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SUMMARY
This research presents a comprehensive and useful survey
of the kinematic models of wheeled mobile robots and their
optimal configurations. The kinematic modeling of wheeled
mobile robots with no-slip is presented, by considering
four common types of wheels: fixed, orientable, castor,
and Swedish. Next, the accuracy of the kinematic models
is discussed considering their sensitivity or relative error
amplification, giving rise to the isotropy concept. As practical
application of the previous theory, all types of three-wheeled
mobile robots are modeled and their optimal (isotropic)
configurations for no error amplification are obtained.
Finally, three practical examples of error amplification are
developed for several types of wheeled mobile robots in
order to illustrate the benefits and limitations of the isotropic
configurations.

KEYWORDS: Model accuracy; Isotropy; Optimal configur-
ations; Wheeled mobile robots.

1. Introduction
Wheeled Mobile Robots (WMRs) have been widely studied
in the past fifteen years. Due to kinematic constraints, many
WMRs are not integrable (non-holonomic) and therefore
standard techniques developed for robot manipulators are not
directly applicable. Modeling, which is often a prerequisite to
control design and motion planning, is however still a relevant
issue. Examples of WMR kinematic models are available in
the literature,1−6 although not all of them employ a systematic
procedure. On the other hand, the sensitivity (relative error
amplification) of the WMR kinematic models should be
minimized. In this sense, for some special configurations
isotropy is achieved and there is no error amplification.5

Therefore, the aim of this research is to give a wide survey
of the kinematic models of WMR, their isotropy conditions,
and the benefits and limitations of isotropy.

The paper is organized as follows. Section 2 presents the
kinematic modeling of a WMR with no slip by considering
four types of wheels: fixed, centered orientable (hereinafter
orientable), off-centered orientable or castor, and Swedish.
This section also discusses the accuracy of the kinematic
models and introduces the isotropy concept. As practical
application of Section 2, Section 3 generates the kinematic
models for the five types of WMRs, classified according to
Campion et al.,1 and obtains all their isotropy conditions, i.e.
the optimal configurations for no relative error amplification.
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Afterwards, Section 4 shows three practical examples of error
amplification for several types of mobile robots in order to
illustrate the benefits and limitations of isotropy. Finally,
Section 5, points out the more outstanding contributions of
this research and suggests future works.

2. Kinematic Modeling of Wheeled Mobile Robots
with No Slip
Firstly it will be introduced some terminology. Assuming
horizontal movement, the position of the WMR body is
completely specified by 3 scalar variables (e.g. x, y, θ),
referred1 as WMR posture, p in vector form. Its first-
order time derivative is called2 WMR velocity vector ṗ
and separately (vx , vy , ω) WMR velocities. Similarly, for
each wheel, wheel velocity vector and wheel velocities are
defined.2

2.1. Kinematic models of the four common types wheels
The kinematic modeling of a wheel is used as a previous stage
for modeling the whole WMR.1−4 Here, the four common
wheels will be considered: fixed, orientable, castor, and
Swedish. As it is easy to obtain their equations using a vector
approach, e.g. see Gracia and Tornero4 among many other
possibilities, the detailed development will be omitted.

The matrix equation of the castor wheel is:

vslip i =
(

cos (βi + δi) sin (βi + δi)

−sin (βi + δi) cos (βi + δi)

li sin (βi + δi − αi) − dicos δi −di cos δi 0

li cos (βi + δi − αi) + di sin δi di sin δi ri

)

×

⎛
⎜⎝

ṗ

β̇i

ϕ̇i

⎞
⎟⎠ , (1)

where it has been used the parameters of Fig. 1 and the
variables of Table I. The equation of the orientable wheel
can be obtained from (1) with di = δi = 0:

vslip i =
(

cos βi sin βi li sin(βi − αi) 0

−sin βi cos βi li cos(βi − αi) ri

) (
ṗ

ϕ̇i

)
,

(2)
which is also valid for fixed wheels, where the angle βi is
constant. The matrix equation of the Swedish wheel, see
Fig. 2(a), is (3) where the parameters of Fig. 2(b) and the
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588 Kinematic models and isotropy analysis

TABLE I-Frames, variables and constants.

Symbol Description

R Frame attached to the robot body with the
Z-axis perpendicular to the floor surface

R̄ Frame attached to the floor and instantaneously
coincident with the robot frame R. This frame allows
to avoid the dependency on a global stationary frame2

(Li , Ei) Frames attached to the wheel i and to the
roller of the Swedish wheel i,
with the X-axes coincident with their rotation axle

ṗ WMR velocity vector in coordinate frame R̄,
equivalent to (R̄vRx

R̄vRy
R̄ωR)T or (vx vy ω)T

vslip i Sliding velocity vector of the wheel in coordinate
frame Li (Ei for Swedish wheels)

(β̇i , ϕ̇i) Angular velocity of the steering link and
rotation velocity of the wheel in Lxi-axis

ϕ̇ri Rotation velocity of the rollers in Exi-axis
(it is usually a free wheel velocity)

(ri , rri) Wheel equivalent radius and roller radius.

variables and constants of Table I have been used.

vslip i =
(

cos(βi + γi) sin(βi + γi)

−sin(βi + γi) cos(βi + γi)

li sin(βi + γi − αi) ri sin γi 0

li cos(βi + γi − αi) ri cos γi rri

)⎛
⎝ ṗ

ϕ̇i

ϕ̇r i

⎞
⎠ (3)

2.2. Composite equation and kinematic model with no slip
Once the type of WMR wheels and their equations are
established, a compound kinematic equation for the WMR
may be defined. By virtue of (1), (2), and (3), we have:

vslip =

⎛
⎜⎝

vslip 1
...

vslip N

⎞
⎟⎠ =

⎛
⎜⎝

Ap1 Aw1 · · · 0
...

...
. . .

...
ApN 0 · · · AwN

⎞
⎟⎠

⎛
⎜⎜⎝

ṗ
q̇w1

...
q̇wN

⎞
⎟⎟⎠

vslip = ( Ap Aw )

(
ṗ

q̇w

)
= A q̇,

(4)

where N is the number of wheels; vslip is the composite sliding
velocity vector; q̇wi is a vector with all the wheel velocities of

Fig. 1. Castor wheel parameters: li , di , αi , βi , δi .

