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Abstract

First-passage times (FPTs) of two-dimensional Brownian motion have many applications
in quantitative finance. However, despite various attempts since the 1960s, there are
few analytical solutions available. By solving a nonhomogeneous modified Helmholtz
equation in an infinite wedge, we find analytical solutions for the Laplace transforms of
FPTs; these Laplace transforms can be inverted numerically. The FPT problems lead to
a class of bivariate exponential distributions which are absolute continuous but do not
have the memoryless property. We also prove that the density of the absolute difference
of FPTs tends to ∞ if and only if the correlation between the two Brownian motions
is positive.
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1. Introduction

Consider a two-dimensional Brownian motion

Xi(t) = xi + μit + σiWi(t), xi > 0, i = 1, 2,

where Wi(t) are standard one-dimensional Brownian motions and cov(W1(t), W2(t)) = ρt ,
−1 < ρ < 1. Let τi = inf t≥0{t : Xi(t) = 0}, i = 1, 2. We are interested in computing the
following quantities:

(i) the joint distribution of first-passage times

P
(x1,x2)(τ1 ≤ t1, τ2 ≤ t2); (1)

(ii) the distribution
P

(x1,x2)(|τ1 − τ2| ≤ t); (2)

(iii) the distribution
P

(x1,x2)(τ ∗ ≤ t), where τ ∗ = min(τ1, τ2); (3)

(iv) the joint moment
E

(0,0)[(−J1(εp))(−J2(εp))]; (4)

(v) the joint moment
E

(0,0)[(−J1(εp1))(−J2(εp2))]. (5)
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1046 S. KOU AND H. ZHONG

Here, Ji(t) := min0≤s≤t Xi(s), i = 1, 2, εp denotes an exponential random variable with
rate p, and εp1 and εp2 are independent. Both exponential random variables are independent
of the Brownian motions. Throughout the paper, P

(x1,x2) and E
(x1,x2) denote the conditional

probability and the conditional expectation when the Brownian motion starts from (x1, x2),
respectively.

There are numerous applications for both (1) and (3) in finance. In structural models for
credit risk, defaults are modeled as first-passage times of (geometric) Brownian motions or other
more general jump-diffusion processes; see, for example, [17]. Structural models have been
used to study default correlations and interactions among different companies; see [13] and [28]
for models where investors have complete information, and [10] for an incomplete-information
model. In particular, in [6] the authors characterized the correlation structure of multiple firms
given incomplete information. As pointed out in [6], such investigation may involve significant
computational costs; the numerical methods proposed allowed the authors of [6] to mitigate
this computational problem. From (3), τ ∗ was used in [14] in pricing double lookback options.
For applications of the structured model in credit risk and default correlations, we refer the
reader to [6], [10], [13], [15], and [28]. For applications of pricing double lookback, see [14].

Partly motivated by the applications above, existing literature provide some solutions to
(1)–(5) using different approaches; see Table 1. Note that, except for [14] and [24], in all the
other references it is essentially assumed that μ1 = μ2 = 0. The difficulty partly lies in the
fact that with nonzero drifts, the two-dimensional Brownian motion ceases to be a conformal
martingale (see [20]).

In this paper we obtain the Laplace transform (or joint Laplace transform) of (1)–(3) by
solving a nonhomogeneous modified Helmholtz equation in an infinite wedge. To a large
extent, whether a partial differential equation (PDE) is solvable analytically depends on the
boundary conditions. For the above modified Helmholtz equations, if the boundary conditions
are on a disk then the analytical solution is well known. However, in the problem at hand,
the boundary conditions are on an infinite wedge with an angle, rendering the PDE problem
difficult to solve. Nevertheless, we give two solutions to the PDE problem, one based on the
finite Fourier transform and the other on the Kontorovich–Lebedev transform (by extending the
method used in [23] to the case of arbitrary drifts). The finite Fourier transform leads to a more
efficient numerical algorithm to compute the distribution functions; see Section 3.

Apart from the contributions listed earlier, there are other new results in this paper. First, we
compute P

(x1,x2)(τ1 ≤ t1, τ2 ≤ t2) by numerical Laplace transform inversion, based on which
we extend the study of default correlation in [28] to the case of arbitrary drifts (see Section 3).
Secondly, we prove that the density of |τ1 − τ2| with τ1, τ2 < ∞ tends to ∞ if and only if
ρ > 0 (see Theorem 3). Finally, we point out a link between the first-passage times and a class
of bivariate exponential distribution that is absolutely continuous but does not have the lack of
memory property; see Section 5.

The rest of the paper is organized as follows. A general PDE problem is solved in Section 2,
where we also verify the existence and uniqueness of the solution. As special cases, the joint
Laplace transform E

(x1,x2)[e−p1τ1−p2τ2 ], the joint Laplace transform E
(x1,x2)[e−qτ∗−s|τ1−τ2|],

and the Laplace transform E
(x1,x2)[e−pτ∗ ] are given in Section 2.5. We present a numerical

algorithm to compute P
(x1,x2)(τ1 ≤ t1, τ2 ≤ t2) as well as an application to study default

correlation in Section 3. The Laplace transform of |τ1 − τ2| is given in Section 4, where
we also discuss the property of the density of |τ1 − τ2| near 0. Section 5 provides a link
between the first-passage times and a class of bivariate exponential distributions. For all proofs
of lemmas and theorems, we refer the reader to [29].
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First-passage times of two-dimensional Brownian motion 1047

Table 1: In this table we summarize existing results on the first-passage time problem of correlated
Brownian motions (except Sacerdote et al. [24], in which several joint densities in a more general
setting of diffusion processes were obtained), where ‘not available’ is denoted as ‘—’. In the
first row (i) means P

(x1,x2)(|τ1 − τ2| ≤ t), (ii) means E
(0,0)[(−J1(εp))(−J2(εp))], and (iii) means

E
(0,0)[(−J1(εp1))(−J2(εp2 ))] (we also abbreviate ‘arbitrary drifts’ to ‘a.d.’). Notably, the numerical

efficiency of our methods in calculating P
(x1,x2)(min(τ1, τ2) ≤ t) and P

(x1,x2)(τ1 ≤ t1, τ2 ≤ t2) for the
case of μ2

1 + μ2
2 > 0 is independently demonstrated in Ching et al. [6].

