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The goal of this work is twofold. We show the following:

1. In spite of the common consensus on the classic Markov chain Monte Carlo (MCMC)
as a universal tool for generating samples on complex sets, it fails to generate points
uniformly distributed on discrete ones, such as that defined by the constraints of
integer programming. In fact, we will demonstrate empirically that not only does it
fail to generate uniform points on the desired set, but typically it misses some of the
points of the set.

2. The splitting, also called the cloning method – originally designed for combinatorial
optimization and for counting on discrete sets and presenting a combination of MCMC,
like the Gibbs sampler, with a specially designed splitting mechanism—can also be
efficiently used for generating uniform samples on these sets. Without introducing
the appropriate splitting mechanism, MCMC fails. Although we do not have a formal
proof, we guess (conjecture) that the main reason that the classic MCMC is not working
is that its resulting chain is not irreducible. We provide valid statistical tests supporting
the uniformity of generated samples by the splitting method and present supportive
numerical results.

1. INTRODUCTION: THE SPLITTING METHOD

The goal of this work is to show the following:

1. The classic MCMC (Markov chain Monte Carlo) fails to generate points
uniformly distributed on discrete sets, such as that defined by the constraints
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of integer programming with both equality and inequality constraints; that is,

n∑
k=1

aikxk = bi, i = 1, . . . , m1,

n∑
k=1

ajkxk ≥ bj, j = m1 + 1, . . . , m1 + m2, (1)

x = (x1, . . . , xn) ≥ 0, xk is integer ∀k = 1, . . . , n.

We demonstrate empirically that starting MCMC from any initial point in
the desired set X ∗ given in (1) and running it for a very long time not only
fails to generate uniform points on X ∗ but samples only in some subset
of X ∗, rather than in the entire set X ∗. We observed that this is the case
even if X ∗ is very small containing only view points. Thus, in spite of the
common consensus (MCMC) as a universal tool for generating samples on
complex sets, our empirical studies on discrete sets, like (1), have proved quite
negative. Although we do not have a formal proof, we guess (conjecture) that
the main reason the classic MCMC is not working is that its resulting chain
is not irreducible.

2. In contrast to MCMC, the splitting method, also called the cloning method,
recently introduced in [11,12] can be efficiently used for generating uniform
samples on sets like (1). We provide valid statistical tests supporting the
uniformity of generated samples on X ∗ and present supportive numerical
results.

At first glance one might think that the classic MCMC [1,9,14,15] should be a good
alternative sets like (1). Indeed, MCMC has been successfully used for generating
points on different complex regions. In all such cases, given an arbitrary initial point
in X ∗, one runs MCMC for some time until it reaches steady state and then collects
the necessary data. One of the most popular MCMC is the hit-and-run method [15]
for generation of uniform points on continuous regions. Applications of hit-and-run
for convex optimization are given in [7].

As mentioned, we will show that this is not always the case: MCMC fails when one
deals with discrete sets like (1). To emphasize this point, observe that most decision
making, optimization, and counting problems associated with the set (1) are NP-hard;
thus, one should not expect an easy way of generating points uniformly on (1) since it
is shown in [11,12] that counting on X ∗ (which is NP-hard) is directly associated with
uniform sampling on X ∗. It is also shown that the splitting method [11,12] presents a
combination of MCMC with a specially designed splitting mechanism.Again, without
the appropriate splitting mechanism, MCMC fails.

Although this article is mainly of empirical nature, we believe that it provides a
good insight of the state of the art of generating uniform points on discrete sets X ∗
like (1) and that it will motivate further research.
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We start by presenting some background on the splitting method following
[11,12]. For related references, see [2–6,8].

Like the classic cross-entropy (CE) method [10,13], the splitting one in [11,12]
was originally designed for counting and combinatorial optimization. As mentioned,
the counting algorithm in [11,12] assumes, in fact, uniform generation on that set X ∗.
So, from that retrospective, one can view this generation as a nice “free” byproduct
of this algorithm.

The rest of this section deals with the splitting method from [12] for counting.
The main idea is to design a sequential sampling plan, with a view to decom-
posing a “difficult” counting problem defined on some set X ∗ into a number of
“easy” ones associated with a sequence of related sets X0, X1, . . . , Xm and such
that Xm = X ∗. Typically, splitting algorithms explore the connection between count-
ing and sampling problems—in particular, reduction from approximate counting
on a discrete set to approximate sampling of its elements by the classic MCMC
method [14].

A typical splitting algorithm comprises the following steps:

1. Formulate the counting problem as that of estimating the cardinality |X ∗| of
some set X ∗.

2. Find a sequence of sets X = X0, X1, . . . , Xm such that X0 ⊃ X1 ⊃ · · · ⊃ Xm =
X ∗ and |X | = |X0| is known.

3. Write |X ∗| = |Xm| as

|X ∗| = |X0|
m∏

t=1

|Xt|
|Xt−1| = �|X0|, (2)

where � = ∏m
t=1(|Xt|/|Xt−1|). Note that � is typically very small (e.g., � =

10−100) and each ratio

ct = |Xt|
|Xt−1| (3)

should not be small (e.g., ct = 10−2 or larger). Clearly, estimating � directly
while sampling in |X0| is meaningless, but estimating each ct separately seems
to be a good alternative.