Fig. 2. (a) Swedish wheel (or Mecanum or universal) with rollers
at 45◦. (b) Parameters of the Swedish wheel: li , αi , βi , γi .

wheel i; q̇w is the composite vector of all the wheel velocities;
q̇ is the vector of all the wheel and WMR velocities; {Api ,
Awi} are the multiplying matrices obtained from (1), (2), and
(3); {Ap, Aw} are the composite matrices; and A is the WMR
kinematic matrix. Under the no-slip condition, the kinematic
solution for velocity vector q̇ results:

A · q̇ = 0 (5)

q̇ ∈ N (A) → q̇ = B · η, (6)

where matrix B forms a basis ofN (A),η is an m-dimensional
vector representing WMR mobility, m is the WMR mobility
degree given by the nullity of A (see the rank-nullity
theorem):

m = dim(η) = dim(N (A)) = dim(q̇) − rank(A) = k − g.

(7)

In order to use variables with physical meaning, the
mobility vector η should be replaced with a set of freely
assigned velocities. Depending on whether wheel velocities
or WMR velocities are chosen, a forward or inverse kinematic
model is obtained. If a mix of both types of velocities is
chosen a mixed solution is achieved. In order to check if an
m-set of velocities q̇a can be assigned, it must be verified that
the determinant of the submatrix Ba that they define in (6) is
non zero, that is: (

q̇na

q̇a

)
=

(
Bna

Ba

)
· η (8)

if |Ba| �= 0 → q̇na = Bna · B−1
a · q̇a, (9)

where q̇na are the remaining non-assigned velocities of q̇.

2.3. Accuracy of the kinematic models: isotropy
The accuracy of the forward and inverse kinematics, when
an input data error is considered, has been studied by several
authors through the characterization of isotropic matrices.
For instance, Saha et al.5 established the isotropy conditions
for a generic WMR with Swedish wheels, and specified
them when using three and four wheels. While, Low and
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Leow6 and Kim et al.7−9 studied the isotropy conditions for
an omnidirectional WMR with three castor wheels. Here,
isotropy is studied by the following algebraic equation:

Hx = y, (10)

where x is the n′-dimensional output (unknown) variable
vector, y is the n-dimensional input (known) data vector, and
H is an n × n′-dimensional matrix. A precise measure of the
sensitivity of the linear system can be obtained by considering
the parameterized system:

(H+ ∈F) x(∈) = y+ ∈ f, (11)

where ∈ is the error parameter and {∈F, ∈ f} the input data
errors. In case n = n′, using any vector norm and consistent
matrix norm it is obtained10:

‖x(∈) − x‖
‖x‖ ≤ κ(H)

(
|∈| ‖F‖

‖H‖ + |∈| ‖f‖
‖y‖

)
+

O(∈2)

ρx ≤ κ(H)(ρH + ρy) + O(∈2),

(12)

where κ(·) is the condition number of a matrix; {ρH, ρy} are
the relative errors of the input data; ρx is the relative error of
the output vector; and O(∈2) is the Taylor series expansion of
x(∈) beginning from the second-order term. It is interesting
to remark that O(∈2) is null if F = 0. Otherwise, it can be
neglected if the parameter error ∈ is small.

It is stated5−11 that the condition number of H matrix
is a measurement of the relative error amplification of the
computed results x (with left pseudo-inverse if n > n′ and
with right pseudo-inverse if n < n′) with respect to the
relative error of the input data {H, y}. When the condition
number is equal to unity (i.e. H is isotropic) no error
amplification is obtained, which is the best possible situation.

Certainly, it can bee seen in (12) that the condition number
of H is a proportionality measure of the maximum error
amplification as long as O(∈2) is null or negligible. In fact,
this maximum error amplification will be achieved only for
specific values of {H, y, F, f}. This important remark, κ (H)
represents an upper bound as long as O(∈2) is negligible, has
been usually omitted5−9 although it may be very influential
in practice, as it is illustrated in the examples of Section 4.

By using the Euclidean norm, the condition number of a
matrix is:

κ2(H) = ‖H‖2

∥∥H∗∥∥
2 = σl/σs → κ2(·) ∈ [1, ∞] , (13)

where supra-index * denotes the conjugate transpose matrix
and {σl , σs} are the largest and smallest singular values
of matrix H. Thus, singular matrices (σs is zero) have
an infinitely large condition number. If H is isotropic the
following equation is satisfied:

if n > n′ HTH = kI else HHT = kI, (14)

where k is a proportionality constant and I the identity matrix.
One important aspect is that the elements of x (e.g.

linear velocity and angular velocity of the WMR) may be

of different dimensions (e.g. m/s and s−1). Consequently,
the associated singular values have different units (e.g. m−1

and dimensionless) and it is impossible to order them12. In
order to overcome this problem, a characteristic length D
has to be introduced13 (e.g. the angular velocity would be
multiplied by D and its associated column divided by D).
This parameter has been traditionally optimized in robot
manipulators in order to give the best accuracy (isotropy),
known as natural length.14 This option will be considered
in Section 3. A practical interpretation of the characteristic
length for linear and angular velocities is shown by Stocco
et al.15−16 as the relative capability to translate and rotate with
equal wheel velocities values. Therefore, they suggest that
the characteristic length should be chosen to better satisfy
the demands of motion and should not be a free design
parameter. If so, simply one extra WMR parameter should
be properly designed in order to achieve isotropy, as pointed
out in subsections 3.3 and 3.4.

For our purpose, the input vectors y are the assigned
velocities q̇a, so only m (n = m) scalar equations from (9)
can be considered in the isotropy analysis. Then, the isotropy
conditions will be established for no error amplification
between the input data vector q̇a and the output variable
vector q̇na s, both with m scalar elements, and vice versa.
The procedure from (8) is:

⎛
⎝ q̇na ns

q̇na s

q̇a

⎞
⎠ =

⎛
⎝Bna ns

Bna s

Ba

⎞
⎠ η →

{
q̇na s = (

Bna sB−1
a

)
q̇a(

BaB−1
na s

)
q̇na s = q̇a,

(15)

where q̇na ns are the remaining velocities not considered for
isotropy. Note that both Ba and Bna s must be in general non
singular, i.e. not any q̇na s and q̇avectors are possible for an
isotropy analysis, which depends upon H = Ba (Ban s)−1.

