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ABSTRACT

We study an asset allocation problem for a defined-contribution (DC) pension
scheme in its accumulation phase. We assume that the amount contributed to
the pension fund by a pension plan member is coupled with the salary income
which fluctuates randomly over time and contains both a hedgeable and non-
hedgeable risk component. We consider an economy in which macroeconomic
risks are existent.We assume that the economy can be in one of I states (regimes)
and switches randomly between those states. The state of the economy affects
the dynamics of the tradeable risky asset and the contribution process (the salary
income of a pension planmember). Tomodel the switching behavior of the econ-
omywe use a counting process with stochastic intensities.We find the investment
strategy which maximizes the expected exponential utility of the discounted ex-
cess wealth over a target payment, e.g. a target lifetime annuity.

KEYWORDS

Exponential utility maximization, macroeconomic risks, certainty equivalent,
backward stochastic differential equations.

1. INTRODUCTION

The ongoing shift from defined benefit to DC plans in many developed coun-
tries has pushed the optimal asset allocation problem for a DC plan to the
front of risk management of occupational retirement plans. It is important to
recognize that a large part of the risk borne by a pension plan is systematic
and depends on economic cycles. It is empirically observed that the deficit of
pension benefits grows during an economic downturn, while it is more likely
to have a surplus in an economic boom. In other words, the financial posi-
tion of a pension plan is strongly subject to macroeconomic risks.1 It is clear
that the variables like the mean and the volatility of asset returns (and conse-
quently themean and the volatility of pension funds) vary substantially between
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diverse economic states. There are mixed empirical observations about how the
volatility changes with economic situations, yet many researchers have shown
the countercyclical behavior of the stock volatility, see e.g. Schwert (1989) and
Engle et al. (2008). Moreover, macroeconomic variables like employment, infla-
tion and interest rate, which are strongly related with the economic situation,
have substantial effect on the mean of stock returns, see e.g. Campbell (1987)
and Asprem (1989).

Actuaries have developed ways to manage the risks related to economic and
demographic indices in the long term, but to the best of our knowledge, macroe-
conomic risks have not been modeled explicitly in the actuarial literature on
optimal asset allocation for DC plans. In this paper, we incorporate macroe-
conomic risks into an asset allocation problem for a DC pension scheme by
considering a multi-state regime-switching financial model. We investigate an
economy which can be in one of I states (regimes) and switches randomly be-
tween those states. The state of the economy affects the dynamics of the trade-
able risky asset and the contribution process (and the salary income of a pension
plan member). To model the switching behavior for the states of the economy,
we use a counting process with stochastic intensities. The transition intensities
depend not only on the current state of the economybut also on the current price
of the risky asset. Hence, we model an effect in which not only the stock price is
affected by the transitions between the states of the economy but also the stock
price determines the transition intensities, see Elliott et al. (2011) for a financial
motivation of a so-called feedback effect. The asset allocation problem for aDC
plan differs from the standard asset allocation problem for an investor (see e.g.
Merton (1969, 1971)) since we have to consider an additional random stream
of contributions which flows to the pension fund. The amount contributed to
the pension fund by a pension plan member is modeled by a process which
contains a tradeable risk component and non-tradeable risk components. The
tradeable risk component can be hedged with the tradeable risky asset, and the
non-tradeable risk components represent unhedgeable continuous fluctuations
in the contribution rate and the unhedgeable switching behavior of the economy.
The pension fund’s objective is to maximize the expected exponential utility of
the discounted excess wealth over a target payment at the retirement age.2 The
target payment can be chosen as a lifetime annuity with the benefit based on
the final salary of the pension beneficiary. Let us remark that maximizing the
exponential utility of the excess wealth is related to minimizing the probability
that the terminal wealth falls below the target level.3

In this paper, we use backward stochastic differential equations (BSDEs)
to solve the optimization problem. To solve our exponential utility maximiza-
tion problem we follow Hu et al. (2005) and Becherer (2006) and adapt their
techniques to our setting. We characterize the optimal investment strategy for a
DC pension scheme and the optimal value function for the optimization prob-
lem with a solution to a non-linear BSDE with a Lipschitz generator. From the
mathematical point of view the novelty of the paper is that we derive the solu-
tion to the optimization problem in a new model and we investigate properties
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of the solution to the BSDE which arises in our calculations. We would like to
point out that our model is different from Hu et al. (2005) and Becherer (2006).
We consider a regime-switching economy, i.e. a risky asset price dynamics driven
with a Brownian motion with coefficients depending on a counting process, and
we allow for a stochastic flow of contributions. Hu et al. (2005) consider a risky
asset price dynamics based on a Brownian motion, and Becherer (2006) con-
siders a dynamics based on an abstract random measure, and the authors do
not consider a contribution process. Our financial model is set up with the goal
that the results derived in it can be beneficial for a manager of a DC pension
scheme. We also would like to point out that the solution from Section 11.1
from Delong (2013) cannot be applied in our setting due to differences in the
models, e.g. in Delong (2013) the coefficients of the risky asset price dynam-
ics do not depend on the jump process which is used to model an insurance
risk.

Although we are not able to model the economy very realistically in a long
time perspective, the proposed framework and the solution developed can still
give pension plan managers some insights and guidance at a general, qualita-
tive level. We aim to model a plausible optimization problem of a DC pension
scheme beneficiary in a fairly general setting which captures prevalent beliefs
about the workings of the market (in macro). We do not recommend pension
funds to adopt the suggested optimal investment strategy quantitatively.

There already exists a stream of literature on optimal asset allocation for
pension funds. For instance, Gao (2008) studies an asset allocation problem un-
der a stochastic interest rate. Boulier et al. (2001) incorporate a constraint into
an investment problem under which a guaranteed benefit is provided to a pen-
sion beneficiary. Blake et al. (2012) investigate an asset allocation problem under
a loss-averse preference. Cairns et al. (2006) consider a stochastic salary income
of a pension beneficiary and find the investment strategy which maximizes the
expected power utility of the ratio of the terminal fund and the terminal salary.
The closest to our research is the paper by Korn et al. (2011), who investigate
a utility optimization problem for a DC pension plan with a stochastic salary
income and a stochastic contribution process in a regime-switching economy.
Their main interest lies in solving a filtering problem since they assume that the
states of the economy are modeled by a hiddenMarkov chain. We would like to
point out that Korn et al. (2011) assume constant volatilities of the asset returns
and the contribution process and constant intensities of theMarkov chain. They
provide an explicit investment strategy for a logarithmic utility. In this paper, we
consider more general dynamics of the tradeable asset, the contribution process
and the Markov chain with volatilities and intensities depending on the (ob-
servable) states of the economy, and we derive the optimal investment strategy
for an exponential utility. Let us recall that from the macroeconomic point of
view it is very important to assume countercyclical behavior of the volatility of
the stock and the dependence of the transition intensity on the stock price, see
Schwert (1989), Engle et al. (2008) and Elliott et al. (2011). We would like to
point out that since we use BSDEs to solve our asset allocation problem the
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results of this paper can be easily extended for a model with more general —
even non-Markovian — dynamics.

