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THE ELASTICITY OF SUBSTITUTION
AS AN ENGINE OF GROWTH

THEODORE PALIVOS AND GIANNIS KARAGIANNIS
University of Macedonia

This paper characterizes the elasticity of factor substitution in one-sector convex growth
models with a general production function. It shows that an elasticity of substitution that
is asymptotically greater than unity is a sufficient (but not a necessary) condition for the
existence of a lower bound on the marginal product of capital, which in turn can lead to
unbounded endogenous growth. Hence, an elasticity of substitution that eventually
becomes greater than unity can counteract the role of diminishing returns to capital. This
renders factor substitution a powerful engine of growth.

Keywords: Elasticity of Substitution, Endogenous Growth, Convex Models

1. INTRODUCTION

In a well-known paper, Jones and Manuelli (1990) have shown that if the market
interest rate, which in a competitive economy equals the marginal product of
capital, is bounded away from zero, then there can be endogenous growth even in
the case where there exist diminishing returns with respect to factors that can be
accumulated (see also Jones and Manuelli 1997).

On the other hand, starting with Solow (1956), a seemingly unrelated literature
has shown that a constant-elasticity-of-substitution (CES) production function
with an elasticity of substitution between capital and labor greater than unity makes
the emergence of endogenous growth possible [see, for example, La Grandville
(1989), Duffy and Papageorgiou (2000), Klump and La Grandville (2000), and
Klump and Preissler (2000)]." Moreover, within the CES context, a higher elas-
ticity of substitution can lead to higher long-term growth rates. Thus, “when two
countries start from common initial conditions, the one with the higher elasticity
of substitution will always experience, other things being equal, a higher income
per head” [Klump and La Grandville (2000, p. 283)].2

This paper investigates more closely the connection between these two strands
of the growth literature and establishes a relation between the existence of a lower
bound on the marginal product of capital and the asymptotic value of the elasticity
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of substitution in one-sector convex growth models. In particular, it shows that
if the asymptotic value of the elasticity of substitution is greater than unity, then
the marginal product of capital is bounded strictly away from zero. Hence, the
aforementioned result regarding the CES is generalized to any production function;
namely, regardless of the functional form of the underlying production function, an
elasticity of substitution between capital and labor that eventually becomes greater
than unity can counteract the role of diminishing returns to capital and thus can
potentially generate unbounded growth even in the presence of nonreproducible
factors and the absence of technical progress. This renders factor substitution a
powerful engine of growth.

We view this generalization as an important finding, because in a CES world
capital and labor are unnecessarily restricted to be equally substitutable at all
stages of development. Indeed, Duffy and Papageorgiou (2000), estimating a CES
production function, find that the elasticity of substitution is greater than one in a
subsample of 21 high-capital countries, whereas it is less than one in a subsample
of 23 low-capital countries. Other authors have attempted to estimate more general
production functions, in which o is an endogenous variable right from the start.
Karagiannis, Palivos, and Papageorgiou (2005), henceforth KPP, survey several
empirical studies that have estimated a variable-elasticity-of-substitution (VES)
production function. Most of these studies have rejected the Cobb—Douglas and/or
the CES in favor of a VES production function, using either cross-section data
sets consisting of different sectors or time-series for an entire country. KPP also
estimate a VES production function proposed by Revankar (1971), using the same
panel data set as in Duffy and Papageorgiou (2000). In doing so, they, as do Duffy
and Papageorgiou, use raw labor data and data adjusted for human capital and
allow for constant and nonconstant returns to scale. In all four cases, they reject
the Cobb-Douglas specification in favor of a VES with a value of ¢ that is in
general greater than unity.