It is derived the following criterion: isotropy (no relative
error amplification) has to be achieved. In particular,
when the WMR has no orientable or castor wheels,
this becomes design criterion, since the conditions for
isotropy are permanent. In contrast, if there are orientable
or castor wheels, the conditions are achieved for specific
configurations, isotropic configurations, and the criterion is
a planning or control criterion. In this case, an over-actuated
WMR would be useful, since it allows change from one
kinematic model to another, thus benefiting from the isotropy
of the second one. A possible design criterion for the second
case could even be to compute the WMR parameter values
(e.g. wheel radius, distances. . . ) in order to minimize the
average of the condition number across the configuration
space, what leads to the global isotropy concept. The generic
criterion here indicated is perfectly complemented by the
criterion: singularity has to be avoided.4

3. Kinematic Models and Isotropy for the 5 Types of
Wheeled Mobile Robots

3.1. Introduction
Campion et al.1 showed that WMRs could be classified
into five generic types and they obtained their forward

https://doi.org/10.1017/S0263574708004165 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004165


590 Kinematic models and isotropy analysis

Fig. 3. Omnidirectional (Type I) and isotropic WMR with Swedish
wheels.

kinematic models for the three wheel case. Nevertheless,
these kinematic models have input variables with no physical
meaning while wheel velocities do not appear. This is
due to the fact that only a few equations, i.e. the first
element of (2), were used. Therefore, in order to extend
that work, the five generic WMRs with three wheels are
modeled in this section including all the WMR velocities and
wheel velocities (except the roller rotation velocity ϕ̇ri of a
Swedish wheel, since that variable is usually not accessible in
practice, what implies that the first element of (3) is omitted).
Accordingly, the procedures described in subsections 2.2
and 2.3 are applied for modeling and isotropy analysis.
The fact of considering WMRs with three wheels is for
stability reasons, and implies no loss of generality. In the next
subsections, the same wheels parameters ri , rri , di , δi , and
γi will be assumed (when applicable). The widely used roller
orientation of 90◦ for Swedish wheels (γ = 90◦) and the usual
zero value for castor wheel orientation with respect to the
steering link (δ = 0) will also be considered. Furthermore,
in the subsequent developments a compact trigonometric
notation will be used: cos(x) ≡ cx, sin(x) ≡ sx.

3.2. Type I: Omnidirectional WMR
This type of WMR has full mobility (m = 3) and is
constructed with no fixed or orientable wheels, i.e. with either
Swedish or castor wheels. This study considers two options:
three Swedish wheels and three castor wheels.

3.2.1. Omnidirectional WMR with three Swedish wheels.
With the procedure shown in subsection 2.2 the kinematic
solution (6) is obtained:

(
ṗ
ϕ̇

)
=

(−sγ rI
Ap

)
η ϕ̇ =

⎛
⎝ ϕ̇1

ϕ̇2

ϕ̇3

⎞
⎠

Ap =

⎛
⎜⎝

c(β1 + γ ) s(β1 + γ ) l1s(β1 + γ − α1)

c(β2 + γ ) s (β2 + γ ) l2s(β2 + γ − α2)

c(β3 + γ ) s(β3 + γ ) l3s(β3 + γ − α3)

⎞
⎟⎠ .

(16)

The forward and inverse kinematic models result:

ṗ = −r sγ A−1
p ϕ̇ ϕ̇ = −(r sγ )−1Ap ṗ. (17)

The isotropy for both forward and inverse kinematics
in (17) depends upon matrix Ap. As already mentioned
in subsection 2.3, the complete isotropy analysis can be
found in Saha et al.,5 so it is not going to be duplicated
here. The result is that the centers of the three wheels
represent the vertices of a regular (equilateral) triangle and
the plane of each wheel is perpendicular to the line joining
the centroid of the triangle and the wheel center. If frame R is
located on this centroid and its X-axis crosses the first wheel
center (Fig. 3), the parameters are {α1 = 0, α2 = 120◦, α3 =
240◦, βi = αi, li = L}, and (17) result in:

ṗ = r

3

⎛
⎜⎝

0
√

3 −√
3

−2 1 1

−1/L −1/L −1/L

⎞
⎟⎠ ϕ̇

ϕ̇ = 1

r

⎛
⎜⎜⎝

0 −1 −L√
3/2 0.5 −L

−√
3/2 0.5 −L

⎞
⎟⎟⎠ ṗ. (18)

3.2.2. Omnidirectional WMR with three castor wheels. With
the procedure shown in subsection 2.2 the kinematic solution
(6) is obtained:⎛
⎜⎝

ṗ

β̇

ϕ̇

⎞
⎟⎠ =

⎛
⎜⎝

I

(1/d)Ap1

−(1/r)Ap2

⎞
⎟⎠ η

β̇ =

⎛
⎜⎝

β̇1

β̇2

β̇3

⎞
⎟⎠ Ap1 =

⎛
⎜⎝

cβ1 sβ1 l1s(β1 − α1) − d

cβ2 sβ2 l2s(β2 − α2) − d

cβ3 sβ3 l3s(β3 − α3) − d

⎞
⎟⎠

ϕ̇ =

⎛
⎜⎝

ϕ̇1

ϕ̇2

ϕ̇3

⎞
⎟⎠ Ap2 =

⎛
⎜⎝

−sβ1 cβ1 l1c(β1 − α1)

−sβ2 cβ2 l2c(β2 − α2)

−sβ3 cβ3 l3c(β3 − α3)

⎞
⎟⎠ .

