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SUMMARY
This paper presents a control law for the tracking of a cyclic
reference path by an under-actuated biped robot. The robot
studied is a five-link planar biped. The degree of under-
actuation is one during the single support phase. The control
law is defined in such a way that only the geometric
evolution of the biped configuration is controlled, but not
the temporal evolution. To achieve this objective, we
consider a parametrized control. When a joint path is given,
a five degree of freedom biped in single support becomes
similar to a one degree of freedom inverted pendulum. The
temporal evolution during the geometric tracking is com-
pletely defined and can be analyzed through the study of a
model with one degree of freedom. Simple analytical
conditions, which guarantee the existence of a cyclic motion
and the convergence towards this motion, are deduced.
These conditions are defined on the reference trajectory
path. The analytical considerations are illustrated with some
simulation results.

KEYWORDS: Biped robot; Walking; Under-actuated system;
Reference joint path; Control; Limit cycle; Stability.

1. INTRODUCTION
Human walk is composed of disequilibrium phases caused
by the gravity effect, and these phases produce the dynamics
of the motion. For a biped, in fact, static equilibrium at each
time instant is not necessary. To study this point specifically,
a biped with unactuated ankles is interesting because no
statically stable gait can be obtained. The reduction of the
number of actuators is also a step towards simpler and
cheaper robots. As a consequence, we choose to study a
planar biped with only four actuators: two on the haunch
and two on the knees. During the single support phase, the
configuration of the biped is defined by five independent
variables, but there are only four actuators. Hence, the biped
is an under-actuated system. This simplification in terms of
mechanics makes the design of the control law difficult.

Various studies exist about the control of an under-
actuated biped. One method is based on the definition of the
reference trajectory for m outputs (where m is the number of

actuators), not as a function of time, but as a function of a
configuration variable independent of the m outputs. With
such a control, the configuration of the biped at impact time
is the desired configuration, but its velocities can differ from
the desired velocities. The convergence of the motion
towards a cyclic motion is studied numerically using the
Poincaré criterion in references [1, 2]. Another approach
involves parameterized reference trajectories. In this case,
one derivative of the parameter can be used as a “supple-
mentary input”, as it was shown in references [3–6]. In
reference [4], the parameter is used to satisfy some
constraints on the ground reaction applied to the supporting
foot. In reference [7], a parameter involved in the zero
dynamics is used as a supplementary input.

In the present paper, like in references [1, 2], only the
geometric evolution of the robot is controlled, not the
temporal evolution. To achieve this objective the reference
trajectory is parameterized by a scalar path parameter: the
arc length s. A time scaling control is defined as in
references [8] and [9]. The second derivative of s is
considered as a “supplementary control input”. Thus, we
deal with a model, for which the numbers of inputs and of
independent configuration variables are equal. For a given
reference joint path, the model of the five-dof-biped is
reduced to a one-dof-model described by the variable s. This
model is similar to one-link-pendulum model. Through the
study of this dynamic model, the evolution of parameter s
can be analyzed. In fact, the evolution of the second
derivative s̈ is defined by the choice of the evolution of the
configuration variables or, in other words, by the choice of
the reference path. A condition on the reference path is
defined to ensure the existence of a cyclic motion of the
robot. When a cyclic motion exists, a condition to ensure the
convergence towards the cyclic motion is deduced from this
analysis. This condition is also related to the reference path.
Moreover, the ground reaction force applied to the support-
ing leg is unilateral, the limits on the motion induced by this
constraint are also taken into account.

In Section 2, the model of the biped is presented. In
Section 3 the reference path and the control law are defined.
The admissible reference motions are defined in Section 4,
the condition of existence and uniqueness of a cyclic
reference motion are presented in this section as well. A
condition for the convergence towards the cyclic motion is
deduced in Section 5. Section 6 presents some simulation
results. The conditions for a cyclic motion to exist and for
the convergence towards the cyclic motion are showed to be
inequalities. These characteristics induce some robustness
properties of the proposed control which are also illustrated
in Section 6. Section 7 concludes the paper.
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2. THE BIPED MODELLING

2.1. The biped
The biped studied walks in a vertical sagittal xz plane. It is
composed of a torso and two identical legs. Each leg is
composed of two links articulated by a knee. The knees and
the hips are one-degree-of-freedom rotational ideal (without
friction) joints. The walk is composed of single support
phases separated by impact phases (instantaneous double
support phases). Vector qc =[q1, q2, q3, q4]

T of “internal”
variables (Figure 1a) describes the shape of the biped. To
define completely the biped position in the vertical plane
with respect to a fixed frame, we add three coordinates q5,
xg, zg, where q5 is the absolute orientation of the trunk, xg and
zg are the abscissa and the ordinate of the robot mass centre,
respectively. The vector of all coordinates of the robot is
x=[q1, q2, q3, q4, q5, xg, zg]

T and the vector of the angular
coordinates is q=[q1, q2, q3, q4, q5]

T.
All links are assumed massive and rigid. In the simula-

tion, we use the following biped parameters. The lengths of
the thighs and of the shins are 0.4 m. However, their masses
are different: 6.8 kg for each thigh and 3.2 kg for each shin.
The length of the torso is 0.625 m and its mass is 20 kg. The
total mass of the biped is m=40 kg. A prototype with these
characteristics is under construction.10 The inertia moments
of the links are also taken into account. � is the 4� 1 vector
of the torques applied in the hip and in the knee joints
(Figure 1b).

2.2. Dynamic modelling
(i) The complete model: In the literature, different
dynamic models of the biped are developed. In this paper,
we present the dynamic model using the variable x that
involves the biped mass centre coordinates, the trunk
orientation coordinate and four relative joint variables. This

particular choice of the coordinates is useful to highlight the
role of the angular momentum and to derive easily the linear
momentum theorem.