P
(x1,x2)(min(τ1, τ2) ≤ t) P

(x1,x2)(τ1 ≤ t1, τ2 ≤ t2) (i) (ii) (iii)

μ1 = μ2 = 0μ2
1 + μ2

2 > 0μ1 = μ2 = 0μ2
1 + μ2

2 > 0

Spitzer [26] Integral — — — — — —
transform

Iyengar [16] Analytical — Joint — — — —
expression density

He et al. [14] Analytical Analytical — — — — —
expression expression
with joint with joint

distribution distribution
(two-dim. (two-dim.
integral) integral)

Zhou [28] Analytical — — — — — —
expression

Rogers and Laplace — — — — Analytical —
Shepp [23] transform expression

(μ1 = μ2 = 0)
(a.d.)

Metzler [20] Correct — Correct Monte Monte — —
typos in typos in Carlo Carlo

[16] [16] method method
(a.d.)

Sacerdote — — Analytical Analytical — — —
et al. [24] expression expression

of density of density
This paper Laplace Laplace Laplace Laplace Laplace Analytical Analytical

transform transform transform transform transform expression expression
(a.d.) (a.d.) (a.d.)

2. Main results

2.1. Basic ideas

To obtain the required quantities mentioned above, we shall solve the following nonhomo-
geneous PDE:

1

2
σ 2

1
∂2u

∂x2
1

+ ρσ1σ2
∂2u

∂x1∂x2
+ 1

2
σ 2

2
∂2u

∂x2
2

+ μ1
∂u

∂x1
+ μ2

∂u

∂x2
= cu, x1, x2 > 0, (6)

with a nonhomogeneous boundary condition

u(x1, x2)|x1=0 = e−D2x2 , u(x1, x2)|x2=0 = e−D1x1 , (7)
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and uniform boundedness on the whole domain

|u| ≤ C (for some constant C > 1 not depending on x1 and x2). (8)

The PDE (6)–(8) is a nonhomogeneous, modified Helmholtz equation in the positive quadrant
(or in an infinite wedge, if one switches to polar coordinates and removes the cross correla-
tion term in the PDE, as we shall see shortly). To a large extent, whether one can solve a
PDE analytically depends on the boundary conditions. For example, for the above modified
Helmholtz equations, the analytical solution is well known if the boundary conditions are on a
disk. However, the main difficulty here is that the boundary conditions are on an infinite wedge
with an angle, making the PDE difficult to solve analytically.

In the existing literature, there are various numerical schemes available for solving modified
Helmholtz equations with some limitations.

• Many of them are performed on a case-by-case basis. For example, the authors in [3]
solve the problem when the angle of the wedge is π/4. The results of [5] and [18] provide
fast numerical algorithms, but only on bounded domains.

• None of the results listed above can guarantee that the numerical solution is uniformly
bounded as in (8) and, hence, a bona fide Laplace transform (see Theorem 2).

We present two approaches to solve the aforementioned PDE, one by the finite Fourier
transform and the other by the Kontorovich–Lebedev transform. On the one hand, the finite
Fourier transform is obtained by moving the nonhomogeneous boundary conditions inside
the PDE itself (see Lemma 1), from which the nonhomogeneous PDE with homogeneous
boundary conditions can be solved by using the finite Fourier transform. On the other hand,
the Kontorovich–Lebedev transform is used to match the nonhomogeneous boundary condition
exactly, thanks to an algebraic identity; see [29, Equation (C.1)].

After solving the PDE in two ways, several issues remain.

• Is the solution to the PDE unique?

• Do the two approaches yield the same solution?

• Which solution is better?

For the first question, we prove that the solution is unique using a martingale argument;
see Theorem 1 below. For the second question, the two approaches aforementioned yield
the same unique solution; see Theorem 2 below. For the third question, the finite Fourier
transform approach is better in terms of numerical calculation (see Section 3.1) and has broader
applicability in some cases (see Remark 2). The Kontorovich–Lebedev transform, on the other
hand, is convenient in verifying the uniformly boundedness of solutions; see the proof of the
uniform boundedness of u2 in [29, Lemma 3].

2.2. Removing the boundary conditions

Introduce the polar coordinates r and θ :

r =
√

z2
1 + z2

2, tan θ = z2

z1
, z1 = 1√

1 − ρ2

(
x1

σ1
− ρ

x2

σ2

)
, z2 = x2

σ2
,

and α ∈ [0, π) (note that x2 > 0) defined via

sin α =
√

1 − ρ2, cos α = −ρ. (9)
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Define the constants a, A and the function G as

a ≡ a(c) =
√

2c + γ 2
1 + γ 2

2 , γ1 = μ1/σ1 − ρμ2/σ2√
1 − ρ2

, γ2 = μ2

σ2
, (10)

A ≡ A(c, D1, D2) = σ 2
1 D2

1 + 2ρσ1σ2D1D2 + σ 2
2 D2

2 − 2μ1D1 − 2μ2D2 − 2c,

G(θ) := −γ1 cos θ − γ2 sin θ + D1σ1 sin(α − θ) + D2σ2 sin θ. (11)

Lemma 1. (i) (Removing the boundary conditions.) Any solution, if it exists, to the PDE