(19)

The forward kinematic models with β̇ or ϕ̇ as assigned
velocities and the inverse model are:(

ṗ

ϕ̇

)
= d

(
A−1

p1

−(1/r) Ap2 A−1
p1

)
β̇

(
ṗ

β̇

)
= −r

(
A−1

p2

(1/d)Ap1A−1
p2

)
ϕ̇

(
β̇

ϕ̇

)
=

(
(1/d)Ap1

−(1/r)Ap2

)
ṗ. (20)

Low and Leow6 showed that the isotropy of the forward
and inverse kinematics is achieved if d = r and the steering
axles of the three wheels are on the vertices of an equilateral
triangle. Nevertheless, that isotropy result is only valid
as long as the steering link distance d is negligible with
respect to the distance between the triangle centroid and
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Fig. 4. Omnidirectional and quasi-isotropic WMR with castor
wheels.

the steering axle. Otherwise, the isotropy conditions depend
on the variable steering angles. In fact, a complete isotropy
analysis (for q̇na s = ṗ) can be found in Kim et al.,7

were the isotropic configurations (i.e. the values of β) are
characterized in the forward kinematic model depending on
the set of assigned wheel velocities. Moreover, these authors
developed8−9 a global isotropy optimization through the
characteristic length. They defined the global isotropy, for a
set of assigned velocities, as the average of the inverse of the
condition number (local isotropy) across the configuration
space given by β. Moreover, both group of researchers
occasionally considered more than three assigned velocities
(e.g. actuated joints), although this would be outside the
no-slip framework of (6), since only three velocities can be
assigned independently.

With the isotropy conditions of Low and Leow6 and
locating frame R on the triangle centroid, with its X-axis
crossing the steering axle of the first wheel (see Fig. 4), the
parameters result in: {α1 = 0, α2 = 120◦, α3 = 240◦, li = L,
r = d}(the substitution in (20) is omitted since the models
are not simplified).

3.3. Type II: Differential-drive WMR
This WMR has one independent fixed wheel and other
possibly omnidirectional wheels, thus the mobility is 2. This
study considers two dependent fixed wheels (differential-
drive wheel mechanism) and another omnidirectional wheel,
either Swedish or castor. Taken into account where has been
located frame R (see Fig. 5 (a) and Fig. 5 (d)) the parameters
result {β1 = β2 = α1 = 0, α2 = π, l1 = l2 = L}.

3.3.1. Differential-drive WMR with a Swedish wheel.
Exceptionally, for this WMR (Fig. 5 (a)) it will not be assume
the same radius for the 3 wheels. With the procedure shown
in subsection 2.2 the kinematic solution (6) for this WMR
is:

⎛
⎜⎜⎜⎜⎜⎝

ṗ

ϕ̇1

ϕ̇2

ϕ̇3

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

−L −l

−1 1
2L/r1 0

0 2L/r2

(Lcβ3 + l3c(β3 − α3))/r3 (Lcβ3 − l3c(β3 − α3))/r3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η.

(21)

Fig. 5. Differential-drive WMR with a Swedish or castor wheel
and its isotropic configurations.

The forward and inverse kinematic models could be
obtained straightforward from (21) applying (9) for any pair
of assigned velocities not including vx . In particular, for
the isotropy analysis it will be considered the relationships
between the non-zero WMR velocities and wheel velocities:(−1/r1 −L/r1

−1/r2 L/r2

)(
vy

ω

)
=

(
ϕ̇1

ϕ̇2

)
(22)

(
−1/r1 −L/r1

−cβ3/r3 −l3c (β3 − α3)/r3

)(
vy

ω

)
=

(
ϕ̇1

ϕ̇3

)
. (23)

As mentioned in subsection 2.3, it is necessary to introduce
in {(22), (23)} the characteristic lengths {D1, D2} as follows:

(
−1/r1 −L/(r1D1)

−1/r2 L/(r2D1)

)(
vy

D1ω

)
=

(
ϕ̇1

ϕ̇2

)
(24)
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592 Kinematic models and isotropy analysis(
−1/r1 −L/(r1D2)

−cβ3/r3 −l3 · c (β3 − α3)/(r3D2)

)(
vy

D2ω

)
=

(
ϕ̇1

ϕ̇3

)
.

(25)

In order to establish the isotropy conditions, (14) is applied:(
1/r2

1 + 1/r2
2 (L/D1)

(
1/.r2

1 − 1/r2
2

)
(L/D1)

(
1/r2

1 − 1/r2
2

)
(L/D1)2

(
1/r2

1 + 1/r2
2

)
)

= k1I

(26)

⎛
⎜⎜⎜⎝

1

r2
1

+
(

cβ3

r3

)2 l

D2r2
1

+ l3cβ3c (β3 − α3)

r2
3 D2

L

D2r2
1

+ l3cβ3c (β3 − α3)

r2
3 D2

(
L2

D2
2r2

1

+
(

l3c(β3 − α3)

r3D2

)2
)
⎞
⎟⎟⎟⎠ = k2I.

(27)

By virtue of (26), the isotropic relationship between
the non-zero WMR velocities (vy, D1ω) and the rotation
velocities of both fixed wheels (ϕ̇1, ϕ̇2) is given by:

{(vy, D1ω) ↔ (ϕ̇1, ϕ̇2)} → r1 = r2 and D1 = L . (28)

In the same way, eq. (27) becomes:

{
(vy, D2ω)


(ϕ̇1, ϕ̇3)

}
→

⎧⎪⎪⎨
⎪⎪⎩

cβ3l3c(β3−α3)=−L(r3/r1)2 →Fig. 5 (b)

D2 =
√

(Lr3)2 + (l3c (β3 − α3) r1)2

r2
3 + (cβ3r1)2

.

(29)
In Fig. 5(b) it is geometrically represented the first

condition of (29). If it is considered a frame R’ (instead
of R) located on the first fixed wheel, (29) is valid but
with L = 0. In that case the isotropy condition is given by
β3 = ±90◦ (Fig. 5(c)), where the forward motion is provided
by the rotation of the fixed wheel and the angular motion by
the rotation of the Swedish wheel. Note that the solutions
β3 − α3 = ±90◦ and l3 = 0 are not valid because a kinematic
singularity arises4.

3.3.2. Differential-drive WMR with a castor wheel. The
kinematic solution of (6) for this WMR (Fig. 5 (d)) is:

⎛
⎜⎜⎜⎜⎜⎝

ṗ
ϕ̇1

ϕ̇2

ϕ̇3

β̇3

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
−L −L
−1 1

2L/r 0

0 2L/r

(Lcβ3 + l3c (β3 − α3))

r

(Lcβ3 − l3c (β3 − α3))

r

−Lsβ3 + l3s (β3 − α3)

d
+ 1 −Lsβ3 − l3s (β3 − α3)

d
− 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η.