The lth line of the dynamic model can be written using the
Lagrange’s formalism, for l=1, . . . , 7 (xl is the lth element
of vector x):

d
dt��K

�ẋl
��

�K
�xl

+
�P
�xl

=Ql (1)

where K is the kinetic energy, P is the potential energy. The
virtual work �W of the external torques and forces, given by
expression �W= � Ql �xl =QT �x, defines the vector Q of the
generalized forces. When leg i is on the ground, a reaction
force Ri =[Rix Riz]

T is applied to the leg tip Si by the ground
(Figure 1b).When leg i is not on the ground, Ri =02,1, where
0k,l is the k� l zero-matrix.

The position of the mass centre of the biped can be
expressed as function of the position of the leg tip Si and on
the angular coordinates vector q:

�xg

zg
�=�xSi

zSi

�+�fix(q)
fiz(q)� (2)

The vector-function fi(q)=[fix(q) fiz(q)]T depends on vector q
and on the biped parameters (lengths of the links, masses,
positions of the mass centres).

Using Equation (2), we can deduce that the virtual
displacement of the leg tip Si is:

��xSi

�zSi

�=��
�fi(q)

�q
I2� �x (3)

where 
�fi(q)

�q
is a 2� 5 matrix, In is n� n identity matrix.

With our choice of coordinates, we have:

K=ẋT�A(qc)
02,5

05,2

mI2
�ẋ, P=mgzg,

Q=� I4

03,4
��+�

i=1,2

�
�fi(q)T

�q
I2

Ri (4)

where m is the mass of the biped, g is the gravity
acceleration, A(qc) is a 5� 5 matrix. The presented model is
convenient for all phases of planar bipedal locomotion. For
double support phases, the both ground reactions are not
zero. For single support phases, only one reaction force is
not zero. For flight phases, both reaction forces are zero.

Remarks:

• The kinetic energy K is independent of the coordinate
frame chosen. Since coordinates q5, xg, zg define only
the position and orientation of the biped as a rigid body,

Fig. 1. The studied biped: a) generalized coordinates, b) applied
torques and ground reaction.
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the inertia matrix is independent of these three
variables, it depends only on vector qc of “internal”
variables.

• The fifth equation of system (1) describes the change of
the angular momentum of the biped around its mass
centre, corresponding to the angular momentum theo-
rem.

• The last two equations of system (1) correspond to the
linear momentum theorem for the biped.

(ii) The single support phase model: The ground and the
robot links are assumed rigid. During the single support
phase, supporting leg tip i is on the ground, thus xSi

, zSi
are

constant in Equation (2) (no sliding), and Equation (3)
gives:

x=
I5

�fi(q)
�q

q, ẋ=
I5

�fi(q)
�q

q̇ (5)

The various terms of the corresponding dynamic model
can be expressed only as functions of q, we obtain:

K=q̇T�A(qc)+m 
�fi(q)

�q

T �fi(q)
�q �q̇,

P=mgfiz(q), Q=� I4

01,4
�� (6)

As the supporting leg tip is motionless, the virtual work of
the reaction force is zero.

The first four lines of this dynamic model can be grouped
into different matrices and vectors to write:

M(q)q̈+h(q, q̇)=� (7)

where M(q) is a (4� 5) matrix and vector h(q, q̇) contains
the centrifugal, Coriolis and gravity forces.

We pay more attention to the fifth line of the dynamic
model, which characterizes the under-actuation of the biped.
As mentioned previously, the inertia matrix is independent
of the coordinate frame chosen. For the single support also,
angle q5 describes the orientation of the biped relative to the
coordinate frame and not the shape of the robot. Thus K in
Equation (6) is independent of angle q5, and the fifth
equation of system becomes:

d
dt ��K

�q̇5
�+

�P
�q5

=0 (8)

For our planar biped and our choice of the coordinates in the

single support, the term 
�K
�q̇5

is the biped angular momentum

around the stance leg tip Si. We denote this term by �. Thus
we have:

�K
�q̇5

=�=N(qc)q̇ (9)

where N(qc) is the fifth line of matrix

�A(qc)+m
�fi(q)

�q

T �fi(q)
�q �.

The expression 
�P
�q5

is equal to mg(xSi
�xg). Thus the fifth

equation of the dynamic model of the biped in the single
support can be written in the following simple form:

�̇=N(qc)q̈+ q̇T �N(qc)
�q

q̇=mg(xg �xSi
) (10)

(iii) The reaction force during the single support phase:
When the leg i is on the ground, reaction force Ri exists (see
Figure (1b). The last two lines of general model (1) make it
possible to calculate this force:

m�ẍg

z̈g
�+mg �0

1�=Ri (11)

In the single support phase, Equation (11) can also be
written:

m 
�fix(q)

�q
q̈+mq̇T �2fix(q)

�q2 q̇=Rix

m 
�fiz(q)

�q
q̈+mq̇T �2fiz(q)

�q2 q̇+mg=Riz (12)

where 
�2fix(q)

�q2 and 
�2fiz(q)

�q2 are (5� 5) matrices.

The reaction force exerted by the ground can be directed
upward only, and to avoid the sliding of the biped, the
reaction force must be inside the friction cone. These
conditions can be written at each time by:

Rix +�Riz >0

�Rix +�Riz >0

where � is the friction coefficient (positive). It follows from
these two inequalities that Riz >0. These two scalar inequali-
ties can be expressed by the following matrix inequality:

CRi >0 (13)

with C=� 1
�1

�

��. For the single support phase, these

constraints can be written using Equation (12):

U(q)q̈+V(q, q̇)+W>0 (14)

With

U(q)=C 
�fi(q)

�q
, V(q, q̇)=C 

q̇T �2fix(q)
�q2 q̇

q̇T �2fiz(q)
�q2 q̇

, W=gC�0
1�
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(iv) The impact model: When the swing leg j touches the
ground at the end of single support, an impact takes place.
We assume that the ground reaction at the instant of impact
is described by a Dirac delta-function with intensity IRj

