
Combinatorics, Probability and Computing (2014) 23, 670–685. c© Cambridge University Press 2014

doi:10.1017/S096354831400011X

The Largest Missing Value in a Sample of

Geometric Random Variables

MARGARET ARCHIBALD1† and ARNOLD KNOPFMACHER2‡

1The John Knopfmacher Centre for Applicable Analysis and Number Theory, University of the

Witwatersrand, PO Wits, 2050 Johannesburg, South Africa

(e-mail: zigarch@gmail.com)

2The John Knopfmacher Centre for Applicable Analysis and Number Theory,

University of the Witwatersrand,

PO Wits, 2050 Johannesburg, South Africa

(e-mail: arnold.knopfmacher@wits.ac.za)

Received 27 August 2012; revised 10 June 2013; first published online 22 May 2014

We consider samples of n geometric random variables with parameter 0 < p < 1, and study

the largest missing value, that is, the highest value of such a random variable, less than the

maximum, that does not appear in the sample. Asymptotic expressions for the mean and

variance for this quantity are presented. We also consider samples with the property that

the largest missing value and the largest value which does appear differ by exactly one,

and call this the LMV property. We find the probability that a sample of n variables has

the LMV property, as well as the mean for the average largest value in samples with this

property. The simpler special case of p = 1/2 has previously been studied, and verifying

that the results of the present paper coincide with those previously found for p = 1/2 leads

to some interesting identities.

2010 Mathematics subject classification: Primary 60C05

Secondary 05A16

1. Introduction

In 1985, Flajolet and Martin wrote a classic paper on probabilistic counting (see [5]).

They estimated the number of distinct elements in a large multiset by studying the size of

least missing value in a geometric sample, when p = 1/2. In this paper we approximate

the size of the largest missing value in a geometric sample for arbitrary 0 < p < 1, which
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‡ This material is based upon work supported by the National Research Foundation under grant number

2053740.

https://doi.org/10.1017/S096354831400011X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831400011X


The Largest Missing Value in a Sample of Geometric Random Variables 671

could in turn also be used as a way to estimate the number of distinct elements in a large

multiset.

Over the past few years, there have been various papers on the notion of ‘gaps’ and

‘missing values’ in geometrically distributed sequences of random variables (see [8], [10]

and [7]). Initially, researchers were interested in counting ‘gap-free’ samples, and this

sparked an interest in the number of gaps or missing values in a sample. Aside from

its intrinsic interest, gaps have also found applications in the analysis of algorithms: see

[4] and [11]. The maximum value of samples of geometric random variables has also

attracted the attention of researchers, and has led to publications such as [15], [9], [13],

and [1].

In this paper we continue in this vein, and investigate firstly the mean and variance of the

largest missing value in a geometrically distributed sequence. Let the sample of geometric

random variables be given by (Γ1,Γ2, . . .Γn), where P{Γj = i} = pqi−1, for 1 � j � n, i ∈ N

(0 is not included), and with p+ q = 1. Then we want to find the largest value which

does not appear in the sequence Γ1,Γ2, . . .Γn as long as there is at least one larger value

which does appear. If the sample is ‘complete’ (has all values from 1 up to the maximum

occurring in the sample) the largest missing value is taken to be 0.

It frequently happens, as we shall show, that when the largest missing value is non-zero,

it is then exactly one smaller than than the largest value which appears in the sample.

In such a case we say that the sample has the LMV property (the ‘largest missing value’

property).

We will determine the probability that a non-complete geometric sample has the LMV

property, as well as the size of the largest value of such a sample.

Previously, these questions have been studied in the special case of p = 1/2 in [2], and

subsequently the p = 1/2 case was revisited in [12]. However, neither of the methods

of [2] or [12] apply to the more general case of 0 < p < 1 as studied in the present

paper.

The methods used in [12] would work for Theorems 5.1 and 6.1. However, for

Theorems 3.1 and 4.1, the analysis cannot be extended, as there are no suitable ex-

pansions involving the function ν(k), the number of ones in the binary representation of

integer k.

