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On the degree of repeated radical
extensions
Fernando Szechtman

Abstract. We answer a question posed by Mordell in 1953, in the case of repeated radical extensions,
and find necessary and sufficient conditions for [F[ m1

√
N1 , . . . , m�

√
N�] ∶ F] = m1⋯m�, where F is an

arbitrary field of characteristic not dividing any m i .

1 Introduction

We fix throughout a unique factorization domain D with field of fractions F, allowing
for the possibility that D = F, and write c(F) for the characteristic of F. We also fix
� ∈ N, m1 , . . . , m� ∈ N, m = lcm{m1 , . . . , m�}, and N1 , . . . , N� ∈ D. A prime means a
prime positive integer.

In this paper, we give a necessary and sufficient condition for

[F[ m1
√

N1 , . . . , m�

√
N�] ∶ F] = m1⋯m� ,(1.1)

assuming only c(F) ∤ m. This settles a problem posed by Mordell [M] in 1953, in the
case of repeated radical extensions.

The degrees of repeated radical extensions have been studied by several authors,
including Hasse [H], Besicovitch [B], Mordell [M], Siegel [S], Richards [Ri], Ursell
[U], Zhou [Z], Albu [A], and Carr and O’Sullivan [CO].

The question of when [F[ n
√

a] ∶ F] = n was solved by Vahlen [V] in 1895 if F = Q,
Capelli [C] in 1897 if F has characteristic 0, and Rédei [R, Theorem 428] in 1959 in
general.

Irreducibility Criterion (C). The polynomial Xn − a ∈ F[X] is irreducible if and
only if a ∉ F p for every prime factor p of n, and if 4∣n, then a ∉ −4F4.

In particular, if −a ∉ F2 and a ∉ F p for every prime factor p of n, then Xn − a is
irreducible. The special case of (C) when n is prime is due to Abel; a very simple proof
of this case can be found in [R, Theorem 427].

Provided F contains a primitive m-th root of unity, Hasse [H] showed that (1.1)
holds if and only if

(m1
√

N1)a1 ×⋯× (m�

√
N�)a� ∈ F , a i ≥ 0, only when m1∣a1 , . . . , m�∣a� .(1.2)
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878 F. Szechtman

Later, Besicovitch [B] proved (1.1) assuming: D = Z; each N i is positive and has a
prime factor that divides it only once and does not divide any other N j ; each mi

√
N i is

positive and real (the m1⋯m� embeddings of Q[ m1
√

N1 , . . . , m�
√

N�] into C then yield
(1.1) for all other m i -th roots of the N i ). The special case of Besicovitch’s result when
m1 = ⋅ ⋅ ⋅ = m� and every N i is prime appears in Richards [Ri] (for the more elementary
case m1 = ⋅ ⋅ ⋅ = m� = 2, see [F, Ro]). Assuming that N1 , . . . , N� are pairwise relatively
prime, Ursell [U] obtained a variation of Besicovitch’s theorem.

Mordell [M] combined and extended the results of Hasse and Besicovitch, and
proved (1.1) assuming (1.2), and that F contains a primitive m-th root of unity or
that F is a subfield of R with all m1

√
N1 , . . . , m�

√
N� real. In the latter case, all N i

such that m i is even must be positive. Siegel [S] gave a theoretical description of
the value of [F[ m1

√
N1 , . . . , m�

√
N�] ∶ F] under Mordell’s condition that F be a subfield

of R with all mi
√

N i real. Albu [A] extended the work of Mordell and Siegel to the
case when F contains a primitive m-th root of unity or all m-th roots of unity in
F[ m1
√

N1 , . . . , m�
√

N�] belong to {1,−1}. Under these weaker assumptions, (1.1) is still
shown in [A] to be a consequence of (1.2). It is worth noting that, except for (1.2), none
of the aforementioned conditions are necessary for (1.1) to hold. A different approach
was taken by Zhou [Z], using valuation theory, when F is an algebraic number field; he
succeeded in avoiding any assumptions on roots of unity and proved a more general
version of (1.1), applicable to repeated extensions via Eisenstein polynomials, not just
binomials. Nevertheless, Zhou’s hypotheses are also unnecessary for (1.1) to hold.
Indeed, when the ring of integers of F is a UFD, each N i is forced to have an irreducible
factor that divides it only once and does not divide any other N j . More recently, Carr
and O’Sullivan [CO] proved a fairly general result on the linear independence of roots
and reproved Mordell’s theorem as an application.

