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Abstract

Background. This paper aims to synthesise the literature on machine learning (ML) and big
data applications for mental health, highlighting current research and applications in practice.
Methods. We employed a scoping review methodology to rapidly map the field of ML in
mental health. Eight health and information technology research databases were searched
for papers covering this domain. Articles were assessed by two reviewers, and data were
extracted on the article’s mental health application, ML technique, data type, and study
results. Articles were then synthesised via narrative review.
Results. Three hundred papers focusing on the application of ML to mental health were iden-
tified. Four main application domains emerged in the literature, including: (i) detection and
diagnosis; (ii) prognosis, treatment and support; (iii) public health, and; (iv) research and
clinical administration. The most common mental health conditions addressed included
depression, schizophrenia, and Alzheimer’s disease. ML techniques used included support
vector machines, decision trees, neural networks, latent Dirichlet allocation, and clustering.
Conclusions. Overall, the application of ML to mental health has demonstrated a range of
benefits across the areas of diagnosis, treatment and support, research, and clinical adminis-
tration. With the majority of studies identified focusing on the detection and diagnosis of
mental health conditions, it is evident that there is significant room for the application of
ML to other areas of psychology and mental health. The challenges of using ML techniques
are discussed, as well as opportunities to improve and advance the field.

Background and significance

Advances in technology, such as social media, smartphones, wearables and neuroimaging,
have allowed mental health researchers and clinicians to collect a vast range of data at a rapidly
growing rate (Chen et al., 2014). A robust technique that has emerged to analyse these data
is machine learning (ML). ML involves the use of advanced statistical and probabilistic tech-
niques to construct systems with an ability to automatically learn from data. This enables pat-
terns in data to be more readily and accurately identified and more accurate predictions to be
made from data sources (e.g. more accurate diagnosis and prognosis) (Jordan and Mitchell,
2015). ML has provided significant benefits to a range of fields, including artificial intelligence,
computer vision, speech recognition, and natural language processing, allowing researchers
and developers to extract vital information from datasets, provide personalised experiences,
and develop intelligent systems (Jordan and Mitchell, 2015). Within health fields such as bio-
informatics, ML has led to significant advances by enabling speedy and scalable analysis of
complex data (Luo et al., 2016). Such analytic techniques are also being explored with mental
health data, with the broad potential of both improving patient outcomes and enhancing
understanding of psychological conditions and their management.

ML algorithms are broadly grouped into three categories: (i) supervised; (ii) unsupervised;
and, (iii) semi-supervised learning (summarised in Table 1). In supervised learning, data with
known labels are used to train a model that can predict the label for new data, for example
classifying emails as spam based on previously labelled emails (El Naqa and Murphy,
2015). In contrast, unsupervised learning utilises mathematical techniques to cluster data in
order to provide new insights, for example mapping topics of conversation in web forums
(Teague and Shatte, 2018). Semi-supervised learning techniques develop models based on a
combination of both labelled and unlabelled data (Zhu and Goldberg, 2009; Zhu, 2010).
Such techniques are useful in enhancing supervised models through the use of unlabelled
data, as labelled datasets may be scarce or expensive. Practitioners of ML should be aware that
there is no single technique that works best for every problem, so it is recommended that a
range of techniques are applied to determine which algorithm performs best for the particular
dataset and task (Wolpert and Macready, 1997).
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A literature review of ML and big data research applications in
mental health is pertinent and timely given the rapid develop-
ments in technology in recent years. Two reviews have explored
this topic to date; yet neither review explored the breadth of
research using ML in mental health applications. First, Luo
et al. (2016) systematically investigated big data applications in
the field of biomedical research and health care, finding many
novel applications in bioinformatics, clinical informatics, imaging,
and public health. Some examples and opportunities for ML in
the mental health context were briefly discussed (specifically
detecting depression using social media and predictive models
for classifying psychological conditions), but were not explored
in detail. A second article by Bone et al. (2017) described signal
processing and ML for mental health research and clinical appli-
cations, concluding that the collaboration of clinicians with data
scientists is leading to important scientific breakthroughs not pre-
viously possible. However, this article did not report any literature
search techniques, thus it is unclear whether the article adequately
reflects the scope of applications that exist.

This review aims to provide a concise snapshot of the literature
investigating ML applications in mental health. Previous reviews
have demonstrated ML techniques to be robust and scalable for
mental health application, but no review to date has mapped
the clinical applications within mental health research and prac-
tice. Such a review would inform practitioners in the methods
and applications of mental health big data. It would also highlight
the challenges of using ML techniques in this context, as well as
identify gaps in the field and potential opportunities for further
research. First, we outline the search strategies used to find rele-
vant literature. Next, we conduct a synthesis of the literature,
describing both the ML techniques and mental health applica-
tions of each article. Finally, we summarise the extant research
and the implications for future work.

Method

A scoping review methodology was chosen to achieve this article’s
goal of mapping the state of the field of ML in mental health.
A scoping review is defined by Arskey and O’Malley (2005) as a
study that aims ‘to map rapidly the key concepts underpinning
a research area and the main sources and types of evidence avail-
able, and can be undertaken as stand-alone projects in their own
right, especially where an area is complex or has not been
reviewed comprehensively before’. As the field of ML is advancing
exponentially, we chose to focus specifically on exploring broadly
the nature of research activity, as per Arskey and O’Malley’s
(2005) first goal of scoping reviews.

Search strategy

The search strategy was adapted from Luo et al.’s (2016) similar
review of big data applications in the biomedical literature. The
searches were conducted to identify relevant literature using the
main keywords ‘big data’, ‘machine learning’, and ‘mental health’.
As ML and mental health span interdisciplinary fields, the search
was conducted in both health and Information Technology (IT)
databases. First, a literature search was conducted through health-
related research databases, including PsycInfo, the Cochrane
Library, and PubMed. Next, IT databases IEEE Xplore and the
ACM Digital Library were searched. Lastly, databases that index
both fields including Springer, Scopus and ScienceDirect wereTa
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searched for the relevant literature. No specific date range was
enforced in the search.

Study selection

Articles were included in the review if the following criteria were
met: (i) the article reported on a method or application of ML
to address mental health, with mental health conceptualised
using the World Health Organisation’s definition (World
Health Organization, 2014); (ii) the article evaluated the perform-
ance of the ML or big data technique used; (iii) the article was
published in a peer-reviewed publication; and, (iv) the article
was available in English. Articles were excluded if the following
criteria were met: (i) the article did not report an original contri-
bution to ML applications in mental health (e.g. the paper com-
mented on the future use of big data only, or reviewed other
articles without contributing original research); (ii) the article
did not focus on a mental health application; and, (iii) the full
text of the article was not available (e.g. conference abstracts).
Two reviewers independently reviewed all studies, reaching a con-
sensus on all included studies.

Data extraction and analysis plan

For each article, data were extracted regarding: (i) the aim of
research; (ii) area of mental health focus; (iii) data type; (iv) ML
methods used; (v) results; (vi) the country of the author group;
and, (vii) the discipline area of authors (e.g. health fields, data sci-
ence fields, or both). To analyse the data, a narrative review syn-
thesis method was selected to capture the large range of research
investigating ML and big data for mental health. It should be
noted that a meta-analysis was not appropriate for this review
given the broad range of mental health conditions, ML techni-
ques, and types of data used in the studies identified.

Results

Overview of article characteristics

The search strategies identified 1942 articles, with 300 of these
articles meeting the criteria for inclusion in this review [see
Fig. 1 for PRISMA flowchart (Moher et al., 2010)]. The mean
publication year for articles was 2015 (S.D. = 2.2), with a range
of 2004–2018. Most articles were authored by multidisciplinary
teams (n = 143), including experts from both health (e.g. medi-
cine, psychiatry, and/or psychology) and engineering fields (e.g.
IT, computer science, and/or data science), with the remaining
articles authored by either health (n = 95) or engineering (n =
62) experts only.