2. Notation

In this paper we use the following notation:

Q := 1/q,

L := logQ,

χk :=
2kπi

L
(where k ∈ Z, k �= 0 and i denotes

√
−1),

Hk :=

k∑
i=1

1

i
(denotes the kth harmonic number),

γ := 0.577 . . . (denotes Euler’s constant).

https://doi.org/10.1017/S096354831400011X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831400011X


672 M. Archibald and A. Knopfmacher

2.1. Some known results

Let pn denote the probability that a sample of n geometric random variables is complete.

Then, as shown in [8], when p = q = 1/2,

pn =
1

2
for every n � 1

and otherwise (for 0 < q < 1, as n → ∞),

pn ∼ 1 − 1

L

∑
j�1

pj
qj

j
− δP (logQ n), (2.1)

where

δP (x) :=
1

L

∑
k �=0

∑
j�1

pjq
j

j!
Γ(χk + j)e−2kπix. (2.2)

For convenience set

P (n) :=
1

L

∑
j�1

pj
qj

j
+ δP (logQ n). (2.3)

We note that a further interesting expression for pn in terms of certain integrals was

obtained in [10], but it will not be used in this paper.

3. Largest missing value: mean

We begin by studying the expectation of the largest missing value. Since this quantity is

defined to be zero for complete samples, we consider only non-complete samples below.

Theorem 3.1. The expectation for the largest missing value in a non-complete sample of

geometrically distributed variables is asymptotic to

logQ n+ 1 −
1
L2

∑
i�1

qipi
i!

Γ′(i) + δA(logQ n)

P (n)

as n → ∞, where the fluctuating terms are given by

δA(x) :=
1

L2

∑
k �=0

∑
i�1

qipi

i!
Γ′(i+ χk)e

−2kπix

and P (n) is given by (2.3).

Note. Even though the numerator and denominator depend on pi, the initial values can

be computed exactly from the recursion in [8], and using these terms in the sums in

Theorem 3.1 we can obtain high precision because of the geometric rate of convergence.

This is also true for Theorem 4.1.

Proof. Let C(z) be the exponential generating function (hereafter EGF) of complete

geometrically distributed samples. That is, the coefficient of zn/n! in the expansion of
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C(z) is the probability pn that a geometric sample of length n is complete. The EGF of

geometrically distributed samples where the largest value to occur is k is then

Tk(z) =

k−1∏
i=1

ezpq
i−1(

C(zqk) − 1
)
. (3.1)

Here
∏k−1

i=1 e
zpqi−1

represents all the values smaller than k, which are allowed to occur

any number of times (including 0), and C(zqk) − 1 represents the values larger than k.

That is, we want to have a (non-empty) complete sample of geometric random variables,

but where the first or smallest value is now not 1 but k + 1, which corresponds to the

substitutions of zqk for z in C(z) − 1. So, if

T (z) :=
∑
k�1

kTk(z),

then the average value for the largest missing value in a sample of geometric random

variables is

tn := n![zn]T (z) = n![zn]
∑
k�1

k

k−1∏
i=1

ezpq
i−1(

C(zqk) − 1
)

= n![zn]
∑
k�1

kez(1−qk−1)
(
C(zqk) − 1

)
.

Except for the case q = 1/2 (see [8]), there is no explicit expression for the generating

function C(z). Instead we will use Poissonization and Mellin transforms to find n![zn]T (z).

We start by Poissonizing and define

T̂ (z) := T (z)e−z = e−z
∑
k�1

kez(1−qk−1)
(
C(zqk) − 1

)

=
∑
k�1

ke−zqk−1(
C(zqk) − 1

)
. (3.2)

Now, let

pn := P(Γ ∈ C)

be the probability that Γ = Γ1, . . . ,Γn is complete. Then from [8] we have the recurrence

pn =

⎧⎪⎨
⎪⎩

1 if n = 0,
n−1∑
k=0

pk
(
n
k

)
qkpn−k if n � 1.

Then if Ĉ(z) is the Poisson transform of (pn), we have

Ĉ(z) =
∑
n�0

pn
zn

n!
e−z .