The paper is organized as follows. Section 2 describes the financial market
under the macroeconomic risks and formulates the asset allocation problem. In
Section 3, we solve the investment problem and we find the optimal investment
strategy which maximizes the expected exponential utility of the discounted ex-
cess wealth over a target payment. In Section 4, we present some numerical re-
sults. Finally, Section 5 provides some concluding remarks.

2. THE MODEL

We deal with a probability space (�, F, P) with a filtration F = (Ft)0≤t≤T and
a finite time horizon T < ∞. We assume that F satisfies the usual hypotheses
of completeness (F0 contains all sets of P-measure zero) and right continuity
(Ft = Ft+). On the probability space (�,F, P), we define an F-adapted, two-
dimensional standard Brownian motion (W1,W2) = (W1(t),W2(t), 0 ≤ t ≤ T)

and an F-adapted, multivariate counting process N = (N1(t), . . . , NI(t), 0 ≤
t ≤ T). The one-dimensional Brownian motions W1 and W2 are independent.
The one-dimensional counting processes (N1, . . . , NI) are not independent, and
the dependence structure is described in the sequel.

We consider an economy which can be in one of I states (regimes) and
switches randomly between those states. For i = 1, . . . , I, the counting process
Ni counts the number of transitions of the economy into state i . Furthermore,
let J = (J(t), 0 ≤ t ≤ T) denote an F-adapted process which indicates the
current state of the economy. If the economy is in regime k ∈ {1, . . . , I} at the
initial point of time, then the dynamics of the process J is given by the stochastic
differential equation

dJ(t) =
I∑

i=1

(i − J(t−))dNi (t), J(0) = k ∈ {1, . . . , I}.

A pension plan manager manages a pension fund and trades in a financial
market. The financial market consists of a risk-free bank account and a risky as-
set. In the sequel, we only consider discounted quantities. Hence, the discounted
value of the bank account is constant. We assume that the dynamics of the dis-
counted value of the risky asset S= (S(t), 0 ≤ t ≤ T) is given by the stochastic
differential equation

dS(t) = μ(J(t−))S(t)dt + σ(J(t−))S(t)dW1(t), S(0) = s, (2.1)

where

(A1) (μ(i))i=1,...,I is a sequence of real numbers and (σ (i))i=1,...,I is a sequence
of strictly positive numbers,
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which describe the value of the drift μ and the volatility σ of the discounted
risky asset (2.1) if the economy is in regime i . The drift and the volatility of the
risky asset depend on the state of the economy as it is observed in empirical data
and justified by macroeconomic theory, see the introduction.

We comment on the dynamics (2.1). The dynamics for the discounted value
of the risky asset can be motivated in the following way. Let as assume that the
value of the bank account B = (B(t), 0 ≤ t ≤ T) is modeled by the equation

dB(t) = r(J(t−))B(t)dt,

where the interest rate r is stochastic and depends on the state of the economy.
Let the value of the risky asset Sundisc = (Sundisc(t), 0 ≤ t ≤ T) satisfy the
stochastic differential equation

dSundisc(t) = μ̃(J(t−))Sundisc(t)dt + σ(J(t−))Sundisc(t)dW(t),

where μ̃ is the real-world drift of the asset. Then, the discounted value of the
risky asset S(t) = e− ∫ t

0 r(J(s))ds Sundisc(t) follows the dynamics

dS(t) = (μ̃(J(t−)) − r(J(t−)))S(t)dt + σ(J(t−))S(t)dW(t)

= μ(J(t−))S(t)dt + σ(J(t−))S(t)dW(t),

which agrees with (2.1).
We now characterize the intensities of the counting process. We assume that

(A2) for i = 1, . . . , I, the counting process Ni has intensity λi (J(t−), S(t))
where λi : {1, . . . , i−1, i+1, . . . , I}×[0, ∞) �→ R is a boundedmapping.

Consequently, the compensated counting processes

Ñi (t) = Ni (t) −
∫ t

0
λi (J(s−), S(s))ds, 0 ≤ t ≤ T, i = 1, . . . , I,

are F-martingales. We remark that λi ( j, s) denotes an intensity of the transition
of the economy into state i if the economy is in state j and the discounted value
of the risky asset is s. The dependence of the transition intensity on the current
state of the economy is obvious. The dependence of the transition intensity on
the risky asset is more sophisticated. It models a so-called feedback effect in the
market under which not only the risky asset (the market index) is affected by
the transitions between the states of the economy but also the risky asset (the
market index) determines the transition intensities, see the Introduction.

In the sequel, we use the short notation:

μ(t) := μ(J(t−)), σ (t) := σ(J(t−)), λi (t) := λi (J(t−), S(t)), 0 ≤ t ≤ T.

Let T denote the time to retirement for a pension plan member. Over the
working lifetime, the next T years, the pension beneficiary receives a salary in-
come and part of this income is contributed into the pension fund. We assume
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that the salary income fluctuates randomly in time. Let G := (G(t), 0 ≤ t ≤ T)

denote the discounted value of the salary income. One possibility is to assume
that the dynamics of the discounted value of the salary income G is given by the
stochastic differential equation

dG(t) = μG(J(t−))G(t)dt + σG(J(t−))G(t)(ρdW1(t) +
√
1 − ρ2dW2(t)),

G(0) = g, (2.2)

where (μG(i))i=1,...,I is a sequence of real numbers and (σG(i))i=1,...,I is a se-
quence of strictly positive numbers which describe the value of the drift μG and
the volatility σG of the discounted salary (2.2) if the economy is in regime i , and
ρ ∈ [−1, 1] is a correlation coefficient which introduces a correlation between
the returns of the salary incomeG and the tradeable risky asset S.We should use
the second Brownian motion W2 to model the dynamics of the salary income
to take into account the fact that in real-world the returns on salary incomes
and tradeable assets are not perfectly correlated and salary incomes cannot be
perfectly replicated with tradeable assets (even in a one-state economy). We do
not specify the dynamics of the salary income since we are more interested in a
contribution process. Let c := (c(t), 0 ≤ t ≤ T) denote a contribution process,
i.e. the discounted amount which is contributed by the pension plan member
into the pension fund and is invested for his/her retirement. In a DC pension
plan, the contribution process c is linked to the discounted value of the salary
income G. Usually, the discounted contribution payment c(t) into the fund is a
constant proportion of the discounted salary income G(t), i.e.

c(t) = γG(t), 0 ≤ t ≤ T. (2.3)

However, we do not have to specify the dynamics of the contribution process.
We only assume that

(A3) c := (c(t), 0 ≤ t ≤ T) is an F-adapted, positive, bounded process.