The ML techniques and mental health applications reported
varied considerably. Most articles (n = 170) implemented one
technique only, though some authors combined the use of classi-
fication, unsupervised learning, and other novel techniques.
ML techniques included: supervised learning and classification
approaches (n = 267) [e.g. support vector machines (SVM),
naive Bayes (NB), decision trees (DT)]; unsupervised and cluster-
ing approaches (n = 23) (e.g. k-nearest neighbours (kNN),
k-means clustering); text analysis (n = 20) [e.g. latent
Dirichlet allocation (LDA), sentiment analysis]; and novel techni-
ques (n = 11), including techniques based on deep learning and a
range of custom ML methods devised for specific domains. ML
applications were also evident across a range of mental health

conditions, including depression (n = 88), Alzheimer’s disease
and other cognitive decline (n = 46), schizophrenia (n = 37), stress
(n = 30), and suicide (n = 20). The data types used to develop ML
models included imaging data (n = 102), survey data (n = 40),
mobile and wearable sensor data (n = 29), and social media data
(n = 28).

ML application domains in mental health

Through synthesis of the data, four domains of mental health
applications were identified: (i) detection and diagnosis (n =
190); (ii) prognosis, treatment and support (n = 67); (iii) public
health applications (n = 26); and, (iv) research and clinical admin-
istration (n = 17). Detection and diagnosis includes articles that
aimed to identify or diagnose mental health conditions in indivi-
duals. Prognosis, treatment and support includes articles that
aimed to predict the progression of mental health conditions, or
explore treatment or support opportunities for such conditions.
Public health articles used large epidemiological or public datasets
(e.g. social media data) to monitor mental health conditions and
estimate prevalence. Research and clinical administration includes
articles that aimed to improve administrative processes in clinical
work, mental health research, and health-care organisations.
Articles were allocated into these categories based on consensus
by the two article reviewers. The four categories are discussed
in detail below.

Detection and diagnosis
Two themes emerged in the detection category: (i) the develop-
ment of pre-diagnosis screening tools; and (ii) the development
of risk models to identify an individual’s predisposition for, or
risk of, progressing to a mental health condition (see Table 2).
For example, several papers focused on the use of supervised
ML techniques with neuroimaging data to differentiate
Alzheimer’s disease from normal ageing (Sheela Kumari et al.,
2014; Doan et al., 2017a), to improve early diagnosis of psychosis
(Koutsouleris et al., 2012), and to predict vulnerability to depres-
sion (Sato et al., 2015). A novel approach identified for detection
of conditions is the use of unstructured text with natural language
processing techniques, including detection of suicide ideation
from counselling transcripts (Oseguera et al., 2017), detection of
schizophrenia from written texts (Strous et al., 2009), and analysis
of social media data to detect depressive symptoms (Wu et al.,
2012). Supervised ML has also been applied to wearable sensor
data to assess general wellbeing (Sano et al., 2015), and to ambient
sensors to detect psychiatric emergencies (Alam et al., 2016).
Finally, speech data have been used with supervised ML techni-
ques to detect underlying mental states indicative of schizophre-
nia and depression (Kliper et al., 2016), to assess the effects of
drugs on mental state (Bedi et al., 2014), and to classify at-risk
patients of Alzheimer’s disease based on speech patterns (Fraser
et al., 2016).

Two themes were identified in the diagnosis category: (i) pre-
dicting the diagnosis of a new patient based on a training dataset
of prior diagnoses (e.g. Mohammadi et al., 2015; Skåtun et al.,
2016; Dimitriadis et al., 2018); and (ii) differentiating between
mental health conditions with similar symptomatology (e.g.
Faedda et al., 2016; Bosl et al., 2017). The majority of studies con-
sidered neuroimaging data [e.g. magnetic resonance imaging
(MRI), electroencephalography (EEG), and positron emission
tomography]. For example, fMRI data have been used with super-
vised ML to improve the diagnosis of schizophrenia (Skåtun et al.,
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2016). Further, MRI data were used with supervised ML to diag-
nose patients with Alzheimer’s disease and cognitive impairment,
achieving reasonable accuracy (Dimitriadis et al., 2018). In add-
ition, supervised ML has also been applied to the diagnosis of
mental health conditions with similar symptomatology, for
example differentiation of autism spectrum disorders and epilepsy
using EEG data (Bosl et al., 2017). Research has also investigated
the application of ML techniques to sensor, speech and video data

to improve diagnosis of Alzheimer’s disease (König et al., 2015),
schizophrenia (Tron et al., 2016), and suicide ideation (Pestian
et al., 2016), achieving high prediction accuracies with supervised
techniques. Finally, supervised ML with wearable sensor data
from actigraph monitors has been demonstrated to differentiate
between children with ADHD and bipolar disorder (Faedda
et al., 2016). Overall, there has been a wide range of research pub-
lished that focuses on diagnosis of mental health conditions using

Fig. 1. PRISMA procedural flow chart.
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Table 2. Summary of ML techniques and data types for the detection and diagnosis of mental health conditions

Mental health
application ML technique(s) Data type

Alzheimer’s disease Active learning (Qian et al., 2015), BN (Labate et al., 2014),
Ensemble Learning (Labate et al., 2014), Genetic Algorithm (Brasil Filho et al., 2009;
Johnson et al., 2014), Regression (Westman et al., 2013; Johnson et al., 2014; Falahati et al.,
2016; Fraser et al., 2016; Doan et al., 2017a), kNN (Ertek et al., 2014), SVM (Costafreda et al.,
2011a; Dyrba et al., 2013, 2015; Burnham et al., 2014; Ertek et al., 2014; Besga et al., 2015;
König et al., 2015; Souillard-Mandar et al., 2016), DT (Ertek et al., 2014; Besga et al., 2015;
Souillard-Mandar et al., 2016), NN (Islam and Zhang, 2017), RF (Besga et al., 2015;
Souillard-Mandar et al., 2016; Vigneron et al., 2016; Dimitriadis et al., 2018), Similarity
Discriminative Dictionary Learning algorithm (Li et al., 2017a), NB (Dyrba et al., 2013)

Electronic Health Records (Qian et al., 2015), Imaging (Costafreda et al., 2011a; Dyrba et al.,
2013, 2015; Westman et al., 2013; Burnham et al., 2014; Labate et al., 2014; Falahati et al.,
2016; Vigneron et al., 2016; Dimitriadis et al., 2018; Islam and Zhang, 2017; Doan et al.,
2017a; Li et al., 2017a; Wang et al., 2018), Clinical Assessment (Brasil Filho et al., 2009; Ertek
et al., 2014; Johnson et al., 2014; Besga et al., 2015; Souillard-Mandar et al., 2016), Survey
(Johnson et al., 2014), Audio (König et al., 2015; Fraser et al., 2016), Biological (Burnham
et al., 2014; Besga et al., 2015)

Anxiety DT (Carpenter et al., 2016), Multivariate classification (Lueken et al., 2015), NN (Tran and
Kavuluru, 2017), Regression (Zhou et al., 2015), SVM (Liu et al., 2015a; Zhou et al., 2015)

Clinical Assessment (Carpenter et al., 2016), Imaging (Liu et al., 2015a; Lueken et al., 2015),
Clinical Notes (Tran and Kavuluru, 2017), Video (Zhou et al., 2015), Mobile/Wearable
Sensors (Zhou et al., 2015)

Attention deficit
hyperactivity disorder

Genetic algorithm (Yaghoobi Karimu and Azadi, 2018), SVM (Iannaccone et al., 2015;
Yaghoobi Karimu and Azadi, 2018), Linear discriminant analysis (Zhu et al., 2005), NN (Tran
and Kavuluru, 2017; Zou et al., 2017)

Imaging (Zhu et al., 2005; Iannaccone et al., 2015; Zou et al., 2017; Yaghoobi Karimu and
Azadi, 2018), Clinical Notes (Tran and Kavuluru, 2017)