For convenience, let

Q(z) = Ĉ(z) − 1 = e−z
∑
n�0

pn
zn

n!
− 1.
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So we have (from (3.2))

T̂ (z) := T (z)e−z =
∑
k�1

k
(
e−zpqk−1

(1 + Q(zqk)) − e−zqk−1)
. (3.3)

Now, let

Q̃(z) := (e−z)p/qQ(z).

Then ∑
k�1

ke−zpqk−1

Q(zqk) =
∑
k�1

kQ̃(zqk),

and the Mellin transform of (3.3) is∑
k�1

k
(
(pqk−1)−sΓ(s) + q−ksQ̃∗(s) − (qk−1)−sΓ(s)

)

=
∑
k�1

k

(
(pqk−1)−sΓ(s)

+ q−ks
(∑
i�1

pi

i!
Γ(i+ s)qi+s + Γ(s)(qs − qsp−s)

)
− (qk−1)−sΓ(s)

)

=
q−s

(1 − q−s)2

∑
i�1

pi

i!
Γ(i+ s)qi+s, (3.4)

and exists in the strip 〈−1, 0〉. By inverting the Mellin transform, we obtain an integral

which we approximate by moving the contour of integration to the right. We encounter a

double pole at s = 0, leaving a negative residue of

1

L2

∑
i�1

qipi

i!
Γ(i) log z +

1

L2

∑
i�1

qipi

i!
Γ(i)

(
L− Γ′(i)

Γ(i)

)
.

De-Poissonization (as explained in [14]) implies that tn ∼ T̂ (n), so for the main asymptotic

term of tn we have

1

L2

∑
i�1

qipi

i
log n+

1

L2

∑
i�1

qipi

i!
Γ(i)

(
L− Γ′(i)

Γ(i)

)
. (3.5)

For the fluctuations we find the negative residue of (3.4) at s = χk for k �= 0, namely

1

L2

∑
k �=0

∑
i�1

qiz−χkpi
i!

Γ(i+ χk)

(
L+ log z − Γ′(i+ χk)

Γ(i+ χk)

)
.

This implies that the fluctuating contributions to the asymptotic expansion of tn are

log n

L2

∑
k �=0

∑
i�1

qipi

i!
Γ(i+ χk)e

−2kπi logQ n

+
1

L2

∑
k �=0

∑
i�1

qipi

i!
Γ(i+ χk)

(
L− Γ′(i+ χk)

Γ(i+ χk)

)
e−2kπi logQ n

= (logQ n+ 1)δP (logQ n) − δA(logQ n). (3.6)
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The result of Theorem 3.1 follows after dividing the sum of (3.5) and (3.6) by the

probability 1 − pn that the sample is non-complete, where by (2.1),

1 − pn ∼ P (n) =
1

L

∑
j�1

pj
qj

j
+ δP (logQ n). (3.7)

This gives

logQ n
(

1
L

∑
i�1

qipi
i

+ δP (logQ n)
)

P (n)

+

1
L2

∑
i�1

qipi
i

(
L− Γ′(i)

Γ(i)

)
+ δP (logQ n) − δA(logQ n)

P (n)

= logQ n+ 1 −
1
L2

∑
i�1

qipi
i

Γ′(i)
Γ(i)

+ δA(logQ n)

P (n)
,

as claimed.

3.1. The case p = 1/2

By substituting p = 1/2 in Theorem 3.1, we can check this against the corresponding

result in [2]. That result was derived by simpler means, by using the explicit expression

for C(z) known for the case p = 1/2.

