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Deposition and resuspension mechanisms in particle-laden turbulent flows are
dominated by the coherent structures arising in the wall region. These turbulent
structures, which control the turbulent regeneration cycles, are affected by the
roughness of the wall. The particle-laden turbulent flow in a channel bounded
by irregular two-dimensional rough surfaces is analysed. The behaviour of dilute
dispersions of heavy particles is analysed using direct numerical simulations (DNS)
to calculate the three-dimensional turbulent flow and Lagrangian tracking to describe
the turbophoretic effect associated with two-phase turbulent flows in a complex wall-
bounded domain. Turbophoresis is investigated in a quantitative way as a function of
the particle inertia. The analysis of the particle statistics, in term of mean particle
concentration and probability density function (p.d.f.) of wall-normal particle velocity,
shows that the wall roughness produces a completely different scenario compared to
the classical smooth wall. The effect of the wall roughness on the particle mass flux is
shown for six particle populations having different inertia.
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1. Introduction
Two-phase flows involving mixtures of gas or vapour or solid particles and liquids

are very common in industrial, environmental and scientific applications (steam
turbines, plume formation in the atmosphere, pollutant dispersion, etc.) and there are
many theoretical, experimental and numerical studies on turbulent flows transporting a
dispersed phase (see among others Mohanarangam, Tian & Tu 2008; Balachandar &
Eaton 2010; Sardina et al. 2012a, and references therein).

Important transport processes, including mixing and dispersion of contaminants, in
the form of particles, droplets or bubbles, are controlled by the advective action of the
fluctuating, turbulent velocity field and by the interaction between the carrier flow and
the dispersed phase, even in dilute cases.

Particle dispersion and modulation in turbulent flows are characterized by several
phenomena, such as preferential particle concentration, appearing in the form of
small-scale clustering and turbophoresis (see among others Narayanan et al. 2003;
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Picano, Sardina & Casciola 2009; Toschi & Bodenschatz 2009; Balachandar &
Eaton 2010; Sardina et al. 2012a). Small-scale clustering consists of loss of spatial
homogeneity of particle distribution due to the combination of particle inertia and fine-
scale turbulent fluctuations, occurring in both homogeneous and inhomogeneous flows.
Turbophoresis occurs in all kinds of flows characterized by gradients of turbulence
intensity (Caporaloni et al. 1975): it is a distinctive feature of wall-bounded flows
where particle transfer induced by turbulence generates strong macroscopic particle
accumulation at the walls; exhaustive reviews can be found in Marchioli & Soldati
(2002), Picano et al. (2009), Soldati & Marchioli (2009) and Sardina et al. (2012a).

Small-scale clustering and turbophoresis are attributed to particles’ finite inertia
(different from that of the carrier fluid) which prevents them from following
fluid trajectories and selectively filters turbulent structures, leading to preferential
concentration outside the vortical regions. In wall-bounded turbulent flows these
processes are associated with a characteristic particle flux towards the wall: under
appropriate conditions, particles may achieve large concentrations at the wall, up to
several thousand times the mean value.

Owing to the practical relevance of particle deposition mechanisms in turbulent wall-
bounded flows, in the last few decades a lot of works have focused on understanding
of the mechanisms involving the coupled interactions between the dispersed phase and
the turbulent wall structures. These coherent regions bring particles towards and away
from the wall and favour particle segregation in the viscous region (see Marchioli
& Soldati 2002; Picano et al. 2009; Sardina et al. 2012a, for a complete review).
Previous results (Cerbelli, Giusti & Soldati 2001; Rouson & Eaton 2001; Marchioli &
Soldati 2002; Soldati & Marchioli 2009) show that particle deposition is controlled by
coherent flow motions (sweep/ejection cycles), linked to the instantaneous realizations
of the Reynolds stresses. Owing to inertia, particles are not able to follow the long
turbulent quasi-streamwise vortices typical of wall turbulence. Specifically, the inertial
particles cross the vortical structures in the proximity of the wall and, driven to the
wall by sweeps, accumulate in specific flow regions close to the wall where they
tend to stay for long residence times (Reeks 1983; Narayanan et al. 2003; Soldati &
Marchioli 2009), unable to re-entrain into the outer flow by ejections.