. This
impact is assumed inelastic. This means that the velocity of
the foot j becomes zero just after the impact. Two kinds of
impact can occur depending on whether the stance leg takes
off or not. We study the gait with instantaneous double
support phases. Thus during an impact the stance leg i takes
off and IRi

=0 at the instant of impact. The robot configura-
tion q is assumed to be constant at the instant of double
support, and there are jumps in the velocities. The velocity
vectors just before and just after impact, are denoted ẋ–, q̇–

and ẋ+ , q̇+ respectively. The torques �l, l=1, . . . ,4 are
limited, thus they do not influence the instantaneous double
support. Using general model (1) and expressions (4) the
impact model can be written:11,12

�A(qc)
02,5

05,2

mI2
�{ẋ+ � ẋ–}=

�
�fj(q)T

�q
I2

IRj
(15)

Vector IRj
of the ground reaction intensities can be expressed

using the last two lines of matrix Equation (15). Substituting
this expression into the first five lines (15) we obtain:

A(qc)(q̇
+ � q̇–})=�m 

�fj(q)T

�q ��ẋ+
g

ż+
g
���ẋ�

g

ż�
g
�� (16)

Before impact, leg i is in contact with the ground, and
after impact, leg j is in contact with the ground. Thus the
linear velocity of the mass centre, before and after the
impact, can be expressed as function of the angular
velocities (see the last two lines of (5)) and instead of (16)
we obtain:

A(qc)(q̇
+ � q̇–)=�m 

�fj(q)T

�q ��fj(q)
�q

q̇+ �
�fi(q)

�q
q̇–� (17)

Thus the biped angular velocity vectors before and after
impact are related by a linear equation:

q̇+ =�A(qc)+m 
�fj(q)

�q

T �fj(q)
�q �–1 �A(qc)+m 

�fj(q)T

�q
�fi(q)

�q �q̇–

(18)

This equation will be simply noted:

q̇+ =I(q)q̇– (19)

Intensity IRj
of the impulsive reaction force exerted by the

ground can be calculated using the last two lines of matrix
Equation (15) and Equation (5):

IRj
=m��fj(q)

�q
I(q)�

�fi(q)
�q � q̇–

This ground reaction force must be directed upward and be
inside the friction cone. Thus the velocity q̇– must satisfy the
following matrix inequality:

C��fj(q)
�q

I(q)�
�fi(q)

�q � q̇–

To ensure a take-off of leg i, the vertical velocity component
of leg tip Si must be positive. Using the mass centre vertical
velocity as intermediate expression and due to the definition
of the functions fiz(q), fjz(q), this condition can be written:

��fjz(q)
�q

�
�fiz(q)

�q � I(q)q̇– >0

These two types of constraint can be grouped into:

D(q)q̇– >0 (20)

where D(q) is a 3� 5 matrix.

3. THE PROPOSED CONTROL LAW
The desired walking is essentially composed of single
support phases. During these phases, the biped is an under-
actuated system. The objective of the control law presented
in this section is not to track a reference motion but only the
associated path: only a geometrical tracking is desired and a
time scaling control8 is used. A reference joint path is
assumed to be known. Thus the desired configuration q of
the biped is not expressed as a function of time but as a
function of the scalar path parameter, the arc length s: qr(s).
The desired walking of the robot corresponds to an
increasing function s(t). In other words, function s(t) defines
the sequence of the biped configurations in time.

3.1. Reference joint path for the walking biped
Let us prescribe the desired configuration of the biped under
the form:

qd(t)=qr(s(t)) (21)

where qr(s) is a given vector-function of scalar parameter s.
Only cyclic walk of the biped is desired. The legs swap

their roles from one step to the next one, so the reference
path can be defined for one step only. For the first step, the
scalar path parameter s varies from 0 to 1. The single
support phase stands for 0<s<1 and the impact occurs on
the desired path for s=1. Vectors qr(0) and qr(1) describe the
initial and final biped configurations of the single support,
respectively. As the legs swap their roles from one step to
the following one the desired configurations are such that
qr(1)=Eqr(0) where E is a permutation matrix describing the
leg exchange. For the kth step parameter s varies from k�1
to k. Here k is positive integer. We define a cyclic path, thus
qr(s) has to satisfy the following condition of periodicity:

qr(s+k)=Ekqr(s)

where 0≤s≤1 and E 2 =I5.
For k�1<s(t)<k, the robot configuration qr(s) is such

that the free leg tip is above the ground. The biped touches
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the ground at s=k exactly. In consequence for any function
s(t), the configuration of the biped at the impact instant is
the expected one.

The reference velocity of the robot q̇d(t)=
dqr(s(t))

ds
ṡ is

proportional to ṡ. If parameter s increases strictly mono-
tonically with respect to time, then this parameter can be
chosen as independent variable. In this case, the reference

velocity can be rewritten as: q̇d(s)=
dqr(s)

ds
ṡ(s). Derivative

dqr(s)
ds

is a discontinuous vector-function at points

s=0, 1, 2, . . . . The notation k– (respectively k+ ) means just
before (respectively after) kth impact. Just before and after
the impact, the velocities are:

q̇d(k
–)=

dqr(k
–)

ds
ṡ(k–), q̇d(k

+ )=
dqr(k

+ )
ds

ṡ(k+ )

In order to obtain a cyclic path, the reference path qr(s)
has to satisfy the impact Equation (19):

dqr(k
+ )

ds
ṡ(k+ )=I(qr(k)) 

dqr(k
–)

ds
ṡ(k–)

where qr(s) is a vector and ṡ is a scalar. Thus qr(s) can not
be arbitrary chosen. We choose this vector-function to
have:

dqr(k
+ )

ds
=I(qr(k)) 

dqr(k
–)

ds
or

dqr(0
+ )

ds
=EI(qr(1)) 

dqr(1
–)

ds

(22)

With this choice we have the following equality:
ṡ(k+ )= ṡ(k–). As a consequence time derivative ṡ is a
continuous function of parameter s.