4. Develop an efficient estimator ĉt = |X̂t|/|X̂t−1| for each ct = |Xt|/|Xt−1|.
5. Estimate |X ∗| by

|̂X ∗| = |X |
m∏

t=1

ĉt , (4)

where |X̂t|, t = 1, . . . , m, is an estimator of |Xt|, and similarly for the rare-event
probability �.
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It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we have
to solve the following two major problems:

(i) Put the well-known NP-hard counting problems into the framework (2) by
making sure that X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗ and each ct is not a rare-event
probability.

(ii) Obtain a low variance estimator ĉt for each ct = |Xt|/|Xt−1|.
Whereas task (i) is typically not difficult [12], task (ii) is quite complicated and asso-
ciated with the generation of uniform samples at each subregion Xt separately. As
we will see below, this can be done by combining the Gibbs sampler with a specially
designed splitting mechanism. The resulting algorithm is called the splitting or cloning
algorithm [12].

The main goal of this work is to show empirically that the splitting algorithm [12]
is able to generate points uniformly distributed on different discrete sets.

To proceed, note that � can be also written as

� = Ef
[
I{S(X)≥m}

]
, (5)

where X ∼ f (x), where f (x) is a uniform distribution on the entire set X , as before;
m is a fixed parameter (e.g., the total number of constraints in an integer program);
and S(X) is the sample performance (e.g., the number of feasible solutions generated
by the above constraints). Alternatively (see(2)), � can be written as

� =
T∏

t=1

ct , (6)

where

ct = |Xt|/|Xt−1| = Eg∗
t−1

[I{S(X)≥mt−1}]. (7)

Here,

g∗
t−1 = g∗(x, mt−1) = �(mt−1)

−1f (x)I{S(x)≥mt−1}, (8)

where �(mt−1)
−1 is the normalization constant and similarly to (2) the sequence mt , and

t = 0, 1, . . . , T represents a fixed grid satisfying −∞ < m0 < m1 < · · · < mT = m.
Note that in contrast to (2), we use in (6) a product of T terms instead of m terms, where
T might be a random variable. The latter case is associated with adaptive choice of
the level sets {m̂t}T

t=0 resulting in T ≤ m. Since for counting problems the probability
density function (p.d.f.) f (x) should be uniformly distributed on X , which we denote
by U(X ), it follows from (8) that the p.d.f. g∗(x, mt−1) should be uniformly distributed
on each set Xt = {x : S(x) ≥ mt−1}, t = 1, . . . , T ; that is, g∗(x, mt−1) should be equal
to U(Xt). Recall that the goal of the article is to show that this is indeed the case for
XT = X ∗ = {x : S(x) ≥ mT }, where mT = m.
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Once sampling from g∗
t = U(Xt) becomes feasible, the final estimator of � (based

on the estimators of ct = Eg∗
t−1

[I{S(X)≥mt−1}], t = 0, . . . , T ), can be written as

�̂ =
T∏

t=1

ĉt = 1

NT

T∏
t=1

Nt , (9)

where

ĉt = 1

N

N∑
i=1

I{S(Xi)≥mt−1} = Nt

N
, (10)

Nt = ∑N
i=1 I{S(Xi)≥mt−1}, Xi ∼ g∗

t−1, and g∗−1 = f .
We next show how to put the counting problem of finding the number of feasible

solutions of the set of integer programming constraints into the framework (5)–(8).

Example 1.1: The Set of Integer Programming Constraints: Consider again the set
X ∗ of integer programming constraints given in (1). Our goal is to generate points
uniformly distributed of this set. We assume that each component xk , k = 1, . . . , n, has
d different values, labeled 1, . . . , d. Note that the SAT problem represents a particular
case of (1) with inequality constraints and where x1, . . . , xn are binary components.
Unless stated otherwise, we will bear in mind the counting problem on the set (1)—in
particular, counting the true (valid) assignments in a SAT problem.

It is shown in [12] that in order to count the points of the set (1), one can associate
it with the following rare-event probability problem:

� = Ef
[
I{S(X)=m}

] = Ef
[
I{∑m

i=1 Ci(X)=m}
]

, (11)

where the first m1 terms Ci(X)’ in (11) are

Ci(X) = I{∑n
k=1 aikXk=bi}, i = 1, . . . , m1 (12)

and the remaining m2 ones are

Ci(X) = I{∑n
k=1 aikXk≥bi}, i = m1 + 1, . . . , m1 + m2 (13)

and S(X) = ∑m
i=1 Ci(X). Thus, in order to count the number of feasible solutions on

the set (1), one can consider an associated rare-event probability estimation problem
(11) involving a sum of dependent Bernoulli random variables Ci, i = m1 + 1, . . . , m,
and then apply |̂X ∗| = �̂|X |. In other words, in order to count on X ∗, one needs to
estimate efficiently the rare-event probability � in (11). A framework similar to (11)
can be readily established for many NP-hard counting problems [12].
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It follows from the above that the splitting algorithm will generate an adaptive
sequence of tuples:

{(m0, g∗(x, m−1)), (m1, g∗(x, m0)), (m2, g∗(x, m1)), . . . , (mT , g∗(x, mT−1))}. (14)

Here, as earlier, g∗(x, m−1) = f (x) and mt is obtained from the solution of the
following nonlinear equation:

Eg∗
t−1

I{S(X)≥mt} = ρ, (15)

where ρ is called the rarity parameter [12]. Typically, one sets 0.1 ≤ ρ ≤ 0.01. Note
that in contrast to the CE method [10,13], where one generates a sequence of tuples

{(m0, v0), (m1, v1), . . . , (mT , vT )} (16)

and where {vt , t = 1, . . . , T} is a sequence of parameters in the parametric family of
distributions f (x, vt), in (14), {g∗(x, mt−1) = g∗

t−1, t = 0, 1, . . . , T} is a sequence of
nonparametric IS distributions. Otherwise, the CE and the splitting algorithms are
similar.