It is worth noticing that if cundisc denotes an undiscounted contribution process
and the interest rate r depends on the state of the economy, then we can loose
the original Markovian structure if we deal with the discounted contribution
c(t) = e− ∫ t

0 r(J(s))dscundisc(t).4 The assumption that c is F-adapted means that
the random amount contributed by the pension beneficiary to the pension fund
contains a risk componentW1, which can be hedged with the risky asset S, and
risk components (W2, N), which model unhedgeable continuous fluctuations in
the contribution rate and the unhedgeable switching behavior of the economy.
We point out that the assumption that c be bounded can be relaxed. We intro-
duce this assumption since it simplifies the verification of the optimality of the
solution and, at the same time, it is not restrictive from a practical point of view.

Let π = (π(t), 0 ≤ t ≤ T) denote the discounted amount of money which
is invested by the pension plan manager in the risky asset S. We call π an in-
vestment strategy of the pension fund. We know that we abuse the concept of
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“the strategy” from the investment point of view since in our setting π does
not denote the number of units, neither the fraction of the wealth, held in the
stock. However, the number of units or the fraction of the wealth which should
be held in the stock can be calculated from the discounted amount of money π

(if all other financial quantities are known). We introduce the set of admissible
investment strategies.

Definition 2.1. A strategy π := (π(t), 0 ≤ t ≤ T) is called admissible, written
π ∈ A, if it satisfies the conditions:
1. π : [0,T] × � → R is an F-predictable process,
2. K1(t) ≤ π(t) ≤ K2(t), 0 ≤ t ≤ T, where (K1(t), K2(t), 0 ≤ t ≤ T) are
bounded, F-predictable processes.

Pension plan managers usually face constraints imposed on investment strate-
gies. Received wisdom says that the amount invested in the risky asset should
decrease over time as the pension beneficiary approaches the retirement age.
Short-selling of assets is usually prohibited under the law. It is also reasonable
to assume that the limits set by the manager should depend on the current state
of the economy, e.g. the pension plan manager is willing to invest more in the
risky asset if the economy is booming and switches to risk-free assets if the econ-
omy is busting. The setA defines investment constraints which the pension plan
manager has to follow in the accumulation period of the pension plan. Since we
consider the discounted amount π , the bounds in A are defined as general F-
predictable processes, see the comment and the footnote after assumption (A3).
Notice that if the pension plan manager sets limits for the amount of money
invested in the risky asset, then the discounted amount π is bounded. Hence,
assumption 2 from Definition 2.1 is reasonable. If needed, the upper bound
can be chosen to be arbitrary large and may not play a significant role in the
investment decision.

We can now define the dynamics of the pension fund in the accumulation
period. The discounted value of the wealth of the pension plan member Xπ :=
(Xπ(t), 0 ≤ t ≤ T) under an admissible investment strategy π ∈ A is described
with the stochastic differential equation

dXπ(t) = π(t)
(
μ(t)dt + σ(t)dW1(t)) + c(t)dt, Xπ(0) = x, (2.4)

where x denotes an initial capital invested in the pension fund. We would like
to comment on the dynamics (2.4). Let (πundisc, Sundisc, cundisc, Xundisc,πundisc

)

denote the amount of money invested in the risky asset, the value of the risky
asset, the amount contributed by the plan member and the value of the wealth
process. Then, it is clear that we should investigate the dynamics

dXundisc,πundisc
(t) = πundisc(t)

dSundisc(t)
Sundisc(t)

+ (Xundisc,πundisc
(t) − πundisc(t))r(t)dt

+ cundisc(t)dt, Xundisc,πundisc
(0) = x.
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By standard calculus we can now derive the dynamics (2.4) for the discounted
value of the wealth process Xπ(t) = e− ∫ t

0 r(s)ds Xundisc,πundisc
(t), which is con-

trolled with a process π describing the discounted amount of money which
should be invested in the risky asset.

We assume there is no agency problem, i.e. the pension plan manager and
the pension beneficiary have the same optimization objective. The pension ben-
eficiary is interested in maximizing the expected utility of the excess wealth over
a pre-specified level at the retirement age. We neglect mortality risk, i.e. our
problem is conditional on survival of the pension beneficiary throughout the
contribution period.5 By considering the excess wealth, we incorporate the fact
that the pension beneficiary is interested in achieving a target payment which
ensures his lifetime retirement. As the terminal pension fund might fall below
the target level, the utility functions like log utility and power utility are inappli-
cable here since these functions are exclusively defined for the positive real line.
In this paper, we assume that the pension beneficiary is interested in maximizing
the expected exponential utility of the discounted excess wealth:

sup
π∈A

E[−e−α(Xπ (T)−F)], (2.5)

where α > 0 is the risk aversion coefficient, and F denotes a target discounted
payment for the pension beneficiary. Let us remark that the exponential util-
ity is widely used and well-motivated in economics, finance, insurance and risk
management, see e.g. Carmona (2008). As far as the target is concerned we only
assume that

(A4) F is FT-measurable, positive and bounded.

One possible example of the target payment F is

F = κG(T)a(J(T)), (2.6)

where κ is a fraction parameter, G(T) denotes the discounted salary of the pen-
sion beneficiary at the time of retirement, a denotes an annuity factor for the
lifetime annuity which depends on the future state of the economy J(T), e.g. on
the term structure of interest rates at the time of retirement. If the target (2.6) is
chosen, then the pension beneficiary is interested in keeping his/her last salary
income (or a fraction κ of the last salary income) as the lifetime annuity benefit.
Note that maximizing the exponential utility of the excess wealth is in fact also
related to minimizing the probability that the terminal wealth X(T) falls below
the target level F .