Although small-scale clustering and turbophoresis are commonly separately
addressed, they occur simultaneously in wall-bounded flows, representing different
aspects of the same preferential accumulation process due to inertial effects, as
outlined by Sardina et al. (2012a). Inertial effects, responsible for filtering out wall
turbulent structures, largely depend on the characteristic time scales between the
two phases. The relative importance of these time scales is usually expressed by a
dimensionless parameter which quantifies the response of the dispersed phase to the
perturbations produced by the underlying turbulence, the so-called Stokes number St
(Maxey & Riley 1983). It is defined as the ratio between a characteristic relaxation
time, which describes the time that a particle needs to adjust to a change in the flow
velocity, and a characteristic time scale of the turbulent flow (Balachandar & Eaton
2010).

Turbulent particle-laden flows of engineering and environmental interest are
frequently bounded by solid irregular rough walls whose asperities strongly modify
the turbulent structures (ejections and sweeps) responsible for wall particle dispersion
(Hong, Katz & Schultz 2011; Volino, Schultz & Flack 2011). The spatial
inhomogeneity of the height of wall peaks and cavity regions locally destroys the
coherent patterns of the flow (see DeMarchis, Napoli & Armenio 2010, and references
therein). Besides the change of the turbulent carrier flow field, wall roughness strongly
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modifies the dispersed-phase properties. The wall asperities considerably alter not
only wall collision processes but also wall collision frequency, as demonstrated
previously (Tsuji et al. 1987; Sommerfeld & Huber 1999; Sommerfeld & Kussin 2004;
Konan, Kannengieiser & Simonin 2009; Konan, Simonin & Squires 2011). Kussin &
Sommerfeld (2002) showed that wall roughness enhances the transverse dispersion of
the particles and their fluctuating velocities throughout the channel. For such particles,
the understanding of these rebound processes seems to be of fundamental importance,
in order to compute realistic trajectories and describe particle distribution phenomena.

The foregoing processes are conditioned by the ratio between the particle diameters
and the sizes of wall asperities and have different relevance depending on the
distribution of the height and position of roughness peaks, effects that have been
treated in numerical simulations using a variety of approaches (Konan et al. 2011).

Most previous works have adopted a stochastic modelling of particle–rough wall
interactions aimed at analysing the effect of the roughness on a colliding particle
without describing the deterministic shape of the irregular wall structure: whenever
the particle reaches the rough wall, the rebound process is modelled by introducing a
smooth virtual inclined wall with a characteristic chosen angle, in order to reproduce
the real rebound effects. This virtual wall modelling implicitly assumes that the
roughness height is negligible (Sommerfeld & Huber 1999; Squires & Simonin 2006;
Konan et al. 2009) rather than attempting to model the actual geometrical profile of
the rough surface, as done by the authors in this work.

This paper is mainly focused on the investigation of the effects of irregular wall
roughness on the dispersed-phase dynamics in particle-laden turbulent channel flows,
especially in terms of preferential particle wall accumulation. The statistical properties
of particles much heavier than the carrier fluid are analysed by means of direct
numerical simulations (DNS) and particle preferential concentration is addressed as a
function of the Stokes number.

2. The problem formulation and numerical methodology
Two DNS have been performed at relatively low friction Reynolds number

Reτ = uτδ/ν = 180, where uτ is the friction velocity, δ the half channel height
and ν the kinematic viscosity. To focus on applications, simulations have been
carried out considering air with density ρ = 1.3 kg m−3 and ν = 15.7 × 10−6 m2 s−1.
One simulation involves flow over classical flat wall whereas in the other two-
dimensional irregular roughness is set. The roughness shape is obtained through the
superimposition of sinusoidal functions with random amplitudes:

r(x1)=
n∑

i=1

Ai sin
(

2iπx1

L/2

)
(2.1)

where r(x1) is the wall boundary distance from a horizontal reference surface, L is
the channel length, n is the number of sinusoidal functions, Ai and L/2i are the
amplitude and the wavelength of the ith function, respectively (see Napoli, Armenio &
DeMarchis 2008). In the considered case the number n of sinusoidal functions is set to
four (see figure 1a). The amplitude A1 of the first function is set to 1 and those of the
higher-frequency functions are randomly generated in the range [0–1]. The randomly
obtained individual sinusoidal functions are shown in figure 1(b). Their sum is then
successively scaled in order to obtain a value of the averaged absolute deviation r
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FIGURE 1. (Colour online) (a) Plot of the randomly obtained sinusoidal functions (wave
periods: -�-, L/2; -N-, L/4; -•-, L/8; -�-, L/16). (b) Sketch of the bottom irregular rough
wall, with indication of the reference plane and the displacement height d. (c) Three-
dimensional plot of the rough channel domain (two-dimensional irregular roughness).