During the impact, the ground reaction must be directed
upwards and be inside the friction cone, the stance leg must
take off, thus function qr(s) must be chosen such that (see
inequality (20):

D(qr(k)) 
dqr(k

–)
ds

>0 (23)

Thus the reference joint path qr(s) has to satisfy relations
(22), (23) and the condition of periodicity.

3.2. Definition of the control law
It follows from (21) that the desired velocity and desired
acceleration of the joint variables are:

q̇d(t)=
dqr(s(t))

ds
ṡ

q̈d(t)=
dqr(s(t))

ds
s̈+

d2qr(s(t))
ds2 ṡ2 (24)

So we assume that the reference path is a chosen periodical
vector-function qr(s) that is twice differentiable except for
the integer value of s.

The increasing function s(t) defines the desired motion,
but since the control objective is only to track a reference
path, the evolution s(t) is free and the second derivative s̈
will be treated as a “supplementary control input”. Thus, the
control law will be designed for a system with equal number
of inputs and outputs. The control inputs are the four
torques �j, j=1, . . . , 4, plus s̈. The chosen outputs are the
five angular variables of vector q.

The control law is a non-linear control law classically
used in robotics. But in order to obtain a finite-time
stabilization around one of the desired trajectories, the
feedback function proposed in references [2, 13] is used.
The tracking errors are defined with respect to the
trajectories satisfying (21):

eq(t)=qr(s(t))�q(t)

ėq(t)=
dqr(s(t))

ds
ṡ� q̇(t) (25)

The desired behaviour in a closed loop is:

q̈= q̈d +
1
	2 
 (26)

where 
 is a vector of five components 
l, l=1, . . . , 5
with:


l =�sign(	ėql
) | 	ėql

| � �sign(�l)|�l|
� (27)

and 0<�<1, 	>0, �l =eql
+

1
2��

sign(	ėql
) | 	ėql

| 2��, � and 	

are parameters to adjust the settling time of the controller.
Taking into account expression (21) of the reference motion,
Equation (26) can be rewritten as:

q̈=
dqr(s)

ds
s̈+v(s, ṡ, q, q̇) (28)

with

v(s, ṡ, q, q̇)=
d2qr(s)

ds2 ṡ2 +
1
	2 


The dynamic model of the robot is described by
Equations (7) and (10), thus the control law must be such
that:

M(q) �dqr(s)
ds

s̈+v�+h(q, q̇)=�

N(qc) �dqr(s)
ds

s̈+v�+q̇T �N(qc)
�q

q̇=mg(xg �xSi
) (29)
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We can deduce that, in order to obtain the desired closed
loop behaviour, it is necessary and sufficient to choose:

s̈=
�N(qc)v� q̇T �N(qc)

�q
q̇+mg(xg �xSi

)

N(qc)
dqr(s)

ds

�=M(q)�dqr(s)
ds

s̈+v�+h(q, q̇) (30)

If N(qc) 
dqr(s)

ds
≠0, the control law (30) ensures that q(t)

converges to qr(s(t)) in a finite time, which can be chosen as
less than the duration of one step.2, 13 Without initial errors,
a perfect tracking of qr(s(t)) is obtained.

The first Equation (30) defines ¨̈s. The evolution s can
be calculated from this equation (but not chosen), if s(0)
and ṡ(0) are known. We choose s(0)=0 and we define
ṡ(0) to minimize the error on the joint velocity

	=| q̇(0)� q̇r(0) | 2 = | q̇(0)�
dqr(s(0))

ds
ṡ(0) | 2. Thus, ṡ(0) is

such that 
d	

dṡ(0)
=0 . We obtain:

ṡ(0)=
q̇(0)t dqr(0)

ds
dqr(0)

ds

t dqr(0)
ds

(31)

3.3. The singularities for the proposed control law
It follows from the first Equation (30) that for the proposed

control law, a singularity occurs if N(qc)
dqr(s)

ds
=0. For the

reference motion q(s)=qr(s), we define:

f(s)=N(qr(s)) 
dqr(s)

ds

In fact, matrix N depends only on the first four components
of vector qr(s) (see Equation (9)), but here the notation
N(qr(s)) is used for simplicity.

If for the reference path, function f(s) is sufficiently far
from zero, and if the tracking error is sufficiently small, no
singularity occurs.

4. EXISTENCE AND UNIQUENESS OF A CYCLIC
MOTION
Our main goal is to design a control strategy, which ensures
a stable periodic motion of the biped. The control law (30)
ensures that the motion of the biped converges in a finite
time towards a reference path described by (21). This time
can be chosen to be less than the duration of the first step.

With this choice, the biped with control law (30) follows
perfectly the reference path, starting from the second step.

In this section, the five degree of freedom biped model is
reduced to a one degree of freedom model with respect to
variable s using the given reference path. This model is
similar to the model of an inverted pendulum. Then we
study the properties of this simpler model. Like a stable
cyclic motion of the biped is desired, we study the
conditions of existence and uniqueness of cyclic admissible
reference motions.

4.1. Properties of the admissible reference motion
During the single support phase, the biped is an under-
actuated system, thus it cannot follow any desired motion
qd(t). We denote “admissible reference motion”, the motion
qr(s(t)) satisfying the dynamic model (7), (10).