Let us remark that in our model the family {e−αXπ (τ ), F−stopping time τ ∈
[0,T]} is uniformly integrable for any π ∈ A. It is easy to notice that

e−αXπ (τ ) = e−αx−α
∫ τ

0 π(s)μ(s)ds−α
∫ τ

0 c(s)ds−α
∫ τ

0 π(s)σdW1(s)

≤ Ke− ∫ τ

0 απ(s)σ (s)dW1(s)− 1
2

∫ τ

0 |απ(s)σ (s)|2ds, 0 ≤ τ ≤ T. (2.7)
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The family {e− ∫ τ

0 απ(s)σ (s)dW1(s)− 1
2

∫ τ

0 |απ(s)σ (s)|2ds, F − stopping time τ ∈ [0,T]} is
uniformly integrable by the Novikov criterion, see Theorem III.45 in Protter
(2004). Hence, from (2.7) we conclude that {e−αXπ (τ ), F − stopping time τ ∈
[0,T]} is uniformly integrable for any π ∈ A.

3. THE SOLUTION TO THE INVESTMENT PROBLEM

To solve our optimization problem (2.5), we rely on BSDEs. We follow the ap-
proach fromHu et al. (2005), Becherer (2006) and Chapter 11 in Delong (2013),
to which the reader is referred to for further details.

In order to use the theory of BSDEs, we assume that

(A5) every (P,F) local martingale M has the representation

M(t) = M(0) +
∫ t

0
Z1(s)dW1(s) +

∫ t

0
Z2(s)dW2(s)

+
∫ t

0

I∑
i=1

Ui (s)dÑi (s), 0 ≤ t ≤ T,

with F-predictable processes (Z1,Z2,U1, . . . ,UI) which are integrable in
the Itô sense.

Let us remark that this assumption is satisfied if we define the probability space
and the driving processes in an appropriate way, see Crépey (2011) for details.

We consider the BSDE

Y(t) = F +
∫ T

t
f (s)ds −

∫ T

t
Z1(s)dW1(s) −

∫ T

t
Z2(s)dW2(s)

−
∫ T

t

I∑
i=1

Ui (s)dÑi (s), 0 ≤ t ≤ T, (3.1)

where f is the generator of the equation which will be determined in the se-
quel. The solution to the BSDE (3.1) consists of square integrable processes
(Y, Z1, Z2,U1, . . . ,UI) such that Y is F-adapted and (Z1, Z2,U1, . . . ,UI) are
F-predictable. We introduce the process Aπ := (Aπ(t), 0 ≤ t ≤ T) defined by

Aπ(t) = −e−α(Xπ (t)−Y(t)), 0 ≤ t ≤ T, π ∈ A.

The process Aπ plays the key role in solving our optimization problem. It is
straightforward to notice that

E[−e−α(Xπ (T)−F)] = E[−e−α(Xπ (T)−Y(T))] = E[Aπ(T)].
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If Aπ is a super-martingale for every π ∈ A, then we obtain the inequality

E[Aπ(T)] = E[−e−α(Xπ (T)−Y(T))] ≤ Aπ(0), π ∈ A, (3.2)

and if Aπ∗
is a martingale for some π∗ ∈ A, then we derive the equality

E[Aπ∗
(T)] = E[−e−α(Xπ∗

(T)−Y(T))] = Aπ∗
(0). (3.3)

Combining (3.2) with (3.3), we get

E[−e−α(Xπ (T)−Y(T))] ≤ E[−e−α(Xπ∗
(T)−Y(T))], π ∈ A,

and we conclude that the strategy π∗ is optimal and Aπ∗
(0) is the optimal value

function of the optimization problem (2.5). Therefore, we aim to find the gen-
erator f ∗ of the BSDE (3.1), independent of π , such that the process Aπ is a
super-martingale for any π ∈ A and Aπ∗

is a martingale for some π∗ ∈ A.
We show how to find ( f ∗, π∗). From (2.4) and (3.1) we get

−α(Xπ(t) − Y(t)) = −α(x− Y(0))

− α
( ∫ t

0

(
π(s)μ(s) + c(s) + f (s)

)
ds +

∫ t

0

(
π(s)σ (s) − Z1(s)

)
dW1(s)

−
∫ t

0
Z2(s)dW2(s) −

∫ t

0

I∑
i=1

Ui (s)dÑi (s)
)
, 0 ≤ t ≤ T.

We introduce two processes:

Dπ(t) = − απ(t)μ(t) − αc(t) − α f (t) + 1
2
α2(π(t)σ (t) − Z1(t))2

+ 1
2
α2(Z2(t))2 −

I∑
i=1

(αUi (t) − eαUi (t) + 1)λi (t), 0 ≤ t ≤ T,

Mπ(t) = exp
{

−
∫ t

0
α(π(s)σ (s) −Z1(s))dW1(s) −

∫ t

0

1
2
α2(π(s)σ (s) −Z1(s))2ds

+
∫ t

0
αZ2(s)dW2(s) −

∫ t

0

1
2
α2(Z2(s))2ds +

∫ t

0

I∑
i=1

αUi (s)dÑi (s)

+
∫ t

0

I∑
i=1

(αUi (s) − eαUi (s) + 1)λi (s)ds
}
, 0 ≤ t ≤ T,

and we can write the candidate value function in the form:

Aπ(t) = −e−α(x−Y(0))e
∫ t
0 D

π (s)dsMπ(t), 0 ≤ t ≤ T. (3.4)
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Since Mπ is the stochastic exponential of a local martingale, the process Mπ is
a local martingale for any π ∈ A. Let us recall that the value function derived
from the optimal investment strategy should be a martingale, whereas with all
the other strategies, the value function should be a super-martingale. We choose

π∗(t) = argmin
π∈A

{
− απμ(t) + 1

2
α2(πσ(t) − Z1(t))2

}
, 0 ≤ t ≤ T,

α f ∗(t) = min
π∈A

{
− απμ(t) + 1

2
α2(πσ(t) − Z1(t))2

}
− αc(t) + 1

2
α2(Z2(t))2

−
I∑

i=1

(αUi (t) − eαUi (t) + 1)λi (t), 0 ≤ t ≤ T. (3.5)

With this choice, we have Dπ∗
(t) = 0, 0 ≤ t ≤ T, and Dπ(t) ≥ 0, π ∈

A, 0 ≤ t ≤ T. Moreover, f ∗ is independent of π .
We end up with the BSDE

Y(t) = F

+
∫ T

t

(
min
π∈A

{
− πμ(s) + 1

2
α(πσ(s) − Z1(s))2

}
− c(s) + 1

2
α(Z2(s))2

− 1
α

I∑
i=1

(αUi (s) − eαUi (s) + 1)λi (s)
)
ds −

∫ T

t
Z1(s)dW1(s)