Set J = {1, . . . , �}, P = {p ∣ p is a prime factor of m}, and for each i ∈ J and
p ∈ P, let m i(p) be the p-part of m i , so that m i(p) = pn i , where n i ≥ 0, pn i ∣m i and
pn i+1 ∤ m i . It is clear that

[F[ m1
√

N1 , . . . , m�

√
N�] ∶ F] = m1⋯m� ⇐⇒
[F[ m1(p)

√
N1 , . . . , m�(p)

√
N�] ∶ F] = m1(p)⋯m�(p)(1.3)

for all p ∈ P. We are thus reduced to study the case when each m i = m i(p) for a fixed
prime p. We split this case in two subcases depending on the parity of p. For each
prime p, we set

Sp = {N1 , N e1
1 N2 , N e1

1 N e2
2 N3 , . . . , N e1

1 ⋯N e�−1
�−1 N� , 0 ≤ e i < p}.

In particular, S2 consists of all N e1
1 ⋯N e�

� such that e i ∈ {0, 1} and (e1 , . . . , e�) ≠
(0, . . . , 0).

Theorem 1.1 Let n1 , . . . , n� ∈ N, p an odd prime such that c(F) ≠ p, and suppose
m i = pn i for all i ∈ J. Then (1.1) holds if and only if Sp ∩ Dp = ∅.

The well-known example [Q[ 4
√
−1, 4
√

2] ∶ Q] = 8 shows that Theorem 1.1 fails if
p = 2. The above criteria impose general conditions that disallow this example. Close
examination of numerous pathological cases led us to the exact conditions required
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when p = 2. We say that (N1 , . . . , N�) is 2-defective if the following two conditions
hold: S2 ∩ D2 = ∅ but S2 ∩ (−D2) ≠ ∅ (this readily implies that ∣S2 ∩ (−D2)∣ = 1, as
shown in Lemma 2.5); if −d2 = M = N f1

1 ⋯N f�
� is the only element of S2 ∩ (−D2),

where d ∈ D, 0 ≤ f i < 2, and M♯ = {i ∈ J ∣ f i = 1} is nonempty (since S2 ∩ D2 = ∅, the
exponents f i are uniquely determined by M, whence M♯ is well defined), then 4∣m i
for all i ∈ M♯, and if i ∈ M♯, then

±2d Π
j≠i

N e j
j ∈ D2 for some choice of 0 ≤ e j < 1.(1.4)

Since −M = N f1
1 ⋯N f�

� ∈ D2, the outcome of (1.4) is independent of the actual choice
of i ∈ M♯.

Theorem 1.2 Let n1 , . . . , n� ∈ N and suppose that c(F) ≠ 2 and m i = 2n i for all i ∈ J.
Then (1.1) holds if and only if S2 ∩ D2 = ∅ and (N1 , . . . , N�) is not 2-defective.

Combining (1.3) with Theorems 1.1 and 1.2, we immediately obtain a general
criterion for (1.1). This requires additional notation. For each p ∈ P, we set J(p) =
{i ∣ i ∈ J and p∣m i}, and write

J(p) = {i(p, 1), . . . , i(p, �(p))}, i(p, 1) < ⋅ ⋅ ⋅ < i(p, �(p)),
S(p) = {N i(p,1) , N e1

i(p,1)N i(p,2) , N e1
i(p,1)N

e2
i(p,2)N i(p,3) , . . . , N e1

i(p,1)

⋯N e�(p)−1
i(p,�(p)−1)N i(p,�(p)) , 0 ≤ e j < p}.

Theorem 1.3 Suppose that c(F) ≠ m. Then (1.1) holds if and only if S(p) ∩ Dp = ∅
for every p ∈ P and, if 2 ∈ P, then (N i(2,1) , . . . , N i(2,�(2))) is not 2-defective.

The next example illustrates the use of Theorems 1.2 and 1.3, and lies outside of the
scope of the aforementioned criteria.

Example 1.4 Suppose that −1 ∉ F2 and each of A, B, C ∈ D has an irreducible factor
that divides it only once and does not divide any of the two other elements. Then

[F[m1
√

AB, m2
√

BC , m3
√
−CA] ∶ F] = m1m2m3

if and only if at least one of m1 , m2 , m3 is not divisible by 4 or none of
±2A,±2B,±2C ∈ D2.