Analyzing the angular momentum � is sufficient to study
the evolution of parameter s. The motion of the robot can in
turn be deduced from the evolution of parameter s. The
angular momentum � is linear with respect to vector q̇ (see
Equation (9)) and for the reference motion the velocity of
the robot is proportional to ṡ (see first Equation (24)). Thus,
the angular momentum can be expressed by:

�=f(s)ṡ (32)

Scalar function f(s) depends on vector qr(s) and on the biped
parameters. Let us assume that function qr(s) and the biped
parameters are such that f(s)≠0 for 0≤s≤1. If f(s)≠0 in the
interval 0≤s≤1, then f(s)<0 or f(s)>0 in this interval. The
sign of f(s) changes with the sense of the axis y. In the
following we assume that qr(s) is such that f(s)>0. Some
examples of function f(s) are given in Section 6. If f(s)≠0,
we obtain from (32):

ṡ =
�

f(s)
(33)

If vector-function qr(s) is given, then the abscissa xg of the
mass centre is known as function of parameter s: xg =xg(s).
In this case, Equation (10) can be rewritten as:

�̇=mg(xg(s)�xSi
) (34)

Under a given joint path, model (33), (34) is equivalent to
the dynamic model (7), (10). Thus, both Equations (33),
(34) define the admissible reference motion. Functions �(t)
and s(t) can be calculated from system (33), (34), when their
initial values are known.

The system of second order (33), (34) is similar to the
system describing the motion of usual physical pendulum
with one degree of freedom.14 Thus it has an integral similar
to the energy integral of the pendulum motion:

�2 �(s)=C=const (35)

where,

(s)=2mg �
k+

s

(xg(�)�xSi
)f(�) d� (36)

Using Equation (32), we can rewrite relation (35) in the
form:

f 2(s)ṡ2(s)�(s)=C=const
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or

f 2(s)ṡ2(s)� f 2(k+ )ṡ2(k+ )=(s)

The functions f(s) and (s) can be calculated when qr(s)
is known. These functions are periodic, with period equal to
1. Thus the characteristics of the robot behaviour can be
studied only for one step, 0≤s≤1.

For human gait, abscissa xg of the mass centre increases
during walking. In order to be close to the human gait, we
choose function qr(s) such that abscissa xg increases when
parameter s increases from 0 to 1. The single support begins
with xg <xSi

and finishes with xg >xSi
. Figure 2 illustrates the

action of the gravity during the single support and the
behaviour of the angular momentum according to Equation
(34).

Functions (s) are shown in Figure 3 for some biped
parameters10 and some vector-functions qr(s):

• Function (s) initially decreases (see Equation (36))
strictly monotonically, starting from zero.

• The negative minimal value m:

m = min
0<s<1

(s)=(sg) (38)

is reached at s=sg, such that xg(sg)=xSi

• After, xg >xSi
and function (s) increases strictly mono-

tonically.

In fact, under the described above properties of function
xg(s), the shape of function (s) is always the same as in
Figure 3.

At the end of the single support phase, the angular
momentum is greater than at the beginning if (1)>0, and
smaller if (1)<0 (see integral (35)).

4.2. Minimal angular momentum to achieve a step
We have shown in previous section that at the beginning of
the single support, the angular momentum decreases due to
the gravity effect. Now we will show that the initial angular
momentum �(0), or the initial velocity ṡ(0), must be high
enough to reach the configuration such that xg >xSi

. When
xg >xSi

, the angular momentum increases due to gravity.
Using integral (35) and above mentioned properties of

function (s), it is easy to define the trajectories of system
(33), (34). These trajectories are drawn for 0≤s≤1 in the
phase plane (s,�) in Figure 4. The arrows indicate the
direction in which the point representing the motion moves
as time increases.

Equations (33), (34), and the phase portrait in Figure 4
show that the behaviour of the biped with the given joint

Fig. 2. The effect of gravity for one step: a) the gravity slows down the motion, b) the gravity accelerates the motion.

Fig. 3. Two typical behaviours of (s) for one step: in case a) (1)>0, in case b) (1)<0.
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path is similar to the behaviour of an inverted pendulum.
The phase portrait is symmetric with respect to axis s. The
point s=sg, �=0 is a saddle point or col, it corresponds to an
unstable equilibrium of the biped. Two separatrices intersect
at the saddle point. The ordinates of these separatrices are
�=±��m at s=0. Each separatrix is close to a straight
line because the graph of function (s) is close to a
parabola. The phase portrait in Figure 4 shows that:

• If �(0)<��m, then the curve �(s) defined by Equation
(35) crosses axis �=0 for s<sg, after angular momentum
becomes negative as velocity ṡ; the parameter s decreases
and the biped according to the given path qr(s) falls
backward.

• If �(0)=��m, the motion converges asymptotically
when t→� to the unstable equilibrium: s=sg, �=0.

• If �(0)>��m, the step can be achieved because the
angular momentum � and the velocity ṡ are positive
during all the step 0≤s≤1.

The results are summarized in the following theorem.

Theorem 1: The path qr(s) with k<s<k+1 can be
achieved by the biped, if and only if �(k+ )>��m or

ṡ(k+ )>
��m

f(0+ )
.

4.3. Conditions of existence and uniqueness of cyclic
motion
A cyclic admissible reference motion is defined by a cyclic
evolution of angular momentum � or equivalently of a
cyclic velocity ṡ denoted by ṡc. All the admissible reference
motions are defined by Equations (35) or (37). Thus a cyclic
admissible reference motion exists if and only if there exists
an initial angular momentum �(k+ ) such that:
�(k+1+ )=�(k+ ), or in another words, if and only if there
exists an initial velocity ṡ(k) denoted by ṡc(k), such that s

increases when time increases and ṡ(k+1)= ṡ(k)=
ṡc(k)= ṡc(0) (note that ṡ(s) is a continuous function at s=k).
Under these conditions, the states of the biped are identical
at the beginning of the steps k and k+1 (but the legs swap
their role).

Since the functions f(s) and (s) are cyclic, writing
Equation (37) for s=k+1– or for s=1– implies that the initial
velocity ṡc(0) is such that:

f 2(1–)ṡc(0)2 � f 2(0+ )ṡc(0)2 =(1–)

Analyzing Equation (39), we conclude:

• If f(0+ )= f(1–) and (1–)=0, then any initial value ṡ(k)> ṡm

produces a cyclic reference motion.
• If f(0+ )= f(1–) and (1–)≠0 or if values (1–) and

f 2(1–)� f 2(0+ ) have different signs, then Equation (39) has
no solution, and consequently there is no cyclic reference
motion.