We first simplify the expression in Theorem 3.1 to (here L = log 2)

log2 n+ 1 −
1
L2

∑
i�1

2−i−1

i!
Γ′(i) + 1

L2

∑
k �=0

∑
i�1

2−i−1

i!
Γ′(i+ χk)e

−2kπi log2 n

1
L

∑
j�1

2−j−1

j
+ 1

L

∑
k �=0

∑
j�1 2−j−1 Γ(χk+j)

j!
eχk log(n)

. (3.8)

Now, we have that

1

L2

∑
i�1

2−i−1

i!
Γ′(i) =

1

4
− γ

2L
, (3.9)

1

L2

∑
k �=0

∑
i�1

2−i−1

i!
Γ′(i+ χk)e

−2kπi log2 n =
∑
k �=0

Γ(1 + χk)

4πi
e−2kπi log2 n

=
∑
k �=0

Γ(1 + χk)

2χkL
e−2kπi log2 n

=
1

2L

∑
k �=0

Γ(−χk)e2kπi log2 n, (3.10)

1

L

∑
j�1

2−j−1

j
=

1

2
, (3.11)

and

1

L

∑
k �=0

∑
j�1

2−j−1 Γ(χk + j)

j!
eχk log(n) = 0, (3.12)
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as

∑
j�1

2−j−1 Γ(χk + j)

j!
= 0, for all k �= 0.

Substituting the formulae (3.9), (3.10), (3.11) and (3.12) into (3.8) gives

log2 n+ 1 +

γ
2L

− 1
4

− 1
2L

∑
k �=0 Γ(−χk)e2kπi log2 n

1/2

= log2 n+
γ

L
+

1

2
− 1

L

∑
k �=0

Γ(−χk)e2kπi log2 n,

as in [2].

4. Largest missing value: variance

The calculation of the variance is more involved than that of the mean, hence in this

section we will not explicitly compute the fluctuating terms which arise. The calculation

of these can be done in principle but is very tedious and the contributions, typically of

order 10−6, are of little numerical significance.

Theorem 4.1. The variance for the largest missing value in a non-complete sample of geo-

metrically distributed variables is asymptotic to (excluding small fluctuations of mean zero

in both numerator and denominator)

1

L2

∑
i�1

1
i!
qipiΓ

′′(i)∑
i�1

1
i
qipi

− 1

L2

(
∑

i�1
1
i!
qipiΓ

′(i))2

(
∑

i�1
1
i
qipi)2

− [δE]20

as n → ∞, where [δE]20 denotes a tiny constant arising from the square of the fluctuating

term of the mean value.

Proof. Again we make use of the EGF of geometrically distributed samples for general

p where the largest value to occur is k (see (3.1)):

Tk(z) =

k−1∏
i=1

ezpq
i−1(

C(zqk) − 1
)
.

Here we want the second moment, and thus we want to find the coefficient of n!zn in

W (z) :=
∑
k�1

k2Tk(z) =
∑
k�1

k2ez(1−qk−1)
(
C(zqk) − 1

)
.

Poissonizing W (z) gives

Ŵ (z) := W (z)e−z =
∑
k�1

k2e−zqk−1(
C(zqk) − 1

)

=
∑
k�1

k2
(
e−zpqk−1

(1 + Q(zqk)) − e−zqk−1)
, (4.1)
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where

Q(z) = Ĉ(z) − 1 = e−z
∑
n�0

pn
zn

n!
− 1.

as before. The Mellin transform of this is

∑
k�1

k2q−ks
(

(pq−1)−sΓ(s) +
∑
i�1

pi

i!
Γ(i+ s)qi+s + Γ(s)(qs − qsp−s) − (q−1)−sΓ(s)

)

=
qs(1 + qs)

−(1 − qs)3

∑
i�1

pi

i!
Γ(i+ s)qi+s, (4.2)

and exists in the strip 〈−1, 0〉. We now invert the Mellin transform to get an integral

which we approximate by considering the negative residues of the triple pole at s = 0.

This gives

1

L3

∑
i�1

qipi

i
(log z)2 +

2

L2

∑
i�1

qipi

i
log z − 2

L3

∑
i�1

qipi

i!
Γ′(i) log z

+
1

L

∑
i�1

qipi

i
− 2

L2

∑
i�1

qipi

i!
Γ′(i) +

1

L3

∑
i�1

qipi

i!
Γ′′(i).

De-Poissonizing this leaves us with

1

L3

∑
i�1

qipi

i
(log n)2 +

2

L2

∑
i�1

qipi

i
log n− 2

L3

∑
i�1

qipi

i!
Γ′(i) log n

+
1

L

∑
i�1

qipi

i
− 2

L2

∑
i�1

qipi

i!
Γ′(i) +

1

L3

∑
i�1

qipi

i!
Γ′′(i).