As we are dealing with a classical and basic problem, we purposely resort to
elementary and complete arguments in order to maximize the potential readership
of our solution.

2 Lemmata

Given a nonzero a ∈ F , we write ⟨a⟩ for the subgroup of F× generated by a.
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880 F. Szechtman

Lemma 2.1 Let p be a prime such that c(F) ≠ p and suppose b1 , . . . , bn ∈ F are
nonzero. Then

F[ p
√

b1 , . . . , p
√

bn]p ∩ F = F p⟨b1 , . . . , bn⟩.(2.1)

Proof Let M , N ∈ F be nonzero. We claim that if p
√

M ∈ F[ p
√

N], then M ∈ F p⟨N⟩.
This is clear if N ∈ F p , so we assume N ∉ F p .

Set K = F[ζ], where ζ is a primitive p-th root of unity. Then K/F is a Galois
extension with Galois group isomorphic to a subgroup of (Z/pZ)×. In particular,
[K ∶ F] divides p − 1. It follows that K p ∩ F = F p . Indeed, suppose a ∈ F and α ∈ K
satisfies α p = a. Since [F[α] ∶ F] divides [K ∶ F], it also divides p − 1. As p ∤ (p − 1),
X p − a ∈ F[X] is reducible, whence a ∈ F p by (C).

By assumption, N ∉ F p . Thus, N ∉ K p as indicated above, so X p − N ∈ K[X] is
irreducible by (C). Thus {1, p

√
N , . . . , p√N p−1} is a K-basis of K[ p

√
N]. By assumption,

p
√

M ∈ K[ p
√

N], so

p√M = a0 + a1
p√N +⋯+ ap−1

p√N p−1 , a i ∈ K .(2.2)

Note that K[ p
√

N]/K is a Galois extension with cyclic Galois group ⟨σ⟩, where
σ( p
√

N) = ζ p
√

N . Since p
√

M is a root of X p −M, we must have σ( p
√

M) = ζ i p
√

M for
some 0 ≤ i < p. Applying σ to (2.2), we obtain

ζ i p√M = a0 + a1ζ p√N +⋯+ ap−1ζ p−1 p√N p−1 .

On the other hand, multiplying (2.2) by ζ i yields

ζ i p√M = a0ζ i + a1ζ i p√N +⋯+ ap−1ζ i p√N p−1 .

From the K-linear independence of 1, p
√

N , . . . , p√N p−1 we infer that a j = 0 for all
j ≠ i. Thus

p√M = a p√N i , a ∈ K ,

whence M = ap N i . Thus M/N−i ∈ K p ∩ F = F p , so M ∈ F p⟨N⟩.
By above, F[ p

√
b1]p ∩ F = F p⟨b1⟩. Suppose n > 1 and F[ p

√
b1 , . . . , p

√
bn−1]p ∩ F =

F p⟨b1 , . . . , bn−1⟩. Then

F[ p
√

b1 , . . . , p
√

bn−1 , p
√

bn]p ∩ F

= (F[ p
√

b1 , . . . , p
√

bn−1][ p
√

bn])p ∩ F[ p
√

b1 , . . . , p
√

bn−1] ∩ F

= F[ p
√

b1 , . . . , p
√

bn−1]p⟨bn⟩ ∩ F .

Let α ∈ F[ p
√

b1 , . . . , p
√

bn−1]p⟨bn⟩ ∩ F. Then α ∈ F and αb i
n ∈ F[ p

√
b1 , . . . , p

√
bn−1]p ∩ F

for some i ∈ Z. Thus αb i
n ∈ F p⟨b1 , . . . , bn−1⟩ and so α ∈ F p⟨b1 , . . . , bn−1 , bn⟩. ∎

Lemma 2.2 Suppose −1 ∉ F2 and ±a ∉ F2. Then for any n ∈ N, we have that√
−1 ∉ F[ 2n√a].
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Proof We show by induction that
√
−1 ∉ F[ 2n√a] and ± 2n√a ∉ F[ 2n√a]2. The fact

that
√
−1 ∉ F[

√
a] follows from Lemma 2.1. Suppose, if possible, that ±

√
a = z2,

where z ∈ F[
√

a]. Then z = x + y
√

a, where x , y ∈ F, so that ±
√

a = x2 + ay2 +
2x y
√

a. It follows that x2 + ay2 = 0. As −a ∉ F2, we infer x = y = 0, a contradiction.
Assume we have shown that