Autism spectrum
disorder

Authors developed their own classifier (Yahata et al., 2016), DT (Jiao et al., 2010; 2012;
Alexeeff et al., 2017; Bosl et al., 2017), k-means clustering (Liu et al., 2016), RF (Xiao et al.,
2017), SVM (Jiao et al., 2010; Goch et al., 2013; Bruining et al., 2014; Plitt et al., 2015; Bone
et al., 2016; Liu et al., 2016; Bosl et al., 2017; Oh et al., 2017; Yuan et al., 2017), kNN (Oh
et al., 2017), L2LR (Plitt et al., 2015), NN (Jiao et al., 2010)

Imaging (Jiao et al., 2010; Goch et al., 2013; Plitt et al., 2015; Yahata et al., 2016; Bosl et al.,
2017; Xiao et al., 2017), Clinical Assessment (Bruining et al., 2014; Bone et al., 2016; Yuan
et al., 2017), Biological (Jiao et al., 2012; Oh et al., 2017), Electronic Health Records (Alexeeff
et al., 2017), Video/Photo (Liu et al., 2016)

Behaviour and
emotional problems

Gaussian Processes (Sato et al., 2016), Regression (Sato et al., 2016), NN (Sato et al., 2018),
DT (Sato et al., 2018), RF (Sato et al., 2018), SVM (Sato et al., 2018), JRIP (Sato et al., 2018),
FURIA (Sato et al., 2018)

Imaging (Sato et al., 2016, 2018)

Borderline personality
disorder

SVM (Koutsouleris et al., 2014) Imaging (Koutsouleris et al., 2014)

Coping NB (Golbeck, 2016) Social Media (Golbeck, 2016), Survey (Golbeck, 2016)

Decision support
system

Genetic Algorithm (Azar et al., 2015), k-means clustering (Azar et al., 2015) Clinical Assessment (Azar et al., 2015)

Dementia BN (Chen and Herskovits, 2007), ensemble learning (Chen and Herskovits, 2007), JRIP
(Bhagyashree et al., 2018), NB (Bhagyashree et al., 2018), RF (Bhagyashree et al., 2018), DT
(Bang et al., 2017; Er et al., 2017; Bhagyashree et al., 2018), NN (Kumari et al., 2013; Sheela
Kumari et al., 2014; Bang et al., 2017), SVM (Diniz et al., 2015; Klöppel et al., 2015; Bang
et al., 2017; Er et al., 2017), Regression (Er et al., 2017)

Imaging (Chen and Herskovits, 2007; Kumari et al., 2013; Sheela Kumari et al., 2014; Diniz
et al., 2015; Klöppel et al., 2015), Clinical Assessment (Bang et al., 2017; Er et al., 2017),
Survey (Bhagyashree et al., 2018), Biological (Diniz et al., 2015)

Depression AdaBoost (Liang et al., 2018a), Bayes (Wang et al., 2013), BN (Galiatsatos et al., 2015; Ojeme
and Mbogho, 2016a, 2016b), Classification (Hajek et al., 2017), Clustering (Dipnall et al.,
2017a), Deep Learning (Kang et al., 2017), DT (Wang et al., 2013; Block et al., 2014; Mitra
et al., 2014; Wardenaar et al., 2014; Jin et al., 2015; Ojeme and Mbogho, 2016b; Iliou et al.,
2017), epistasis network centrality analysis (Pandey et al., 2012), Evaporative cooling
feature selection (Pandey et al., 2012), FURIA (Iliou et al., 2017), Gaussian Processes (Mitra
et al., 2014; Hajek et al., 2015; O’Halloran et al., 2016), Genetic Algorithm (Mohammadi
et al., 2015; Kaufmann et al., 2017), GLM (Zhao et al., 2017b), Gradient Boosting (Ryu et al.,
2016; Ojeme and Mbogho, 2016b), hierarchical clustering (Dipnall et al., 2016b), JRIP (Iliou
et al., 2017), k-means clustering (Wardenaar et al., 2014; Ross et al., 2015; Farhan et al.,
2016), kNN (Zhang et al., 2013; Hou et al., 2016; Ojeme and Mbogho, 2016b; Zhao et al.,
2017b), LDA (Yazdavar et al., 2017), Linear discriminant analysis (Mohammadi et al., 2015;
Sato et al., 2015; Kaufmann et al., 2017), Multivariate classification (Lueken et al., 2015), NB

Audio (Mitra et al., 2014; Kliper et al., 2016; Zhao et al., 2017a), Biological (Pandey et al.,
2012; Besga et al., 2015; Diniz et al., 2015, 2016; Dmitrzak-Weglarz et al., 2015), Clinical
Assessment (Besga et al., 2015; Kliper et al., 2016; Ojeme and Mbogho, 2016a; Liang et al.,
2018a, 2018b), Clinical Notes (Tran and Kavuluru, 2017), Electronic Health Records (Ross
et al., 2015; Ryu et al., 2016; Ojeme and Mbogho, 2016b), Imaging (Costafreda et al., 2011b;
Lord et al., 2012; Zhang et al., 2013; Anticevic et al., 2014; Cao et al., 2014; Koutsouleris
et al., 2014; Diniz et al., 2015, 2016; Fung et al., 2015; Hajek et al., 2015, 2017; Lueken et al.,
2015; Mohammadi et al., 2015; Song et al., 2015; Sato et al., 2015; O’Halloran et al., 2016;
Ramasubbu et al., 2016; Kaufmann et al., 2017; Roberts et al., 2017; Chen et al., 2017a;
Zhao et al., 2017b; Bailey et al., 2018; Deng et al., 2018; Jie et al., 2018), Mobile/Wearable
Sensors (Zhou et al., 2015; Farhan et al., 2016; Cao et al., 2017; Zhao et al., 2017b), Social
Media (Hao et al., 2013; Shen et al., 2013; Wang et al., 2013; Chomutare, 2014; Hou et al.,
2016; Nguyen et al., 2016b; Reece and Danforth, 2017; Yazdavar et al., 2017; Almeida et al.,
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(Hao et al., 2013; Hou et al., 2016; Nguyen et al., 2016b), NN (Zhang et al., 2013; Dipnall
et al., 2016b; Iliou et al., 2017; Pampouchidou et al., 2017; Tran and Kavuluru, 2017; Zhao
et al., 2017a), PCA (Chen et al., 2017a), Regression (Hao et al., 2013; Mitra et al., 2014;
Wardenaar et al., 2014; Dmitrzak-Weglarz et al., 2015; Zhou et al., 2015; Hou et al., 2016;
Dipnall et al., 2016b, 2017a; Nguyen et al., 2016b; Andrews et al., 2017; Cao et al., 2017;
Reece and Danforth, 2017; Wu et al., 2017; Almeida et al., 2017a; Liang et al., 2018b), RF (Jin
et al., 2015; Iliou et al., 2017; Almeida et al., 2017a), Searchlight (Chen et al., 2017a),
Semi-supervised Topic Modelling Over Time (Yazdavar et al., 2017), Sentiment analysis
(Wang et al., 2013), SVM (Costafreda et al., 2011b; Lord et al., 2012; Shen et al., 2013;
Anticevic et al., 2014; Cao et al., 2014, 2017; Chomutare, 2014; Koutsouleris et al., 2014;
Besga et al., 2015; Diniz et al., 2015, 2016; Fung et al., 2015; Hajek et al., 2015; Jin et al.,
2015; Song et al., 2015; Zhou et al., 2015; Farhan et al., 2016; Hou et al., 2016; Kliper et al.,
2016; Ramasubbu et al., 2016; Nguyen et al., 2016b; Ojeme and Mbogho, 2016b; Iliou et al.,
2017; Roberts et al., 2017; Almeida et al., 2017a; Bailey et al., 2018; Deng et al., 2018; Jie
et al., 2018)

2017a), Survey (Block et al., 2014; Wardenaar et al., 2014; Galiatsatos et al., 2015; Jin et al.,
2015; Hou et al., 2016; Dipnall et al., 2016b, 2017a; Andrews et al., 2017; Iliou et al., 2017; Wu
et al., 2017), Video/Photo (Mitra et al., 2014; Zhou et al., 2015; Kang et al., 2017;
Pampouchidou et al., 2017)