(30)

As before, for this WMR any pair of velocities not
including vx can be assigned. Meanwhile, with the procedure
shown in previous point 3.2.1, the isotropy conditions
between each two pair of velocities result:

{(vy, D3ω) ↔ (ϕ̇1, ϕ̇2)} → D3 = L (31)

{(vy, D4ω) ↔ (ϕ̇1, ϕ̇3)}

→
⎧⎨
⎩

cβ3 l3 c(β3 − α3) = −L → Fig. 5 (e)

D4 =
√

(L2 + l2
3c2(β3 − α3))/(1 + c2β3)

(32)

⎧⎨
⎩

(vy, D5ω)


(ϕ̇1, β̇3)

⎫⎬
⎭

→
⎧⎨
⎩

sβ3

(
l3 s (β3−α3) −d

) = −(
d
/

r
)2

L → Fig. 5 (f)

D5 =
√

(L2d2+r2(l3 s (β3−α3)−d)2)/(d2+r2 s2β3)

(33)

⎧⎨
⎩

(vy, D6ω)


(ϕ̇3, β̇3)

⎫⎬
⎭

→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
d
/

r
)2

l3cβ3c (β3 − α3) = (
d
/

r
)2

c2 =
= −sβ3

(
l3s (β3 − α3) − d

) = c1 → Fig. 5 (g)

D6 =
√

d2l2
3 c2 (β3 − α3) + r2(l3 s (β3 − α3) − d)2

(d cβ3)2 + (r sβ3)2

(34)

{(ϕ̇1, ϕ̇2) ↔ (ϕ̇3, β̇3)}→
⎧⎨
⎩

c5 c6 = c3 c4

c2
3 + c2

6 = (d2
/r2)

(
c2

4 + c2
5

)
where (Fig. 5 (h)) c3 = Lsβ3 c4 = Lcβ3 (35)

c5 = l3c(β3 − α3) c6 = d − l3s(β3 − α3).

Note that, in order to achieve the isotropy conditions of
(35) for one configuration β3, one parameter (i.e. α3, l3, d,
L, . . .) has to be designed properly. The same is applicable
to (32)–(34) if the characteristic lengths are not free design
parameters.

3.4. Type III: WMR with one orientable wheel
This WMR has one independent orientable wheel and other
other possibly omnidirectional wheels (m = 2). This study
considers one orientable wheel and two omnidirectional
wheels of the same type: Swedish (Fig. 6(a)) or castor
(Fig. 6(d)). For this WMR, the origin of frame R has been
located at the center of the orientable wheel (Fig. 6), so l1 = 0.
The kinematic solution for each WMR is (36) and (39).
For both WMRs, any pair of velocities can be considered
assigned except (vx vy)T . Note that, Eqs. (36) and (39)
are inverse kinematic models, where the assigned velocities
are the forward motion of the WMR in the direction of
the orientable wheel plane and the WMR angular motion.
With the procedure shown in point 3.2.1, the isotropy
conditions between a pair of WMR velocities and a pair
of wheel velocities result {(37), (38)} and {(40)–(45)}. Note
that, the permanent solutions {β2 − α2 = ±90◦} for (37) and
{β2 − α2 = β3 − α3 = ±90◦} for (38) are not valid because a
kinematic singularity arises.4 In the same way, the solution
β1 = β2 = β3, that fulfills simultaneously (37) and (38), is not
valid because a kinematic singularity arises4. As before, if the
characteristic lengths of {(37), (38), (40)–(45)} are not free
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Fig. 6. WMR with one orientable wheel and two Swedish/castor
wheels.

design parameters, one extra parameter (i.e. α2, α3, l2 . . .) has
to be designed properly to achieve the isotropy conditions.

⎛
⎜⎜⎜⎜⎜⎝

ṗ

ϕ̇1

ϕ̇2

ϕ̇3

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sβ1 0

−cβ1 0

0 1
1/r 0

c (β1 − β2)/r −l2c (β2 − α2)/r

c (β1 − β3)/r −l3c (β3 − α3)/r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η (36)

⎧⎪⎪⎨
⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

(vx ,D7ω)

(vy ,D7ω)

(η1,D7η2)

⎫⎪⎪⎬
⎪⎪⎭ ↔ (ϕ̇1, ϕ̇2)

⎫⎪⎪⎬
⎪⎪⎭

→
{

c (β1 − β2) c (β2 − α2) = 0 → Fig. 6 (b)

D7 = l2c (β2 − α2)/
√

1 + c2 (β1 − β2)
(37)

⎧⎪⎪⎨
⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

(vx ,D8ω)

(vy ,D8ω)

(η1,D8η2)

⎫⎪⎪⎬
⎪⎪⎭ ↔ (ϕ̇2, ϕ̇3)

⎫⎪⎪⎬
⎪⎪⎭

→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l3c (β1 − β3) c (β3 − α3) =
= −l2c (β1 − β2) c (β2 − α2) → Fig. 6 (c)

D8 =
√

l2
2c2 (β2 − α2) + l2

3c2 (β3 − α3)√
c2 (β1 − β2) + c2 (β1 − β3)

(38)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṗ

ϕ̇1

ϕ̇2

ϕ̇3

β̇2

β̇3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sβ1 0

−cβ1 0

0 1

1/r 0

cβ12/r −l2cβ22/r

cβ13/r −l3cβ33/r

sβ12/d l2sβ22/d − 1

sβ13/d l3sβ33/d − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η

where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β12 = β1 − β2

β13 = β1 − β3

β22 = β2 − α2

β33 = β3 − α3

(39)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(vx ,D9ω)

(vy ,D9ω)

(η1,D9η2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

↔ (ϕ̇1, ϕ̇2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→
{

cβ12cβ22 = 0 → Fig. 6 (i)

D7 = l2cβ22/
√

1 + c2β12

(40)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(vx ,D10ω)

(vy ,D10ω)