In theAppendix, following [12], we present two versions of the splitting algorithm
for counting: the so-called basic Algorithm A.1 and the enhanced one, Algorithm A.2,
bearing in mind Example 1.1. Recall that the crucial point is to ensure that the
points generated from the p.d.f. g∗(x, mt−1) = g∗

t−1 are uniformly distributed on the
corresponding set Xt = {S(X) ≥ mt}, t = 1, . . . , T .

To understand that this is so, consider the enhanced Algorithm A.2, bearing in
mind the following:

1. The samples generated on the set X1 = {S(X) ≥ m̂0} from the p.d.f.
g∗(x, m̂0) = g∗

0 are exactly distributed uniformly since the original distri-
bution f is a uniform one on the entire space X = X0 and since use of
acceptance–rejection (see Step 1) yields uniform points on X1.

2. The samples generated on the sets Xt = {S(X) ≥ m̂t−1} from the correspond-
ing p.d.f.s g∗(x, mt−1) = g∗

t−1, t = 2, . . . , T , are distributed only approximately
uniformly. This is so since starting from iteration t = 2 we first split the elite
samples and then apply to each of them the Gibbs sampler, which runs for
some burn-in periods (see Step 2). This in turn means that we run N Markov
chains in parallel. The goal of the Gibbs sampler is, therefore, to keep the
N Markov chains in steady state while sampling at Xt = {S(X) ≥ m̂t−1},
t = 2, . . . , T . This is an easy task achievable by running the Gibbs sampler
for a number of burn-in periods.

Note that the splitting algorithm in [12] is also suitable for optimization. Here, we use
the same sequence of tuples (14) but without involving the product of the estimators
ĉt , t = 1, . . . , T .

The rest of our article is organized as follows. Section 2 deals with the Gibbs
sampler, which is an important element of the splitting algorithm. In particular, we
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show how to generate points uniformly on the set (1) avoiding acceptance–rejection.
Section 3 presents supporting numerical results. In Section 4 conclusions and some
directions for further research are given. Finally, in the Appendix the basic and the
enhanced versions of the splitting algorithm are presented.

2. THE GIBBS SAMPLER

In this section we show how to use efficiently the Gibbs sampler to generate points uni-
formly on the set (1). We start with some background [14] on the generation of points
from a given joint p.d.f. g(x1, . . . , xn). In the latter, instead of sampling directly from
g(x1, . . . , xn), which might be very difficult, one samples from the one-dimensional
conditional p.d.f.s g(xi|X1, . . . , Xi−1, Xi+1, . . . , Xn), i = 1, . . . , n, which is typically
much simpler. Two basic versions of the Gibbs sampler are available: systematic and
random. In the former, the components of the vector X = (X1, . . . , Xn) are updated in
a fixed, say increasing order, whereas in the latter they are chosen randomly according
to a discrete uniform n-point p.d.f. Below, we present the systematic Gibbs sampler
algorithm. In the systematic version, for a given vector X = (X1, . . . , Xn) ∼ g(x), one
generates a new vector X̃ = (X̃1, . . . , X̃n) with the same distribution ∼ g(x) using
Algorithm 2.1.

Algorithm 2.1 (Systematic Gibbs Sampler)

1. Draw X̃1 from the conditional p.d.f. g(x1|X2, . . . , Xn).

2. Draw X̃i from the conditional p.d.f. g(xi|X̃1, . . . , X̃i−1, Xi+1, . . . , Xn),
i = 2, . . . , n − 1.

3. Draw X̃n from the conditional p.d.f. g(xn|X̃1, . . . , X̃n−1).

Iterating with Algorithm 2.1, the Gibbs sampler generates (under some mild
conditions [14]), a sample distributed g(x1, . . . , xn).

We denote for convenience each conditional p.d.f. g(xi|X̃1, . . . , X̃i−1, Xi+1, . . . ,
Xn) by g(xi|x−i), where |x−i denotes conditioning on all random variables except the
i-th component.

Next we present a random Gibbs sampler taken from [9] for estimating each
ct = Eg∗

t−1
[I{S(X)≥mt−1}], t = 0, 1, . . . , T , separately according to (10); that is,

ĉt = 1

N

N∑
i=1

I{S(Xi)≥mt−1} = N (e)
t

N
.

Algorithm 2.2 (Ross’s Acceptance–Rejection Algorithm for Estimating ct)

1. Set N (e)
t = N = 0.

2. Choose a vector x such that S(x) ≥ mt−1.

3. Generate a random number U ∼ U(0, 1) and set I = Int(nU) + 1.
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4. If I = k, generate Yk from the conditional one-dimensional distribution
g(xk|x−k) (see Algorithm 2.1).