1

2

(
∂2k

∂r2 + 1

r

∂k

∂r
+ 1

r2

∂2k

∂θ2

)
= 1

2
a2k, (12)

with a nonhomogeneous boundary condition on an infinite wedge

k(r, θ)|θ=0 = e−G(0)r , k(r, θ)|θ=α = e−G(α)r , (13)

is equivalent to a solution to

1

2

(
∂2h

∂r2 + 1

r

∂h

∂r
+ 1

r2

∂2h

∂θ2

)
= 1

2
a2h − 1

2
Ae−G(θ)r , (14)

with a homogeneous boundary condition on an infinite wedge

h(r, θ)|θ=0 = 0, h(r, θ)|θ=α = 0, (15)

via
h(r, θ) = k(r, θ) − e−G(θ)r . (16)

(ii) (Change of variables.) Any solution to (12) and (13), if it exists, leads to a solution to (6)
and (7), i.e.

u(x1, x2) = e−(γ1 cos θ+γ2 sin θ)rk(r, θ).

Equivalently, any solution to (14) and (15), if it exists, leads to a solution to (6) and (7), i.e.

u(x1, x2) = e−(γ1 cos θ+γ2 sin θ)rh(r, θ) + e−D1x1−D2x2 .

Proof. See [29]. �
Remark 1. Though simple, (11) and (16) are among the key steps in this paper, from which the
removing of the boundary conditions in (15) is made possible, partly because the two boundary
conditions in (7) and (13) are both exponential functions and the derivatives of exponential
functions are still exponential functions. Not surprisingly, it took the authors some time to find
these simple equations.

2.3. Uniqueness and stochastic representation

To find an expression for the unique solution to the PDE problem, we need the following
definition and conditions.

Definition 1. Introduce p1, p2, and v as p1 ≡ p1(c, D1, D2) := 1
4σ 2

1 D2
1 − 1

2μ1D1 − 1
4σ 2

2 D2
2 +

1
2μ2D2 + 1

2c, p2 ≡ p2(c, D1, D2) := 1
4σ 2

2 D2
2 − 1

2μ2D2 − 1
4σ 2

1 D2
1 + 1

2μ1D1 + 1
2c, and

v ≡ v(c, D1, D2) := 1
4σ 2

1 D2
1 − 1

2μ1D1 + 1
4σ 2

2 D2
2 − 1

2μ2D2 − 1
2c, or, equivalently,

c(p1, p2) = p1 + p2, Dj (pj , v) =
√

μ2
j + 2(pj + v)σ 2

j + μj

σ 2
j

, j = 1, 2. (17)
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Note that, for the one-dimensional first-passage time, we have the Laplace transform

E
x(e−pτ ) = e−((μ2+2σ 2p)1/2+μ)x/σ 2

, x > 0.

This is the motivation for Di .

Condition 1. We have

(i) p1 + p2 > 0 and

(ii) min(p1, p2) + v > 0 (so that c, D1, and D2 are positive).

Condition 2. We have

(i) p1 + p2 > 0 and

(ii) min(p1, p2) + v ≥ M , where

M = max

(
0,

1

2

[(
2(|γ1| + |γ2|)

sin α
+ 1 − μ1

σ1

)2

−
(

μ1

σ1

)2]
,

1

2

[(
2(|γ1| + |γ2|)

sin α
+ 1 − μ2

σ2

)2

−
(

μ2

σ2

)2])

and α, γ1, γ2 are defined in (9) and (10).

There are cases in which Condition 1 holds but Condition 2 does not; for example, take
p1 = p2 = v = 1

2 (M − 1). There are also many cases of interest where (p1, p2, v) satisfies
Condition 2; see Section 2.5.

Theorem 1. (Uniqueness and stochastic representation.) Suppose that Condition 1 holds. Then
any solution to (6)–(8), if it exists, is unique and has the following stochastic representation:

u(x1, x2) = E
(x1,x2)[e−p1τ1−p2τ2−v|τ2−τ1|].

Proof. See [29]. �
2.4. Existence and analytical solutions

Theorem 2. (Existence and the analytical solution.) Suppose that Condition 2 holds (and,
hence, Condition 1 also holds). Then the unique solution u1 to the PDE problem (6)–(8) is
given by

u1(x1, x2) := e−(γ1 cos θ+γ2 sin θ)r

( ∞∑
n=1

√
2

α
sin(νnθ)Un(r)

)
+ e−D1x1−D2x2 . (18)

In addition, another representation of u1(x1, x2) is given by

u1(x1, x2) = u2(x1, x2) : = e−(γ1 cos θ+γ2 sin θ)rk(r, θ).

Here,

νn = nπ

α
≥ n, H1 = G(0) = −γ1 + D1σ1 sin α,

H2 = G(α) = −γ1 cos α − γ2 sin α + D2σ2 sin α,
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Also,

Un(r) = 1

2
A(c, D1, D2)

∫ α

η=0

√
2

α
sin(νnη)

[
Kνn(ar)

∫ r

l=0
e−G(η)l lIνn(al) dl

+ Iνn(ar)

∫ ∞

l=r

e−G(η)l lKνn(al) dl

]
dη,

k(r, θ) = 2

π

∫ ∞

0

Kiν(ar)

sinh(αν)
[cosh(β1ν) sinh((α − θ)ν) + cosh(β2ν) sinh(θν)] dν,

βj (c) = arccos

(
Hj

a(c)

)
= −i log

(
Hj

a(c)
+ i

√
1 − H 2

j

a(c)2

)
, j = 1, 2,

and Iν(·) and Kν(·) are modified Bessel functions with order ν of the first kind and the second
kind, respectively. Note that Hi depends on Di , which in turns depends on p1, p2, and v

via (17).