Epilepsy DT (Besga et al., 2015; Bosl et al., 2017), RF (Besga et al., 2015), SVM (Pedersen et al., 2015;
Bosl et al., 2017)

Imaging (Pedersen et al., 2015; Bosl et al., 2017), Clinical Assessment (Besga et al., 2015),
Biological (Besga et al., 2015)

Hyperactivity SVM (Faedda et al., 2016) Mobile/Wearable Sensors (Faedda et al., 2016)

Mania NLP (Rentoumi et al., 2017), NB (Rentoumi et al., 2017), NN (Rentoumi et al., 2017) Letters (Rentoumi et al., 2017)

Mild cognitive
impairment

BN (Chen and Herskovits, 2007; Labate et al., 2014), ensemble learning (Chen and
Herskovits, 2007; Labate et al., 2014), Regression (Westman et al., 2013), RF (Dimitriadis
et al., 2018), Similarity Discriminative Dictionary Learning (SCDDL) algorithm (Li et al.,
2017a), SVM (König et al., 2015)

Imaging (Chen and Herskovits, 2007; Westman et al., 2013; Labate et al., 2014; Dimitriadis
et al., 2018; Li et al., 2017a), Audio (König et al., 2015)

Obsessive compulsive
disorder

NN (Erguzel et al., 2015), kNN (Erguzel et al., 2015), NB (Erguzel et al., 2015), Searchlight
Based Feature Extraction (SBFE) (Bleich-Cohen et al., 2014), SLR algorithm (Takagi et al.,
2017), L1-SCCA algorithm (Takagi et al., 2017), SVM (Parrado-Hernández et al., 2012; Erguzel
et al., 2015)

Imaging (Parrado-Hernández et al., 2012; Bleich-Cohen et al., 2014; Erguzel et al., 2015;
Takagi et al., 2017)

Parkinson’s disease SVM (Souillard-Mandar et al., 2016), RF (Souillard-Mandar et al., 2016), DT
(Souillard-Mandar et al., 2016), Regression (Souillard-Mandar et al., 2016)

Clinical Assessment (Souillard-Mandar et al., 2016)

Play therapy Binary valence classification (Halfon et al., 2016) Clinical Assessment (Halfon et al., 2016), Audio (Halfon et al., 2016)

Post-traumatic stress
disorder

k-means clustering (Ross et al., 2015), Multivariate pattern analysis (Khondoker et al., 2016),
SVM (Karstoft et al., 2015; Liu et al., 2015b; Khondoker et al., 2016; Jin et al., 2017)

Electronic Health Records (Ross et al., 2015), Imaging (Liu et al., 2015b; Khondoker et al.,
2016; Jin et al., 2017), Survey (Karstoft et al., 2015)

Postnatal depression NB (Jiménez-Serrano et al., 2015), Regression (Jiménez-Serrano et al., 2015), SVM
(Jiménez-Serrano et al., 2015), NN (Jiménez-Serrano et al., 2015)

Clinical Assessment (Jiménez-Serrano et al., 2015), Survey (Jiménez-Serrano et al., 2015)

Psychiatric emergency HMM (Alam et al., 2016), Stochastic Variational Inference (Alam et al., 2016) Mobile/Wearable Sensors (Alam et al., 2016), Clinical Notes (Alam et al., 2016), Survey (Alam
et al., 2016)

Psychosis Bayes Rule (Clark et al., 2015), Gradient boosting (Perlini et al., 2017), PCA (Rikandi et al.,
2017), DT (Rikandi et al., 2017), Linear discriminant analysis (Rikandi et al., 2017), Quadratic
discriminant analysis (Rikandi et al., 2017), RF (Maraş and Aydin, 2017), Regression (Maraş
and Aydin, 2017; Rikandi et al., 2017), NN (Maraş and Aydin, 2017), SVM (Koutsouleris et al.,
2009, 2012; Bendfeldt et al., 2015; Squarcina et al., 2015b; Rikandi et al., 2017)

Clinical Assessment (Perlini et al., 2017), Imaging (Koutsouleris et al., 2009, 2012; Bendfeldt
et al., 2015; Clark et al., 2015; Squarcina et al., 2015b; Maraş and Aydin, 2017; Rikandi et al.,
2017)

Schizophrenia AdaBoost (Liang et al., 2018a), Classification (exact method not reported) (Hajek et al.,
2017), Gaussian Process (Taylor et al., 2017), Genetic Algorithm (Kaufmann et al., 2017),
k-means clustering (Castellani et al., 2009), Linear discriminant analysis (Kaufmann et al.,
2015; Skåtun et al., 2016; Winterburn et al., 2017), Multivariate analysis (Skåtun et al., 2016),
NN (Chakraborty et al., 2017), PCA (Chen et al., 2017a), Regression (Strous et al., 2009;
Nicodemus et al., 2010; Hess et al., 2016; Hettige et al., 2017; Yong et al., 2017; Liang et al.,
2018b), RF (Nicodemus et al., 2010; Greenstein et al., 2012; Hess et al., 2016; Hettige et al.,

Audio (Kliper et al., 2016), Biological (Nicodemus et al., 2010; Hess et al., 2016), Clinical
Assessment (Kliper et al., 2016; Hettige et al., 2017; Liang et al., 2018a, 2018b), Imaging
(Castellani et al., 2009, 2012; Strous et al., 2009; Nicodemus et al., 2010; Costafreda et al.,
2011b; Greenstein et al., 2012; Iwabuchi et al., 2013; Yu et al., 2013; Anticevic et al., 2014;
Bleich-Cohen et al., 2014; Guo et al., 2014; Koutsouleris et al., 2014; Kaufmann et al., 2015,
2017; Hess et al., 2016; Johannesen et al., 2016; Mikolas et al., 2016; Skåtun et al., 2016;
Hajek et al., 2017; Iwabuchi and Palaniyappan, 2017; Rozycki et al., 2018; Taylor et al., 2017;
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Table 2. (Continued.)

Mental health
application ML technique(s) Data type

2017), Searchlight (Bleich-Cohen et al., 2014; Chen et al., 2017a), SVM (Castellani et al.,
2009, 2012; Strous et al., 2009; Costafreda et al., 2011b; Iwabuchi et al., 2013; Yu et al., 2013;
Anticevic et al., 2014; Guo et al., 2014; Koutsouleris et al., 2014; Hess et al., 2016;
Johannesen et al., 2016; Kliper et al., 2016; Mikolas et al., 2016; Tron et al., 2016;
Chakraborty et al., 2017; Hettige et al., 2017; Iwabuchi and Palaniyappan, 2017; Rozycki
et al., 2018; Taylor et al., 2017; Bae et al., 2018b)

Winterburn et al., 2017; Chen et al., 2017a; Yong Yang et al., 2017; Bae et al., 2018b), Survey
(Chakraborty et al., 2017), Video/Photo (Tron et al., 2016; Chakraborty et al., 2017)

Stress AdaBoost (Maxhuni et al., 2016), BN (Smets et al., 2016), Classification (exact method not
reported) (Cvetković et al., 2017), DT (Chiang et al., 2013; Maxhuni et al., 2016; Smets et al.,
2016), k-means clustering (Hagad et al., 2014), kNN (Nakashima et al., 2016), NB (Zhao
et al., 2011; Chiang et al., 2013; Alharthi et al., 2017), NN (Hagad et al., 2014; Li et al., 2017b),
Regression (Stütz et al., 2015; Smets et al., 2016; Li et al., 2017b), RF (Stütz et al., 2015;
Maxhuni et al., 2016; Smets et al., 2016), SVM (Chiang et al., 2013; Hagad et al., 2014;
Sandulescu et al., 2015; Gjoreski et al., 2016; Maxhuni et al., 2016; Nakashima et al., 2016;
Smets et al., 2016)