5. If S(X̃1, . . . , X̃k−1, Yk , Xk+1, . . . , Xn) < mt−1, return to part 4.

6. Set N = N + 1 and Yk = X̃k .

7. If S(x) ≥ mt , then N (e)
t = N (e)

t + 1.

8. Go to part 3.

9. Estimate ct as ĉt = N (e)
t /N .

Note thatAlgorithm 2.2 (see Step 5) is based on the acceptance–rejection method.
For many rare-event and counting problems, generation from the conditional pdf
g(xi|x−i) can be done directly; that is, skipping part 5 in it. This should clearly result
in a speed-up.

Example 2.1: Sum of Independent Random Variables: Consider the estimation of �

with S(x) = ∑n
i=1 Xi; that is,

� = Ef
[
I{∑n

i=1 Xi≥m}
]

. (17)

In this case, random variables Xi, i = 1, . . . , n, for a fixed value m can be easily
generated by the Gibbs sampler based on the following conditional p.d.f.:

g∗(xi, m|x−i) =∝ fi(xi)I{xi≥m−∑
j 
=i xj}, (18)

where ∝ means proportional to.
Note also that each of the n conditional p.d.f.s g∗(xi, m|x−i) represents a truncated

version of the proposed marginal p.d.f. fi(xi) with the truncation point at m − ∑
j 
=i xj.

In short, the random variable X̃ from g∗(xi, m|x−i) represents a shifted original ran-
dom variable X ∼ fi(xi). Generation from a such a truncated one-dimensional p.d.f.
g∗(xi, m|x−i) is easy and can be typically done by the inverse-transform method, thus
dispensing with Step 5.

Generating a Bernoulli random variable X̃i from (18) with the Gibbs sampler can
be done as follows. Generate Y ∼ Ber (p). If I{Y≥m−∑

j 
=i Xj} is unity, then set X̃i = Y ;

otherwise, set X̃i = 1 − Y .

Example 2.2: Assume that all Xi ∼ fi(xi) are independent and identically distributed
(i.i.d.) and each fi(xi) is a uniform d-point discrete p.d.f. with mass equal to 1/d at
points 1, 2, . . . , d; that is

fi(xi) = U(1, 2, . . . , d) = U
(

1

d

)
.

We first apply for this example the original Algorithm 2.2, (i.e., using acceptance–
rejection) and then show how one can dispense with it.
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Procedure 1: Acceptance–Rejection. In this case, given a fixed point X =
(X1, . . . , Xn), generating X̃i from g(xi, m|x−i) (see part 5 of Algorithm 2.2) can be
done as follows:

Generate Y ∼ fi(xi). If Y ≥ m −
∑
j 
=i

Xj, then accept Y; that is,

set X̃i = Y; otherwise, reject Y and try again.

For instance, consider generation with a systematic Gibbs sampler of a two-
dimensional random vector (X̃1, X̃2) on the set {X : x1 + x2 ≥ m}, given a fixed two-
dimensional vector x = (x1, x2).Assume that both random variables X1 and X2 are i.i.d.
symmetric dice, m = 8, and the initial point (x1, x2) = (3, 5). Consider the following
dynamic while simulating (X̃1, X̃2) according to Procedure 1.

1. Generating X̃1. Generate Y ∼ f1(x1). Let Y = 2. Check if Y ≥ m − ∑
j 
=1 Xj

holds. We have 2 ≥ 8 − 5 = 3. This is false; so we reject Y and try again. Next,
let Y = 4. In this case, Y ≥ m − ∑

j 
=1 Xj holds; so we set X̃1 = Y = 4.

2. Generating X̃2. Generate Y ∼ f2(x2). Let Y = 3. Check if Y ≥ m − ∑
j 
=2 Xj

holds. We have 3 ≥ 8 − 4 = 4. This is false; so we reject Y and try again. Next
let Y = 6. In this case, Y ≥ m − ∑

j 
=2 Xj holds; so we set X̃2 = Y = 6.

The resulting point is therefore (X̃1, X̃2) = (4, 6), with S(X̃1, X̃2) = 10.
Let us proceed from (X̃1, X̃2) = (4, 6) to generate one more point using the Gibbs

sampler and the same level m = 8. Denote (X1, X2) = (X̃1, X̃2).

1. Generating X̃1. Generate Y ∼ f1(x1). Let Y = 2. Check if Y ≥ m − ∑
j 
=1 Xj

holds. We have 2 ≥ 8 − 6 = 2. This is true; so we set X̃1 = Y = 2.

2. Generating X̃2. Generate Y ∼ f2(x2). Let Y = 3. Check if Y ≥ m − ∑
j 
=2 Xj

holds. We have 3 ≥ 8 − 3 = 5. This is false; so we reject Y and try again. Next,
let Y = 6. In this case, Y ≥ m − ∑

j 
=2 Xj holds; so we set X̃2 = Y = 6.

The resulting point is therefore (X̃1, X̃2) = (2, 6) and S(X̃1, X̃2) = 8.

We could alternatively view the above experiment as one with two simultaneously
given independent initial points—namely X1 = (3, 5) and X2 = (4, 6)—each of them
run independently using the Gibbs sampler.Assume that the results of such a run (from
X1 = (3, 5) and X2 = (4, 6)) are again X̂1 = (4, 6) and X̂2 = (2, 6), respectively. If, in
addition, we denote m = mt−1 and we set a new level mt = 10, then we have N (e)

t = 1,
N = 2 and we obtain ĉt = N (e)

t /N = 1/2 (by accepting the point X̂1 = (4, 6) and
rejecting the point X̂2 = (2, 6)).