Proof. See [29]. �

For the two representations in Theorem 2, u2 is easier for proving certain theoretical
properties; for example, it is easier to show the uniform boundedness of u2 (see [29, Lemma
3]), while u1 is better in numerical calculation. More precisely, for u1 by the finite Fourier
transform, we can compute the double integrals inUn(r) easily by using the MATLAB® function
‘quadgk’, based on an adaptive Gauss–Kronrod quadrature; see [25]. However, for u2 we need
to be able to calculate the modified Bessel function of the second kind with both degrees of
freedom and the argument being complex, because the Laplace inversion algorithm requires
the function evaluated at complex values.

This leads to difficulties in implementing the expression u2.

• Although there are ways of computing Kix(ar) or the Kontorovich–Lebedev transform
directly (see, for example, [9]), it seems that none of the authors has dealt with the case
when the argument of Kix(ar) is complex.

• There are also a few asymptotic expansions of Kix(ar), but numerical procedures based
on these formulae do not seem stable in our numerical experiments. We find that it is
better to use the following definition of Kiν(·), which is well defined and numerically
stable when the argument of Kiν(ar) is complex: Kiν(ar) = ∫ ∞

0 e−ar cosh(t) cos(νt) dt.

Hence, the expression in u2 again becomes a double infinite integral, one with t and the other
with ν. The evaluation of the double integral in u2 takes longer than that in u1, partly due to the
combination of exponential, cosh, and the oscillation function cos in the integrand of Kiν(ar).

2.5. Special cases

Theorem 2 above reduces to several special cases with different choices of parameters.
Case 1. When v = 0 and min(p1, p2) ≥ M . Then p1 + p2 > 0, min(p1, p2) + v ≥ M

(Condition 2 holds) and the special case is

L(x1, x2) = E
(x1,x2)[e−p1τ1−p2τ2 ]. (19)

In what follows, we let L1 be the expression by u1 in Theorem 2 (using the finite Fourier
transform) and L2 the expression by u2 (using the Kontorovich–Lebedev transform).
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Case 2. When p1 = p2 = 1
2q, v = s − 1

2q, and q > 0, s ≥ M . Then p1 + p2 = q > 0,
min(p1, p2) + v = s ≥ M (Condition 2 holds), and p1τ1 + p2τ2 + v|τ1 − τ2| = 1

2q(2τ ∗ +
|τ1 − τ2|) + (s − 1

2q)|τ1 − τ2| = qτ ∗ + s|τ1 − τ2|, and the special case is

T (x1, x2) = E
(x1,x2)[e−qτ∗−s|τ2−τ1|]. (20)

In what follows, we let T1 be the expression by u1 in Theorem 2 (using the finite Fourier
transform) and T2 the expression by u2 (using the Kontorovich–Lebedev transform).

Case 3. Let p1 = p2 = v = 1
2p and p ≥ M . Then p1 + p2 = p > 0, min(p1, p2) + v =

p ≥ M (Condition 2 holds), and p1τ1+p2τ2+v|τ1−τ2| = 1
2p(2τ ∗+|τ1−τ2|)+ 1

2p|τ1−τ2| =
1
2p(2τ̃ ) = pτ̃ , where τ̃ := max(τ1, τ2). In particular,

E
(x1,x2)[e−pτ̃ ] = 2

π
e−(γ1 cos θ+γ2 sin θ)r

∫ ∞

ν=0

Kiν(ar)

sinh(αν)
[cosh(β1ν) sinh((α − η)ν)

+ cosh(β2ν) sinh(ην)] dν. (21)

In the special case of μ1 = μ2 = 0 and σ1 = σ2 = 1, the expression for E
(x1,x2)(e−pτ̃ )

simplifies to

E
(x1,x2)(e−pτ̃ ) = 2

π

∫ ∞

0

Kiν(
√

2pr)

sinh(αν)

[
cosh

((
π

2
− α

)
ν

)
(sinh((α − θ)ν) + sinh(θν))

]
dν

= 2

π

∫ ∞

0

Kiν(
√

2pr)

cosh(αν/2)

[
cosh

((
π

2
− α

)
ν

)
cosh

(
αν

2
− θν

)]
dν,

where in the second equality we have made use of the following two identities: sinh((α −
θ)ν) + sinh(θν) = 2 sin(αν/2) cosh(αν/2 − θν) and sinh(αν) = 2 sinh(αν/2) cosh(αν/2).

Case 4. The special case L̃(x1, x2) = E
(x1,x2)(e−pτ∗

). This can be expressed as

E
(x1,x2)(e−pτ∗

) = E
x1(e−pτ1) + E

x2(e−pτ2) − E
(x1,x2)(e−pτ̃ ). (22)

In what follows, we let L̃1 be the expression by u1 in Theorem 2 (using the finite Fourier
transform) and L̃2 the expression by u2 (using the Kontorovich–Lebedev transform).

Remark 2. An advantage of the finite Fourier transform can also be seen by comparing the
expressions of T1 and T2 in (20). In particular, T2 is not well defined when μ1 = μ2 = 0 and
q ↓ 0. To see that, note that, by definition, a(c) = a(q) = (2q + γ 2

1 + γ 2
2 )1/2 ↓ 0 in this case,

which implies that β1, β2 become i · ∞ while cosh(i · ∞) is not well defined. To the contrary,
T1 by the finite Fourier transform is well defined for arbitrary γ1 and γ2 when q ↓ 0.

3. Numerical computation of P(τ1 ≤ t1, τ2 ≤ t2) and application to default correlation

3.1. Numerical results

To obtain the joint probability distribution of τ1 and τ2, numerical inversion of the Laplace
transform is applied on both the formulae of L1(x1, x2) and L2(x1, x2) in (19), which are special
cases of u1 and u2 in Theorem 2, respectively. The double Laplace inversion formula is given
in [4] (which extends [1]). Note that here the technical condition in Section 2.5 that p1 and p2
are sufficiently large (related to Condition 2 and [29, Lemma 2]) does not impose obstacles in
devising the inversion algorithm. This is because the double inversion algorithm evaluates the
joint Laplace transform at complex values with large real parts; see [4] for more detail in this
regard.