−
∫ T

t
Z2(s)dW2(s) −

∫ T

t

I∑
i=1

Ui (s)dÑi (s), 0 ≤ t ≤ T. (3.6)

In the last step, we transform the BSDE (3.6) with a non-Lipschitz generator to
a BSDE with a Lipschitz generator. We introduce new variables:

V(t) = eαY(t), P1(t) = αV(t−)Z1(t), P2(t) = αV(t−)Z2(t),

Qi (t) = V(t−)eαUi (t) − V(t−), i = 1, . . . , I, 0 ≤ t ≤ T. (3.7)

Applying Itô’s formula, we obtain the BSDE

V(t) = eαF

+
∫ T

t

(
min
π∈A

{
− απμ(s)V(s−) + 1

2
α2π2σ 2(s)V(s−) − απσ(s)P1(s)

}

− αc(s)V(s−)

)
ds

−
∫ T

t
P1(s)dW1(s)−

∫ T

t
P2(s)dW2(s)−

∫ T

t

I∑
i=1

Qi (s)dÑi (s), 0 ≤ t ≤ T,
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which we use to characterize the optimal value function and the optimal invest-
ment strategy.

We present the main result of this paper.

Theorem 3.1. Assume that (A1)–(A5) hold. Consider the BSDE

V(t) = eαF

+
∫ T

t

(
min
π∈A

{
− απμ(s)V(s−) + 1

2
α2π2σ 2(s)V(s−) − απσ(s)P1(s)

}

− αc(s)V(s−)

)
ds −

∫ T

t
P1(s)dW1(s)

−
∫ T

t
P2(s)dW2(s) −

∫ T

t

I∑
i=1

Qi (s)dÑi (s), 0 ≤ t ≤ T. (3.8)

a. There exists a unique solution (V, P1, P2, Q1, . . . , QI) to the BSDE (3.8)
such that V is F-adapted and (P1, P2, Q1, . . . , QI) are F-predictable. More-
over, V is strictly positive, bounded away from zero and from above,
(Q1, . . . , QI) are bounded P ⊗ dt-a.e and (P1, P2) are square integrable.
b. The optimal value function of the utility maximization problem (2.5) is equal
to −e−αxV(0) and the optimal admissible investment strategy is given by

π∗(t) = max
{
K1(t),min

{
K2(t),

μ(t)
ασ 2(t)

+ P1(t)
ασ(t)V(t−)

}}
, 0 ≤ t ≤ T.

Proof. a. Consider the function

f π(s, v, p) = −απμ(s)v

+ 1
2
α2π2σ 2(s)v − απσ(s)p−αc(s)v, (s, v, p) ∈ [0,T] × R × R, π ∈ A.

Under our assumptions it is straightforward to conclude that f π(s, v, p)
is Lipschitz continuous in (v, p) uniformly in (s, π). Hence, f ∗(s, v, p) =
minπ∈A f π(s, v, p) is also Lipschitz continuous in (v, p) uniformly in s. Con-
sequently, there exists a unique solution to the BSDE (3.8), see Proposition
3.2 in Becherer (2006) or Theorem3.1.1 inDelong (2013). Since the generator
f ∗ of the BSDE (3.8) is Lipschitz continuous, we can write

dV(t) = −(
L(t)V(t−) + H(t)P1(t)

)
dt

+ P1(t)dW1(t) + P2(t)dW2(t) +
I∑

i=1

Qi (t)dÑi (t), (3.9)
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where

L(t) = f ∗(t,V(t−), P1(t)) − f ∗(t, 0, P1(t))
V(t−)

1{V(t−) �= 0}, 0 ≤ t ≤ T,

H(t) = f ∗(t, 0, P1(t))
P1(t)

1{P1(t) �= 0}, 0 ≤ t ≤ T,

and L and H are bounded. Let us define an equivalent probability measure
with the Radon–Nikodym derivative

dQ

dP
|FT = e

∫ T
0 H(s)dW1(s)− 1

2

∫ T
0 (H(s))2ds .

Changing the measure and taking the expectation, see Proposition 2.2 in El
Karoui et al. (1997) or Propositions 3.3.1, 3.4.1 in Delong (2013), we can
deduce from (3.9) the representation

V(t) = EQ
[
eαFe

∫ T
t L(s)ds |Ft

]
, 0 ≤ t ≤ T. (3.10)

The assertion concerning the solution V follows from boundedness of F and
L. From the dynamics (3.8) we can also deduce that

I∑
i=1

Qi (t)(Ni (t) − Ni (t−)) = V(t) − V(t−), 0 ≤ t ≤ T,

and we can conclude that each Qi is bounded P ⊗ dt-a.e. since only one
counting process can jump at a time and V is bounded.

b. Since the BSDE (3.8) has a unique solution (Y, P1, P2, Q1, . . . , QI), the
BSDE (3.6) has also a unique solution defined by

Y(t) = 1
α
lnV(t), Z1(t) = P1(t)

αV(t−)
, Z2(t) = P2(t)

αV(t−)
,

Ui (t) = 1
α
ln

(Qi (t) + V(t−)

V(t−)

)
, i = 1, . . . , I, 0 ≤ t ≤ T,

and Y is F-adapted, bounded, (U1, . . . ,UI) are F-predictable, bounded P ⊗ dt-
a.e and (Z1, Z2) are F-predictable, square integrable. It is obvious that π∗ ∈
A. We are left with proving the optimality principle for the process Aπ(t) =
−e−α(Xπ (t)−Y(t)) = −e−α(x−Y(0))e

∫ t
0 D

π (s)dsMπ(t) defined in (3.4). Since for anyπ ∈
A the process Mπ is a positive local martingale (it is the stochastic exponential
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of a local martingale) and Dπ(t) ≥ 0, 0 ≤ t ≤ T, we can derive

E[Aπ(t ∧ τn)|Fs ] = E[−e−α(x−Y(0))+∫ t∧τn
0 Dπ (u)duMπ(t ∧ τn)|Fs ]

≤ −e−α(x−Y(0))+∫ s∧τn
0 Dπ (u)duE

[
Mπ(t ∧ τn)|Fs ]

= −e−α(x−Y(0))+∫ s∧τn
0 Dπ (u)duMπ(s ∧ τn) = Aπ(s ∧ τn), 0 ≤ s ≤ t ≤ T, (3.11)

where (τn)n≥1 denotes a localizing sequence for the local martingale Mπ . From
the uniform integrability of the family {e−αXπ (τ ), F−stopping times τ ∈ [0,T]}
for π ∈ A, see (2.7), and boundedness of Y we conclude that the family
{Aπ(τ ), F − stopping times τ ∈ [0,T]} is uniformly integrable for π ∈ A.
Taking the limit n → ∞ in (3.11), we obtain the super-martingale property of
Aπ for any π ∈ A. For π∗ we have Dπ∗

(t) = 0, 0 ≤ t ≤ T, and we obtain the
martingale property for Aπ∗

. For details we refer to Hu et al. (2005), Becherer
(2006) and Chapter 11.1 in Delong (2013).