equal to 0.05δ. The averaged absolute deviation is calculated as:

r = 1
δ

1
L

∫
L
|r(x1)| dx1. (2.2)

Both the upper and lower walls are roughened using the procedure described
above but, owing to the random generation of the surfaces, the two walls are not
symmetric. In order to reproduce a two-dimensional roughness the upper and lower
wall geometries are homogeneously applied along the spanwise direction.

The origin of the coordinate system is located at the bottom of the smooth flat
channel, which also matches the mean value of the boundary oscillations in the rough
channel; the x1, x2 and x3 axes point in the streamwise, spanwise and wall-normal
directions, respectively. All results shown below compute the wall-normal distances
taking into account the displacement height d, due to the roughness (see figure 1b). A
three-dimensional representation of the rough wall is plotted in figure 1(c).

For both the flat and the rough channels the domain length is set to 4πδ, (4/3)πδ
and 2δ in the streamwise, spanwise and wall-normal directions respectively. Periodic
boundary conditions are imposed in the streamwise and spanwise directions, while
the no-slip condition is enforced at the walls. Due to these boundary conditions,
grid points are uniformly distributed in both the x1 and x2 directions, with grid
cell dimension set to 1x+1 ≈ 8 and 1x+2 ≈ 5 (hereafter the superscript + indicates
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distances normalized in wall units ν/uτ ). A non-uniform mesh spacing is used in the
x3 direction, in order to ensure that the distance of the first grid point from the solid
walls is less than one wall unit, with a maximum grid spacing of ∼6 wall units at
the channel centreline. The resulting number of grid points is 256, 128 and 128 in the
streamwise, spanwise and wall-normal directions, respectively.

A coupled Eulerian–Lagrangian numerical method is used to perform numerical
simulations of the particle-laden turbulent channel flow. Under the basic assumption
of negligible back-reaction of the transported phase on the carrier fluid, the standard
wall-bounded flow DNS approach is used for the analysis of the fluid-phase motion,
based on the Navier–Stokes and continuity equations. In the conventional summation
approach the governing equations read:

∂ui

∂t
+ ∂uiuj

∂xj
− 1

Reτ

∂2ui

∂xj∂xj
+ ∂p

∂xi
+Πδi1 = 0; ∂ui

∂xi
= 0, i= 1, . . . , 3, (2.3)

where the variables are made non–dimensional with the friction velocity uτ and the
channel half-width δ. In (2.3) xi is the ith non-dimensional coordinate, ui is the
ith dimensionless velocity component, t is time and p is the kinematic pressure
field (pressure divided by density and u2

τ ). The last term is the imposed mean
non-dimensional pressure gradient that drives the flow and δij is the Kronecker
function (δij = 1 for i = j, δij = 0 for i 6= j). In statistically steady-state conditions,
the equilibrium between the imposed pressure gradient and the sum of the streamwise
components of the lower and upper wall stresses holds, therefore Π = 1 always
(DeMarchis & Napoli 2012).

The momentum and continuity equations (2.3) are resolved using the finite-
volume numerical code PANORMUS (www.panormus3d.org), which allows numerical
simulations using structured boundary-fitted (curvilinear) grids. The numerical
model, which is second-order accurate both in time and space, uses an explicit
Adams–Bashforth method for the time advancement of the solution, while a fractional-
step technique is used to overcome the pressure–velocity decoupling typical of
incompressible flows. The PANORMUS code has been successfully validated for
single-phase turbulent channel flows at Reynolds numbers up to Reτ = 395 (see
DeMarchis & Napoli 2012) as well as in environmental fluid mechanics applications
(DeMarchis et al. 2012; DeMarchis, Freni & Napoli 2013).