(η1,D10η2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

↔ (ϕ̇1,β̇2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→

⎧⎪⎪⎨
⎪⎪⎩

sβ12

(
d − l2sβ22

) = 0 → Fig. 6 (j)

D10 = l2sβ22 − d√
d2

/r2 + s2β12

(41)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(vx ,D11ω)

(vy ,D11ω)

(η1,D11η2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

↔ (ϕ̇2, ϕ̇3)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→

⎧⎪⎨
⎪⎩

l2cβ22cβ12 = −l3cβ33cβ13 → Fig. 6 (g)

D8 =
√

l2
2c2β22 + l2

3c2β33√
c2β12 + c2β13

(42)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(vx ,D12ω)

(vy ,D12ω)

(η1,D12η2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

↔ (β̇2,β̇3)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sβ12

(
d − l2sβ22

) =
− sβ13

(
d − l3sβ33

) → Fig. 6 (h)

D12 =
√

(l2sβ22 − d)2 + (l3sβ33 − d)2√
s2β12 + s2β13

(43)
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⎧⎪⎪⎨
⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

(vx ,D13ω)

(vy ,D13ω)

(η1,D13η2)

⎫⎪⎪⎬
⎪⎪⎭ ↔ (ϕ̇2,β̇2)

⎫⎪⎪⎬
⎪⎪⎭

→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
r/d

)2 sβ12

(
d − l2sβ22

) =
− l2cβ22cβ12 → Fig. 6 (e)

D13 =
√

d2l2
2c2β22 + r2

(
l2sβ22 − d

)2√
d2c2β12 + r2s2β12

(44)

⎧⎪⎪⎨
⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

(vx ,D14ω)

(vy ,D14ω)

(η1,D14η2)

⎫⎪⎪⎬
⎪⎪⎭ ↔ (ϕ̇2,β̇3)

⎫⎪⎪⎬
⎪⎪⎭

→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
r/d

)2 sβ13

(
d − l3sβ33

) =
−l2cβ22cβ12 → Fig. 6 (f)

D14 =
√

d2l2
2c2β22 + r2

(
l3sβ33 − d

)2√
d2c2β12 + r2s2β13

(45)

3.5. Type IV (tricycle and bicycle) and type V (two
orientable wheels)
The type IV has one independent orientable wheel and
another independent fixed wheel, meanwhile type V has two
independent orientable wheels. Here, three options will be
considered for type IV and two for type V (Fig. 7). Both

Fig. 7. Type IV and type V WMR.

type IV and type V have one degree of mobility (m=1) and
therefore it makes no sense to apply isotropy since only one
velocity is assigned and so far any relationship is scalar. It
can bee seen in Fig. 7 where has been located frame R for
each WMR. The kinematic solutions for type IV are {(46)
(tricycle), (47) (bicycle with a Swedish wheel), (48) (bicycle
with a castor wheel)} and for type V {(49) (type V with a
Swedish wheel), (50) (type V with a castor wheel)}.

⎛
⎜⎜⎜⎜⎜⎝

ṗ

ϕ̇1

ϕ̇2

ϕ̇3

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

l3cβ3

sβ3

− (
Lsβ3 + l3cβ3

)
/r(

Lsβ3 − l3cβ3

)
/r

−l3/r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η (46)

⎛
⎜⎜⎜⎜⎜⎝

ṗ

ϕ̇1

ϕ̇2

ϕ̇3

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

l2cβ2

sβ2

−l2cβ2/r

−l2/r

−(l3c (β3 − α3) sβ2 + l2cβ2cβ3)/r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η (47)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṗ

ϕ̇1

ϕ̇2

ϕ̇3

β̇3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

l2cβ2

sβ2

−l2cβ2/r

−l2/r

−(l3c (β3 − α3) sβ2 + l2cβ2cβ3)/r

((l3s (β3 − α3) − d)sβ2 + l2cβ2sβ3)/d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η (48)

⎛
⎜⎜⎜⎜⎜⎝

ṗ

ϕ̇1

ϕ̇2

ϕ̇3

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 L sβ1 sβ2

L s (β1 + β2)

s (β2 − β1)

−2 L sβ2/r

−2 L sβ1/r

−
⎛
⎝ L s (β1 + β2) cβ3 + 2 L sβ1sβ2sβ3

+l3s (β2 − β1) c (β3 − α3)

⎞
⎠ 1

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η (49)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṗ

ϕ̇1

ϕ̇2

ϕ̇3

β̇3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 L sβ1sβ2

L s (β1 + β2)

s (β2 − β1)

−2 L sβ2/r

−2 L sβ1/r

−
⎛
⎝ L s (β1 + β2) cβ3 + 2 L sβ1sβ2sβ3

+l3s (β2 − β1) c (β3 − α3)

⎞
⎠ 1

r(
L s (β1 + β2) sβ3 − 2 L sβ1sβ2cβ3

+s (β2 − β1)
(
l3s (β3 − α3) − d

)
)

1

d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η (50)
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4. Examples of Error Amplification

4.1. Differential-drive WMR
For the first example we consider type II WMR with
the classical differentia-drive mechanism. In particular,
relationship (24) will be analyzed using the characteristic
length obtained in (28) and a generic radius for each wheel:

(
−1/r1 −1/r1

−1/r2 1/r2

) (
νy

D1ω

)
=

(
ϕ̇1

ϕ̇2

)
→ H1x1 = y1. (51)

Assuming no uncertainty in the radii values, i.e. they
are a priori known and constant, we have F1 = 0 and the
maximum theoretical relative error amplification is given by
the condition number of H1 (see (12)):

(‖x1(∈1) − x1‖
‖x1‖

)/(
| ∈1 | ‖f1‖

‖y1‖
)

= ρx1

ρy1
= ρ(x1y1) ≤ κ(H1)

(52)

where ρx1/y1 is the relative error amplification (hereinafter
error amplification). For example, if it is considered the
Euclidean norm it results:

ρ2(x1/y1) ≤ κ2(H1) = max(r1, r2)/ min(r1, r2). (53)

It will be compared the error amplification and the
theoretical maximum error amplification (i.e. κ(H1)) with
respect to radius r2. Note that isotropy is given by r2 = r1

(see (28)) and therefore X-axis will be normalized as
log10(r2/r1). For each value of r2 it will be computed the
error amplification for a symmetric and uniform probabilistic
distribution for y1 and f1 (rotation velocities and rotation
velocities error):

y1 =
(

ϕ̇1

ϕ̇2

)
=

(
−ϕ̇max . . . ϕ̇max

−ϕ̇max . . . ϕ̇max

)

f1 =
(

−ϕ̇error max . . . ϕ̇error max

−ϕ̇error max . . . ϕ̇error max

)
. (54)

Furthermore, it will be computed the {average, maximum,
minimum} of all the amplification values, e.g. 7808 values
in Fig. 8. In particular, the average of the error amplification
may be a good measure of the WMR real performance for a
given radius r2 when {y1, f1} have not only one usual value.
Nevertheless, it may be difficult to establish a priori the usual
values of {y1, f1} (e.g. (54)) to be used for computing the
average.