Besides country estimates, there have also been estimates of the elasticity of
substitution for specific sectors of the economy. For example, Ferguson (1965),
May and Denny (1979), and Yuhn (1991) applied either translog or CES cost
functions to the U.S. manufacturing industry and found the Allen—Uzawa elas-
ticity of substitution between capital and labor to be less than unity. However,
Feng and Serletis (2008) recently applied a more advanced factor-augmenting
asymptotically ideal model to the U.S. manufacturing industry and found the
Morishima elasticity of substitution between capital and labor to be greater than
unity.’

In sum, the existing empirical evidence suggests that the substitutability between
capital and labor may depend on the stage of economic development and more
precisely on the extent of capital accumulation per worker. Moreover, in some
cases, the elasticity of substitution may exceed unity, which, in light of the point
put forward in this paper, can be used to explain why some countries have managed
to exhibit a high rate of per capita growth without exhibiting much technical
progress.
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The remainder of the paper is organized as follows. Section 2 briefly reviews
the standard convex optimal growth model. Section 3 shows that an elasticity of
substitution between capital and labor that becomes asymptotically greater than
unity is a sufficient condition for a marginal product of capital bounded away from
zero and has the potential for generating growth endogenously. The paper explores
also the converse relation between the elasticity of substitution and the marginal
product of capital. It shows that endogenous unbounded growth can occur even if
the elasticity of substitution becomes asymptotically equal to unity. In this case,
however, it will first have to take values that are strictly greater than unity. Section 4
concludes the paper.

2. A CONVEX ONE-SECTOR GROWTH MODEL

We begin with a brief review of the standard convex one-sector optimal growth
model [for details see Jones and Manuelli (1990, 1997)]. Consider a competitive
economy in which agents maximize their lifetime utility

ol
U =/ L exp(—Ht)dt, 0,n >0, 6))
o 1-—n

where ¢, denotes consumption at time ¢ and 0 is the rate of time preference.

Let K and L € R denote capital and labor, respectively. The technology in
this economy is described by the production function F (K, L), which is assumed
to exhibit constant returns to scale with respect to K and L; hence, we can define
the production function in intensive form as f (k) = F(K/L, 1), where k = K/L
is the capital-labor ratio. The following assumptions about f are maintained
throughout:

(A1) f(0) = 0; furthermore, Vk € R}

(A2) f is at least twice continuously differentiable;
(A3) f > 0 (strictly increasing);

(A4) f" < 0 (strictly concave).

The budget constraint faced by each agent in every period is
k:f(k)—c:rk—i—w—c, 2)

where r [= f (k)] and w [= fk) —kf "(k)] denote the competitive interest
rate and wage, respectively. For simplicity we assume that there is no population
growth and no depreciation.

It is known (see, for example, Jones and Manuelli 1997) that maximizing (1)
subject to (2) yields the long-run growth rate

ok lime f(K)— 0
Iim — = lim - = .
t—00 C t—o00 k n

3
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Thus, if limg_, o f ' (k) > 6, then there will be unbounded growth, despite the
presence of nonreproducible factors (namely labor) and the absence of techni-
cal progress. In the remainder of the paper we seek conditions that ensure that
limg_ o f '(k) > 0 and assume, as is the case in most of the literature, that if this
limit is positive then it is also higher than 6. In other words, if limy . f ' k) > 0,
then the model is capable of generating growth endogenously for certain parameter
values.*

3. ENDOGENOUS GROWTH AND THE ELASTICITY
OF SUBSTITUTION

In this section we provide a link between the limiting value of the elasticity
of substitution and a marginal product of capital that is bounded away from
zero. In particular, we prove that in an economy with a convex technology and
nonreproducible factors, if the elasticity of factor substitution in the limit becomes
greater than unity, then the marginal product of capital remains positive as the
economy grows (i.e., limy_, o, f "(k) > 0). In view of (3), this establishes a causal
relation between the elasticity of factor substitution and endogenous growth.