Example 2.3: Sum of Independent Random Variables: Example 2.1 Continued: We
now modify the above Procedure 1 such that all Gibbs samples X̃ = (X̃1, . . . , X̃n)

are accepted. The modified procedure takes into account availability of the quantity
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m − ∑
j 
=i Xj and the fact that Y is a truncated version of Xi with the truncation point

m − ∑
j 
=i Xj.

Define

ri =
{

m − ∑
j 
=i Xj, if m − ∑

j 
=i Xj ≥ 0,

0, otherwise.
(19)

Once ri, (ri ≥ 0) is available, we sample a point Z ∼ U(1/(d − ri + 1)), instead
of Y ∼ U( 1

d ) . Recall that d is the number of different values taken by each random
variable Xi.

Procedure 2: Without Acceptance–Rejection
Generate Y from the truncated uniform distribution U(1/(d − ri + 1)), where ri

is an online parameter defined in (19).
We demonstrate now how this works in practice. Again let m = 8 and let the

initial point be (X1, X2) = (3, 5).

1. Generating X̃1 without rejection. Find r1 = m − ∑
j 
=i Xj. We have r1 = 8 −

5 = 3. So, the truncated distribution is uniform over the points (3, 4, 5, 6) rather
than over all six points (1, 2, 3, 4, 5, 6) as in the case of acceptance–rejection.
Generate Y uniformly over the points (3, 4, 5, 6). Let the outcome be Y = 4.
Set X̃1 = Y = 4.

2. Generating X̃2 without rejection. Find r2 = m − ∑
j 
=i Xj. We have r2 = 8 −

4 = 4. So, the truncated distribution is uniform on the points (4, 5, 6). Generate
Y uniformly on these points. Let the result be Y = 6. Set X̃2 = Y = 6.

Thus, the generated point is (X̃1, X̃2) = (4, 6) and S(X̃1, X̃2) = 10.
Let us generate one more point proceeding from (X̃1, X̃2) = (4, 6) using the same

m = 8. Denote (X1, X2) = (X̃1, X̃2).

1. Generating X̃1 without rejection. Find r1 = m − ∑
j 
=i Xj. We have r1 = 8 −

6 = 2. So, the truncated distribution is uniform over the points (2, 3, 4, 5, 6).
Generate Y uniformly over the points (2, 3, 4, 5, 6). Let the outcome be Y = 2.
Set X̃1 = Y = 2.

2. Generating X̃2 without rejection. Find r2 = m − ∑
j 
=i Xj. We have r2 = 8 −

2 = 6. So, the truncated distribution is a degenerated one with the whole mass at
point 6 and we automatically set Y = 6. We deliver X̃2 = Y = 6. The generated
point is therefore (X̃1, X̃2) = (2, 6) with S(X̃1, X̃2) = 8.

Note that we deliberately made the results of Examples 2.1 and 2.3 identical.
Clearly, the above enhancement can be used for more complex models as in

Example 1.1 for SAT and also for continuous p.d.f.s. Our numerical results show
that it can be typically achieve a speed-up by a factor of 2–3 compared with the
acceptance–rejection approach.

Example 2.4: Counting on the Set of an Integer Program: Example 1.1 continued:
Consider the set (1). It is readily seen (see also [11]) that in order to count on this
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set with given matrix A = {aij}, one only needs to sample from the one-dimensional
conditional p.d.f.s:

g∗(xi, m̂t−1|x−i) =∝ U(1/d)I{∑r∈Ri
Cr(X)≥(m̂t−1−c−i)−∑

r 
∈Ri
Cr(X)} , (20)

where Ri = {j : aij 
= 0} and c−i = m − |Ri|. Note that Ri represents the set of indexes
of all the constraints affected by xi, and c−i counts the number of all those unaffected
ones.

Remark 2.1: The goal of the set Ri is to avoid calculation of every Cr . It is used
mainly for speed-up, which can be significant for sparse matrixes A, where matrix
calculations are performed in loops and when using low-level programming languages
(e.g., MatLab). The latter operates very fast with matrixes and has its own inner
optimizer.

Sampling a random variable X̃i from (20) using the Gibbs sampler is simple. In
particular, for the Bernoulli case with x ∈ {0, 1}n, this can be done as follows. Generate
Y ∼ Ber(1/2). If ∑

r∈Ri

Cr(x1, . . . , xi−1, Y , xi+1, . . . , xn) ≥ m̂t−1, (21)

then set X̃i = Y ; otherwise, set X̃i = 1 − Y .

3. UNIFORMITY RESULTS

Here, we demonstrate empirically the following:

1. The original MCMC (without splitting) fails to generate points uniformly dis-
tributed on discrete sets of type (1). As mentioned, we will demonstrate that not
only does MCMC fail to generate uniform points on the set X ∗, but typically
it samples only on some subset of X ∗ instead of the entire one.

2. The splitting Algorithm A.2 handles successfully the uniformity problem in
the sense that it generates uniform points on the set X ∗.

We consider both issues separately.