Clinical Assessment (Gjoreski et al., 2016; Alharthi et al., 2017), Imaging (Zhao et al., 2011),
Mobile/Wearable Sensors (Chiang et al., 2013; Sandulescu et al., 2015; Stütz et al., 2015;
Gjoreski et al., 2016; Maxhuni et al., 2016; Smets et al., 2016; Alharthi et al., 2017; Cvetković
et al., 2017), Physiological Sensors (Hagad et al., 2014; Nakashima et al., 2016), Social
Media (Li et al., 2017b), Survey (Hagad et al., 2014; Stütz et al., 2015; Gjoreski et al., 2016;
Alharthi et al., 2017)

Substance use Regression (Whelan et al., 2014; Squeglia et al., 2017), SVM (Bedi et al., 2014; Rakshith et al.,
2017; Squeglia et al., 2017), RF (Squeglia et al., 2017), DT (Squeglia et al., 2017), Extreme
Learning Machine (ELM) (Rakshith et al., 2017)

Imaging (Whelan et al., 2014; Rakshith et al., 2017; Squeglia et al., 2017), Survey (Squeglia
et al., 2017), Audio (Bedi et al., 2014)

Suicide/self harm AdaBoost (Pestian et al., 2010), Conditional random fields (Moulahi et al., 2017), DT (Pestian
et al., 2008, 2010; Oseguera et al., 2017; Kessler et al., 2017a), GLM (Tran et al., 2013), HMM
(Alam et al., 2014), kNN (Tran et al., 2013; Oseguera et al., 2017), LDA (Zhang et al., 2015b),
Linear discriminant analysis (Oseguera et al., 2017), LIWC (Zhang et al., 2015b), NB
(Oseguera et al., 2017), NLP (Pestian et al., 2010, 2016), Regression (Pestian et al., 2008,
2010; Zhang et al., 2015b; Zhou et al., 2015; Hettige et al., 2017; Oseguera et al., 2017;
Kessler et al., 2017a), RF (Baca-García et al., 2006; Hettige et al., 2017), SVM (Baca-García
et al., 2006; Pestian et al., 2008, 2010, 2016; Zhou et al., 2015; Barros et al., 2017; Hettige
et al., 2017; Kessler et al., 2017a; Oseguera et al., 2017)

Audio (Pestian et al., 2016), Clinical Assessment (Baca-García et al., 2006; Hettige et al.,
2017), Clinical Notes (Oseguera et al., 2017), Electronic Health Records (Tran et al., 2013;
Kessler et al., 2017a), Letters (Pestian et al., 2008, 2010), Mobile/Wearable Sensors (Alam
et al., 2014; Zhou et al., 2015), Social Media (Zhang et al., 2015b; Moulahi et al., 2017),
Survey (Baca-García et al., 2006; Barros et al., 2017), Video (Zhou et al., 2015)

Traumatic brain injury DT (Karamzadeh et al., 2016), Linear discriminant analysis (Karamzadeh et al., 2016), RF
(Stone et al., 2016; Vakorin et al., 2016), LogitBoost (Tremblay et al., 2017), Regression
(Tremblay et al., 2017), SVM (Karamzadeh et al., 2016; Vakorin et al., 2016; Tremblay et al.,
2017)

Imaging (Karamzadeh et al., 2016; Stone et al., 2016; Vakorin et al., 2016; Tremblay et al.,
2017), Biological (Tremblay et al., 2017), Survey (Tremblay et al., 2017)

Wellbeing AdaBoost (Agarwal et al., 2016), Fast Fourier Transform (FFT) (Sun et al., 2017), Gaussian
Processes (Sun et al., 2017), HMM (Rabbi et al., 2011), DT (Rabbi et al., 2011), NB (Agarwal
et al., 2016), NN (Agarwal et al., 2016), RF (Agarwal et al., 2016; Kamdar and Wu, 2016),
Regression (Kamdar and Wu, 2016; Sun et al., 2017), kNN (Kamdar and Wu, 2016), SVM
(Sano et al., 2015; Agarwal et al., 2016; Kamdar and Wu, 2016)

Survey (Sano et al., 2015; Agarwal et al., 2016; Sun et al., 2017), Clinical Assessment (Sun
et al., 2017), Audio (Rabbi et al., 2011), Mobile/Wearable Sensors (Rabbi et al., 2011; Sano
et al., 2015; Kamdar and Wu, 2016)

RF, Random Forest; SVM, support vector machine; NB, Naive Bayes; NN, neural networks; LDA, latent Dirichlet allocation; kNN, k-nearest neighbours; HMM, hidden Markov model; BN, Bayesian network; ARM, association rule mining; PCA, principal
component analysis.
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Table 3. Summary of ML techniques and data types for the prognosis, treatment and support of mental health conditions

Mental health
application ML technique(s) Data type

Alzheimer’s disease COMPASS (Zhu et al., 2016), SVM (Chen et al., 2015; Zhu et al., 2016), DT (Zhu et al.,
2016), Genetic Algorithm (Vandewater et al., 2015), NN (Chalmers et al., 2016)

Imaging (Chen et al., 2015; Zhu et al., 2016), Biological (Vandewater et al., 2015), Smart
Meter (Chalmers et al., 2016)

Anxiety BN (Panagiotakopoulos et al., 2010), ARM (Panagiotakopoulos et al., 2010), DT (Bermejo
et al., 2013; Hoogendoorn et al., 2017), Regression (Hoogendoorn et al., 2017), RF
(Hoogendoorn et al., 2017), k-means clustering (Park et al., 2018), NB (Xu et al., 2011),
SVM (Sundermann et al., 2017)

Electronic Health Records (Panagiotakopoulos et al., 2010), Survey (Xu et al., 2011;
Bermejo et al., 2013), Letters (Hoogendoorn et al., 2017), Social Media (Park et al.,
2018), Imaging (Bermejo et al., 2013; Sundermann et al., 2017)

Attention deficit
hyperactivity disorder

Regression (Wong et al., 2017) Clinical Assessment (Wong et al., 2017)

Autism spectrum
disorder

Bayesian classification (Dao et al., 2017), ConceptNet (Song et al., 2011), DT (Thin et al.,
2017), NLP (Beykikhoshk et al., 2015), NB (Beykikhoshk et al., 2015; Thin et al., 2017), RF
(Thin et al., 2017), Regression (Beykikhoshk et al., 2015), Sentiment analysis (Nguyen
et al., 2014a), SVM (Song et al., 2011; Thin et al., 2017)

Social Media (Song et al., 2011; Nguyen et al., 2014a; Beykikhoshk et al., 2015; Dao et al.,
2017; Thin et al., 2017)

Cyberbullying NB (Nandhini and Sheeba, 2015) Social Media (Nandhini and Sheeba, 2015)

Dementia SVM (Siang Fook et al., 2009), BN (Siang Fook et al., 2009), PCA (Siang Fook et al., 2009) Mobile/Wearable Sensors (Siang Fook et al., 2009)

Depression Bayesian classification (Dao et al., 2017), Clustering (Xu and Zhang, 2016), DT (Burns
et al., 2011; Bermejo et al., 2013; Erguzel and Tarhan, 2016; Kessler et al., 2016; Yang
et al., 2017; Fabbri et al., 2018), Gradient boosting (Fabbri et al., 2018), k-means
clustering (Park et al., 2018), LDA (Dao et al., 2014; Nguyen et al., 2015, 2017), LIWC
(Nguyen et al., 2015), NB (Xu et al., 2011; Perlis, 2013), NLP (Ma et al., 2017), NN
(Chalmers et al., 2016; Erguzel and Tarhan, 2016; Fabbri et al., 2018), Regression (Perlis,
2013; Dao et al., 2014, 2016; Nguyen et al., 2014b, 2015; Iniesta et al., 2016; Kessler et al.,
2016; Fabbri et al., 2018), RF (Perlis, 2013; van Breda et al., 2016; Wahle et al., 2016;
Fabbri et al., 2018), Semi-supervised Topic Modelling Over Time (Nguyen et al., 2017),
Sentiment analysis (Nguyen et al., 2014b), SVM (Perlis, 2013; Guilloux et al., 2015;
Erguzel and Tarhan, 2016; van Breda et al., 2016; Wahle et al., 2016; Yang et al., 2017)

