89.

Gebser, M.,Kaufmann, B. and Schaub, T. 2013. Advanced conflict-driven disjunctive answer
set solving. In International Joint Conference on Artificial Intelligence. IJCAI/AAAI.

Gebser, M., Maratea, M. and Ricca, F. 2015. The design of the sixth answer set program-
ming competition. In International Conference on Logic Programming and Nonmonotonic
Reasoning. Lecture Notes in Computer Science, vol. 9345. Springer, 531–544.

Gebser, M., Maratea, M. and Ricca, F. 2016. What’s Hot in the Answer Set Programming
Competition. In AAAI Conference on Artificial Intelligence. AAAI Press, 4327–4329.

Gebser, M., Maratea, M. and Ricca, F. 2017. The sixth answer set programming competi-
tion. Journal of Artificial Intelligence Research 60, 41–95.

Gebser, M., Ryabokon, A. and Schenner, G. 2015. Combining heuristics for configura-
tion problems using answer set programming. In International Conference on Logic Program-
ming and Nonmonotonic Reasoning. Lecture Notes in Computer Science, vol. 9345. Springer,
384–397.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3/4, 365–386.

Janhunen, T. and Niemelä, I. 2016. The answer set programming paradigm. AI Maga-
zine 37, 3, 13–24.

Janhunen, T., Tasharrofi, S. and Ternovska, E. 2016. SAT-to-SAT: Declarative extension
of SAT solvers with new propagators. In AAAI Conference on Artificial Intelligence. AAAI
Press, 978–984.

Kaufmann, B., Leone, N., Perri, S. and Schaub, T. 2016. Grounding and solving in answer
set programming. AI Magazine 37, 3, 25–32.

Koponen, L., Oikarinen, E., Janhunen, T. and Säilä, L. 2015. Optimizing phylogenetic
supertrees using answer set programming. Theory and Practice of Logic Programming 15,
4–5, 604–619.

Lierler, Y., Maratea, M. and Ricca, F. 2016. Systems, engineering environments, and
competitions. AI Magazine 37, 3, 45–52.

Lifschitz, V. 2016. Answer sets and the language of answer set programming. AI Maga-
zine 37, 3, 7–12.

Manna, M., Ricca, F. and Terracina, G. 2013. Consistent query answering via ASP from
different perspectives: Theory and practice. Theory and Practice of Logic Programming 13, 2,
227–252.

Manna, M., Ricca, F. and Terracina, G. 2015. Taming primary key violations to query
large inconsistent data via ASP. Theory and Practice of Logic Programming 15, 4–5, 696–710.

Maratea, M., Pulina, L. and Ricca, F. 2012. The multi-engine ASP solver ME-ASP. In
European Conference on Logics in Artificial Intelligence. Lecture Notes in Computer Science,
vol. 7519. Springer, 484–487.

Marileo, M. C. and Bertossi, L. E. 2010. The consistency extractor system: Answer set
programs for consistent query answering in databases. Data & Knowledge Engineering 69, 6,
545–572.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

248 C. Dodaro and F. Ricca

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S. 2001. Chaff:
Engineering an efficient SAT solver. In Design Automation Conference. ACM, 530–535.

Nieuwenhuis, R., Oliveras, A. and Tinelli, C. 2006. Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the
ACM 53, 6, 937–977.

Ostrowski, M. and Schaub, T. 2012. ASP modulo CSP: The clingcon system. Theory and
Practice of Logic Programming 12, 4–5, 485–503.

Rossi, F., van Beek, P. and Walsh, T., Eds. 2006. Handbook of Constraint Programming.
Foundations of Artificial Intelligence, vol. 2. Elsevier.

Schüller, P. 2016. Modeling variations of first-order horn abduction in answer set program-
ming. Fundamenta Informaticae 149, 1–2, 159–207.

Silva, J. P. M. and Sakallah, K. A. 1999. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48, 5, 506–521.

Susman, B. and Lierler, Y. 2016. SMT-based constraint answer set solver EZSMT (system
description). In International Conference on Logic Programming (Technical Communications).
OpenAccess Series in Informatics, vol. 52. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
1:1–1:15.

Zhang, L., Madigan, C. F., Moskewicz, M. W. and Malik, S. 2001. Efficient conflict
driven learning in Boolean satisfiability solver. In IEEE/ACM International Conference on
Computer-Aided Design. IEEE Computer Society, 279–285.

https://doi.org/10.1017/S1471068418000558 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000558

	Introduction
	Preliminaries
	
	

	
	Propagators
	Heuristic
	Implementation

	
	
	Implementation of a CASP solver
	

	
	Propagators
	Heuristics

	
	Conclusion
	References