3.1. MCMC Without Splitting

Our first model is the random 3-SAT model with the instance matrix (A = 20 × 80)

adapted from [11]. Table 1 presents the performance of the splitting Algorithm A.1
based on 10 independent runs for the 3-SAT problem with with N = 1000, rarity
parameter ρ = 0.1, and burn-in parameter b = 1.
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TABLE 1. Performance of Splitting Algorithm A.1 for SAT Problem with Instance
Matrix A = (20 × 80)

Run N0 Iterations |X̂ ∗| RE of |̂X ∗| ̂|X ∗
dir| RE of ̂|X ∗

dir| CPU

1 10 14.612 0.026 15 0.000 5.143
2 10 14.376 0.042 15 0.000 5.168
3 10 16.304 0.087 15 0.000 5.154
4 10 19.589 0.306 15 0.000 5.178
5 10 13.253 0.116 15 0.000 5.140
6 10 17.104 0.140 15 0.000 5.137
7 10 14.908 0.006 15 0.000 5.173
8 10 13.853 0.076 15 0.000 5.149
9 10 18.376 0.225 15 0.000 5.135
10 10 12.668 0.155 15 0.000 5.156
Average 10 15.504 0.118 15.000 0.000 5.153

Here, we use the following notation:

1. N (e)
t and N (s)

t denote the actual number of elites and the one after screening,
respectively.

2. m∗
t and m∗t denote the upper and the lower elite levels reached, respectively.

3. ρt = N (e)
t /N denotes the adaptive proposal rarity parameter.

4. |̂X ∗| and |̂X ∗
dir| denote the product and what is called the direct estimator. The

latter counts all distinct values of Xi, i = 1, . . . , N , satisfying S(Xi) ≥ m; that
is, it can be written as

|̂X ∗
dir| =

N∑
i=1

I{S(X(d)
i )≥m}, (22)

where X(d)
i = Xi if Xi 
= Xj, ∀j = 1, . . . , i − 1 and X(d)

i = 0, otherwise. For
more details on |̂X ∗

dir|, see [12].

Table 2 presents the dynamics for one run of the splitting Algorithm A.1 for the
same model.

To demonstrate that the original Gibbs sampler (without splitting) fails to allocate
all 15 valid SAT assignments as per Table 2, we took 1 of these 15 points and ran it
for a very long time (allowing 1,000,000 Gibbs steps). We found that depending on
the initial point X ∈ X ∗, the Gibbs sampler converges either to 6 or 9, that is, it is able
to find only 6 or 9 points out of the 15.

It is interesting to note that a similar phenomenon occurs with the splitting
Algorithm A.2 if instead of keeping all 15 elites N (s)

T for mT = m = 80, we leave
only one of them and then proceed with the Gibbs sampler for a long time. Clearly,
setting N (s)

t = 1 is exactly the same as dispensing with the splitting, (i.e., staying with
the original Gibbs sampler).

A similar phenomenon was observed with some other SAT models: Starting Gibbs
from a single point X ∈ X ∗, it was able to generate points inside only some subsets
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TABLE 2. Dynamics of Algorithm A.1 for SAT 20 × 80 Model.

t |̂X ∗| |̂X ∗
dir| Nt N (s)

t m∗
t m∗t ρt

1 1.59E+05 0 152 152 78 56 0.152
2 3.16E+04 0 198 198 78 74 0.198
3 8.84E+03 0 280 276 79 76 0.280
4 1.78E+03 3 201 190 80 77 0.201
5 229.11 6 129 93 80 78 0.129
6 15.580 15 68 15 80 79 0.068
7 15.580 15 1000 15 80 80 1.000
8 15.580 15 1000 15 80 80 1.000
9 15.580 15 1000 15 80 80 1.000
10 15.580 15 1000 15 80 80 1.000

of X ∗, rather than in the entire X ∗. In other words, the Gibbs sampler was stacked at
some local minima.

We found that the picture changes dramatically if X ∗ is a nice continuous convex
set, like that of linear constraints. In this case, starting from any X ∈ X ∗ and running
the Gibbs sampler alone for a long time, we are able to obtain uniform samples, (i.e.,
to pass the χ2 test).

3.2. Uniformity of the Splitting Method

To get uniform samples on X ∗, we modify Algorithm A.2 as follows. Once it reaches
the desired level mT = m, we perform several more steps (burn-in periods) with the
corresponding elite samples; that is, we use the screening and splitting (cloning) steps
exactly as we did for mt < m. Clearly, this will only improve the uniformity of the
samples of the desired set X ∗.

Observe also that the number of additional steps k needed for the resulting sample
to pass the χ2 test depends on the quality of the original elite sample at level m, which
in turn depends on the values of ρ and b set in Algorithm A.2. We found numerically
that the closer ρ is to 1 the more uniform is the sample. However, clearly, running
the splitting Algorithm A.2 at ρ close to 1 is time-consuming. Thus, there exists a
trade-off between the quality (uniformity) of the sample and the number of additional
iterations k required.

Consider again the 3-SAT problem with the instance matrix A = (20 × 80) and
|X ∗| = 15 (see Table 1). Figure 1 presents the histogram for k = 0, N = 100, ρ =
0.05, and b = 1. We found that the corresponding sample passes the χ2 test, with
χ2 = 12.8333. With ρ > 0.05, instead of ρ = 0.05 and with k > 0 instead of k = 0,
we found that χ2 was even smaller as expected. In particular, ρ = 0.5 and k = 1, we
found that χ2 = 9.7647 and χ2 = 10.3524, respectively.