• Equation (39) has a unique solution ṡc(0):

ṡc(0)}=	 (1–)
f 2(1–)� f 2(0+ )

(40)

if and only if values (1–) and f 2(1–)� f 2(0+ ) have the
same sign.

According to Theorem 1, solution Equation (40) is the
initial velocity for the cyclic reference motion if and only if

ṡc(0)>
��m

f(0+ )
. Using Equation (40), the following theorem

can be formulated.

Theorem 2: A unique cyclic reference motion exists if and

only if 
(1–)

f 2(1–)� f 2(0+ )
+

m

f 2(0+ )
>0. The initial cyclic velocity

for one step is defined by Equation (40).

Fig. 4. The phase portrait of system (33), (34) in the plane (s, �), corresponding to the function (s) given in Figure 3a.
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Remark: If f 2(1–)� f 2(0+ )>0, then the angular momentum
decreases during the impact (the supporting leg changes); in
opposite case, it increases. If (1–)>0 the angular momen-
tum increases during the single support phase; in opposite
case, it decreases. A cycle is achieved only when an increase
(decrease) of the angular momentum at the impact instant is
compensated by a decrease (increase) during the single
support motion.

5. CONVERGENCE TOWARDS THE CYCLIC
REFERENCE MOTION
In this section, a condition of convergence of the admissible
reference motion to the cyclic motion is obtained.

We assume that a unique cyclic reference motion exists
and that the initial velocity ṡ is high enough to have a
monotonic evolution of parameter s. The relative difference
between velocity ṡ(s) and cyclic velocity ṡc(s), which is
referred to as “velocity difference”, is defined by:

e(s)=
ṡ(s)� ṡc(s)

ṡc(s)
(41)

The biped motion converges towards the cyclic one if and
only if ṡ(s) converges towards ṡc(s) or equivalently if e(s)
converges to 0 when s→�.

5.1. Evolution of the “velocity difference” e(s)
Under definition (41), the velocity ṡ(s) can be expressed
using the cyclic velocity as:

ṡ(s)= ṡc(s)(1+e(s)) (42)

The cyclic motion is an admissible reference motion.
Thus Equation (37) can be written for the cyclic motion, in
the following form (k<s<k+1):

f 2(s)ṡc
2(s)� f 2(k+ )ṡc(0)2 =(s) (43)

Taking Equation (42) into account in Equation (37), and
using Equation (43), we have:

( f 2(0+ )ṡc(0)2 +(s))(1+e(s))2 � f 2(0+ )ṡc(0)2(1+e(k))2 =(s)

Then e(s) can be expressed as function of e(k) for
k<s<k+1:

e(s)=	1+e(k)(e(k)+2) 
f 2(0+ )ṡc(0)2

f 2(0+ )ṡc(0)2 +(s)
�1 (44)

The function e(s) includes a square root and is defined only
for:

e(k)>
��m

f(0+ )ṡc(0)
�1

This condition is equivalent to inequality ṡ(k)>
��m

f(0+ )
(see

Theorem 1).
The evolution of the velocity difference e(s) for one step

can be directly deduced from the evolution of (s). For the
evolution of (s) given in Figure 3, the velocity difference
evolutions are shown in Figure 5.

• For k<s<k+sg, | e(s) | increases because (s) decreases
(see Equation (44)).

• For s=k+sg, | e(s) | has a maximum,
• For k+sg <s<k+1, | e(s) | decreases because (s)

increases.

From the beginning of the step to its end, the error
increases or decreases depending on the sign of (1).

Function (s) is cyclic but not continuous at s=k, thus
formula (44) is convenient only for one step k<s<k+1. The
velocity difference e(s) (see (41)) is a continuous function at
s=k because ṡ(s) and ṡc(s) are continuous functions at s=k.
Using Equation (39), we obtain the iterative formula from
one step to the following one:

e(k+1)=	1+e(k)(e(k)+2)�f (0+ )
f (1–)�2

�1

5.2. Condition of convergence
The following theorem can be proved.

Theorem 3: The admissible reference motion converges
towards the cyclic admissible reference motion if and only

if ṡ(0)>
��m

f(0+ )
and f(0+ )< f(1–) (or equivalently (1–)>0).

Fig. 5. Two typical evolutions e(s) for one step: in case a) e(1)<e(0), in case b) e(1)>e(0).
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Proof: With k<s<k+1, if k→� then error e(s)→0
uniformly for any s, if and only if e(k)→0 when k→�
because e(s) is defined by Equation (44) and the function

f 2(0+ )ṡc(0)2

f 2(0+ )ṡc(0)2 +(s)
is cyclic and bounded. Thus, to prove that

the biped motion converges to the cyclic admissible
reference motion, it is necessary and sufficient to prove the
convergence of e(k) towards 0 when k→�.

If f(0+ )< f(1–), then using Equation (46) and inequality
f(s)>0, we can deduce that:

| e(k+1) |≤
f(0+ )
f(1–)

| e(k) | (47)

And we can conclude that e(k)→0 when k→�.
It follows from Equation (46) that if f(0+ )= f(1–), then

e(k+1)=e(k).

If f(0+ )> f(1–), then |e(k+1)|≥
f(0+ )
f(1–)

| e(k) | and there is no

convergence.

The condition ṡ(0)>
��m

f(0+ )
ensures that s(t) is an

increasing function during the first step. If f(0+ )< f(1–), the

condition ṡ(k)>
��m

f(0+ )
will be satisfied for all k, and the

function s(t) increases for all steps. �

Remark 1: The convergence of the admissible reference
motion can also be shown using a section of the Poincaré
map as in references [1, 2]. Equation (46) allows to draw
easily e(k+1) as a function of e(k). The linearization of
Equation (46) around point e(k)=0 defines the convergence
ratio from one step to the next one around the cyclic motion.