First, we discuss briefly the general concept of the elasticity of substitution for a
multifactor technology. Let C(p, ¢) denote the cost function, where p is the input
price vector and ¢ is output. The Allen—-Uzawa elasticity of substitution between
two inputs i and j is given by [see, for example, Feng and Serletis (2008) and the
references cited therein]

a_ G
o = ,
CiC;

where subscripts denote partial derivatives. This concept of the elasticity of sub-
stitution, however, among others (i) is not a measure of the “ease” of substitution
and (ii) provides information about the effect of price changes on absolute input
shares [see Blackorby and Russel (1989)]. For these reasons, the more appropriate
concept in the present context is the Morishima elasticity of substitution, which is
given by
oM _ PiCii _ PiCij
Y C; C;

and (i) is a measure of the “ease” of substitution and (ii) provides information
about the effect of price changes on relative input shares [see again Blackorby
and Russel (1989)]. If there are only two inputs, K and L, and ¢ = F(K, L),
then it follows immediately using the linear homogeneity of the cost function with
respect to factor prices that these two concepts of the elasticity of substitution are
equal to each other. Furthermore, it follows from the cost minimization problem
that they are equal to

M a_ Pk g _ FxFp

i T T o] KL FFgy

)
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where ®g; and |®| denote respectively the cofactor of the term Fk; and the
determinant of the bordered Hessian of the production surface,

0 Fx Fr
Fx Fgx Fgr
F, Frg Frp

Using the properties of constant-returns-to-scale production functions, we can
write

W0 R —kf R
kfky — f" (k)

We make the following assumption regarding the limiting behavior of o (never-

theless, see footnote 5):

0.

o(k) =

(AS) limy_ o, o (k) = o exists.

Next, we denote the ratio of the marginal products of labor and capital, which is
equal to the absolute value of the slope of an isoquant, as m (k) = W > 0.

The function m (k) is increasing and hence we can write k = h(m), where

[ V(3o
GOV

W (m) =

In this notation we can write
h/
o) = (m)m
h(m)

> 0. )

‘We now establish the first of our two main results.
THEOREM 1.
klim ok)y>1= klim f (k) > 0.

Proof. Let k; > 0 be such that 6(k) > vy V k > k;, where y € (1,7). Then

for every k > ki,

/ o(x) f 1
dx > [ y—dx,
X X

mp mp

where ki = h(m;). Using (4), we have

/ h/(x)dx > yIn [ﬁ]
h(x)

my

or
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and finally
m < Tk'/7, )

where I' = m k; 7 S0, Substituting the definition of m into (5), we have

f(k) B f/(k)k < Fkl/y
f(k)
or
J' (k) 1

Tk " ktTkUr ©

Integrating (6), we have

k k
! 1 1
f((x))dx > F/ Y. dx.
g e L[] o]

d 1 "
Applying the formula f @ In al and rearranging, we get
x(xn +all) na xn +an
) > A (D4 k=D, M
where A = f(k))(I" + kiy_l)/y)y/(l”’) > (. Next we divide both sides of (7) by

k to get

£ (k) r v/(y=1
> Aoy T :

Applying L’ Hépital’s rule and noting that y > 1, we have lim_ o f (k) >
A>07 |

The idea behind the proof of Theorem 1 is that an arbitrary production function
f with an elasticity of substitution o (k) can be bounded from below by a CES
production function with elasticity of substitution y that is eventually lower than
o (k) [see inequality (7)]. Next note that in a diagram where K is measured on
the vertical axis and L on the horizontal, T'k'/? > 0 is the absolute value of the
slope of an isoquant of the CES production function with elasticity y. Inequality
(5) says that, for a high enough value of k, the isoquant of the CES is steeper
than the isoquant of f. Furthermore, as is easily shown, if y > 1, then a CES
isoquant intersects the K axis. Hence, the same is true for an isoquant of f. Without
loss of generality, consider a unit-isoquant {(L, K) € R}_ | L =1/f(k)}. Then
limy o K = lim;_okL = limy_ o k/f (k) = lim_o 1/f (k), where the last
equality follows from L’ Hopital’s rule. Because there is a vertical intercept,
lim; o K is finite and positive, which implies that limy_, o f ' (k) > 0.
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Intuitively, unbounded growth occurs because a technology with an elasticity of
.substituti(.)n, o= % greater than un.ity can accommodate. large chapgf:s
in the capital-labor ratio with small changes in the wage—rental ratio. In the limit,
labor is not needed for production, that is, is not an essential factor, and the model