Note again that using a single elite X ∈ X ∗, [i.e., using one of the 15 points (valid
SAT assignments)], the Gibbs sampler was unable to find all of them. More precisely,
depending on the initial value of the point X ∈ X ∗, Algorithm A.2 was stacked at a
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FIGURE 1. Histogram for the 3-SAT problem with the instance matrix A = (20 × 80)

for b = 1, k = 0, N = 100, and ρ = 0.05.

local extremum, delivering as an estimator of |X ∗| either 6 or 9 instead of the true
value |X ∗| = 15.

We checked the uniformity for many SAT problems and found that typically
(about 95%) the resulting sample passes the χ2 test, provided we set k = 2, 3; that
is, we perform two to three more steps (burn-in) with the corresponding elite sample
after reaching the desired level m.

4. CONCLUSION AND FURTHER RESEARCH

In this article we showed the following empirically:

1. In spite of the common consensus on MCMC as a universal tool for generating
samples on complex sets, we show that this is not the case when one needs to
generate points uniformly distributed on discrete sets, such as on that defined
in (1) (i.e., one containing the constraints of integer programming). We have
demonstrated empirically that not only does the original MCMC fail to generate
uniform points on the set X ∗, but typically it generates points only at some
subset of X ∗ instead on the entire set X ∗.

2. In contrast to the classic MCMC, the splitting Algorithm A.2, which repre-
sents a combination of MCMC with a specially designed splitting mechanism,
handles efficiently the uniformity problem in the sense that, under some mild
requirements, the generated samples pass the χ2 test.
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We intend to present rigorous statistical treatment of the splitting Algorithm A.2,
and, in particular, find the associated parameters N , ρ, b, and η ensuring that generated
samples are uniformly distributed on different discrete sets X ∗.
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APPENDIX

Splitting Algorithms

Following [12], we present the two versions of the splitting algorithm: the so-called basic
version and the enhanced version, bearing in mind Example 1.1.
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A.1. BASIC SPLITTING ALGORITHM

Let N , ρt , and Nt be the fixed sample size, the adaptive rarity parameter, and the number of elite
samples at iteration t, respectively (see [12] for details). Recall that the elite sample X̂1, . . . , X̂Nt

corresponds to the largest subset of the population {X1, . . . , XNt }, for which S(Xi) ≥ m̂t ; that
is, m̂t is the (1 − ρt) sample quantile of the ordered statistics values of S(X1), . . . , S(XN ). It
follows that the number of elites Nt = �Nρt, where �· denotes rounding to the largest integer.

In the basic version at iteration t, we split each elite sample ηt =
⌈
ρ−1

t

⌉
times. By doing

so, we generate
⌈
ρ−1

t Nt

⌉
≈ N new samples for the next iteration t + 1. The rationale is based

on the fact that if all ρt are not small, say ρt ≥ 0.01, we have enough stationary elite samples
and all the Gibbs sampler has to do is to continue with these Nt elites and generate N new
stationary samples for the next level.

Algorithm A.1 (Basic Splitting Algorithm for Counting)
Given the initial parameter ρ0, say ρ0 ∈ (0.01, 0.25), and the sample size N , say N = nm,
execute the following steps:

1. Acceptance–Rejection. Set a counter t = 1. Generate a sample X1, . . . , XN uniformly
on X0. Let X̂0 = {X̂1, . . . , X̂N0 } be the elite samples. Take

ĉ0 = �̂(m̂0) = 1

N

N∑
i=1

I{S(Xi)≥m̂0} = N0

N
(A.1)

as an unbiased estimator of c0. Note that X̂1, . . . , X̂N0 ∼ g∗(x, m̂0), where g∗(x, m̂0) is
a uniform distribution on the set X1 = {x : S(x) ≥ m̂0}.

2. Splitting. Let X̂t−1 = {X̂1, . . . , X̂Nt−1 } be the elite sample at iteration (t − 1), (i.e., the
subset of the population {X1, . . . , XN } for which S(Xi) ≥ m̂t−1). Reproduce ηt−1 =⌈
ρ−1

t−1

⌉
times each vector X̂k = (X̂1k , . . . , X̂nk) of the elite sample {X̂1, . . . , X̂Nt−1 };

that is, take ηt−1 identical copies of each vector X̂k . Denote the entire new popula-
tion (ηt−1Nt−1 cloned vectors plus the original elite sample {X̂1, . . . , X̂Nt−1 }) by Xcl =
{(X̂1, . . . , X̂1), . . . , (X̂Nt−1 , . . . , X̂Nt−1)}. To each cloned vector of the population Xcl
apply MCMC (and, in particular, the random Gibbs sampler) for a single period (single
burn-in). Denote the new entire population by {X1, . . . , XN }. Note that each vector in
the sample X1, . . . , XN is distributed g∗(x, m̂t−1), where g∗(x, m̂t−1) has approximately
a uniform distribution on the set Xt = {x : S(x) ≥ m̂t−1}.