To obtain a benchmark, the joint probability distribution function is calculated using Monte
Carlo simulation. We use 2000, 4000, and 8000 time-discretization grids, and perform the
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Richardson extrapolation of order 1
2 to reduce discretization bias. For each probability, 100 000

two-dimensional Brownian paths are simulated.
One can see from Table 2 that probabilities obtained from inverting joint Laplace transforms

align well with the benchmark for various combinations of correlations (ρ = 0.2, 0.5, 0.8),
drifts (μ1 = 0.2, −0.2, μ2 = 0.15, −0.15), and volatilities (σ1 = σ2 = 0.55, 0.2).

Table 2: We obtain P
(x1,x2)(τ1 ≤ t1, τ2 ≤ t2) via the inversion of the joint Laplace transform (column L1

(FT) and by the finite Fourier transform, and column L2 (KL) by the Kontorovich–Lebedev transform),
compared with those obtained by the Monte Carlo simulation (column MC) and by Sacerdote et al.
[24, Equation (22)] (column STZ), when t1 = 0.3, t2 = 0.5 with various combinations of correlations
(ρ = 0.2, 0.5, 0.8), drifts (μ1 = 0.2, −0.2, μ2 = 0.15, −0.15), and volatilities (σ1 = σ2 = 0.55, 0.2).
Here, the probabilities in MC are computed using 100 000 Brownian paths with 2000, 4000, and 8000
time-discretization grids. The Richardson extrapolation of order 1

2 is exploited to reduce discretization
bias in the simulation. Starting points are set to be x1 = x2 = ln(1.2) = 0.1823. The CPU time is in
seconds. Each number in parenthesis in the column of MC is the standard deviation of the Monte Carlo

simulation.

High volatilities: σ1 = σ2 = 0.55

μ1 μ2
L1 CPU L2 CPU

MC (std)
CPU

STZ
CPU

(FT) time (KL) time time time

ρ = 0.2

0.2 0.15 0.3055 115.6 0.3056 519.5 0.3053 (0.0015) 22240.7 0.3053 3089.2
−0.2 0.15 0.3804 115.3 0.3809 514.6 0.3823 (0.0015) 21847.3 0.3805 3107.1

0.2 −0.15 0.3583 115.3 0.3676 512.2 0.3579 (0.0016) 21344.4 0.3572 3087.4
−0.2 −0.15 0.4480 115.1 0.4483 515.8 0.4486 (0.0016) 21397.7 0.4479 3092.9

ρ = 0.5

0.2 0.15 0.3489 112.5 0.3498 515.5 0.3485 (0.0015) 21381.4 0.3496 3056.1
−0.2 0.15 0.4243 112.2 0.4246 513.7 0.4238 (0.0015) 21592.5 0.4239 3065.5

0.2 −0.15 0.3978 112.0 0.3958 515.4 0.3966 (0.0016) 21626.3 0.3999 3062.0
−0.2 −0.15 0.4860 112.0 0.4875 512.8 0.4870 (0.0015) 20387.5 0.4885 3060.4

ρ = 0.8

0.2 0.15 0.4055 116.1 0.4054 520.5 0.4041 (0.0016) 21580.6 0.4036 3599.8
−0.2 0.15 0.4789 115.0 0.4801 520.7 0.4796 (0.0016) 21775.4 0.4783 3585.5

0.2 −0.15 0.4409 117.6 0.4408 519.5 0.4408 (0.0016) 20526.6 0.4405 3576.3
−0.2 −0.15 0.5353 115.3 0.5362 527.3 0.5354 (0.0016) 21487.6 0.5355 3597.8

Low volatilities: σ1 = σ2 = 0.2

μ1 μ2
L1 CPU L2 CPU

MC (std)
CPU

STZ
CPU

(FT) time (KL) time time time

ρ = 0.2

0.2 0.15 0.0059 115.9 0.0058 472.5 0.0061 (0.0004) 18100.5 0.0057 3134.0
−0.2 0.15 0.0288 115.0 0.0287 490.5 0.0285 (0.0006) 17101.2 0.0283 3116.1

0.2 −0.15 0.0195 114.9 0.0198 464.4 0.0192 (0.0007) 17350.2 0.0191 3115.8
−0.2 −0.15 0.0960 114.8 0.0954 490.4 0.0951 (0.0005) 15830.4 0.0944 3122.3

ρ = 0.5

0.2 0.15 0.0122 127.8 0.0125 495.8 0.0122 (0.0007) 17223.5 0.0119 3061.1
−0.2 0.15 0.0462 127.6 0.0463 487.1 0.0460 (0.0008) 16235.3 0.0450 3063.8

0.2 −0.15 0.0258 124.5 0.0261 488.6 0.0255 (0.0005) 16485.0 0.0250 3061.5
−0.2 −0.15 0.1297 122.5 0.1298 480.6 0.1292 (0.0006) 14997.9 0.1296 3081.1

ρ = 0.8

0.2 0.15 0.0224 122.6 0.0224 491.3 0.0226 (0.0007) 15840.5 0.0216 3645.6
−0.2 0.15 0.0679 122.7 0.0685 498.3 0.0679 (0.0006) 14967.5 0.0670 3769.9

0.2 −0.15 0.0330 123.1 0.0335 493.5 0.0334 (0.0007) 15204.0 0.0338 3803.6
−0.2 −0.15 0.1667 122.2 0.1668 503.9 0.1660 (0.0008) 13601.6 0.1666 3588.6
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However, the differences for the processor time (CPU) are significant. Given a set of parameters,
it typically takes less than 2 minutes for the algorithm using L1 to compute one probability and
7–9 minutes for the algorithm using L2, while Monte Carlo simulation with the Richardson
extrapolation usually takes 4–6 hours.