We have characterized the optimal value function of our utility maximiza-
tion problem (2.5) and the optimal investment strategy with the solution to the
BSDE (3.8). The BSDE (3.8) is a non-linear BSDE with a Lipschitz generator.
In our generalmodel, the solution to the BSDE cannot be found in a closed form
and we have to derive the solution numerically. An efficient method to derive a
solution to a BSDE is to apply least squares Monte Carlo which we discuss in
Section 4. In one case, the solution to the BSDE (3.8) has a nice closed-form
representation.

Proposition 3.1. Let the assumptions of Theorem 3.1 hold. If c, F, K1, K2 and λ

are independent of W1, then P1(t) = 0, 0 ≤ t ≤ T, and

π∗(t) = max
{
K1(t),min

{
K2(t),

μ(t)
ασ 2(t)

}}
, 0 ≤ t ≤ T,

V(t) = E
[
eαFe

∫ T
t (−απ∗(s)μ(s)+ 1

2α2(π∗(s))2σ 2(s)−αc(s))ds |Ft

]
, 0 ≤ t ≤ T.

Proof. Since the coefficients in front of V and P1 in the generator of the
BSDE (3.8) and the terminal condition for the BSDE (3.8) do not depend on
the Brownian motion W1, we can choose P1(t) = 0. The form of π∗ is obvious.
The representation of V now follows from (3.10). In this case, the BSDE (3.8)
is a linear BSDE.

Let us remark that the lack of dependence of c, F, K1, K2, λ on W1 means
that the contribution process, the target payment, the investment limits and the
transition intensities are not related to the development of the risky asset S, i.e.
they do not have a tradeable risk component.

Let us now comment on the optimal value function and the optimal invest-
ment strategy.We shall comment on the certainty equivalent (CE) instead of the
optimal value function. The use of the CE makes the quantities easier to inter-
pret, because the CE expresses the expected utility in monetary units instead of
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utility units. In our case, we can define the CE as an amount of a certain capital
which a pension plan member should receive at time t = 0 as an equivalent
for an uncertain terminal wealth which arises from the optimally invested con-
tributions in the financial market. The equivalence of wealth is measured with
the exponential utility of the discounted excess wealth over the target payment.
Hence, the CE solves the equation

sup
π∈A

E[−e−α(Xπ (T)−F)] = E[−e−α(x+CE−F)],

and by Theorem 3.1 we get

CE = − 1
α
ln(V(0)) + 1

α
lnE[eαF ]. (3.12)

Notice that x+CE can be interpreted as the CE of the discounted amount which
is annuitized by the pension plan member at the time of retirement T. We can
also define the CE for the excess wealth CEexcess as a solution to the equation

sup
π∈A

E[−e−α(Xπ (T)−F)] = −e−α(x+CEexcess),

and we get

CEexcess = − 1
α
ln(V(0)). (3.13)

The optimal investment strategy π∗ consists of two parts. The first part
μ(t)/(ασ 2(t)) is the Merton investment strategy, which is the optimal invest-
ment strategy for an investor who aims to maximize the expected exponential
utility of the terminal wealth in a one-state economy without a contribution
process, a target payment and investment limits. The second part of the optimal
investment strategy P1(t)/(ασ(t)V(t−)) is used by the pension fund manager,
who trades the risky asset S, to hedge the tradeable component in the contri-
bution process, the target payment, the transition intensities and the investment
limits. Since (3.7) holds, we have P1(t)/(ασ(t)V(t−)) = Z1(t)/σ (t) where Z1 is
the control process of the BSDE (3.6). From the theory of BSDEs, see Corollary
4.1 in El Karoui et al. (1997) or Theorem 4.1.4 in Delong (2013), we can deduce
that the process Z1 defines the change in the value of the process Y resulting
from changes in the risky asset S due to the movement of the Brownian mo-
tion W1. Since (3.7) and (3.13) hold, we can conclude that the second part of
the optimal investment strategy is used by the pension fund manager to follow
the opposite changes in the CE for the excess wealth resulting from changes in
the contribution process, the target payment, the transition intensities and the
investment limits due to the tradeable risk componentW1.
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TABLE 1

THE VALUES OF THE STATE-INDEPENDENT PARAMETERS.

T S(0) G(0) γ K1 K2 ρ x α

1 100 10 0.1 0 60 0.5 200 0.1

4. NUMERICAL EXAMPLE

This section reports some numerical results based on the model developed in
previous sections. We consider a two-state Markov-regime-switching model.
State 1 denotes economic boom and state 2 denotes economic recession. The
economy is in state 1 at time t = 0. The salary income of a pension planmember
is modeled by the stochastic differential equation

dG(t) = μG(J(t−))G(t)dt + σG(J(t−))G(t)(ρdW1(t) +
√
1 − ρ2dW2(t)),

G(0) = g,

and we choose a proportional contribution rate, i.e.

c(t) = γG(t), 0 ≤ t ≤ T.

The initial capital in the pension fund is

x = G(0)a(1),

where a(1) denotes a lifetime annuity factor calculated based on macroeco-
nomic assumptions for state 1 (e.g. based on the term structure of interest rates
in economic boom). The choice of the initial capital implies that if the pension
fund is annuitized then it can be converted to a lifetime annuity with the benefit
equal to the current salary of the pension beneficiary. The target payment for
the pension plan is of the form

F = G(T)a(J(T)),

hence the pension beneficiary is interested in a lifetime annuity with the benefit
equal to his/her last salary.

We fix the parameters for the numerical example as in Tables 1–2.We assume
that short-selling of the risky asset is prohibited for the pension fund and the up-
per bound for the investment strategy is 150% of theMerton optimal investment
strategy in state 1 for the exponential utility (K2 = 1.5 ∗ μ(1)/(σ 2(1)α)) = 60).
We choose a moderate correlation ρ between the risky asset and the salary pro-
cess. It is reasonable to assume that the drift is higher in state 1 than in state 2,
and the volatility is higher in state 2 than in state 1. The lifetime annuity factor is
higher in state 2 than in state 1 (e.g. due to the fall of interest rates in recession).
In order to guarantee that the contribution process is bounded, we introduce an
upper bound on the contribution and we redefine c(t) = min{c(t), 20}.
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TABLE 2

THE VALUES OF THE STATE-DEPENDENT PARAMETERS.