becomes an AK one.°

EXAMPLES. Some well-known production functions for which the elasticity
of substitution is greater than unity in the limit and hence can lead to unbounded
growth, even in the absence of technical progress, are the following:

(a) CES. Consider the CES production function

fh)y=Ala+p?]", A, B>0,p>—1,
1
where o = vt If p <0, then
o k) = €(l,00) and Lim f (k)= A" > 0.
1+p k—o0

It is well known, since Solow’s seminal contribution [Solow (1956)], that a CES
production function with ¢ > 1 can lead to unbounded growth even in the absence
of technical change. One can also see this from equation (3).

(b) Revankar. Consider the following VES production function [see Revankar (1971)]:

flk) = Ak [1 + Bak]'™, A>0,ae[0,1],8>—1,
where 0 =14 Bk. If B > 0, then
lim (k) =co and lim f (k) = A(Ba)™ > 0.

It follows that if 8 > 0 and the appropriate condition on 6 holds, then there will be
unbounded growth.

(c) Jones and Manuelli. Finally, consider the following VES production function, which
can result in endogenous growth [see Jones and Manuelli (1990) and equation (3)]:

f(k) = Ak + Bk®,  A,B>0,ac[0,1),

Ak +a Bk

where o = @ (Ak + Bk *

For this production function

. 1 . ,
limo(k)=—>1 and lim f(k)=A > 0.
k—o00 o k—o0

The same result holds even in the more general case considered in Jones and Manuelli
(1990, 1997), where f (k) = Ak + g(k) and limy_,, g'(k) = 0.

Next we clarify Theorem 1 further with the following two remarks. The first
remark shows that for unbounded growth to potentially emerge the elasticity of
substitution need not be everywhere greater than unity; it suffices to be greater than
unity only in the limit. The second remark provides an example of a production
function where the elasticity of substitution is greater than unity for every finite
value of the capital stock and is equal to unity only in the limit; such a production
function cannot generate unbounded growth.
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Remark 1. Let f(k) = Ak + 1 — e P% where A, B > 0. Then
o(k) = el “;}fe‘,‘;ﬁ“, limg_eo 0 (k) = 00, f'(k) = A + BeP*, and
limg_, o f'(k) = A > 0. Hence, this production function can lead to unbounded
growth, despite the fact that for appropriately selected values of A and 8, o (k) is
less than 1 for low values of k.

Remark 2. Let f(k) = Ak* — y, where o € (0, 1), known as the constant

marginal shares production function [see Bruno (1968)]. Then

1
O”/-——>11fy<0 and lim o/(k) = 1.

o f(k)

Substituting in the appropriate formulas yields limy_, o, f (k) = 0, and hence
there is no unbounded growth.

o(k) =

Next, we examine the converse relation between limy_ . o (k) and
limy_, o f' (k). Consider first the following lemma.

LEMMA. ,
Sk _
% f(k)
Proof: The function f(k)/k is nonincreasing and positive; hence, it converges.
By the mean value theorem, there exists k € (k, 2k) such that

lim f)>0= lim

2k) — f(k )~ 2f(2k k
% = f (k), or equivalently, fZ(k ) — & = f (k)

Taking limits yields

lim & _ lim f (k)

k—oo  k k—o00 ’
and because limg_, o f "(k) > 0, we have

k
f 0k _ _ 17 -

lim
k—o00 f (k)

Intuitively, as k increases, the marginal ( f '(k)) and the average product (f (k)/ k)
of capital, which in the limit are equal to each other, approach a positive constant.
Given that markets are competitive and thus capital is paid its marginal product,
it follows that as k increases without bound all income goes to capital; that is,
limgs oo £ (k) = limg ool £ (k) / KTk = limgoo £ (K)K.B

THEOREM 2.