Biological (Guilloux et al., 2015; Fabbri et al., 2018), Clinical Assessment (Perlis, 2013;
Iniesta et al., 2016), Imaging (Bermejo et al., 2013; Erguzel and Tarhan, 2016), Mobile/
Wearable Sensors (Burns et al., 2011; Wahle et al., 2016), Smart Meter (Chalmers et al.,
2016), Social Media (Dao et al., 2014, 2016, 2017; Nguyen et al., 2014b, 2015, 2017; Xu
and Zhang, 2016; Ma et al., 2017; Park et al., 2018), Survey (Burns et al., 2011; Xu et al.,
2011; Bermejo et al., 2013; Kessler et al., 2016; van Breda et al., 2016; Yang et al., 2017)

Gambling DT (Auer and Griffiths, 2018) Survey (Auer and Griffiths, 2018)

MH service usage RF (Roysden and Wright, 2015), NLP (Roysden and Wright, 2015) Electronic Health Records (Roysden and Wright, 2015)

Obsessive compulsive
disorder

SVM (Lenhard et al., 2018), Regression (Lenhard et al., 2018), RF (Lenhard et al., 2018) Clinical Assessment (Lenhard et al., 2018)

Parkinson’s disease SVM (Ye et al., 2016) Imaging (Ye et al., 2016), Clinical Assessment (Ye et al., 2016)

Post-traumatic stress
disorder

k-means clustering (Park et al., 2018), kNN (Broek et al., 2013), NN (Broek et al., 2013),
NLP (Shiner et al., 2013), RF (Saxe et al., 2017), Regression (Saxe et al., 2017), SVM
(Broek et al., 2013; Saxe et al., 2017)

Audio (Broek et al., 2013), Biological (Saxe et al., 2017), Clinical Notes (Shiner et al.,
2013), Clinical Assessment (Saxe et al., 2017), Social Media (Park et al., 2018)

Psychosis Gaussian Processes (Amminger et al., 2015), SVM (Koutsouleris et al., 2016; Mechelli
et al., 2017)

Biological (Amminger et al., 2015), Clinical Assessment (Amminger et al., 2015), Survey
(Koutsouleris et al., 2016; Mechelli et al., 2017)

Schizophrenia Reverse Engineering and Forward Simulation (REFS) (Anderson et al., 2017), SVM (Bak
et al., 2017; Koutsouleris et al., 2018)

Clinical Assessment (Anderson et al., 2017; Bak et al., 2017), Imaging (Bak et al., 2017;
Koutsouleris et al., 2018)

Social support Bayesian classification (Deetjen and Powell, 2016), LDA (Carron-Arthur et al., 2016) Social Media (Carron-Arthur et al., 2016; Deetjen and Powell, 2016)

Stress Gaussian Processes (Xue et al., 2014), k-means clustering (Salafi and Kah, 2015), NB
(Xue et al., 2014; Doan et al., 2017b), NN (Xue et al., 2014), RF (Paredes et al., 2014; Xue
et al., 2014), SVM (Xue et al., 2014; Salafi and Kah, 2015; Doan et al., 2017b)

Mobile/Wearable Sensors (Paredes et al., 2014; Salafi and Kah, 2015), Social Media (Xue
et al., 2014; Doan et al., 2017b), Survey (Paredes et al., 2014)
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ML techniques. Models developed using imaging data demon-
strate promising results; however a major issue is the lack of con-
sistency in accuracy of techniques and datasets used. More
research is needed to synthesise results and provide standard tech-
niques that can be adopted by mental health clinicians. In add-
ition, the majority of studies investigating the detection and
diagnosis of mental health conditions used neuroimaging data
with supervised classification techniques. Yet diagnosis of mental
health conditions is commonly made using standardised assess-
ment tools (i.e. questionnaires) across both clinical and research
settings. Future ML research should focus on improving diagnos-
tic outcomes using a range of data types, especially for individuals
who may not have access to imaging services. Further research is
also required to ensure that the techniques proposed in a research
context can be translated into diagnosis options for the public.

Prognosis, treatment and support
Research investigating mental health prognosis focused predom-
inantly on the use of ML to predict long-term outcomes of a
patient prior to, or after diagnosis (see Table 3). Conditions of
focus include schizophrenia (Bak et al., 2017), Alzheimer’s disease
(Chen et al., 2015; Vandewater et al., 2015; Zhu et al., 2016), post-
traumatic stress disorder (Saxe et al., 2017), depression (Guilloux
et al., 2015; Erguzel and Tarhan, 2016; Iniesta et al., 2016; Kessler
et al., 2016), and psychosis (Amminger et al., 2015; Koutsouleris
et al., 2016; Mechelli et al., 2017). For example, supervised ML
using SVM was demonstrated to predict treatment responders
and non-responders to a drug for Parkinson’s disease, subse-
quently leading to improved treatment outcomes (Ye et al.,
2016). Further, natural language processing techniques have
been used to predict suicide ideation and psychiatric symptoms
amongst recently discharged patients, finding accurate results
that could improve prognosis (Cook et al., 2016). In addition,
researchers have applied unsupervised ML techniques to social
media and online communities to determine the individual and
psycholinguistic features most predictive for successful alcohol
abstinence (Harikumar et al., 2016a) and smoking cessation
(Nguyen et al., 2016a).

Three themes were identified among studies examining treat-
ment and support: (i) ML with mobile and sensor data to detect
changes in behaviour indicative of mental health conditions
(Salafi and Kah, 2015; Chalmers et al., 2016); (ii) ML to provide
personalised and timely treatment or interventions (Auer and
Griffiths, 2018; Bae et al., 2018a; Chen et al., 2017b; Yang et al.,
2017); and, (iii) analysis of online support groups for mental health
communities (Song et al., 2011; Nguyen et al., 2014a, 2014b;
Deetjen and Powell, 2016; Kavuluru et al., 2016; Thin et al.,
2017). The studies identified in this category demonstrate several
benefits of ML for treatment and support. For example, ML has
achieved positive results using smart meter data with neural net-
works to detect changes in sleep behaviour indicative of depression
of Alzheimer’s disease (Chalmers et al., 2016), and with wearable
sensor data (i.e. heart rate, galvanic skin response and temperature)
and both supervised and unsupervised ML methods to predict
stress (Salafi and Kah, 2015). Further, various supervised ML tech-
niques were used with mobile sensor and survey data to provide
personalised and timely intervention for depression (Yang et al.,
2017), gambling addiction (Auer and Griffiths, 2018) and alcohol
use in young adults (Bae et al., 2018a) with positive results.
Additional benefits have been demonstrated when using supervised
ML with data from online communities, such as matching patients
to suitable support communities (Song et al., 2011) and automaticTa
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moderation of helpful comments in suicide and autism support
groups (Kavuluru et al., 2016; Thin et al., 2017).

While the studies identified in this category demonstrate the
potential for ML to improve outcomes for patients with mental
health conditions, there are areas that require further investigation.
First, the use of social media data for prognosis has to date only
been applied to addiction research; such approaches have consider-
able potential for application to a range of other mental health con-
ditions. Second, despite promising early results on sensor data for
personalised and timely intervention, some studies have indicated
that sensors such as GPS do not accurately predict behaviour
(DeMasi and Recht, 2017). It is evident that more research on sen-
sor data with ML is needed to improve the automatic classification
of mental health conditions. Finally, much of the work on online
community assessment has focused on behaviour and/or the
characteristics of such communities; scant work to date has focused
on providing direct benefit to participants through these online
communities. Furthermore, many studies in this area are
proof-of-concept studies; as such, these techniques warrant further
investigation by both researchers and clinicians.