We also compare the accuracy and efficiency of our method to the results in [24], where the
joint density function of (τ1, τ2) (Equation (22) therein) is obtained via an interesting conditional
density argument and a solution of a two-dimensional Kolmogorov forward equation. To obtain
the joint probability function from the joint density in [24], one can, in principle, perform a
double numerical summation, i.e.

P(τ1 ≤ t1, τ2 ≤ t2) =
∫ t1

s1=0

∫ t2

s2=0
fτ1,τ2(s1, s2) ds1 ds2 ≈

N∑
m=1

N∑
n=1

fτ1,τ2

(
mt1

N
,
nt2

N

)
t1t2

N2 ,

where fτ1,τ2 is the joint density function. However, one challenge of implementing the double
summation is that the joint density functionfτ1,τ2(s1, s2) →∞when s1 → s2 andρ > 0. There-
fore, whenever mt1/N = nt2/N , we replace fτ1,τ2(mt1/N, nt2/N) by fτ1,τ2(mt1/N, nt2/N +
δ), where δ is 10−5 in the numerical experiment. To achieve comparable accuracy, N = 120 is
used (and n = 10 is used to compute the infinite sum for Gij in [24, Equation (2.2)]). The last
two columns in Table 2 show that our numerical results match those produced by [24, Equation
(22)], while our method (via either the finite Fourier transform or the Kontorovich–Lebedev
transform) is much faster, partly because our formula computes the probability via the Laplace
transform, thus avoiding the singularity of the density.

Furthermore, the steps that lead to the solution in [24] are not entirely rigorous. For example,
the PDE problem involves the Dirac delta function in the initial condition and thus it is not
immediately clear whether the equation has a unique solution via bounded martingale argu-
ments. Even when there is a unique solution it is not clear whether that unique solution
admits the required stochastic representation. In this paper we attempt to deal with these issues
rigorously. For example, after showing the uniqueness for uniformly bounded solutions, via the
stochastic representation using a martingale argument in Theorem 1, we put significant effort
into proving that the two solutions u1 and u2 in Theorem 2 are all uniformly bounded and are
the same.

3.2. Application to default correlation

In [28], default correlation is defined as

corr(1(τ1 ≤ t), 1(τ2 ≤ t)) := E
(x1,x2)[1(τ1 ≤ t) 1(τ2 ≤ t)] − E

x1 [1(τ1 ≤ t)]Ex2 [1(τ2 ≤ t)]√
var(1(τ1 ≤ t)) var(1(τ2 ≤ t))

= P
(x1,x2)(τ1 ≤ t and τ2 ≤ t) − P

x1(τ1 ≤ t)Px2(τ2 ≤ t)√
Px1(τ1 ≤ t)(1 − Px1(τ1 ≤ t))Px2(τ2 ≤ t)(1 − Px2(τ2 ≤ t))

,

where 1 is the indicator function. In [28], the above was computed in the special case of
μ1 = μ2 = 0. In this section we extend this study by checking whether the correlation will
change when μ1 and μ2 are nonzero. Also, we consider default correlation for τ1, τ2 in different
horizons, where t1 �= t2 in the following:

corr(1(τ1 ≤ t1), 1(τ2 ≤ t2))

= P
(x1,x2)(τ1 ≤ t1 and τ2 ≤ t2) − P

x1(τ1 ≤ t1)P
x2(τ2 ≤ t2)√

Px1(τ1 ≤ t1)(1 − Px1(τ1 ≤ t2))Px2(τ2 ≤ t2)(1 − Px2(τ2 ≤ t2))
.
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The results are summarized in Tables 3 and 4. It appears that nonzero drifts can have a
significant impact on default correlations.

Table 3: Default correlation corr(1(τ1 ≤ t), 1(τ2 ≤ t)) (in percent) with different combinations of drifts
and maturities. Parameters used are the same as in [28]. The numbers in bold are also computed in [28].

x1 = x2 = ln(5), σ1 = σ2 = 30%, and ρ = 40%

t1 = 2

t2 = 1 t2 = 2 t2 = 3 t3 = 4 t2 = 5

μ1 = μ2 = 0 0.0198% 1.1723 % 1.3466% 1.2564% 1.0924%
μ1 = μ2 = 30% 0.0012% 0.0683% 0.0643% 0.0548% 0.0482%
μ1 = μ2 = −30% 0.1699% 8.4898% 9.2264% 7.1381% 4.4529%

t1 = 4

t2 = 1 t2 = 2 t2 = 3 t3 = 4 t2 = 5

μ1 = μ2 = 0 0.0026% 1.2564% 4.0316% 6.5837% 7.0248%
μ1 = μ2 = 30% 0.0003% 0.0548% 0.1783% 0.2715% 0.2748%
μ1 = μ2 = −30% −0.1495% 7.1381% 18.2286% 24.6885% 22.9000%

t1 = 5

t2 = 1 t2 = 2 t2 = 3 t3 = 4 t2 = 5

μ1 = μ2 = 0 0.0001% 1.0924% 3.9462% 7.0248% 9.1974%
μ1 = μ2 = 30% 0.0003% 0.0482% 0.1643% 0.2748% 0.3328%
μ1 = μ2 = −30% −0.2713% 4.4529% 15.8324% 22.9000% 25.8568%

Table 4: Default correlation corr(1(τ1 ≤ t), 1(τ2 ≤ t)) (in percent) with different combinations of drifts
and maturities.