√
−1 ∉ F[ 2n√a] and ± 2n√a ∉ F[ 2n√a]2 for some

n ∈ N. Since ±a ∉ F2, (C) implies [F[ 2n√a] ∶ F] = 2n and [F[ 2n+1√a] ∶ F] = 2n+1. But√
−1 ∉ F[ 2n√a], so F[ 2n+1√a] = F[ 2n√a,

√
−1]. Thus 2n+1√a = α + β

√
−1 for unique

α, β ∈ F[ 2n√a]. Squaring, we get 2n√a = α2 − β2 + 2αβ
√
−1, which implies αβ = 0

and α2 − β2 = 2n√a, a contradiction. ∎

Lemma 2.3 Suppose c(F) ≠ 2, let n ∈ N, and set K = F[ζ], where ζ is a primitive 2n-
th root of unity. If n ≤ 2 or −1 ∈ F2, then G = Gal(K/F) is cyclic.

Proof We have an embedding Ψ ∶ G → (Z/2nZ)×, σ → [s], where σ(ζ) = ζ s . This
settles the case n ≤ 2. Assume henceforth that n ≥ 3. We have (Z/2nZ)× = ⟨a, b⟩,
where a = [5], b = [−1] and ⟨a⟩ ∩ ⟨b⟩ is trivial [Vi, Chapter VI]. By hypothesis,
−1 = α2, where α ∈ F ∩ ⟨ζ⟩. Suppose, if possible, that b ∈ Ψ(G), say b = Ψ(σ). Then
σ(α) = α−1 = −α, since α is a power of ζ , and σ(α) = α, since α ∈ F. This contradiction
shows that b ∉ Ψ(G). Now any subgroup S of ⟨a, b⟩ that does not contain b must be
cyclic (if S is not trivial, it is generated by a i or a i b, where i is the smallest positive
integer such that an element of this type is in S). Thus G is cyclic. ∎

Lemma 2.4 Let n ∈ N, p an odd prime such that c(F) ≠ p, and set K = F[ζ], where
ζ is a primitive pn-th root of unity. Then Gal(K/F) is cyclic.

Proof Gal(K/F) is isomorphic to a subgroup of (Z/pnZ)×, which is a cyclic
group. ∎

Lemma 2.5 Suppose S2 ∩ D2 = ∅. Then ∣S2 ∩ (−D2)∣ ≤ 1, with ∣S2 ∩ (−D2)∣ = 0
if −1 ∈ F2.

Proof Suppose M ≠ N are in S2 ∩ (−D2). Then MN ∈ D2 and MN = e2P, where
P ∈ S2 and e ∈ D. Thus, P ∈ D2, against S2 ∩ D2 = ∅. If −1 ∈ F2 , then −D2 = D2, so
S2 ∩ (−D2) = ∅. ∎

Lemma 2.6 Suppose c(F) ≠ 2, let n ∈ N and set K = F[ζ], where ζ is a primitive
2nth root of unity. Assume that S2 ∩ D2 = ∅. Then ∣S2 ∩ K2∣ ∈ {0, 1, 3}. Moreover, if
∣S2 ∩ K2∣ = 3 then one of the elements of S2 ∩ K2 is in S2 ∩ (−D2), and we have −1 ∉ F2,
n ≥ 3.

Proof Suppose M ≠ N are in S2 ∩ K2. Then MN ∈ K2 and MN = e2P, where
P ∈ S2 and e ∈ D, so P ∈ D2. Lemma 2.1 implies that F[

√
M], F[

√
N], F[

√
P] are dis-

tinct intermediate subfields of K/F of degree 2. In particular, Gal(K/F) is not cyclic.
Now Gal(K/F) is isomorphic to a subgroup of (Z/2nZ)×, so n ≥ 3 and (Z/2nZ)× ≅
(Z/2n−2Z) × (Z/2Z). Any subgroup of (Z/2n−2Z) × (Z/2Z) has at most 3 subgroups
of index 2, so the Galois correspondence implies that any intermediate subfield of
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882 F. Szechtman