In Figs. 8(a) and (b) it is shown the comparison between
the error amplification and the theoretical maximum error
amplification for the Euclidean norm. Note that, the graphs
are symmetric with respect to the isotropy condition, and the
curves of the error amplification are quite perfect although it
has been used a finite set of points (7808). Note also that in
Fig. 8(b) the maximum error amplification perfectly fits the
theoretical maximum. It has been verified that the result is the
same for Figs. 8(a) and 8(b) if the end points {ϕ̇max, ϕ̇error max}
are changed. As an example, it will be detailed the error

Fig. 8. Error amplification for the differential-drive WMR using
the Euclidean norm, absolute error values for f1 and a symmetric
and uniform probabilistic distribution for {y1, f1}.

amplification for r2 = 2 · r1:

avg(ρ2(x1/y1)) = 1.068764 κ2(H1) = 2

max(ρ2(x1/y1)) = 2 → for{y1 = (−ϕ̇max, ε)T,

f1 = (ε, −ϕ̇error max)T} (55)

min(ρ2(x1/y1)) = 0.5 → for {y1 = (ε, −ϕ̇max)T,

f1 = (−ϕ̇error max, ε)T},
where ε is an arbitrary constant that tends to zero. In Fig. 8(c)
it is represented the histogram of the error amplification for
r2 = 2 · r1, which has not a normal distribution.
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Fig. 9. Error amplification for the differential-drive WMR using
the infinity norm.

In Fig. 9 it is shown the comparison between the
error amplification and the maximum theoretical error
amplification for the infinity norm: the behavior is
qualitatively similar to Fig. 8 and therefore it is concluded
that the results obtained for the Euclidean norm can be
extrapolated to other norms.

On the other hand, the error values of f1 considered in (54)
are absolute, i.e. they do not depend on the velocity values of
y1. For example, this would be the case of an error caused by
the encoder resolution when the encoder pulses are used to
measure the rotation velocity, or when some electromagnetic
noise disturbs a tachometer signal. Nevertheless, the error
values of f1 may also be relative to the rotation velocities, e.g.
if it is used a tachometer sensor. In this case, for a proportional
relationship we have f1 ∝ y1. Figure 10 shows the comparison
results for a relative error. Note that, in this case the average
of the error amplification is much lower. The result is very
similar for a wide range of proportionality between f1 and y1.

In order to illustrate the importance of the points used to
compute the average of the error amplification, it is shown in
Fig. 11, two examples with a non-symmetric distribution:

Fig. 11 (a) → y1 modified =
(

ϕ̇1

ϕ̇2

)
=

(
−ϕ̇max · · · ϕ̇max

−ϕ̇max/2 · · · ϕ̇max/2

)

Fig. 11 (b) → f1 modified =
(

−ϕ̇error max · · · ϕ̇error max

−ϕ̇error max/2 · · · ϕ̇error max/2

)
.

(56)

Fig. 10. Error amplification for the differential-drive WMR using
relative error values for f1.

The graphs of Fig. 11 are not symmetric. In particular, the
minimum average-error-amplification in Fig. 11(a) is 0.968
and is given by r2 = 0.66 · r1, in Fig. 11(b) the minimum is 0.937
and is given by r2 = 1.905 · r1. Both results have a clear physical
meaning: (a) if wheel 1 will usually have a higher rotation
velocity value than wheel 2, it is preferable (from the error
amplification point of view) if it has a higher radius value; (b)
if wheel 1 will usually have a higher rotation velocity error
than wheel 2, it is preferable if it has a lower radius value. It
is conclude that, if there is an a priori knowledge of the usual
values for {y1, f1}, the optimal values of the WMR parameters
(e.g. r2) may be different from the isotropic ones.

The isotropy and error amplification analysis of the
differential-drive WMR consider that the radii of both fixed
wheels may be different. Obviously, some reasoning, such
as {mechanical design (forces distributions), uniformity,
common sense, etc.}, suggest that both radii should be equal.
Here, it has been mathematically obtained exactly that result
but from the error amplification point of view. In other words,
this WMR has been used as an illustrative example of the
error amplification, and the use of different wheel radii should
not be taken as a serious design proposal of this research,
although it may have some advantages in specific cases (e.g.
Fig. 11).

4.2. WMR with one fixed wheel and one Swedish wheel
In this example it will be considered type II WMR.
In particular, it will be analyzed relationship (25) using
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Fig. 11. Error amplification for the differential-drive WMR using
a non-symmetric set of values for: (a) y1 modified, (b) f1 modified.

the parameters values {r3 = r1 = r, L = 0, α3 = 90◦} and the
characteristic length obtained with (29) {β3 isot =±90◦, D2 = l3}:

−1

r

(
1 0

cβ3 sβ3

) (
νy

D2ω

)
=

(
ϕ̇1

ϕ̇3

)
→ H2 x2 = y2. (57)

Assuming no uncertainty in the angle β3 of the Swedish
wheel, i.e. it is a priori known and constant, we have F2 = 0
and the maximum theoretical relative error amplification is
given by the condition number of H2:

ρ(x2/y2) ≤ κ(H2)
e.g.−→κ2(H2) = max(

√
1 − cβ3,

√
1 + cβ3)

min(
√

1 − cβ3,
√

1 + cβ3)
.