3. Estimating ct . Take ĉt = (Nt/N) (see (10)) as an estimator of ct in (8). Note again that
each vector of X̂1, . . . , X̂Nt of the elite sample is distributed g∗(x, m̂t), where g∗(x, m̂t)

has approximately a uniform distribution on the set Xt+1 = {x : S(x) ≥ m̂t}.
4. Stopping rule. If mt = m, go to part 5; otherwise, set t = t + 1 and repeat from part 2.

5. Final Estimator. Deliver �̂ given in (9) as an estimator of � and |X̂ ∗| = �̂|X | as an
estimator of |X ∗|.

Figure A.1 presents a typical dynamics of the splitting algorithm, which terminates after
two iterations. The set of points denoted � and • is associated with these two iterations. In
particular the points marked � are uniformly distributed on the sets X0 and X1 (those in X1
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FIGURE A.1. Dynamics of Algorithm A.1

correspond to the elite samples). The points marked • are approximately uniformly distributed
on the sets X1 and X2 (those in X2 = X ∗ correspond to the elite samples).

A.2. ENHANCED SPLITTING ALGORITHM FOR COUNTING

The improved version of the basic splitting Algorithm A.1, which contains (i) an enhanced
splitting step instead of the original one as in Algorithms A.1 and (ii) a new screening step.

(i) Enhanced Splitting Step. Denote by ηt the number of times each of the Nt elite
samples is reproduced at iteration t and call it the splitting parameter. Denote by
bt the burn-in parameter, (i.e., the number of times each elite sample has to follow
through the MCMC (Gibbs) sampler). The purpose of the enhanced splitting step is
to find a good balance, in terms of bias variance of the estimator of |X ∗|, between ηt

and bt , provided the number of samples N is given.
Let us assume for a moment that bt = b is fixed. Then for fixed N , we can define

the adaptive cloning parameter ηt−1 at iteration t − 1 as follows

ηt−1 =
⌈

N

bNt−1

⌉
− 1 =

⌈
Ncl

Nt−1

⌉
− 1. (A.2)

Here, Ncl = N/b is called the cloned sample size, and as earlier, Nt−1 = ρt−1N
denotes the number of elites and ρt−1 is the adaptive rarety parameter at iteration
t − 1 (see [14] for details).

As an example, let N = 1000, and b = 10. Consider two cases: Nt−1 = 21 and
Nt−1 = 121. We obtain ηt−1 = 4 and ηt−1 = 0 (no splitting ), respectively.
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As an alternative to (A.2) one can use the following heuristic strategy in defining b
and η: Find bt−1 and ηt−1 from bt−1ηt−1 ≈ N/Nt−1 and take bt−1 ≈ ηt−1. In short,
one can take

bt−1 ≈ ηt−1 ≈
(

N

Nt−1

)1/2

. (A.3)

Consider again the same two cases for Nt−1 and N We have bt−1 ≈ ηt−1 = 7 and
bt−1 ≈ ηt−1 = 3, respectively. We found numerically that both versions work well,
but unless stated otherwise, we will use (A.3).

(ii) Screening Step. Since the IS p.d.f. g∗(x, mt) must be uniformly distributed for each
fixed mt , the splitting algorithm checks at each iteration whether all elite vectors
X̂1, . . . , X̂Nt are different. If this is not the case, we screen out (eliminate) all redundant
elite samples. We denote the resulting elite sample as X̂1, . . . , X̂Nt and call it the
screened elite sample. Note that this procedure prevents (at least partially) deviation
of the empirical p.d.f. associated with X̂1, . . . , X̂Nt from the uniform.

Algorithm A.2 (Enhanced Splitting Algorithm for Counting)
Given the parameter ρ, say ρ ∈ (0.01, 0.25) and the sample size N , say N = nm, execute the
following steps:

1. Acceptance–Rejection. Same as in Algorithm A.1.

2. Screening. Denote the elite sample obtained at iteration (t − 1) by {X̂1, . . . , X̂Nt−1 }.
Screen out the redundant elements from the subset {X̂1, . . . , X̂Nt−1 } and denote the
resulting (reduced) one as {X̂1, . . . , X̂Nt−1 }.

3. Splitting (Cloning). Given the size Nt−1 of the screened elites {X̂1, . . . , X̂Nt−1 }
at iteration (t − 1), find the splitting and the burn-in parameters ηt−1 and bt−1,
respectively, according to (A.3). Reproduce ηt−1 times each vector X̂k = (X̂1k , . . . , X̂nk)

of the screened elite sample {X̂1, . . . , X̂Nt−1 }; that is, take ηt−1 identical copies of
each vector X̂k obtained at the (t − 1)st iteration. Denote the entire new population
(ηt−1Nt−1 cloned vectors plus the original screened elite sample {X̂1, . . . , X̂Nt−1 }) by
Xcl = {(X̂1, . . . , X̂1), . . . , (X̂Nt−1 , . . . , X̂Nt−1)}. To each of the cloned vectors of the
population Xcl, apply the Gibbs sampler for bt−1 burn-in periods. Denote the new
entire population by {X1, . . . , XN }. Note that each vector in the sample X1, . . . , XN is
distributed approximately g∗(x, m̂t−1), where g∗(x, m̂t−1) is a uniform distribution on
the set Xt = {x : S(x) ≥ m̂t−1}.

4. Estimating ct . Same as in Algorithm A.1.

5. Stopping Rule. Same as in Algorithm A.1.

6. Final Estimator. Same as in Algorithm A.1.
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