This we divide by the probability that the sample is not complete (1 − pn, but excluding

the fluctuations) and subtract the square of the expectation from Theorem 3.1 to get

1

L2

∑
i�1

1
i!
qipiΓ

′′(i)∑
i�1

1
i
qipi

− 1

L2

(
∑

i�1
1
i!
qipiΓ

′(i))2

(
∑

i�1
1
i
qipi)2

− [δE]20 (4.3)

as in Theorem 4.1. The square of the fluctuating term of the mean value leads to the very

small additional non-zero contribution [δE]20.

Remark. In the simpler case of p = 1/2, the tiny additional term [δE]20 was computed

explicitly in [2] and was shown to be of magnitude 10−12. By including this known tiny

term from the p = 1
2

case, we have an identity (proved in the subsection below) to show

that this result corresponds to the variance in [2].

4.1. Identity for p = 1/2

Here we prove that for p = 1/2 the result in Theorem 4.1 corresponds to the equivalent

result in [2]. That is, we want to simplify the expression in (4.3), after substituting in
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p = 1
2
, which is

1

L2

∑
i�1

1
i!
2−i−1Γ′′(i)∑

i�1
1
i
2−i−1

− 1

L2

(
∑

i�1
1
i!
2−i−1Γ′(i))2

(
∑

i�1
1
i
2−i−1)2

− [δE]20, (4.4)

and prove that it equals

1 +
2

L

∑
h�1

(−1)h−1

h(2h − 1)

as in Theorem 2 of [2]. First note that

∑
i�1

2−i−1

i
=
L

2
. (4.5)

Now, for the first sum in (4.4) we have that

Γ′′(i) = Γ′(i)(−γ +Hi−1) + Γ′(i)
d

dx

( ∞∑
k=1

(
1

k
− 1

x+ k − 1

))∣∣∣∣
x=i

= Γ(i)(−γ +Hi−1)
2 + Γ(i)

∞∑
k=1

1

(i+ k − 1)2

= Γ(i)

(
γ2 − 2γHi−1 +H2

i−1 +

∞∑
k=1

1

(i+ k − 1)2

)
,

and consequently

∑
i�1

1

i!
2−i−1Γ′′(i) =

∑
i�1

2−i−1 1

i

(
γ2 − 2γHi−1 +H2

i−1 +

∞∑
k=1

1

(i+ k − 1)2

)

=
γ2

2
log 2 − γ

2
log2 2 +

1

2

∑
i�1

1

i2i
H2
i−1 +

1

2

∑
i�1

1

i2i

∞∑
j=i

1

j2
.

Now,

H2
m−1 =

m−1∑
i=1

1

i

m−1∑
j=1

1

j
=

m−1∑
i=1

1

i2
+ 2

m−1∑
j=1

j−1∑
i=1

1

ij
,

so ∑
m�1

1

m2m
H2
m−1

=
∑
m�1

1

m2m

(m−1∑
i=1

1

i2
+ 2

m−1∑
j=1

j−1∑
i=1

1

ij

)

=
∑
i�1

1

i2

∑
m�i+1

∫ 1
2

0

tm−1dt+ 2
∑
j�1

Hj−1

j

∑
m�j+1

∫ 1
2

0

tm−1dt

=

∫ 1
2

0

1

1 − t

∑
i�1

ti

i2
dt+ 2

∫ 1
2

0

1

1 − t

∑
j�1

tjHj−1

j
dt
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=

[∑
i�1

ti

i2
log

(
1

1 − t

)] 1
2

0

−
∫ 1

2

0

log2(1 − t)

t
dt+ 2

∫ 1
2

0

1

1 − t

(
log

1

1 − t

)2

dt

=
1

12

(
π2L+ 2L3 − 3ζ(3)

)
.