Public health
Public health applications included: assessing the mental health of
both specific and broader populations (e.g. Liang et al., 2015;
Chary et al., 2017); monitoring mental health following an
event or disaster (e.g. Glasgow et al., 2014; 2016); and creating
models of risk to improve health system delivery e.g. Almeida
et al., 2017b; Kessler et al., 2017b) (see Table 4). Public health
applications typically used social media data (n = 11), electronic
health records (n = 6), and clinical data (e.g. diagnostic surveys
and tools; n = 9). Social media data were found to be a particularly
useful epidemiological resource for natural language processing
and classification, including assessments of the mental health sta-
tus of over 60 000 college students in China (Liang et al., 2015)
and prescription opioid misuse in an estimated sample of over
1.3 million Twitter users (Chary et al., 2017). Social media also
enables researchers to assess the impact of an incident on popu-
lation mental health (e.g. classifying stress levels of college stu-
dents after experiencing gun violence using supervised ML
techniques) (Saha and de Choudhury, 2017), and tracking public
response to disaster situations to inform the allocation of support
resources using classification and natural language processing
techniques (Glasgow et al., 2014, 2016; Almeida et al., 2017b).
Supervised ML applied to electronic health records was demon-
strated to predict suicide risk with an accuracy similar to clinician
assessment (Kessler et al., 2017b; Metzger et al., 2017), as well as
predict dementia and its risk factors with high accuracy (Kim
et al., 2017). Research has also investigated the use of ML with
clinical data to improve variable selection in epidemiological
data analysis (Sidahmed et al., 2016), and to better understand
the relationship between complex risk factors for mental health
conditions such as depression (Dipnall et al., 2017b).

Overall, ML appears to be a promising tool for public health.
Social media data and electronic health records are enabling
researchers to monitor the wellbeing of large groups of people
in a cost-efficient manner. Social media data in particular are pro-
viding an ecologically valid assessment of mental health in the
population in real-time, enabling assessment of groups that
have typically been challenging to monitor through traditional
research methods [e.g. opioid misuse (Chary et al., 2017)]. With
only minimal research conducted in this area to date, there is con-
siderable scope for future research to consider refinements of ML

techniques and indicators in both social media and electronic
health record data. To realise these benefits, researchers and
health clinicians must consider sharing their datasets and improv-
ing data harmonisation techniques (Hutchinson et al., 2015).

Research and clinical administration
Three themes were identified in the research and clinical admin-
istration category: (i) improving resource allocation methods [e.g.
via patient risk status (Castillo et al., 2014; Wang et al., 2017)]; (ii)
improving research methodologies [e.g. data sharing (Dluhoš
et al., 2017; Zhu et al., 2017), participant selection (Geraci
et al., 2017), and analysis (Guan et al., 2015; Squarcina et al.,
2015a; Khondoker et al., 2016; Dipnall et al., 2016a)]; and, (iii)
extracting mental health symptoms from existing sources (e.g.
research publications, clinical notes and databases [Ghafoor
et al., 2015; Hu and Terrazas, 2016; Caballero et al., 2017;
Posada et al., 2017; Zhang et al., 2017b; Karystianis et al.,
2018)] (see Table 5). The studies identified in this category dem-
onstrate several benefits of ML for mental health administration.
For example, predicting high-cost patients using supervised ML
techniques can ensure that resources are allocated more efficiently
(Wang et al., 2017). Further, distributed supervised ML techni-
ques that build predictive models using meta-analytic data have
demonstrated improved predictive models while maintaining pat-
ient privacy (Dluhoš et al., 2017; Zhu et al., 2017). Additional
benefits have been demonstrated for mental health researchers,
including the use of supervised classification techniques to match
research participants to studies to save time and money in recruit-
ment (Geraci et al., 2017).

While these studies demonstrate the potential for ML to
improve mental health administration, it is clear that there is
room for further research. In particular, the techniques used to
predict high-cost patients may also provide benefits for research-
ers in improving retention by identifying participants at greatest
risk of drop-out (Teague et al., 2018). Finally, future research
may also focus on using patient histories to improve triaging
and tailored treatment plans.

Discussion

This paper aims to synthesise the literature on ML and big data
applications for mental health, highlighting current research
and applications in practice. Mental health applications for ML
techniques were identified in four key domains: (i) detection
and diagnosis of mental health conditions; (ii) prognosis, treat-
ment and support; (iii) public health; and, (iv) research and clin-
ical administration. Predominantly, research has focused on the
benefits of ML to improve detection and diagnosis of mental
health conditions including depression, Alzheimer’s disease, and
schizophrenia. There has also been growing interest in the appli-
cation of ML to other areas of mental health research, including
the use of ML to improve administration and research methods,
treatment and support of mental health conditions, studies of
public health trends, and investigations into the behaviours of
support communities online. Overall, ML demonstrates the
potential to improve the efficiency of clinical and research pro-
cesses and to generate new insights into mental health and
wellbeing.

As an emerging field, there are understandably significant gaps
for future research to address. The majority of papers reviewed
focus on diagnosis and detection, particularly on depression, sui-
cide risk and cognitive decline. There is significant scope to
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Table 4. Summary of ML techniques and data types for public health of mental health conditions

Mental health
application ML technique(s) Data type

Anxiety SVM (Zhang et al., 2015a), Linear discriminant analysis (Zhang et al., 2015a), RF (Zhang et al.,
2015a)

Electronic Health Records (Zhang et al., 2015a)

Cognitive distortions DT (Simms et al., 2017), Regression (Simms et al., 2017), NB (Simms et al., 2019), NN (Simms
et al., 2017), kNN (Simms et al., 2017), RELIEF (Simms et al., 2017)

Social Media (Simms et al., 2017)

Dementia SVM (Kim et al., 2017) Electronic Health Records (Kim et al., 2017)

Depression DT (Peng et al., 2019), Gradient boosting (Ryu et al., 2015), kNN (Peng et al., 2019), LIWC (Saha
et al., 2016), LDA (Saha et al., 2016), Linear discriminant analysis (Zhang et al., 2015a), NB
(Peng et al., 2019), NN (Dipnall et al., 2017b), RF (Zhang et al., 2015a), Regression (Dipnall et al.,
2017b), SVM (Zhang et al., 2015a; Peng et al., 2019)

Electronic Health Records (Zhang et al., 2015a), Social Media (Saha et al., 2016;
Peng et al., 2019), Survey (Ryu et al., 2015; Dipnall et al., 2017b)

Grief LIWC (Glasgow et al., 2014), SVM (Glasgow et al., 2014) Social Media (Glasgow et al., 2014)

MH service usage Regression (Sidahmed et al., 2016) Survey (Sidahmed et al., 2016)

Post-traumatic stress
disorder

DT (Rosellini et al., 2018), Regression (Kessler et al., 2014; Rosellini et al., 2018), RF (Kessler
et al., 2014), Super Learner (Kessler et al., 2014), SVM (Rosellini et al., 2018)

Interview (Rosellini et al., 2018), Survey (Kessler et al., 2014)

Psychiatric
emergency

BN (Almeida et al., 2017b), DT (Almeida et al., 2017b), SVM (Almeida et al., 2017b) Social Media (Almeida et al., 2017b)

Psychiatric stressors Named-entity recognition (Zhang et al., 2017a), NLP (Zhang et al., 2017a) Clinical Notes (Zhang et al., 2017a)

Psychosis Regression (Fusar-Poli et al., 2016), RF (Abou-Warda et al., 2017) Clinical Assessment (Abou-Warda et al., 2017), Electronic Health Records
(Fusar-Poli et al., 2016)

Social support LIWC (Glasgow et al., 2016), SVM (Glasgow et al., 2016) Social Media (Glasgow et al., 2016)

Stress Cluster analysis (Meyer et al., 2015), Sentiment Analysis (Saha and de Choudhury, 2017), SVM
(Saha and de Choudhury, 2017)

Clinical Assessment (Meyer et al., 2015), Social Media (Saha and de Choudhury,
2017)