After linearization, we have: e(k+1)=�f(0+ )
f(1–)�2

e(k). This

equation describes a geometrical progression with ratio

�f(0+ )
f(1–)�2

, which is less than the ratio in Equation (47). The

lower the ratio �f(0+ )
f(1–)�2

, the faster the convergence.

Remark 2: Theorem 3 concerns in fact orbital stability of
the admissible reference cyclic motion, because in this
theorem, we consider parameter s as independent variable
but we do not consider time t.

Combining Theorems 1, 2 and 3, the following corollary
can be deduced.

Corollary: The admissible reference cyclic motion is
orbitally asymptotically stable if and only if the

reference joint path is such that: f(0+ )< f(1–) and
(1–)f 2(0+ )+m(f 2(1–)� f 2(0+ ))>0.

These conditions may be not satisfied for some reference
joint paths. Figure 6 presents the different occurring cases.

• In Figure 6, the first quadrant corresponds to the cases
satisfying the condition of the corollary.

• In the second and fourth quadrants

(1–)
f 2(1–)� f 2(0+ )

+
m

f 2(0+ )
<0, the condition of Theorem 2 is

not satisfied, thus there is no cyclic motion.

• In the third quadrant 
(1–)

f 2(1–)� f 2(0+ )
+

m

f 2(0+ )
>0, the condi-

tion of Theorem 2 is satisfied, but f 2(1–)� f 2(0+ )<0, so
the condition of Theorem 3 is not satisfied, thus there is an
unstable cyclic motion.

• In the origin f 2(1–)� f 2(0+ )=0 and (1–)=0, thus any
initial velocity ṡ(k) provides a cyclic motion.

Only stable cyclic motions are interesting for the biped
control design. These motions will be illustrated in Section
6 devoted to the simulation.

5.3. Unilateral contact
For an admissible reference motion to be followed, it must
be such that the reaction force satisfies inequality Equation
(14). For example, if the initial velocity is too large, the
centrifugal forces are higher than the gravitational forces
and a take-off of the biped occurs.

For an admissible reference motion the constraint Equa-
tion (14) becomes:

U(qr)�dqr

ds
s̈+

d 2qr

ds2 ṡ2�+V�qr, 
dqr

ds� ṡ2 +W>0

Using Equations (10) and (32), the acceleration s̈ can be
calculated by:

s̈=�
1

f(s) 
df(s)
ds

ṡ2 +
mg
f(s) 

(xg(qr(s))�xSi
)

Fig. 6. Existence and stability of cyclic motion in different cases.
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Thus, the constraint can be written:

��U(qr) 
dqr

ds
1

f(s) 
df(s)
ds

+V(qr

dqr

ds
)+U(qr) 

d 2qr

ds2 �ṡ2

+U(qr) 
dqr

ds
mg
f(s) 

(xg(qr(s))�xSi
)+W>0 (48)

But the evolution of ṡ is defined by the initial velocity for
the step by Equation (37):

ṡ2(s)=
f 2(0+ )ṡ2(k)+(s)

f 2(s)
(49)

Thus, combining Equations (48) and (49), the conditions
for ṡ2(k) to satisfy the constraint on the reaction forces, have
the form:

J(s)ṡ2(k)+L(s)>0 (50)

We recall that J(s) and L(s) are 2� 1 vector-functions:
J(s)=[Jj(s)], L(s)=[Lj(s)]. Vectorial inequality (50) is equiv-
alent to the following two scalar inequalities:

Jj(s)ṡ2(k)+Lj(s)>0, j=1, 2

Different cases exist depending on the signs of the
functions Jj(s), Lj(s). Let us introduce the following three
sets:

Uj ={s�[0,1]: Jj(s)≤0 and Lj(s)≤0}

Vj ={s�[0,1]: Jj(s)<0 and Lj(s)>0}

Wj ={s�[0,1]: Jj(s)>0 and Lj(s)≤0}

• If there exists at least one index j such that Uj ≠Ø, then
inequality (51) for this index j, and consequently
inequality (50), cannot be satisfied for any value ṡ(k).

• If for all j, Uj =Ø and Wj =Ø, and if there exists at least
one index j such that Vj ≠Ø, then the reaction forces
satisfy the constraints if and only if

ṡ(k)<	minj=1,2 mins�Vj ��Lj(s)
Jj(s) �.

• If for all j, Uj =Ø and Vj =Ø, and if there exists at
least one index j such that Wj ≠Ø, then the reaction
forces satisfy the constraints if and only if ṡ(k)>

	maxj=1,2 maxs�Wj ��Lj(s)
Jj(s) �.

• If for all j, Uj =Ø and if there exists at least one index j
such that Vj ≠Ø and one index l such that Wl =Ø, then the
reaction forces satisfy the constraints if and only if

	max
l=1,2

max
s�Wl

��Ll(s)
Jj(s) �<ṡ(k)<	min

j=1,2
min
s�Vj
��Lj(s)

Jj(s) �.

• If for all j, Uj =Ø, Wj =Ø and Vj =Ø, then the reaction
forces satisfy the constraints for any positive ṡ(k).

The size of the attraction domain is important for
practical applications. The larger this domain, the more
robust the control law. This domain is also interesting to
study possible changes of the velocity for the robot walking.
The constraint on the torque limits can be taken into account
in a similar way.

5.4. Control law
We have defined the conditions such that a joint path
corresponds to a stable admissible cyclic motion. The
attraction region of this cyclic motion has been found, this
region is based on the value of the angular momentum. The
constraints on the reaction force (no take-off, no sliding)
give also some limits on the initial velocity (or angular
momentum).