K/F of degree 2 must be equal to one of F[
√

M], F[
√

N], F[
√

P]. Lemma 2.1 readily
implies that no element from S2 different from M , N , P is in K2. By Lemma 2.3,
−1 ∉ F2, so F[

√
−1] must be equal to one of F[

√
M], F[

√
N], F[

√
P], and Lemma

2.1 implies that one of M , N , P is in −D2. ∎

Lemma 2.7 Let n1 , . . . , n� ∈ N and p a prime such that c(F) ≠ p and m i = pn i for
all i ∈ J. Let K = F[ζ], where ζ is a primitive m-th root of unity, m = lcm{m1 , . . . , m�}.
Suppose that Sp ∩ K p = ∅. Then [K[ m1

√
N1 , . . . , m�

√
N�] ∶ K] = m1⋯m�.

Proof By assumption N1 ∉ K p . Moreover, if 4∣m1 , then −1 ∈ K2 and therefore
−N1 ∉ K2. It follows from (C) that we have [K[ m1

√
N1] ∶ K] = m1. Suppose

[K[ m1
√

N1 , . . . , mi
√

N i] ∶ K] = m1⋯m i for some 1 ≤ i < �.
Assume, if possible, that p

√
N i+1 ∈ K[ m1

√
N1 , . . . , mi

√
N i]. Then K[ p

√
N i+1] is an

intermediate subfield of degree p in the Galois extension K[ m1
√

N1 , . . . , mi
√

N i]/K,
with Galois group G = ⟨σ1 , . . . , σi⟩, where

σk(mk
√

Nk) = ζm/mk mk
√

Nk , σk(m j
√

N j) = m j
√

N j , j ≠ k.

Any subgroup of G of index p contains G p , so by the Galois correspondence
K[ p
√

N i+1] is contained in the fixed field of G p , namely K[ p
√

N1 , . . . , p
√

N i]. Lemma
2.1 implies that N e1

1 ⋯N e i
i N i+1 ∈ K p for some 0 ≤ e i < p, against Sp ∩ K p = ∅. Thus

p
√

N i+1 ∉ K[ m1
√

N1 , . . . , mi
√

N i].
Assume if possible, that 4∣m i+1 and

√
−N i+1 ∈ K[ m1

√
N1 , . . . , mi

√
N i]. Then the

above argument yields N e1
1 ⋯N e i+1

i N i+1 ∈ −K2 for some 0 ≤ i < p. But −K2 = K2, so
Sp ∩ K p = ∅ is violated. This shows

√
−N i+1 ∉ K[ m1

√
N1 , . . . , mi

√
N i] when 4∣m i+1.

We deduce from (C) that [K[ m1
√

N1 , . . . , mi+1
√

N i+1] ∶ K] = m1⋯m i+1. ∎

Lemma 2.8 Let n1 , . . . , n� ∈ N and p a prime such that c(F) ≠ p and m i = pn i for
all i ∈ J. Let K = F[ζ], where ζ is a primitive mth root of unity, m = lcm{m1 , . . . , m�}.
Suppose that Sp ∩ Dp = ∅ and ∣Sp ∩ K p ∣ = 1, say M = N f1

1 ⋯N f�
� , where 0 ≤ f i < p, and

M♯ = {i ∈ J ∣ f i = 1} is nonempty. For i ∈ M♯, set Vi = { m1
√

N1 , . . . , m�
√

N�} ∖ { mi
√

N i}
and let m[i] be the product of all m j with j ≠ i. Then
(i) [K[Vi] ∶ K] = m[i] and p

√
N i ∉ F[Vi] for all i ∈ M♯.

(ii) If p is odd or m i = 2 for at least one i ∈ M♯, then (1.1) holds.
(iii) If 4∣m and S2 ∩ (−D2) = ∅, then

√
−N i ∉ F[Vi] for all i ∈ M♯, so (1.1) holds.

(iv) If 4∣m i for all i ∈ M♯ and M ∈ S2 ∩ (−D2), say M = −d2 with d ∈ D, then (1.1)
holds if and only if given any i ∈ M♯, (1.4) fails.

Proof Let i ∈ M♯. By Lemma 2.7, [K[Vi] ∶ K] = m[i] and hence
[F[Vi] ∶ F] = m[i]. Suppose, if possible, that p

√
N i ∈ F[Vi] and set Yi = {ζ} ∪ Vi .