Next

∑
i�1

1

i2i

∞∑
j=i

1

j2
=

∞∑
j=1

1

j2

j∑
i=1

1

i2i

=

∞∑
j=1

1

j2

∫ 1
2

0

1 − tj

1 − t
dt

=

∞∑
j=1

1

j2

∫ 1
2

0

1

1 − t
dt−

∞∑
j=1

1

j2

∫ 1
2

0

tj

1 − t
dt

=
1

12

(
π2L+ 2L3 + 3ζ(3)

)
.

For the second sum in (4.4),

∑
i�1

1

i!
2−i−1Γ′(i) =

1

2

∑
i�1

(1/2)i

i
(−γ +Hi−1) = −γL

2
+

1

2

∑
i�1

(1/2)i

i
Hi−1.

Now

∑
j�1

xjHj =
1

1 − x
log

1

1 − x
,

so

∑
j�1

xjHj−1 =
x

1 − x
log

1

1 − x
.

Therefore

∑
j�1

xj

j
Hj−1 =

∑
j�1

Hj−1

∫ x

0

tj−1dt

=

∫ x

0

1

1 − t
log

1

1 − t
dt

=
1

2

(
log

1

1 − x

)2

.

Setting x = 1
2
,

∑
j�1

(1/2)j

j
Hj−1 =

L2

2
.
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Consequently, for the first two terms in (4.4) we have

1

L2

∑
i�1

1
i!
2−i−1Γ′′(i)∑

i�1
1
i
2−i−1

− 1

L2

(
∑

i�1
1
i!
2−i−1Γ′(i))2

(
∑

i�1
1
i
2−i−1)2

=
1

L2

2

L

[
γ2L

2
− γL2

2
+

1

2

1

12

(
π2L+ 2L3 − 3ζ(3)

)
+

1

2

1

12

(
π2L+ 2L3 + 3ζ(3)

)]

− 1

L2

(
2

L

)2[
−γL

2
+

1

2

L2

2

]2

=
π2

6L2
+

1

12
.

From this we must subtract

[δE]20 =
π2

6L2
− 11

12
− 2

L

∑
h�1

(−1)h−1

h(2h − 1)

(see [2, p. 727]), so we get the main term of the variance to be

π2

6L2
+

1

12
−

(
π2

6L2
− 11

12
− 2

L

∑
h�1

(−1)h−1

h(2h − 1)

)
= 1 +

2

L

∑
h�1

(−1)h−1

h(2h − 1)
,

as required.

5. Probability that a sample has the LMV property

Now we consider the probability that the largest missing value is one less than the largest

part for general p. As observed in the Introduction, the majority of non-complete samples

have this LMV property.

Theorem 5.1. The probability that a non-complete geometric sample of length n has the

LMV property is

2 − logQ(Q2 − Q+ 1)

P (n)
+
δ1(logQ n)

P (n)
,

where

δ1(x) :=
1

L

∑
k �=0

(
(Q2 − Q+ 1)χk − 1

)
Γ(−χk)e2kπix.

Proof. The generating function for all samples where the largest missing value is k and

the largest part is k + 1 is

Fk(z) =

k−1∏
i=1

ezpq
i−1

(ezpq
k − 1) (5.1)

= ezpq
k+z(1−qk−1) − ez(1−qk−1).
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Let

F(z) :=
∑
k�1

Fk(z).

So the probability that the largest missing value and the largest part differ by one is

n![zn]F(z) = n![zn]
∑
k�1

(
ezpq

k+z(1−qk−1) − ez(1−qk−1)
)

= n![zn]
∑
k�1

∑
j�0

1

j!

(
(zpqk + z − zqk−1)j − (z − zqk−1)j

)

=
∑
k�1

(
(pqk + 1 − qk−1)n − (1 − qk−1)n

)

=

n∑
r=0

(
n

r

)
(−1)r

(
(1 − pq)r − 1

) 1

1 − qr

using the Binomial Theorem. This can be approximated using ‘Rice’s method’. This

technique is briefly explained in the following lemma (see [6], [13], [14]).