In order to address particle dynamics a Lagrangian approach, tracking the dispersed
phase, is coupled to the Eulerian DNS solver for the fluid phase. We assume
the simplifying hypothesis that every particle is a rigid sphere with diameter
much smaller than any active scale of the turbulent flow. Furthermore, a dilute
suspension is considered, in order to neglect feedback of particles on the carrier fluid,
particle–particle collisions and mutual hydrodynamic interactions (Maxey & Riley
1983). The ratio between the particle and the fluid density is order 1000. These
hypotheses lead us to describe the fluid flow surrounding the particles as a Stokes flow.
With the previous assumptions, the only significant force acting on the particles, in the
absence of gravity, is the viscous Stokes drag (Maxey & Riley 1983). The equations
for the Lagrangian evolution of particle positions and velocities thus read:

dvp

dt
= 3

4
ρ

ρp

CD

dp
(u(xp(t), t)− vp) · |u(xp(t), t)− vp|, (2.4)

dxp

dt
= vp (2.5)
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FIGURE 2. p.d.f. of particle Reynolds number in the viscous layer (0 6 x+3 6 5) (a) and in
the buffer layer (5 6 x+3 6 30) (b), for particles characterized by a viscous Stokes number
St+ = 50 for both the smooth flat and the rough simulations.

where u(xp(t), t) is the fluid velocity at the particle position, vp and xp are the
non-dimensional velocity and position of the pth particle, respectively, dp and ρp the
particle diameter and density, ρ the fluid density. CD is the local drag coefficient that,
accounting for the Schiller–Naumann nonlinear correction (Schiller & Naumann 1935),
reads:

CD = 24
Rep

(1+ 0.15Re0.687
p ) (2.6)

where Rep = |u − vp|dp/ν is the particle Reynolds number. Introducing (2.6) into
(2.4) and defining the Stokes number St as the particle response time (or Stokes
time) τp = ρp d2

p/(18ρν) divided by a characteristic time scale of the flow, the non-
dimensional equations for the Lagrangian evolution of particle positions and velocities
read:

dvp

dt
= u(xp(t), t)− vp

St
(1+ 0.15Re0.687

p ); dxp

dt
= vp. (2.7)

The fluid velocity u(xp(t), t) is obtained by making use of Taylor expansion of the
function u around the fluid node closest to the particle position xp, up to the second-
order of accuracy (consistently with the accuracy of the DNS solver). In general
cases (Maxey & Riley 1983) the equation for the particle acceleration also includes
well-known forces such as buoyancy, added-mass and Basset forces but with the above
simplifications and considering particles in the Stokes regime the Lagrangian equations
for particle velocity are (2.4) and (2.5) (Narayanan et al. 2003). This implies that the
Stokes number St is the only parameter defining particle dynamics for a given flow
field. In wall-bounded turbulent flows the natural choice for the characteristic time
scale is the viscous time scale ν/u2

τ ; accordingly, the viscous Stokes number is defined
as St+ = τpu2

τ/ν. A total of six populations is considered, differing only in the Stokes
number (St+ = 0.1, 0.5, 5, 10, 25, 50). The two simulations evolve 100 000 particles per
population, in order to keep the same average number concentration.

The Schiller–Naumann nonlinear correction (2.6) starts to be important for Rep >
0.2, as is well-known. Figure 2 shows the probability density function (p.d.f.) of
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St+ τp (ms) dp (µm) Frp (flat) Frp (rough)

0.1 0.08 4.71 2677.96 1599.34
0.5 0.41 10.5 535.59 319.87
5 4.11 33.3 53.56 31.98
10 8.23 47.1 26.78 15.99
25 20.6 74.5 10.71 6.39
50 41 105 5.35 3.19

TABLE 1. Inertial particle properties used for the flat and rough simulations.

particle Reynolds number calculated for both the smooth flat and the rough channel
simulations in the viscous layer (0 6 x+3 6 5) (figure 2a) and in the buffer layer
(5 6 x+3 6 30) (figure 2b) relating to the St+ = 50 particles set. Visual inspection of
the figures reveals that our simulations have to be carried out using the nonlinear
correction.