Then F[ p
√

N i] is an intermediate subfield of degree p in the Galois extension F[Yi]/F,
with Galois group G = H ⋊U , where H = ⟨σ j ∣ j ≠ i⟩ is the Galois group of F[Yi]/F[ζ]
and each σk is as in the proof of Lemma 2.7, and U is the Galois group of F[Yi]/F[Vi].
The subgroup S of G corresponding to F[ p

√
N i] ⊆ F[Vi] in the Galois correspondence

has index p and contains U. Therefore, S ⊇ H p ⋊U , so F[ p
√

N i] is contained in the
fixed field of H p ⋊U , namely F[Wi], where Wi = { p

√
N1 , . . . , p

√
N�} ∖ { p

√
N i}. It

https://doi.org/10.4153/S0008439520000909 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000909


On the degree of repeated radical extensions 883

follows from Lemma 2.1 that N e1
1 ⋯N e�

� ∈ F p , where all 0 ≤ e j < p and e i = 1. By the
rational root theorem, F p ∩ D = Dp , so Sp ∩ Dp = ∅ is violated.

If m i = 2 for at least one i ∈ M♯, then (1.1) has been established. Likewise, if p is
odd, then (1.1) follows from (C). Suppose next that 4∣m and S2 ∩ (−D2) = ∅. We claim
that
√
−N i ∉ F[Vi]. If not, arguing as above, we see that −N e1

1 ⋯N e�
� ∈ F2 ⊆ K2, where

all 0 ≤ e j < 2 and e i = 1. On the other hand, M ∈ K2 and −1 ∈ K2, so −M ∈ K2 and
therefore the product of all N e j+ f j

j , with j ≠ i, must be in K2. The uniqueness of M
in S2 ∩ K2 forces e j = f j for all j ≠ i. Thus −M ∈ F2 and hence M ∈ S2 ∩ (−D2), a
contradiction. Thus (1.1) follows from (C) in this case as well.

Suppose finally that 4∣m i for all i ∈ M♯ and M ∈ S2 ∩ (−D2), say M = −d2 with
d ∈ D. Fix any i ∈ M♯ and set L i = F[Vi]. It remains to decide when N i ∈ −4L4

i . Since
4∣m j for all j ∈ M♯, the product of all N f j

j with j ≠ i and j ∈ M♯, belongs to L4
i . Thus,

N i ∈ −4L4
i ⇔ M ∈ −4L4

i ⇔ d2 ∈ 4L4
i ⇔±2d ∈ L2

i ,

and, by Lemma 2.1, this happens if and only if (1.4) holds. ∎

3 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 It is clear that (1.1) implies Sp ∩ Dp = ∅. Suppose Sp ∩ Dp = ∅
and let K = F[ζ], where ζ is a primitive m-th root of unity. By Lemmas 2.7 and 2.8, it
suffices to show that ∣Sp ∩ K p ∣ ≤ 1. Suppose not and let M ≠ N be in Sp ∩ K p . As M , N
have degree p over F, we see that p∣[K ∶ F]. By Lemma 2.4, Gal(K/F) has a unique
subgroup of index p, so by the Galois correspondence, K/F has a unique intermediate
field of degree p. We deduce F[ p

√
M] = F[ p

√
N], and Lemma 2.1 implies MN i ∈ F p for

some i ∈ Z. Since M ≠ N , this is disallowed by Sp ∩ Dp = ∅. ∎

Proof of Theorem 1.2 It is clear that S2 ∩ D2 = ∅ follows from (1.1). Suppose that
S2 ∩ D2 = ∅. We will show that (1.1) holds if and only if (N1 , . . . , N�) is not 2-defective.

By Lemmas 2.6, 2.7, and 2.8, we can restrict to the case when ∣S2 ∩ K∣ = 3, in
which case, by Lemmas 2.5 and 2.6, there is a single element M ∈ S2 ∩ (−D2), and
we necessarily have −1 ∉ F2 and 8∣m.