State i μ(i) σ (i) μG(i) σG(i) λ(i) a(i)

State 1 0.04 0.10 0.03 0.02 1 20
State 2 0.01 0.20 0 0.06 2 22

We would like to compare the CEs (3.12), the excess wealth Xπ∗
(T)− F and

the replacement ratios Xπ∗
(T)/F under the optimal investment strategy π∗ in

different scenarios. We have to solve the BSDE (3.8). Let us comment how the
solution (V, P1), which we need to define the optimal investment strategy and
the CE, can be derived numerically, see Chapter 5.1 in Delong (2013) for details.
First, we introduce a partition 0 = t0 < t1 < . . . < ti < . . . < tn = T of the
time interval [0,T] with a time step h. Next, the solution can be defined by the
recursive relation:

Vj (T) = eαG(T)a( j), j = 1, 2,

P1, j (ti ) = 1
h

E
[
VJ(ti+1)(ti+1)

(
W1(ti+1) − W1(ti )

)|G(ti ) = g, J(ti ) = j ],

j = 1, 2, i = 0, . . . , n − 1,

Vj (ti ) = E
[
VJ(ti+1)(ti+1) +

(
min

0≤π≤K2

{
− απμ( j)VJ(ti+1)(ti+1)

+1
2
α2π2σ 2( j)VJ(ti+1)(ti+1) − απσ( j)P1, j (ti )

}

− αγ gVJ(ti+1)(ti+1)
)
h|G(ti ) = g, J(ti ) = j

]
,

j = 1, 2, i = 0, . . . , n − 1, (4.1)

see Bouchard and Elie (2008). Finally, the expectations in (4.1) are estimated by
the least squares Monte Carlo method, i.e. are estimated by fitting regression
polynomials at each point (ti )i=0,...,n−1 with a dependent variable G(ti ) based on
a generated sample of (G(ti ), J(ti )i=1,...,n, see Longstaff and Schwartz (2001).

In Tables 3–4we find the CE= − 1
α
ln(V(0))+ 1

α
lnE[eαF ], the expected excess

wealth E[Xπ∗
(T) − F ] and the expected replacement ratios E[Xπ∗

(T)/F ] com-
puted for diverse parameter combinations. We have the following observations:

• The higher the investment limit K2 or the higher the fraction γ of the salary
contributed into the pension fund, the higher the CE, the expected excess
wealth and the expected replacement ratio. This conclusion is obvious. If
the pension plan manager has less constraints on the investment policy and
more contributions to invest, then he can apply the strategy which is closer to
the optimal unconstrained strategy, he can optimally invest more funds in the
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TABLE 3

THE CERTAINTY EQUIVALENTS UNDER DIFFERENT PARAMETER COMBINATIONS. OTHER PARAMETERS ARE
SPECIFIED IN TABLES 1–2.

μG(1) = 0.03 μG(1) = 0.04 μG(1) = 0.06

CE 3.722 3.706 3.688

σG(2) = 0.04 σG(2) = 0.06 σG(2) = 0.1

CE 3.043 3.722 7.462

λ(2) = 1 λ(2) = 2 λ(2) = 3

CE 3.675 3.722 3.788

a(2) = 20 a(2) = 22 a(2) = 25

CE 3.312 3.722 4.386

K2 = 30 K2 = 60 K2 = 100

CE 3.060 3.722 3.851

γ = 0.1 γ = 0.2 γ = 0.3

CE 3.722 4.849 5.875

ρ = 0.1 ρ = 0.5 ρ = 0.9

CE 2.149 3.722 6.081

α = 0.01 α = 0.1 α = 0.15

CE 3.257 3.722 7.396

market and he can achieve a higher terminal wealth (the target payment is not
affected in this scenario).

• The higher the transition intensity λ(2) from economic recession to economic
boom, the higher the CE, the expected excess wealth and the expected re-
placement ratio. We can notice that a higher transition intensity λ(2) implies
that the economy recovers faster from the recession and, consequently, the
pension plan manager receives higher contributions and earns higher returns
on the pension fund over longer time periods. Moreover, under a higher tran-
sition intensity λ(2) there is a lower probability that the economy will be in
recession at the time of retirement and the terminal wealth is more likely to
be compared with the target payment contingent on the lower annuity a(1).
However, a higher transition intensity λ(2) also implies that the target pay-
ment which is contingent on the salary process is likely to be higher since the
salary processes rises in the economic boom. We observe that the increase in
the contributions and the returns of the pension fund in the economic boom
compensate the increase in the target payment.

• The higher the annuity factor a(2), the lower the expected excess wealth and
the expected replacement ratio. This agrees with intuition since the terminal
wealth is compared with a higher target payment. However, it is important to
realize that in our model the target payment affects the optimal investment
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TABLE 4

THE EXPECTED EXCESS WEALTH AND THE EXPECTED REPLACEMENT RATIOS UNDER DIFFERENT
PARAMETER COMBINATIONS. OTHER PARAMETERS ARE SPECIFIED IN TABLES 1–2.