(@)
Jlim fk)>0= Jlim o (k) > 1.
() If limy_,os f (k) > O then there exists at least one interval (k', k") such that o (k) > 1
for every k € (K', k").

https://doi.org/10.1017/51365100509000479 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100509000479

ELASTICITY OF SUBSTITUTION AND GROWTH 625

Proof. (a) Recall that m(k) = LEOFK K _ 0 Tet ¢ (k) = Inm(k). Then

G)
1 7
ok) = > 0. @)
@' (k)k
Next notice that
. e?® . m(k) . fl)
lim = lim =1 _ =

- 1m ’ - - k]
k—oo k k—oo k k—>oof(k)k

where the last equality follows from the lemma. Because lim;_, o, e?® /k = 0,
there exists k5, > 0 such that e?® /k < 1V k > kb, or ¢ (k) < Ink Vk > k5. Also,
given ¢ > O there exists k) > O suchthato — ¢ < o (k) <o + &,Vk > kJ. Let
ko = max{k}, k7 }. Then because ¢ (k) < Ink Vk > k;, it follows that

k k 1
¢’ (x)dx < / —dx + ¢, 8)
ky ky X
where ¢ = Ink,; — ¢ (k) results from the combination of the two constants of
integration. Note that ¢ > 0 (from the definition of k).
Using (4'), equation (8) can be written as

L | k1
/ dx < f —dx + ¢,
K X0 (x) [

or, because 0 — ¢ < o(k) <o + € Vk > ks,

1 k1 5
— —1 / —dx < ¢C. )]
o+ ¢ ko X

The integral on the left-hand side of (9) is increasing in k and tends to infinity,
whereas the right-hand side of (9) is a positive constant. Thus, for this inequality
to hold, it must be the case that o = lim_, o, o (k) > 1.

(b) Using similar steps very to those followed in the proof of Theorem 1, one can
show that

there exists k3 such that o (k) < 1Vk > k3 = klim f ' (k) =0.
—00
The contrapositive of this statement is
Jim f'(k) > 0 = Vks there exists k > k3 such that o (k) > 1,
— 00

and by continuity the result follows. |

The meaning of Theorem 2 is that a technology with a bounded marginal product
of capital will exhibit an elasticity of factor substitution whose limit is greater than
or equal to unity. Even if the limit is equal to unity, however, the elasticity cannot
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approach unity from below, but rather it will first take some values that are greater
than one. The following example illustrates this case.

EXAMPLE. We seek an example of a production function such that the elastic-
ity of substitution is equal to unity in the limit, but the marginal product of capital
is bounded away from zero. Recall that o = dk/ K where m = fky/ k) —
Integrating, we have

dink
m:aexp(/ o(k))’

where « is a positive constant of integration. Substituting the definition of m and
integrating again yields

1
dk
k —l—aexp( dl(‘;(’)‘)

f (k) = Aexp / , (10)

where A is another positive constant of integration. Equation (10) suggests the
following functional form: o (k) = 1+b/Ink, b > 0, which approaches one from
above.’ After integration, we have