Now −d2 = M = N f1
1 ⋯N f�

� , where 0 ≤ f i < 2 and M♯ = {i ∈ J ∣ f i = 1} is nonempty.
Fix any i ∈ M♯ and let S i

2 stand for the analogue of S2 corresponding to {N1 , . . . , N�} ∖
{N i}. By the uniqueness of M in S2 ∩ (−D2), we see that Si

2 ∩ (−D2) = ∅. It follows
from Lemma 2.6 that ∣Si

2 ∩ K2∣ ≤ 1.
Suppose first that ∣Si

2 ∩ K2∣ = 0. Set Vi = {m1
√

N1 , . . . , m�
√

N�} ∖ {mi
√

N i}, and let
m[i] be the product of all mk such that k ≠ i. Then [K[Vi] ∶ K] = m[i] by Lemma
2.7. Thus, F[Vi] is linearly disjoint from K over F. It follows that

√
−1 ∉ F[Vi]. For

if
√
−1 ∈ F[Vi], then from −1 ∉ F2 , we deduce that 1,

√
−1 are F-linearly independent

elements from F[Vi], and hence K-linearly independent elements from K[Vi], which
cannot be as 4∣m. Since M ∈ −D2, we have F[

√
−1] = F[

√
M]. Thus,

√
M ∉ F[Vi] and

therefore
√

N i ∉ F[Vi]. If there is some i ∈ M♯ such that m i = 2, this shows that (1.1)
holds. If, on the other hand, 4∣m i for all i ∈ M♯, then (1.1) holds if and only if (1.4) fails,
as in the proof of Lemma 2.8.
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Suppose next that ∣Si
2 ∩ K2∣ = 1 and let N ∈ S i

2 ∩ K2. Note that N ∉ −D2. We have
N = N g1

1 ⋯N g�
� , where g i = 0, 0 ≤ g j < 2 and N♯ = { j ∈ J ∣ g j = 1} is nonempty. Fix any

j ∈ N♯ and let S i , j
2 stand for the analogue of S2 corresponding to {N1 , . . . , N�} ∖

{N i , N j}. It is then clear that S i , j
2 ∩ K2 = ∅. Set Vi , j = {m1

√
N1 , . . . , m�

√
N�} ∖

{mi
√

N i , m j
√

N j}, and let m[i] (resp. m[i , j]) be the product of all mk such that
k ≠ i (resp. k ≠ i , j). Then [K[Vi , j] ∶ K] = m[i , j] by Lemma 2.7. As above, we
deduce that

√
−1 ∉ F[Vi , j]. Since 4∣m and S i

2 ∩ (−D2) = ∅, Lemma 2.8 ensures that
[F[Vi] ∶ F] = m[i] as well as

√
±N j ∉ F[Vi , j]. We deduce from Lemma 2.2 that√

−1 ∉ F[Vi]. The rest of the argument follows as in the above case. ∎

4 Primitive Elements

Isaacs [I] considered the problem of when F[α, β] = F[α + β] for algebraic separable
elements α, β of degrees m, n over F. He proved that if [F[α, β] ∶ F] = mn (he actually
assumed gcd(m, n) = 1 but used only the stated condition) but F[α, β] ≠ F[α + β],
then F has prime characteristic p, and the following conditions hold: p∣mn or p <
min{m, n}; if m, n are prime powers, then p∣mn; p divides the order of the Galois
group of a normal closure of F[α, β].

The condition p <min{m, n} was later improved to p <min{m, n}/2 by
Diviš [D].

Using Isaacs’ result, we readily see that

F[ m1
√

N1 , . . . , m�

√
N�] = F[b1

m1
√

N1 +⋯+ b�
m�

√
N�]

for any nonzero b1 , . . . , b� ∈ F in Theorems 1.1, 1.2, and 1.3, provided the following
conditions hold: c(F) ≠ p and Sp ∩ Dp = ∅ in Theorem 1.1; c(F) ≠ 2, S2 ∩ D2 = ∅,
and (N1 , . . . , N�) is not 2-defective in Theorem 1.2; c(F) ∤ mφ(m) (Euler’s func-
tion), S2 ∩ Dp = ∅ for all p ∈ P, and (N i(2,1) , . . . , N i(2,�(2))) is not 2-defective in
Theorem 1.3.

It is actually possible that F[α, β]/F be a finite Galois extension, that
[F[α, β] ∶ F] = [F[α] ∶ F][F[β] ∶ F], and still F[α, β] ≠ F[α + β]. A family of
examples can be found in [CS, Example 2.3].
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