Substance use NLP (Chary et al., 2017), PCA (Chary et al., 2017), RF (Abou-Warda et al., 2017) Clinical Assessment (Abou-Warda et al., 2017), Social Media (Chary et al., 2017)

Suicide/self-harm ARM (Metzger et al., 2017), DT (Metzger et al., 2017), Genetic Algorithm (Poulin et al., 2014), NB
(Kessler et al., 2017b; Metzger et al., 2017), RF (Kessler et al., 2017b; Metzger et al., 2017),
Regression (Kessler et al., 2015, 2017b; O’Dea et al., 2015; Tran et al., 2015; Metzger et al., 2017),
SVM (O’Dea et al., 2015; Metzger et al., 2017; Kessler et al., 2017b), TFIDF (O’Dea et al., 2015)

Clinical Notes (Poulin et al., 2014), Clinical Assessment (Tran et al., 2015),
Electronic Health Records (Kessler et al., 2015, 2017b; Metzger et al., 2017), Social
Media (O’Dea et al., 2015)

Wellbeing Semantic analysis (Liang et al., 2015) Social Media (Liang et al., 2015)

RF, Random Forest; SVM, support vector machine; NB, Naive Bayes; NN, neural networks; LDA, latent Dirichlet allocation; kNN, k-nearest neighbours; HMM, hidden Markov model; BN, Bayesian network; ARM, association rule mining; PCA, principal
component analysis.
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Table 5. Summary of ML techniques and data types for the research and clinical administration of mental health conditions

Mental health
application ML technique(s) Data type

Alzheimer’s disease RF, SVM, Linear discriminant analysis, kNN (Khondoker et al., 2016) Imaging, Biological (Khondoker et al., 2016)

Attention deficit
hyperactivity disorder

RF, SVM, Linear discriminant analysis, kNN (Khondoker et al., 2016) Imaging, Biological (Khondoker et al., 2016)

Children in care Regression, NB (Castillo et al., 2014) Clinical Notes (Castillo et al., 2014)

Decision support
system

Deep Learning (Hu and Terrazas, 2016) Research Articles (Hu and Terrazas, 2016)

Depression DT (Ghafoor et al., 2015), kNN (Guan et al., 2015; Khondoker et al., 2016), NN (Geraci
et al., 2017), Regression (Dipnall et al., 2016a; Zhu et al., 2017), RF (Khondoker et al.,
2016), SVM (Khondoker et al., 2016), Linear discriminant analysis (Khondoker et al.,
2016)

Survey (Ghafoor et al., 2015; Dipnall et al., 2016a; Caballero et al., 2017), Social Media
(Guan et al., 2015), Electronic Health Records (Geraci et al., 2017), Imaging (Khondoker
et al., 2016; Zhu et al., 2017), Biological (Dipnall et al., 2016a; Khondoker et al., 2016)

Healthy ageing RF (Caballero et al., 2017) Survey (Caballero et al., 2017)

Psychosis SVM, Multiple Kernel Learning (Squarcina et al., 2015a) Imaging (Squarcina et al., 2015a)

Schizophrenia RF (Wang et al., 2017), SVM (Dluhoš et al., 2017; Wang et al., 2017), Linear discriminant
analysis (Wang et al., 2017), kNN (Wang et al., 2017)

Insurance (Wang et al., 2017), Imaging (Dluhoš et al., 2017)

Substance use Topic modelling (Atkins et al., 2014) Interview (Atkins et al., 2014)

Symptom severity NN (Karystianis et al., 2018) Clinical Notes (Karystianis et al., 2018)

Wellbeing BN (Posada et al., 2017), SVM (Posada et al., 2017), Deep Learning (Zhang et al., 2017b),
NN (Liu et al., 2017)

Clinical Notes (Posada et al., 2017; Zhang et al., 2017b), Research Articles (Zhang et al.,
2017b), Electronic Health Records (Liu et al., 2017)

RF, Random Forest; SVM, support vector machine; NB, Naive Bayes; NN, neural networks; LDA, latent Dirichlet allocation; kNN, k-nearest neighbours; HMM, hidden Markov model; BN, Bayesian network; ARM, association rule mining; PCA, principal
component analysis.
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explore whether ML can have similar accuracy in the detection
and diagnosis of other mental health conditions, such as anxiety
disorders, eating disorders, and neurodevelopmental disorders.
Comparatively less research has explored applications in domains
such as public health, treatment and support, and research and
clinical administration. Social media data and electronic health
records both hold promise of innovating in these domains, par-
ticularly when leveraged by ML techniques. Across domains,
very little research was identified that investigated ML techniques
applied to positive mental health outcomes (e.g. resilience, iden-
tity formation, personal growth), perhaps partly reflective of a
lack of available data in this area.

It is also clear that the majority of studies reviewed utilised
supervised classification techniques rather than other ML techni-
ques. This is perhaps indicative of the large focus on detection
and diagnosis in the literature, which is typically designed using
large, retrospective, labelled datasets ideal for classification tasks.
Mental health researchers could consider the possibility of using
less structured, prospective data for real-time ML analysis. Such
analytic techniques, combined with supervised techniques, may
allow researchers and clinicians to provide personalised and
context-sensitive information for assessment and intervention.
Organisations such as Netflix use recommendation algorithms
to personalise user experiences (Gomez-Uribe and Hunt, 2015),
which could be applied to personalised mental health assessment
and intervention (Johansson et al., 2012; Nahum-Shani et al.,
2017). While there were some studies identified that proposed
ML to provide adaptive, just-in-time interventions (e.g. Nahum-
Shani et al., 2017), these studies are limited and focused on a
small subset of mental health conditions.

Finally, there are some challenges for consideration when using
ML techniques in mental health applications. ML models are inev-
itably limited by the quality of the data used to develop a model. As
such, ML does not replace other research or analytic approaches;
rather, it has the potential to value-add to mental health research.
Many ML techniques require access to training data sets, which
may require greater collaboration between researchers and clini-
cians to share and harmonise data. Greater collaboration is also
required between mental health and data science experts to maxi-
mise the usefulness of the models developed. Very little research
was found that demonstrated the use of ML techniques in real-
world settings, suggesting that further research is required to test
clinical utility. While a model may appear promising in lab set-
tings, deployment in real-world settings is likely to present new
challenges, particularly if applied across different contexts. All of
these challenges also raise important ethical issues, including the
ethics of collecting, storing and sharing mental health data, as
well as the level of autonomy and privacy afforded to ML systems.

This paper has two key limitations. First, restrictions in the
search methodology may have resulted in relevant articles being
missed, e.g. broad search terms and the exclusion of non-peer-
reviewed literature. This is a common limitation reported in scop-
ing review studies, attributable to the balance between achieving
breadth and depth of analysis within a rapid time-frame (Pham
et al., 2014). The current review was successfully able to map a
broad cross-section of the literature and provide a useful synthesis
for researchers and clinicians to understand the potential of ML
in their respective fields. Although a more comprehensive review
would provide greater clarity on gaps in the literature, such a
review would be less feasible to complete and would quickly be
out of date given the rapidly evolving nature of the field.
Second, this paper did not examine the effectiveness of ML

techniques within each mental health application. Such research
questions would be suitable for future systematic reviews, guided
by the framework outlined in our results tables, i.e. the effective-
ness of specific ML techniques within specific data types for spe-
cific clinical applications. With the field advancing rapidly and the
number of relevant publications increasing exponentially, such
systematic reviews would benefit from the use of rapid review
strategies to ensure they are timely and relevant.

Conclusion

To conclude, research in the field of ML for mental health has
revealed exciting advances, particularly in recent years. Overall,
it is clear that ML can significantly improve the detection and
diagnosis of mental health conditions. Research into other applica-
tions of ML, including public health, treatment and support, and
research and clinical administration, has demonstrated initial posi-
tive results. However, this work is currently limited and further
research is required to identify additional benefits of ML to
these areas. With ML tools becoming more accessible for research-
ers and clinicians, it is expected that the field will continue to grow
and that novel applications for mental health will follow.
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