x1 = x2 = ln(1.2), σ1 = σ2 = 55%, and ρ = 50%

t1 = 2

t2 = 1 t2 = 2 t2 = 3 t3 = 4 t2 = 5

μ1 = μ2 = 0 24.8% 25.5% 24.0% 22.7% 21.7%
μ1 = μ2 = 30% 28.2% 28.6% 28.1% 27.7% 27.5%
μ1 = μ2 = −30% 19.0% 19.8% 16.7% 14.3% 12.6%

t1 = 4

t2 = 1 t2 = 2 t2 = 3 t3 = 4 t2 = 5

μ1 = μ2 = 0 20.8% 22.7% 23.2% 22.9% 22.3%
μ1 = μ2 = 30% 26.8% 27.7% 27.9% 27.8% 27.7%
μ1 = μ2 = −30% 11.9% 14.3% 14.9% 14.3% 12.8%

t1 = 5

t2 = 1 t2 = 2 t2 = 3 t3 = 4 t2 = 5

μ1 = μ2 = 0 19.7% 21.7% 22.1% 22.3% 22.1%
μ1 = μ2 = 30% 26.5% 27.5% 27.7% 27.7% 27.6%
μ1 = μ2 = −30% 10.0% 12.6% 12.5% 12.8% 12.5%
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4. The density of |τ2 − τ1|
Suppose that s ≥ M such that (20) holds. Then q ↓ 0 yields the Laplace transform of

|τ1 − τ2| with τ1, τ2 < ∞, i.e.

E
(x1,x2)(e−s|τ2−τ1| 1(τ1, τ2 < ∞))

= e−(γ1 cos θ+γ2 sin θ)r

( ∞∑
n=1

√
2

α
sin(νnθ)Vn(r)

)
+ e−D1(0,s)x1−D2(0,s)x2 , (23)

where
Vn(r) = (2s + ρσ1σ2D1(0, s)D2(0, s))

×
∫ α

η=0

√
2

α
sin(νnη)

[
Kνn(a(0)r)

∫ r

l=0
e−G(η)l lIνn(a(0)l) dl

+ Iνn(a(0)r)

∫ ∞

l=r

e−G(η)l lKνn(a(0)l) dl

]
dη,

and all other parameters and functions are defined in Definition 1, (9), and (10). When μ1 =
μ2 = 0, a(0) = 0 and the modified Helmholtz equation degenerates to a Helmholtz equation;

Figure 1: The distribution function (upper) and density (lower) of |τ1 − τ2| when ρ = 0.2, 0.5, and 0.8.
We perform numerical Laplace inversion on (23). The correlated zero-drifted Brownian motion starts at
x1 = x2 = log(1.2) = 0.1823. It can be seen that numerically all three distribution functions tend to 0
as t → 0, while all three density functions seem to tend to ∞ as t → 0. This is proved rigorously in

Theorem 3.
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as a result, in this case the expression of Vn(r) takes a similar form but no special function is
involved, i.e.

Vn(r) = 2s + 2ρs

νn

∫ α

η=0

√
2

α
sin(νnη)

[∫ r

l=0
e−G(η)l l

(
l

r

)νn

dl +
∫ ∞

l=r

e−G(η)l l

(
r

l

)νn

dl

]
dη.

Numerical inversion of (23) yields the distribution function P
(x1,x2)(|τ1 − τ2| ≤ t, τ1, τ2 <

∞) and the density functions f|τ1−τ2|(t) dt := P
(x1,x2)(|τ1 − τ2| ∈ dt, τ1, τ2 < ∞); see

Figure 1.

Theorem 3. For arbitrary drifts μ1 and μ2,

(i) P
(x1,x2)(τ1 = τ2, τ1, τ2 < ∞) = 0 for any ρ ∈ (−1, 1);

(ii) f|τ1−τ2|(0+) = ∞ if and only if ρ > 0.

Thus, near 0, the distribution function always tends to 0 and the density function may tend
to ∞.

Proof. See [29]. �

5. A class of bivariate exponential distributions

In this section we point out that special cases of solutions in Section 2.5 lead to a class
of bivariate exponential distributions (BVEs). To obtain some insight, we first review the
first-passage time of the Brownian motion problem in the one-dimensional case. Let εp

be an exponential random variable with rate p, independent of the Brownian motion X(t).
Furthermore, let J (t) = min0≤s≤t X(s). Then, for x > 0, the Laplace transform of the one-
dimensional first-passage time is

E
x(e−pτ ) =

∫ ∞

0
e−pt dP

x(τ ≤ t)

=
(

[e−pt
P

x(τ ≤ t)]|∞t=0 +
∫ ∞

0
pe−pt

P
x(τ ≤ t) dt

)

=
∫ ∞

0
pe−pt

P
x(−J (t) ≥ 0) dt

=
∫ ∞

0
pe−pt

P
0(−J (t) ≥ x) dt

= P
0(−J (εp) ≥ x).

That is, using the standard result of the one-dimensional first-passage time problem, we are
able to show that P

0(−J (εp) ≥ x) = E
x(e−pτ ) = e−((μ2+2σ 2p)1/2+μ)x/σ 2

, x > 0. The above
implies that starting from 0, −J (εp) is exponentially distributed. Thus, the two-dimensional
minimums lead to BVEs.

5.1. Two joint probabilities

There are various definitions of BVEs, depending on features that are desired. The following
three features receive most attention:

(i) marginal distributions are exponential;

(ii) absolutely continuous with respect to the Lebesgue measure in R
2;
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(iii) the memoryless property holds; namely, for any x0, x, y0, y > 0,

P(E1 > x0 + x, E2 > y0 + y) = P(E1 > x, E2 > y)P(E1 > x0, E2 > y0).

For any BVE with all (i), (ii), and (iii), the two exponential random variables must be indepen-
dent (see [19]). For more discussion of BVEs; see, for example, [7], [8], [11], and [19].