Lemma 5.2. Let C be a curve surrounding the points 1, 2, . . . , n in the complex plane, and

let f(z) be analytic inside C. Then

n∑
k=1

(
n

k

)
(−1)kf(k) = − 1

2πi

∫
C

[n; z]f(z)dz,

where the kernel

[n; z] =
(−1)n−1n!

z(z − 1) · · · (z − n)
=

Γ(n+ 1)Γ(−z)
Γ(n+ 1 − z)

. (5.2)

By extending the contour of integration, it turns out that under suitable growth conditions

(see [6]) the asymptotic expansion of our alternating sum is given by∑
Res([n; z]f(z)) + smaller order terms,

where the sum is taken over all poles different from 1, . . . , n.

We use the function

f(z) :=
(1 − pq)z − 1

1 − qz
,

so there is only a simple pole (from the kernel) at z = 0 and also simple poles at z = χk
(from f(z)). Expanding f gives

f(z) ∼ 1 + z log(1 − pq) − 1

1 − (1 + z log q)
∼ log(1 − pq)

− log q
= logQ(Q2 − Q+ 1) − 2.

Also,

[n; z] ∼ −1

z
,
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so that the residue becomes

2 − logQ(Q2 − Q+ 1). (5.3)

For the fluctuations, we look at the simple poles at z = χk . Let ε = z + χk . Then

f(z) =
(1 − pq)χk (1 − pq)ε − 1

1 − qχkqε
∼ (1 − pq)χk − 1

−ε log q
=

(Q2 − Q+ 1)χk − 1

ε logQ

since Qχk = 1, and

[n; z] ∼ nχkΓ(−χk).

This means the fluctuations in this case are

1

L

∑
k �=0

(
(Q2 − Q+ 1)χk − 1

)
Γ(−χk)nχk . (5.4)

The formulae in (5.3) and (5.4) give us the result that the probability of a geometric

random sample having the largest part only one value away from the largest missing

part is

2 − logQ(Q2 − Q+ 1) +
1

L

∑
k �=0

(
(Q2 − Q+ 1)χk − 1

)
Γ(−χk)nχk .

We need to divide this by 1 − pn (see formula (3.7)), the probability that the sample is

non-complete. This concludes the proof of Theorem 5.1.

We note that for the case p = 1
2

this result agrees with the result in [2].

6. The average largest value under the LMV property

In this section we find the average largest value for samples of geometric random variables

which have the LMV property. That is, if a non-complete sample has a largest part and

a largest missing value differing by one, what is the average of the largest part? We find

the average largest missing value in this case, and then add one to the result. The method

is similar to that of the previous section, used in finding the probability that a sample has

the LMV property. We consider the set of non-complete samples only.

Theorem 6.1. The average largest value for geometric samples which have the LMV prop-

erty is

logQ n+ 1 +

2γ
L

+
(
1 − γ

L

)
logQ(Q2 − Q+ 1) − 1

2
log2

Q(Q2 − Q+ 1) + δ2(logQ n)

2 − logQ(Q2 − Q+ 1) + δ1(logQ n)
,

where the fluctuating terms are given by δ1(x) (defined in Theorem 5.1), and

δ2(x) := −
∑
k �=0

Γ′(−χk)
L2

((Q2 − Q+ 1)χk − 1)e2kπix

+
∑
k �=0

Γ(−χk)
L

(
(Q2 − Q+ 1)χk (logQ(Q2 − Q+ 1) − 1) − 1

)
e2kπix.
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Proof. The generating function for all samples whose largest missing value is k and

whose largest part is k + 1 is

Fk(z) :=

k−1∏
i=1

ezpq
i−1

(ezpq
k − 1) = ezpq

k+z(1−qk−1) − ez(1−qk−1)

as in (5.1). If we define the function

G(z) :=
∑
k�1

kFk(z),

then the average largest missing value is given by

n![zn]G(z) = n![zn]
∑
k�1

k
(
ezpq

k+z(1−qk−1) − ez(1−qk−1)
)

=
∑
k�1

k
(
(pqk + 1 − qk−1)n − (1 − qk−1)n

)

=

n∑
r=0

(
n

r

)
(−1)r

(
(1 − pq)r − 1

) ∑
k�1

kqr(k−1)

=

n∑
r=0

(
n

r

)
(−1)r

(1 − pq)r − 1

(1 − qr)2
.