μG(1) = 0.03 μG(1) = 0.04 μG(1) = 0.06

E[Xπ∗
(T) − F ] −8.140 −9.766 −13.043

E[Xπ∗
(T)/F ] 0.964 0.956 0.942

σG(2) = 0.04 σG(2) = 0.06 σG(2) = 0.1

E[Xπ∗
(T) − F ] −8.145 −8.140 −8.404

E[Xπ∗
(T)/F ] 0.963 0.964 0.964

λ(2) = 1 λ(2) = 2 λ(2) = 3

E[Xπ∗
(T) − F ] −10.127 −8.140 −6.714

E[Xπ∗
(T)/F ] 0.955 0.964 0.970

a(2) = 20 a(2) = 22 a(2) = 25

E[Xπ∗
(T) − F ] −1.635 −8.140 −17.919

E[Xπ∗
(T)/F ] 0.993 0.964 0.928

K2 = 30 K2 = 60 K2 = 100

E[Xπ∗
(T) − F ] −9.151 −8.140 −7.706

E[Xπ∗
(T)/F ] 0.959 0.964 0.966

γ = 0.1 γ = 0.2 γ = 0.3

E[Xπ∗
(T) − F ] −8.140 −7.079 −6.067

E[Xπ∗
(T)/F ] 0.964 0.969 0.974

ρ = 0.1 ρ = 0.5 ρ = 0.9

E[Xπ∗
(T) − F ] −8.392 −8.140 −8.091

E[Xπ∗
(T)/F ] 0.961 0.964 0.964

α = 0.01 α = 0.1 α = 0.15

E[Xπ∗
(T) − F ] −7.874 −8.140 −8.576

E[Xπ∗
(T)/F ] 0.964 0.964 0.961

strategy since π∗ depends on the solution (V, P1) to the BSDE (3.8) with
the terminal condition F . We can conclude that a higher target payment F ,
which can be partially hedged with the risky asset, forces the pension plan
manager to invest more in the risky asset in order to achieve a higher terminal
wealth and compensate the pension beneficiary for the decrease in the utility
resulting in a higher target payment. With such an interpretation we can now
justify the observation that the higher the annuity factor a(2) is, the higher the
CE is. In spite of a higher wealth achieved by the pension plan manager, the
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higher target payment decreases the expected excess wealth and the expected
replacement ratio as already noticed.

• The higher the volatility σG of the salary process, the higher the CE. A higher
volatility σG increases the chance that more contributions will be invested in
the pension fund, the terminal wealth will be higher and the target payment
will be higher. Using the interpretations we previously deduced, we can con-
clude that the CE should indeed increase in σG . On the other side, notice
that a higher volatility σG also increases the chance that less contributions
will be invested in the pension fund, the terminal wealth will be lower and
the target payment will be lower. The entire effect of the volatility σG of the
salary process on the expected excess wealth and the expected replacement
ratio is negligible.

• The higher the correlation coefficient ρ between the tradeable risky asset
and non-tradeable salary process, the higher the CE, the expected excess
wealth and the expected replacement ratio. The stronger the risky asset is
correlated with the salary process, the easier it is for the pension plan man-
ager to replicate the target payment contingent on the salary process and
to achieve a higher excess wealth, and most importantly, a higher termi-
nal wealth. The impact of the correlation coefficient on the expected excess
wealth and the expected replacement ratio is small. However, it is also worth
pointing out that the higher the correlation coefficient ρ is, the lower the vari-
ance of the excess wealth is. The standard deviations for the excess wealth are
12.049, 11.423, 9.740 for ρ = 0.1, 0.5, 0.9. This observation indicates an
obvious conclusion that the investment portfolio hedges the target payment
more effectively if ρ is higher.

• The higher the risk aversion coefficient α, the lower the expected excess wealth
and the expected replacement ratio. This pattern agrees with intuition. The
more risk averse the pension plan manager, the smaller amount he invests
in the risky asset, and consequently, he is likely to achieve a lower terminal
wealth (the target payment is not affected in this scenario). The higher the risk
aversion coefficient α, the higher the CE. This is surprising at the first sight
in the view of the fact that the expected terminal wealth under the optimal
investment strategy decreases in α (since the amount invested in the risky
asset is lower for a more risk averse manager). This is true for a given target
payment F . However, in order to achieve the optimal value function V(0),
which is used to define the CE, the pension plan manager optimally adjusts
the investment strategy to follow the target payment F , whereas the CE is not
invested in the market. Hence, it is more likely that a shortfall in the excess
wealth CE − F arises, which is more severe in terms of the utility for higher
risk aversion coefficients. In order to compensate a more severe shortfall in
the excess wealth CE− F for higher risk aversion coefficients, a higher CE is
required for higher α.

• The higher the drift μG of the salary process, the lower the expected excess
wealth and the expected replacement ratio. The higher drift μG implies that
the amounts contributed to the pension fund are likely to be higher and
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the target payment, which is contingent on the salary process, is likely to be
higher. It seems that the increase in the contributions does not compensate
the increase in the target payment. Hence, the expected excess wealth and the
expected replacement ratio decreases in μG . We also observe that the higher
the drift μG of the salary process, the lower the CE. This is not clear in the
view of the fact that the expected terminal wealth under the optimal invest-
ment strategy increases inμG (since more contributions flow into the pension
fund). Yet, the CE does not solely depend on the expected terminal wealth
under the optimal investment strategy, it also depends on the target payment.
As previously noticed, the excess wealth decreases in μG and, consequently,
the optimal value V(0) increases in μG . The pay-off E[eαF ] increases in μG
and the total outcome is that the CE − 1

α
ln(V(0)) + 1

α
lnE[eαF ] decreases in

μG . We remark that the impact of the drift of the salary process on the CE is
small.

5. CONCLUSION

This paper looks into the investment behavior of a DC pension plan in an
economy with macroeconomic risks. We have considered an economy which
can be in one of I states and switches randomly between those states. We
have found the optimal investment strategy which maximizes the expected
exponential utility of the discounted excess wealth over a target payment, e.g. a
target lifetime annuity. The optimal value function of our optimization problem
(the CE) and the optimal investment strategy are the solution to a BSDE.
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NOTES

1. Unlike pension plans, the theory of bonus in life insurance refers to an entirely different
paradigm: policyholders get only what the realized interest and mortality over the tract period can
sustain (see e.g. Norberg (2001)). Hence, there is no environment risk on the part of the company.

2. In this paper, we assume there is no agency problem, i.e. the pension fund (manager) and the
pension beneficiary share the same optimization objective.

3. As pointed out e.g. by Browne (1995), maximizing exponential utility of the wealth at a given
terminal time is intrinsically related to maximizing the survival probability, which is equivalent to
minimizing the probability of ruin. If we maximize the excess wealth (terminal wealth minus a
target payment), this is then related to minimizing the probability that the terminal wealth falls
below the target level.

4. For a moment let us assume that the boundedness assumption for c is not in force. If cundisc

is modeled by a CIR-like process with coefficients depending on the state of the economy, then
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(c, J, S) is no longer aMarkov process even though (cundisc, J, S) is aMarkov process, the quadru-
ple (c,

∫ .

0 r(J(s))ds, J, S) is now a Markov process.
5. If we assume that the time of death of the beneficiary is independent of the financial market

risk and the macroeconomic risk, then the mortality risk does not affect the optimal investment
strategy. More specifically, let the time of death be modeled by a random variable τ which is inde-
pendent of the financial market risk and the macroeconomic risk. The objective for a DC pension
plan takes the form

sup
π∈A

E[−e−α(Xπ (T)−F)1{τ ≥ T}],

which by the independence assumption is equal to

sup
π∈A

E[−e−α(Xπ (T)−F)]P(τ ≥ T).
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