Example 1. For x1, x2 > 0 and independent exponential random variables εp1 , εp2 indepen-
dent of the Brownian motions, we have

L(x1, x2) = E
(x1,x2)(e−p1τ1−p2τ2)

=
∫ ∞

0

∫ ∞

0
p1p2e−p1t1−p2t2P

(x1,x2)(τ1 ≤ t1, τ2 ≤ t2) dt1 dt2

=
∫ ∞

0

∫ ∞

0
p1p2e−p1t1−p2t2P

(0,0)(−J1(t1) ≥ x1, −J2(t2) ≥ x2) dt1 dt2

= P
(0,0)(−J1(εp1) ≥ x1, −J2(εp2) ≥ x2), (24)

which can be computed via (19).
Since for each i = 1, 2, −Ji(εpi

) is an exponential random variable, the last term in (24)
is then the joint survival function of some BVE. Clearly, (−J1(εp1), −J2(εp2)) satisfies (i).
Moreover, (ii) is also satisfied, since L(x1, x2) is by definition twice differentiable and, hence,
continuous in (x1, x2). Thus, (−J1(εp1), −J2(εp2)) does not have the memoryless property of
(iii), unless ρ = 0 and J1(εp1) is independent of J2(εp2).

Example 2. Stopping at the same exponential variable εp independent of the Brownian mot-
ions, (−J1(εp), −J2(εp)) is also a BVE. From (22), the joint survival function of (−J1(εp),

−J2(εp)) is given by

E
(x1,x2)(e−pτ̃ ) =

∫ ∞

0
pe−pt

P
(x1,x2)(τ1 ≤ t, τ2 ≤ t) dt

=
∫ ∞

0
pe−pt

P
(0,0)(−J1(t) ≥ x1, −J2(t) ≥ x2) dt

= P
(0,0)(−J1(εp) ≥ x1, −J2(εp) ≥ x2),

which can be computed via (21).

Remark 3. Even when ρ = 0, −J1(εp) is not independent of −J2(εp), since the same εp is
shared. Hence, the joint distribution of (−J1(εp), −J2(εp)) is different from that of (−J1(εp1),

−J2(εp2)).

5.2. Two joint moments

A closed-form expression for E
(0,0) [(−J1(εp))(−J2(εp))] is given in [23] when the under-

lying correlated Brownian motions have zero drifts. In this subsection, we first generalize
the approach of [23] to the case when (X1(t), X2(t)) has arbitrary drifts; see the first part of
Theorem 4. Then we provide a characterization of E

(0,0)[(−J1(εp1))(−J2(εp2))] in the case
of drifted Brownian motion, where p1 and p2 may not be the same; see the second part of
Theorem 4.
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We first introduce some notation. Let �(·) be the gamma function, P
−μ
ν (·) the Legendre

function (for definition of Legendre function, see, for example, [22, Chapter 8]), and

b(η, c) := γ1 cos(η) + γ2 sin(η)

a(c)
,

Q(η, c) :=
{

log(b(η, c) + √
b(η, c)2 − 1) when b(η, c) ∈ [1, ∞),

i arccos(b(η, c)) when b(η, c) ∈ [−1, 1).

Since a(c) = (2c + γ 2
1 + γ 2

2 )1/2 ↑ ∞ and b(η, c) → 0 as c ↑ ∞. Hence, there exists a
constant N > 0, such that when c ≥ N , b(η, c) > −1 uniformly for any η ∈ [0, α] and
Q(η, c) is well defined. Note that by this definition, for b(η, c) > −1,

γ1 cos η + γ2 sin η = cosh(Q(η, c))a(c).

Moreover, it can be seen from the definition that Q(η, c) is continuous. Given the notation
above, we are now in position to introduce Theorem 4.

Theorem 4. (i) When p ≥ max(M, N) (where M is defined in Condition 2(ii)) such that
b(η, c) > −1 holds and Q(η, p) is well defined, the joint moment of −J1(εp) and −J2(εp) is
given by the following double integral:

E
(0,0)[(−J1(εp))(−J2(εp))]

=
√

2

π

σ1σ2 sin α

(a(p))2

(∫ α

η=0

∫ ∞

ν=0

�(2 − iν)�(2 + iν)

sinh(αν)

× [cosh(β1(c)ν) sinh((α − η)ν) + cosh(β2(c)ν) sinh(ην)]

× P
−3/2
iν−1/2(cosh(Q(η, p)))

(sinh Q(η, p))3/2 dη dν

)
,

with p1 = p2 = v = 1
2p in (17).

In particular, when μ1 = μ2 = 0, σ1 = σ2 = 1, the expression reduces to a result in [23]
(the second to last equation therein), i.e.

E
(0,0)[(−J1(εp))(−J2(εp))] = sin α

p

∫ ∞

0

cosh((π/2 − α)ν)

sinh(νπ/2)
tanh

αν

2
dν.

(ii) When min(p1, p2) ≥ max(M, N) (where M is defined in Condition 2(ii)) such that
b(η, c) > −1 holds and Q(η, p1 + p2) is well defined, the joint moment of −J1(εp1) and
−J2(εp2) is given by the following double integral:

E
(0,0)[(−J1(εp1))(−J2(εp2))]

=
√

2

π

sin ασ1σ2

(a(p1 + p2))2

(∫ α

η=0

∫ ∞

ν=0

�(2 − iν)�(2 + iν)

sinh(αν)

× [cosh(β1(c)ν) sinh((α − η)ν) + cosh(β2(c)ν) sinh(ην)]

× P
−3/2
iν−1/2(cosh(Q(η, p1 + p2)))

(sinh Q(η, p1 + p2))3/2 dη dν

)
,

with v = 0 in (17).

Proof. See [29]. �
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