1
f(k) = Aexp <y — a/ T dy) , where y =1Ink +b. 11
¥+«

Setting b = 1 in (11) yields'”
fk)y=Aexp(1+Ink)(@+1+1nk)™®

and hence limy_, o f (k) = 0. Setting b = 2, however, results in

24+ 1Ink
f(k) = Aexp(2 4+ Ink) exp (—al/z arctan +1—/I;) ,
o

which after differentiating and taking limits yields

) ol/?
lim f (k) = Aexp (——n +2> > 0.
k— 00 2

4. CONCLUSIONS

This paper has investigated the role of the elasticity of factor substitution in
one-sector convex growth models in which there are present nonreproducible
factors, such as labor, and hence there exist diminishing returns with respect to
the capital stock (the augmentable factor). It has established a connection between
the existence of a lower bound on the marginal product of capital and the asymp-
totic value of the elasticity of substitution between capital and labor. Accordingly,
it has documented that an elasticity of substitution that is greater than unity only in
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the limit, joined with an accommodating rate of time preference, is sufficient for
unbounded endogenous growth. Furthermore, it has explored the converse relation
and has shown that a production function with an elasticity of substitution that
approaches unity asymptotically after first taking some values that are greater than
one might be capable of generating unbounded endogenous growth.

Our finding has important implications regarding cross-country convergence
and long-run growth. As mentioned in the Introduction, Klump and de La
Grandville (2000), using a normalized CES production function, have examined
the implications of differences in the elasticity of substitution, which in the CES
case is a constant parameter, for the short-run and long-run levels of per capita
income. Within the more general production function framework used in this
paper, the implications of such differences are even more striking. Consider two
countries that at some point in time are similar. If the lower bound of the elasticity
of substitution for one of them is below unity and that for the other above unity, then
any small differences in their per capita income will be magnified. In particular,
the fist country will approach a finite level of per capita income, whereas the other
will experience unbounded growth. As such an example, consider the findings
in Duffy and Papageorgiou (2000): they estimate the elasticity of substitution
for their low-middle-k subsample of 18 countries to be 1 (Cobb—Douglas) and for
their high-k subsample of 21 countries to be 1.089. If this small difference persists,
then it will have profound implications for growth performance. In the absence of
technical progress, countries that belong to the first group will stagnate at a fixed
level of per capita income, whereas countries that belong to the second group will
grow without bound.

NOTES

1. See Nakamura and Nakamura (2008) on how a CES production function in which the elasticity
of substitution exceeds unity can arise endogenously as the envelope of Cobb—Douglas production
functions.

2. See also Turnovsky (2008) for an analysis of how the elasticity of factor substitution affects the
speed of convergence, the distribution of income and wealth, and the relative merits of tied and untied
foreign aid.

3. As we argue later in the paper, the Morishima elasticity of substitution is the more appropriate
concept in the present context.

4. Our results hold in the Solow model as well, because in that model lim;_, fc/k =
slimg_ oo f(k)/ k] — 8, where limg_ oo [ f (k) / k] = limg_ o0 f, (k), s denotes the (exogenous) saving
rate, and 8 is the depreciation rate. If limg_, oo f/ (k) > 8/s > 0, then there will be endogenous growth.
We also note that in a standard overlapping-generations model unbounded growth cannot exist in the
presence of a convex technology, such as the one considered here [see Boldrin (1992) and Jones and
Manuelli (1992)].

5. We note that the existence of limy_, », o (k) is not actually required for the proof of Theorem 1.
Following basically the same steps, one can show that if there exists k; such that for every k > k;
o (k) > 1, then limg_ o0 f (k) > 0.

6. Nakamura and Nakamura (2008) provide some micro foundations for this process.

7. Alternatively, because limy_, oo f’(k) > 0, it follows that limy_,~, f(k) = co. Hence one can
apply L’Hopital’s rule to get limy_, o f(k)/k = limg_, f/ (k).
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8. For a discussion on possible extensions and reinterpretations of the model so as to avoid the
undesirable property that labor’s share in income converges to zero see Jones and Manuelli (1997,
pp. 84-87).

9. Functions of the form 1 + b/k", where n is a positive integer and b > 0, either yield
limg s 00 f/ (k) = 0 or do not yield an explicit functional form for the production function.

10. The reader can easily verify that if » = 0, then (11) gives the Cobb—Douglas production
function.
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