(58)

In Fig. 12 it is compared the error amplification and the
theoretical maximum error amplification (i.e. κ2(H2)) with
respect to angle β3. Note that isotropy is given by β3 = β3 isot

and β3 has been normalized as (β3 − β3 isot)/β3 isot (X-axis).
Note that, again the graphs are symmetric with respect

to the isotropy condition. It has been verified that the result
is very similar, regardless of the use of the absolute or
relative error for f2. As an example, the error amplification
for β3 = 45◦ is:

avg(ρ2(x2/y2)) = 1.1173 κ2(H2) = 2.414

max(ρ2(x2/y2)) = 2.414 → for

{
y2 = (−ϕ̇max, −ϕ̇max)T

f2 = (−ϕ̇error max, ϕ̇error max)T

}

Fig. 12. Error amplification for the WMR with one fixed wheel and
one Swedish wheel.

min(ρ2(x2/y2)) = 0.414

→ for {y2 = (−ϕ̇max, ϕ̇max)T, f2 = (ε, ε)T}. (59)

4.3. WMR with one orientable wheel and one Swedish
wheel
Here it will be considered type III WMR with Swedish wheels
(Fig. 6(a)) with the parameter values {r1 = r2 = r, β2 =α2 = 0◦}.
In particular, it will be analyzed the relationship (from (36)):

1

r

(
1 0

cβ1 −1

) (
η1 = νLy1

D7ω

)
=

(
ϕ̇1

ϕ̇3

)
→ H3 x3 = y3, (60)

where η1 is the forward motion of the WMR in the direction
of the orientable wheel plane (i.e. Ly1), and it has been used the
characteristic length from {β1 isot =±90◦, D7 = l2}. In this case
the angle β1 of the orientable wheel is continuously measured
with a sensor and therefore it has some error, i.e. (β1 error �= 0).
Then, we have F3 �= 0 because H3 depends on β1.

Figure 13 compares the error amplification and the
condition number considering only the error of H3, i.e.
{F3 �= 0, f3 = 0}. Isotropy is given by β1 =β1 isot and β1 has
been normalized as (β1 − β1 isot)/β1 isot (X-axis). The graphs
are again symmetric with respect to the isotropy condition
and the result is the same no matter if it is used absolute
or relative error for β1. Note that in this case (Fig. 13(b))
the maximum error amplification is lower than the condition
number, meanwhile the minimum error amplification tends
to zero (−80dBs = 10−4) and is not in the graph. On the other
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Fig. 13. Error amplification for the WMR with one with one
orientable wheel and one Swedish wheel and F3 given by β1 error.

hand, if it is considered that the sensor of the orientable wheel
is very accurate (β1 error = 0) and the Swedish wheel has some
mechanical play that gives rise to angle error (β2 error �= 0), the
error matrix F3 is given by:

∈ F3 = 1

r

((
1 0

c(β1 − β2 error) −cβ2 error

)
−

(
1 0

cβ1 −1

))
.

(61)

Figure 14 shows the new error amplifications for a
maximum error of the Swedish wheel angle of 10◦. As before,
the maximum error amplification does not fit the condition
number, and for some β1 values it is higher, see Fig. 14(b).
This is produced because the term O(∈2) (Taylor series
expansion of x(∈) beginning from the second-order term)
is not negligible, see (12). The higher is the maximum error
of angle β2, the wider is the range that max(ρ2(x3/H3)) >κ2(H3).

5. Conclusion and Further Work
There are several contributions in this research:

– All the kinematic models for the five types of WMRs
classified have been obtained. Different to the work of
Campion et al1, these kinematic models include wheel
velocity variables, giving straightforward relationships
between wheel velocities and WMR velocities, or even
mixed.

Fig. 14. Error amplification for the WMR with one orientable
wheel and one Swedish wheel and F3 given by β2 error.

– A full isotropy characterization has been developed for
all the kinematic models of type II and type III WMRs.
(Type I has already been tackled in the bibliography0–8 and
isotropy is not applicable for types IV and V.) The specific
isotropy conditions represent the optimal setup of wheels
in order to avoid relative error amplification and may be
used for mechanical design, control applications, motion
planning, etc.

– Three illustrative examples have been given to compare
the relative error amplification with the condition number
or theoretical maximum amplification. The first and
second example justify using the isotropy conditions
(i.e. the conditions for minimum condition number) in
mechanical design, meanwhile the third one justifies to
use them in path planning and/or control. It is interesting
to remark that, it has been analyzed two important facts
that were omitted in previous researches about WMR
isotropy5–9 although they may be very influential in
practice. The facts are that the condition number κ(H)
represents an upper bound as long as O(∈2) (Taylor series
expansion of x(∈) beginning from the second-order term)
is null or negligible. In particular, the upper bound condition
has been verified in the three practical examples of
Section 4 and the influence of O(∈2) has been verified
in the third example. It is concluded the two limitations of
the isotropy analysis as follows:
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• Condition number limitation due to O(∈2): the influence of
O(∈2) may invalidate the upper bound condition of κ(H)
(condition number), see and Fig. 14(b).

• Isotropy limitation due to upper bound condition: if the
effect of O(∈2) is null or negligible (e.g. F = 0), the
isotropic values of the WMR parameters will be
the better choice, i.e. they produce the minimum
average-error-amplification, if the WMR matrices and
vectors (e.g. {y1, f1} in the example of Section 4.1
are (probabilistically) uniformly and symmetrically
distributed. Otherwise, e.g. {y, f} are not symmetrically
distributed or have a unique value (e.g. systematic
errors, etc.), the optimal values of the WMR parameters
may be different from the isotropic ones (see Fig. 11).
Nevertheless, for a specific application it may be
difficult to know a priori the probabilistic distributions
of the WMR matrices and vectors or if they would
be non-uniformly or non-symmetrically distributed. In
that case, the isotropic values may be a reasonable
choice.

It is suggested as further work to develop a planner
that considers the isotropic configurations of a WMR with
orientable and/or castor wheels for path generation. It is
also suggested as further work to develop a procedure for
mechanical design based on global isotropy for WMRs with
orientable and/or castor wheels. This implies that the WMR
parameters (wheel radii, distances between wheels, etc.)
would be optimized for minimizing the average condition
number across the configuration space.
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