Regarding boundary conditions of the dispersed phase, particles moving outside
of the computational domain in the streamwise and/or spanwise directions are
reintroduced via periodicity (i.e. when a particle reaches the artificial boundary of
the computational domain it is reintroduced from the opposite side). No other particle
injection is considered until reaching the steady state.

The interactions between the dispersed phase and the solid walls of the channel are
modelled as purely elastic rebounds, occurring when the particle surface hits the wall.
Once the particle positions are evaluated, through (2.7), if the centre of a particle is
located at a distance from the wall less than one particle radius, the computed position
is adjusted according to elastic collision law. When looking at the rough-wall case,
elastic collision methodology has been extended in order to take into account the local
slope of the collision plane. The particle-tracking algorithm is parallelized using MPI
as for the carrier phase.

In order to avoid possible effects of gravity, the particle Froude number parameter
Frp = Ub/(gτp) introduced in Sardina et al. (2012b) should be larger than 1, where
Ub is the channel bulk velocity, g is the gravity acceleration. The previous expression
can be rearranged (considering τp = νSt+/u2

τ ) as Frp = Re2
τRebν

2/(St+gδ3) where Reb

is the bulk Reynolds number. Some typical particle properties and parameters are
summarized in table 1. Specifically, table 1 clearly shows that the particle Froude
number ranges between ∼2600 and 5 (when looking at the flat case), thus supporting
the hypothesis of negligible gravity effect. These values are obtained assuming air as
carrier phase, Reb = 2880 for the flat case, Reb = 1720 for the rough simulation and a
half channel height δ = 2 cm.

3. Results
In this section we will use statistical quantities to understand macroscale particle

distribution phenomena in connection with the mean features of the carrier-fluid
field. Figure 3(a) shows the profile of the mean streamwise velocity U+x1

= 〈ux1〉/uτ
across the wall-normal direction x+3 (angle brackets 〈·〉 indicate average in time, in
the planes of statistical homogeneity and considering symmetry with respect to the
mid-plane), obtained in both the flat and the rough wall cases. The two simulations
are characterized by the same pressure gradient, therefore the rough-channel flow
shows a lower mass flux than the smooth channel. The reduction of the mass
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FIGURE 3. (a) Mean streamwise velocity U+x1
= 〈ux1〉/uτ versus the wall-normal direction

x+3 for the flat and rough walls. The symbols are the data extracted from Kim et al. (1987)
for the flat case. (b) Non dimensional r.m.s. of velocity fluctuations: urms

x1
streamwise, urms

x2

spanwise and urms
x3

wall-normal component versus the wall-normal direction x+3 . The symbols
correspond to the values of velocity fluctuations in Kim et al. (1987) for the flat case.

flux is proportional to the reduction of the streamwise velocity in the bulk region.
The difference between logarithmic velocity profiles obtained in flat and rough wall
conditions is the so-called roughness function 1U+, which depends on the geometry
and shape of the rough elements, and has been investigated in several works (for a
review see Jimenez 2004). Profiles of the fluctuating velocity components are plotted
in figure 3(b) for both the flat and the rough cases. The plot shows a reduction of root-
mean-square (r.m.s.) velocity fluctuations in the wall region, especially for the peak of
the streamwise fluctuation. The outer-layer dynamics of the velocity fluctuations is the
same in both cases, thus supporting the wall similarity hypothesis (Townsend 1976). In
the figures, the symbols represent the data extracted from the DNS database of Kim,
Moin & Moser (1987), at the same pressure gradient as for the flat case (Reτ = 180).
As shown in the figure, a very good agreement has been found between our results and
the DNS reference data set, so confirming the efficiency of the DNS solver.