This alternating sum is again a candidate for Rice’s method, and the function in question

is

f(z) :=
(1 − pq)z − 1

(1 − qz)2
.

The expression [n; z]f(z) has a double pole at z = 0, and a double pole at z = χk . By

expanding [n; z] and f(z) to two terms around z = 0, we get

f(z) =
ez log(1−pq) − 1

(1 − ez log q)2
∼

log(1 − pq)(1 + z log(1−pq)
2

)(1 − z log q)

zL2
,

and with the harmonic number Hn =
∑n

j=1
1
j
,

[n; z] ∼ −1

z
(1 + zHn).

Thus the residue for z = 0 is

[z−1][n; z]f(z) =
− log(1 − pq)

L2

(
Hn +

log(1 − pq)

2
+ L

)

∼ 1

L
(2 − logQ(Q2 − Q+ 1))

(
log n+ γ +

log(Q2 − Q+ 1) − log(Q2)

2
+ L

)
,

as n → ∞. We can express this as

logQ n(2 − logQ(Q2 − Q+ 1)) +
2γ

L
+ logQ(Q2 − Q+ 1)

(
1 − γ

L

)
− 1

2
log2

Q(Q2 − Q+ 1).

(6.1)
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For the double pole at z = χk , let ε = z − χk to get

f(z) :=
(1 − pq)χk (1 − pq)ε − 1

(1 − qχkqε)2

∼
(
(1 − pq)χk (1 + ε log(1 − pq) + ε2 log2(1−pq)

2!
) − 1

)
(1 − ε log q)

ε2L2

and (see [3])

[n; z] ∼ Γ(−χk)nχk
[
1 − ψ(−χk)ε+ ε log n

]
.

So the residue is

[ε−1][n; z]f(z) (6.2)

=
Γ(−χk)nχk

L2

(
(−ψ(−χk) + log n)((1 − pq)χk − 1)

+ (1 − pq)χk log(1 − pq) + ((1 − pq)χk − 1)L
)

= log n
Γ(−χk)
L2

((Q2 − Q+ 1)χk − 1)nχk − Γ′(−χk)
L2

((Q2 − Q+ 1)χk − 1)nχk

+
Γ(−χk)
L

(
(Q2 − Q+ 1)χk logQ(Q2 − Q+ 1) − 1 − (Q2 − Q+ 1)χk

)
nχk ,

since Qχk = 1. Adding (6.1) to (6.2) (summed on all non-zero k) gives

logQ n(2 − logQ(Q2 − Q+ 1)) +
2γ

L

+ logQ(Q2 − Q+ 1)

(
1 − γ

L

)
− 1

2
log2

Q(Q2 − Q+ 1)

+ log n
∑
k �=0

Γ(−χk)
L2

((Q2 − Q+ 1)χk − 1)nχk −
∑
k �=0

Γ′(−χk)
L2

((Q2 − Q+ 1)χk − 1)nχk

+
∑
k �=0

Γ(−χk)
L

(
(Q2 − Q+ 1)χk logQ(Q2 − Q+ 1) − 1 − (Q2 − Q+ 1)χk

)
nχk . (6.3)

By conditional probability it is now necessary to divide (6.3) by p̃n(1 − pn) where (see

Theorem 5.1)

p̃n(1 − pn) := 2 − logQ(Q2 − Q+ 1) + δ1(logQ n).

This gives the average largest missing value, so we add 1 to get to the result in Theorem 6.1.

7. Concluding remarks

It is interesting to compare the average largest value for all geometric random samples

with that of samples with the LMV property. If we ignore the tiny fluctuations, we have

the following.

The average largest part for all samples is (see [15])

logQ n+
γ

L
+

1

2
.
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The average largest part for samples with the LMV property simplifies (see Theorem 6.1)

to

logQ n+ 1 +
γ

L
+

1

2
logQ(Q2 − Q+ 1).

The difference of 1
2

+ 1
2
logQ(Q2 − Q+ 1) increases monotonically from 1 to 3/2 as Q goes

from 1 to ∞.
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