Control law (30) ensures that the motion of the biped
converges in a finite time towards a reference path. Thus, the
robot follows an admissible reference motion. And the
following assertion is correct:

The control law (30) ensures an orbitally asymptotically
stable motion of the robot if and only if the reference joint
path is such that: f(0+ )< f(1–) and (1–)f 2(0+ )+m(f 2(1–)�
f 2(0+ ))>0, and the angular momentum at the beginning of
the walking is within some limits.

Remark: If the control law converges to the reference path
during the first step, the limits on the velocity ṡ (and
consequently on the angular momentum) at the beginning of

the second step are ṡ(1)>
��m

f(0+ )
plus the limits defined in

the previous subsection 5.3.

6. SIMULATION RESULTS
The proposed control law has been tested on the reference
path presented under the stick-diagram form in Figure 7.
The joint path qr(s) is defined by a polynomial evolution q
with respect to s. We use a fourth order polynomial for each
component of vector q.

The corresponding periodic functions f(s) and (s) are
plotted in Figure 8.

Fig. 7. The reference path.
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For the chosen reference path f(0+ )=18.30, f(1–)=24.76
and (1–)f 2(0+ )+m(f 2(1–)� f 2(0+ ))=94172, thus
f(0+ )< f(1–) and (1–)f 2(0+ )+m(f 2(1–)� f 2(0+ ))>0. In con-
sequence, the biped motion converges to a cyclic motion.
The minimal value ṡ(k) to achieve a complete step is (see
Theorem 1) ṡm =1.17. The constraints on the reaction force
induce only a higher limit on the velocity ṡ(k): this velocity
must be less than 2.55 in order to avoid the sliding (�=0.66)
of the supporting leg. For an initial velocity of the robot
such that 1.17< ṡ(0)<2.55, the motion of the biped con-
verges to the cyclic motion defined by ṡc(0)=1.54 (see
Equation (40)).

6.1. Perfect modelling
Figure 9a shows the behaviour obtained in simulation with
control law (30) for a “large" initial velocity, ṡ(0)=2.5. The
initial state of the biped belongs to the set of reference
motions. Thus, the robot follows the parameterized refer-

ence path without tracking error and converges towards the
cyclic motion. In Figure 9a, the velocity ṡ(s) is shown. The
function ṡc(s) corresponding to the cyclic motion is also
presented in order to point out the convergence of the robot
motion to the cyclic one. But our control ensures only
orbital stability, thus the velocity ṡ(t) does not converge to
ṡc(t) as shown in Figure 9b. In Figure 10, the trunk
orientation is drawn in its phase plane. This phase portrait
allows us to illustrate the convergence to the cyclic motion
and the effect of the impact with the ground (there is a jump
in the velocity in the phase portrait).

6.2. Presence of modelling error
To illustrate a robustness property of the proposed approach,
the following case is simulated:

• The mass errors are +10% for the thighs, +30% for the
shins and +50% for the trunk. The error on the inertia

Fig. 8. Functions f(s) and (s).

Fig. 9. The proposed control ensures orbital stability: a) evolution of velocity ṡ(s) (solid line), and of cyclic velocity ṡc(s) (dotted line)
for 15 steps, b) evolution of velocity ṡ(t) (solid line), and of cyclic velocity ṡc(t) (dotted line) for 15 steps.
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moments are +40% for the thighs, +10% for the shins
and +30% for the trunk.

• The control law used is a classical computed torque
control, thus the desired closed loop behaviour is

q̈= q̈d +Kvėq +Kpeq (52)

instead of Equation (26).
• Since the reference path is designed with a false model of

the robot, the velocity after the impact is not the expected
one.

The behaviour obtained in simulation is presented in
Figure 11. In this figure, velocity ṡ(s) is shown. The function

ṡc(s) corresponding to the cyclic motion of the modelled
robot is also presented. The velocity ṡ does not converge to
the “expected” motion because this motion is not compat-
ible with the real dynamics of the biped, but a cyclic stable
motion is obtained.

The simulation results show that the leg tip does not
touch the ground during the single support (before
s=1.006), the ground reaction is directed upwards and is
inside the friction cone. Some tracking errors exist partic-
ularly at the beginning of each step due to the effect of
impact, thus the path followed is not exactly the expected
one but the tracking errors in angular variables are cyclic
and smaller than 0.005 rad.

Fig. 10. Evolution in degrees of angle q5 in its phase plane.

Fig. 11. Evolution of velocity ṡ(s) (solid line), and of cyclic velocity ṡc(s) (dotted line) for 15 steps in presence of modelling error.
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7. CONCLUSION
For a planar biped under-actuated during the single support
phases, the proposed control strategy consists in tracking a
reference path instead of a reference motion. The robot
adapts its temporal evolution according to the effect of
gravity. In this context a complete study has been presented.
Some analytical conditions that can be easily tested have
been proposed: conditions of existence and uniqueness of a
cyclic motion, condition of convergence towards this cyclic
motion. These conditions are defined on the reference path.

The conditions of a cyclic motion existence and con-
vergence to it are inequalities. Thus some robustness is
naturally contained in the proposed control strategy. In spite
of tracking errors and/or modelling error, the behaviour of
the robot converges to a cyclic motion, for a convenient
reference path (i.e. satisfying the inequality with some
margins). In the presence of modelling errors, the obtained
cycle is slightly modified with respect to the predicted cycle,
but stable walking is obtained as it has been observed in
simulation.

Since a reference path must satisfy some conditions
(inequalities) in order to produce stable cyclic walking,
there exist some reference paths that cannot be used with the
proposed strategy. But we want to point out that most of the
tested paths are convenient for our control strategy. To
correspond to a stable motion, the path must satisfy the two
following conditions: The angular momentum must
decrease during the impact phase (the contact point
changes); during the single support phase, the sub-phase
where the gravity speeds up the motion, must have a higher
contribution to the change of the angular momentum than
the sub-phase where the gravity slows down the motion (see
Figure 2).

All the cyclic optimal reference trajectories defined in
reference [15] for this biped produce a path that corresponds
to a stable motion with the proposed control strategy.
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