In order to analyse the effect of the wall irregularities on particle dispersion,
in figure 4 the wall-normal mean number concentration profiles are shown, on a
logarithmic scale. We consider the normalized mean particle number concentration
C∗ = C/C0, defined as the ratio between the number of particles per unit volume
and the bulk concentration C0 (i.e. the total number of particles divided by the total
volume of the channel). In figure 4(a), concerning the flat wall case, particles with
finite inertia exhibit maximum number concentration values in the viscous region
where the normalized number concentration reaches almost 300 times the value of the
pure tracers (St+ = 0) characterized by uniform mean particle number concentration
(C∗ = 1 represented by a dashed line in the figure). This behaviour is a signature
of the preferential segregation induced by turbulence (turbophoresis), which generates
preferential particle accumulation in the wall region, whose intensity strongly depends
on particle inertia. The highest wall concentrations are exhibited by St+ = 10, 25, 50
particles, whose local wall density in the viscous region (x+3 < 5) reaches values of
the order of several thousand times the values in the centre of the channel, where the
smallest value of number concentration can be found; the ratio between the wall and
the centre concentration is more than 104. Particles with Stokes numbers St+ = 10 and
50 share the same wall and centreline concentrations. These results are in agreement
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FIGURE 4. (Colour online) Steady-state normalized mean particle number concentration
C∗ = C/C0 versus wall-normal coordinate x+3 for the different particle populations. (a) Flat
case, (b) rough case.

with previous DNS findings, obtained at the same friction Reynolds number and
similar values of the Stokes number in the flat case (Sardina et al. 2012a), thus
validating the numerical results for the dispersed phase also.

Figure 4(b), which displays the particle normalized number concentration profile
obtained for the rough channel, suggests that particles tend to avoid the slow flow
regions close to the wall for St+ = 10, 25, 50, leading to the total disappearance of the
preferential wall accumulation and an increase of the centreline number concentration.
Particle depletion in the wall regions increases monotonically with the Stokes number:
for the heaviest particles the wall concentration is ∼105 times smaller than that for
the Lagrangian tracers, while the centreline number concentration has the same order
of magnitude as the pure tracers and 200 times the corresponding values obtained for
the flat case. A very small amount of turbophoresis is found for the lightest particles.
We highlight that number concentration profiles are obtained by averaging over the last
500 t+ of the simulations, thus achieving statistical invariance in time.

Figure 5 gives qualitative evidence of the disappearance of particle preferential
concentration close to the wall when the surface roughness is taken into account. The
figure shows two instantaneous configurations of the streamwise fluid velocity field
together with visualization of particle positions in a wall-normal plane for the flat
(figure 5a) and rough (figure 5b) cases. Contours represent the value of the streamwise
velocity field. In order to provide a qualitative representation of the instantaneous
particle fluxes towards and away from the wall, we distinguish between particles
departing from the wall (particles moving towards the centre of the channel marked
with black dots) and particles moving towards the wall (marked with grey dots). In
the figure just the particle set characterized by St+ = 25 is shown, which seems to
be the most accumulating family, at least for the flat case, as suggested by Soldati
& Marchioli (2009). In figure 5(a) (flat case), it is clearly shown that relatively
few particles tend to populate the centre of the channel, while most of them are
localized close to the walls. Conversely, in figure 5(b) (rough case), in accordance
with the results of Squires & Simonin (2006), a more uniform distribution of particles
across the channel is found. Specifically, the particles tend to accumulate in the
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FIGURE 5. (Colour online) Wall-normal slices of an instantaneous configuration of the
streamwise velocity field (contours, indicating the non-dimensional instantaneous value) and
particles (black particles have positive vertical velocity and move upward, light grey particles
have negative vertical velocity and move downward) with St+ = 25 for the flat (a) and the
rough (b) cases.

channel centre, characterized by fast streamwise velocity, and avoid the slow and
highly vortical flow regions close to the walls.

The combined effect of the reduction of the particle concentration close to the
wall and its augmentation in the channel bulk region deeply affects the total particle
mass flux. In order to quantify this flux, we introduce a new physical quantity named
particle bulk Reynolds number Rep

b = Vp
bδ/ν, where Vp

b is the particle bulk velocity,
defined as the averaged particle velocity in the streamwise direction (Vp

b =
∑Np

i=1Vp
x1
/Np,

where Vp
x1

is the pth particle instantaneous streamwise velocity and Np is the total
number of particles). Figure 6 shows the behaviour of the steady-state particle bulk
Reynolds number for the six particle populations, relating to the flat (solid line)
and the rough (dashed line) simulations. For St+ = 0, the Lagrangian tracer limit
is recovered and the particle bulk Reynolds number is equal to the bulk Reynolds
number of the carrier phase (Rep

b = 1720 and Rep
b = 2880 for the rough and the flat

case, respectively). Thus, the mass flux for the flat-wall case is larger than that of
the rough-wall case, because of the roughness function. In the flat-wall case, the
larger the particle inertia (by increasing the Stokes number) the lower the particle
mass flux, assuming its minimum value for the most accumulating particles (St+ = 25).
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FIGURE 6. Particle bulk Reynolds number Rep
b as a function of the particle inertia St+ for the

flat and rough cases.
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FIGURE 7. (Colour online) p.d.f. of wall-normal particle velocity in the buffer layer
(56 x+3 6 30) at statistically steady state for the flat (a) and the rough (b) cases.

Conversely, for the rough case the particle mass flux monotonically increases with
the Stokes number, an effect which becomes more evident starting from St+ = 5. The
maximum ratio between corresponding bulk Reynolds number pairs obtained for the
rough and the flat channel is almost 20, which is obtained at St+ = 25. These results
clearly imply that transport of sediments or small particulate with non-negligible
inertia is more efficient in rough channels than flat ones. The greater efficiency in
particle transport for the rough channels is due to the preferential localization of
particles in the channel centre, which is characterized by higher streamwise velocities
compared to the low-speed wall region.

Figure 7 shows the p.d.f. of the wall-normal particle velocity, Vx3 , at the steady state
in the buffer layer (56 x+3 6 30) for the flat (figure 7a) and the rough cases (figure 7b).
In the figure Vx3 is assumed positive when directed towards the wall and negative in
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the opposite case. The thick dashed line is the p.d.f. of the carrier-phase velocity. The
other lines in figure 7 indicate the p.d.f.s for the different particle populations. The
statistical distribution of figure 7(a) shows that intense events departing from the wall
(negative particle velocity) are much less frequent for particles than they are for fluid
tracers, as shown by the p.d.f. plotted on a semi-logarithmic scale. Particles tend to
leave the wall with slow drifting motions rather than fast wall-normal velocities. The
larger the inertia the less frequent are the intense particle velocity events, as found by
Sardina et al. (2012a). On the other hand wall-approaching (positive velocity) events
are also less frequent than the corresponding velocities of the tracers although their
differences are much smaller than the corresponding negative velocity p.d.f. tails. In all
cases the mean particle wall-normal velocity vanishes, as it should be at equilibrium.

A completely different scenario appears in the rough channel (figure 7b). In this
case, the behaviour of the right-hand tails is more or less the same as for the flat-wall
case and the particles tend to approach the walls preferentially with slow wall-normal
velocities (a behaviour accentuated by increasing the particle inertia). Looking at
the left-hand tail it appears that this scenario is qualitatively similar for small and
intermediate particles (St+ = 0.1, 0.5, 5), while heavier particles (St+ = 10, 25, 50) are
more likely to be entrained by high-velocity departing events. In these cases intense
motions directed away from the wall towards the channel centre are much more
frequent (up to 100 times) compared to the fluid. This tendency is more evident for the
largest particles, in contrast with the flat-wall case where larger inertial particles tend
to filter the high-velocity fluctuations.

4. Final remarks

DNS of turbulent channel flows at Reτ = 180 laden with inertial particles are
performed over flat and rough walls in order to investigate the effects of the roughness
on particle dynamics in turbulent wall-bounded flows. Large particle concentrations are
observed near the wall for the classical flat case. The significant finding of our work
concerns the effects of wall roughness on inertial particle dynamics. In this case, the
opposite situation appears: the inertial particles tend to stay away from the wall region
and consequently accumulate at the centre of the channel. The addition of roughness
to the wall generates a reduction of the particle accumulation at the wall with respect
to the flat turbulent flow driven by the same pressure gradient (Reτ ). This mass flux
augmentation is quantified by a new parameter called particle bulk Reynolds number.
The reduced wall accumulation can be exploited in applications where an increase of
the bulk transport of the particle phase is needed. The present study provides a more
general understanding of turbophoresis in cases or geometries more complicated than
the simple flat-wall model. The different deposition mechanisms between particles in
flat and rough channel flows are driven by the different turbulent structures of the wall
turbulence in the two regimes.
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